Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Main bcache entry point - handle a read or a write request and decide what to
4 * do with it; the make_request functions are called by the block layer.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10#include "bcache.h"
11#include "btree.h"
12#include "debug.h"
13#include "request.h"
14#include "writeback.h"
15
16#include <linux/module.h>
17#include <linux/hash.h>
18#include <linux/random.h>
19#include <linux/backing-dev.h>
20
21#include <trace/events/bcache.h>
22
23#define CUTOFF_CACHE_ADD 95
24#define CUTOFF_CACHE_READA 90
25
26struct kmem_cache *bch_search_cache;
27
28static void bch_data_insert_start(struct closure *cl);
29
30static unsigned int cache_mode(struct cached_dev *dc)
31{
32 return BDEV_CACHE_MODE(&dc->sb);
33}
34
35static bool verify(struct cached_dev *dc)
36{
37 return dc->verify;
38}
39
40static void bio_csum(struct bio *bio, struct bkey *k)
41{
42 struct bio_vec bv;
43 struct bvec_iter iter;
44 uint64_t csum = 0;
45
46 bio_for_each_segment(bv, bio, iter) {
47 void *d = kmap(bv.bv_page) + bv.bv_offset;
48
49 csum = bch_crc64_update(csum, d, bv.bv_len);
50 kunmap(bv.bv_page);
51 }
52
53 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
54}
55
56/* Insert data into cache */
57
58static void bch_data_insert_keys(struct closure *cl)
59{
60 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
61 atomic_t *journal_ref = NULL;
62 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
63 int ret;
64
65 /*
66 * If we're looping, might already be waiting on
67 * another journal write - can't wait on more than one journal write at
68 * a time
69 *
70 * XXX: this looks wrong
71 */
72#if 0
73 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
74 closure_sync(&s->cl);
75#endif
76
77 if (!op->replace)
78 journal_ref = bch_journal(op->c, &op->insert_keys,
79 op->flush_journal ? cl : NULL);
80
81 ret = bch_btree_insert(op->c, &op->insert_keys,
82 journal_ref, replace_key);
83 if (ret == -ESRCH) {
84 op->replace_collision = true;
85 } else if (ret) {
86 op->status = BLK_STS_RESOURCE;
87 op->insert_data_done = true;
88 }
89
90 if (journal_ref)
91 atomic_dec_bug(journal_ref);
92
93 if (!op->insert_data_done) {
94 continue_at(cl, bch_data_insert_start, op->wq);
95 return;
96 }
97
98 bch_keylist_free(&op->insert_keys);
99 closure_return(cl);
100}
101
102static int bch_keylist_realloc(struct keylist *l, unsigned int u64s,
103 struct cache_set *c)
104{
105 size_t oldsize = bch_keylist_nkeys(l);
106 size_t newsize = oldsize + u64s;
107
108 /*
109 * The journalling code doesn't handle the case where the keys to insert
110 * is bigger than an empty write: If we just return -ENOMEM here,
111 * bch_data_insert_keys() will insert the keys created so far
112 * and finish the rest when the keylist is empty.
113 */
114 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
115 return -ENOMEM;
116
117 return __bch_keylist_realloc(l, u64s);
118}
119
120static void bch_data_invalidate(struct closure *cl)
121{
122 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
123 struct bio *bio = op->bio;
124
125 pr_debug("invalidating %i sectors from %llu",
126 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
127
128 while (bio_sectors(bio)) {
129 unsigned int sectors = min(bio_sectors(bio),
130 1U << (KEY_SIZE_BITS - 1));
131
132 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
133 goto out;
134
135 bio->bi_iter.bi_sector += sectors;
136 bio->bi_iter.bi_size -= sectors << 9;
137
138 bch_keylist_add(&op->insert_keys,
139 &KEY(op->inode,
140 bio->bi_iter.bi_sector,
141 sectors));
142 }
143
144 op->insert_data_done = true;
145 /* get in bch_data_insert() */
146 bio_put(bio);
147out:
148 continue_at(cl, bch_data_insert_keys, op->wq);
149}
150
151static void bch_data_insert_error(struct closure *cl)
152{
153 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
154
155 /*
156 * Our data write just errored, which means we've got a bunch of keys to
157 * insert that point to data that wasn't successfully written.
158 *
159 * We don't have to insert those keys but we still have to invalidate
160 * that region of the cache - so, if we just strip off all the pointers
161 * from the keys we'll accomplish just that.
162 */
163
164 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
165
166 while (src != op->insert_keys.top) {
167 struct bkey *n = bkey_next(src);
168
169 SET_KEY_PTRS(src, 0);
170 memmove(dst, src, bkey_bytes(src));
171
172 dst = bkey_next(dst);
173 src = n;
174 }
175
176 op->insert_keys.top = dst;
177
178 bch_data_insert_keys(cl);
179}
180
181static void bch_data_insert_endio(struct bio *bio)
182{
183 struct closure *cl = bio->bi_private;
184 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
185
186 if (bio->bi_status) {
187 /* TODO: We could try to recover from this. */
188 if (op->writeback)
189 op->status = bio->bi_status;
190 else if (!op->replace)
191 set_closure_fn(cl, bch_data_insert_error, op->wq);
192 else
193 set_closure_fn(cl, NULL, NULL);
194 }
195
196 bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
197}
198
199static void bch_data_insert_start(struct closure *cl)
200{
201 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
202 struct bio *bio = op->bio, *n;
203
204 if (op->bypass)
205 return bch_data_invalidate(cl);
206
207 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
208 wake_up_gc(op->c);
209
210 /*
211 * Journal writes are marked REQ_PREFLUSH; if the original write was a
212 * flush, it'll wait on the journal write.
213 */
214 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
215
216 do {
217 unsigned int i;
218 struct bkey *k;
219 struct bio_set *split = &op->c->bio_split;
220
221 /* 1 for the device pointer and 1 for the chksum */
222 if (bch_keylist_realloc(&op->insert_keys,
223 3 + (op->csum ? 1 : 0),
224 op->c)) {
225 continue_at(cl, bch_data_insert_keys, op->wq);
226 return;
227 }
228
229 k = op->insert_keys.top;
230 bkey_init(k);
231 SET_KEY_INODE(k, op->inode);
232 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
233
234 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
235 op->write_point, op->write_prio,
236 op->writeback))
237 goto err;
238
239 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
240
241 n->bi_end_io = bch_data_insert_endio;
242 n->bi_private = cl;
243
244 if (op->writeback) {
245 SET_KEY_DIRTY(k, true);
246
247 for (i = 0; i < KEY_PTRS(k); i++)
248 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
249 GC_MARK_DIRTY);
250 }
251
252 SET_KEY_CSUM(k, op->csum);
253 if (KEY_CSUM(k))
254 bio_csum(n, k);
255
256 trace_bcache_cache_insert(k);
257 bch_keylist_push(&op->insert_keys);
258
259 bio_set_op_attrs(n, REQ_OP_WRITE, 0);
260 bch_submit_bbio(n, op->c, k, 0);
261 } while (n != bio);
262
263 op->insert_data_done = true;
264 continue_at(cl, bch_data_insert_keys, op->wq);
265 return;
266err:
267 /* bch_alloc_sectors() blocks if s->writeback = true */
268 BUG_ON(op->writeback);
269
270 /*
271 * But if it's not a writeback write we'd rather just bail out if
272 * there aren't any buckets ready to write to - it might take awhile and
273 * we might be starving btree writes for gc or something.
274 */
275
276 if (!op->replace) {
277 /*
278 * Writethrough write: We can't complete the write until we've
279 * updated the index. But we don't want to delay the write while
280 * we wait for buckets to be freed up, so just invalidate the
281 * rest of the write.
282 */
283 op->bypass = true;
284 return bch_data_invalidate(cl);
285 } else {
286 /*
287 * From a cache miss, we can just insert the keys for the data
288 * we have written or bail out if we didn't do anything.
289 */
290 op->insert_data_done = true;
291 bio_put(bio);
292
293 if (!bch_keylist_empty(&op->insert_keys))
294 continue_at(cl, bch_data_insert_keys, op->wq);
295 else
296 closure_return(cl);
297 }
298}
299
300/**
301 * bch_data_insert - stick some data in the cache
302 * @cl: closure pointer.
303 *
304 * This is the starting point for any data to end up in a cache device; it could
305 * be from a normal write, or a writeback write, or a write to a flash only
306 * volume - it's also used by the moving garbage collector to compact data in
307 * mostly empty buckets.
308 *
309 * It first writes the data to the cache, creating a list of keys to be inserted
310 * (if the data had to be fragmented there will be multiple keys); after the
311 * data is written it calls bch_journal, and after the keys have been added to
312 * the next journal write they're inserted into the btree.
313 *
314 * It inserts the data in op->bio; bi_sector is used for the key offset,
315 * and op->inode is used for the key inode.
316 *
317 * If op->bypass is true, instead of inserting the data it invalidates the
318 * region of the cache represented by op->bio and op->inode.
319 */
320void bch_data_insert(struct closure *cl)
321{
322 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
323
324 trace_bcache_write(op->c, op->inode, op->bio,
325 op->writeback, op->bypass);
326
327 bch_keylist_init(&op->insert_keys);
328 bio_get(op->bio);
329 bch_data_insert_start(cl);
330}
331
332/* Congested? */
333
334unsigned int bch_get_congested(struct cache_set *c)
335{
336 int i;
337 long rand;
338
339 if (!c->congested_read_threshold_us &&
340 !c->congested_write_threshold_us)
341 return 0;
342
343 i = (local_clock_us() - c->congested_last_us) / 1024;
344 if (i < 0)
345 return 0;
346
347 i += atomic_read(&c->congested);
348 if (i >= 0)
349 return 0;
350
351 i += CONGESTED_MAX;
352
353 if (i > 0)
354 i = fract_exp_two(i, 6);
355
356 rand = get_random_int();
357 i -= bitmap_weight(&rand, BITS_PER_LONG);
358
359 return i > 0 ? i : 1;
360}
361
362static void add_sequential(struct task_struct *t)
363{
364 ewma_add(t->sequential_io_avg,
365 t->sequential_io, 8, 0);
366
367 t->sequential_io = 0;
368}
369
370static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
371{
372 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
373}
374
375static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
376{
377 struct cache_set *c = dc->disk.c;
378 unsigned int mode = cache_mode(dc);
379 unsigned int sectors, congested = bch_get_congested(c);
380 struct task_struct *task = current;
381 struct io *i;
382
383 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
384 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
385 (bio_op(bio) == REQ_OP_DISCARD))
386 goto skip;
387
388 if (mode == CACHE_MODE_NONE ||
389 (mode == CACHE_MODE_WRITEAROUND &&
390 op_is_write(bio_op(bio))))
391 goto skip;
392
393 /*
394 * Flag for bypass if the IO is for read-ahead or background,
395 * unless the read-ahead request is for metadata
396 * (eg, for gfs2 or xfs).
397 */
398 if (bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND) &&
399 !(bio->bi_opf & (REQ_META|REQ_PRIO)))
400 goto skip;
401
402 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
403 bio_sectors(bio) & (c->sb.block_size - 1)) {
404 pr_debug("skipping unaligned io");
405 goto skip;
406 }
407
408 if (bypass_torture_test(dc)) {
409 if ((get_random_int() & 3) == 3)
410 goto skip;
411 else
412 goto rescale;
413 }
414
415 if (!congested && !dc->sequential_cutoff)
416 goto rescale;
417
418 spin_lock(&dc->io_lock);
419
420 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
421 if (i->last == bio->bi_iter.bi_sector &&
422 time_before(jiffies, i->jiffies))
423 goto found;
424
425 i = list_first_entry(&dc->io_lru, struct io, lru);
426
427 add_sequential(task);
428 i->sequential = 0;
429found:
430 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
431 i->sequential += bio->bi_iter.bi_size;
432
433 i->last = bio_end_sector(bio);
434 i->jiffies = jiffies + msecs_to_jiffies(5000);
435 task->sequential_io = i->sequential;
436
437 hlist_del(&i->hash);
438 hlist_add_head(&i->hash, iohash(dc, i->last));
439 list_move_tail(&i->lru, &dc->io_lru);
440
441 spin_unlock(&dc->io_lock);
442
443 sectors = max(task->sequential_io,
444 task->sequential_io_avg) >> 9;
445
446 if (dc->sequential_cutoff &&
447 sectors >= dc->sequential_cutoff >> 9) {
448 trace_bcache_bypass_sequential(bio);
449 goto skip;
450 }
451
452 if (congested && sectors >= congested) {
453 trace_bcache_bypass_congested(bio);
454 goto skip;
455 }
456
457rescale:
458 bch_rescale_priorities(c, bio_sectors(bio));
459 return false;
460skip:
461 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
462 return true;
463}
464
465/* Cache lookup */
466
467struct search {
468 /* Stack frame for bio_complete */
469 struct closure cl;
470
471 struct bbio bio;
472 struct bio *orig_bio;
473 struct bio *cache_miss;
474 struct bcache_device *d;
475
476 unsigned int insert_bio_sectors;
477 unsigned int recoverable:1;
478 unsigned int write:1;
479 unsigned int read_dirty_data:1;
480 unsigned int cache_missed:1;
481
482 unsigned long start_time;
483
484 struct btree_op op;
485 struct data_insert_op iop;
486};
487
488static void bch_cache_read_endio(struct bio *bio)
489{
490 struct bbio *b = container_of(bio, struct bbio, bio);
491 struct closure *cl = bio->bi_private;
492 struct search *s = container_of(cl, struct search, cl);
493
494 /*
495 * If the bucket was reused while our bio was in flight, we might have
496 * read the wrong data. Set s->error but not error so it doesn't get
497 * counted against the cache device, but we'll still reread the data
498 * from the backing device.
499 */
500
501 if (bio->bi_status)
502 s->iop.status = bio->bi_status;
503 else if (!KEY_DIRTY(&b->key) &&
504 ptr_stale(s->iop.c, &b->key, 0)) {
505 atomic_long_inc(&s->iop.c->cache_read_races);
506 s->iop.status = BLK_STS_IOERR;
507 }
508
509 bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
510}
511
512/*
513 * Read from a single key, handling the initial cache miss if the key starts in
514 * the middle of the bio
515 */
516static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
517{
518 struct search *s = container_of(op, struct search, op);
519 struct bio *n, *bio = &s->bio.bio;
520 struct bkey *bio_key;
521 unsigned int ptr;
522
523 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
524 return MAP_CONTINUE;
525
526 if (KEY_INODE(k) != s->iop.inode ||
527 KEY_START(k) > bio->bi_iter.bi_sector) {
528 unsigned int bio_sectors = bio_sectors(bio);
529 unsigned int sectors = KEY_INODE(k) == s->iop.inode
530 ? min_t(uint64_t, INT_MAX,
531 KEY_START(k) - bio->bi_iter.bi_sector)
532 : INT_MAX;
533 int ret = s->d->cache_miss(b, s, bio, sectors);
534
535 if (ret != MAP_CONTINUE)
536 return ret;
537
538 /* if this was a complete miss we shouldn't get here */
539 BUG_ON(bio_sectors <= sectors);
540 }
541
542 if (!KEY_SIZE(k))
543 return MAP_CONTINUE;
544
545 /* XXX: figure out best pointer - for multiple cache devices */
546 ptr = 0;
547
548 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
549
550 if (KEY_DIRTY(k))
551 s->read_dirty_data = true;
552
553 n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
554 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
555 GFP_NOIO, &s->d->bio_split);
556
557 bio_key = &container_of(n, struct bbio, bio)->key;
558 bch_bkey_copy_single_ptr(bio_key, k, ptr);
559
560 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
561 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
562
563 n->bi_end_io = bch_cache_read_endio;
564 n->bi_private = &s->cl;
565
566 /*
567 * The bucket we're reading from might be reused while our bio
568 * is in flight, and we could then end up reading the wrong
569 * data.
570 *
571 * We guard against this by checking (in cache_read_endio()) if
572 * the pointer is stale again; if so, we treat it as an error
573 * and reread from the backing device (but we don't pass that
574 * error up anywhere).
575 */
576
577 __bch_submit_bbio(n, b->c);
578 return n == bio ? MAP_DONE : MAP_CONTINUE;
579}
580
581static void cache_lookup(struct closure *cl)
582{
583 struct search *s = container_of(cl, struct search, iop.cl);
584 struct bio *bio = &s->bio.bio;
585 struct cached_dev *dc;
586 int ret;
587
588 bch_btree_op_init(&s->op, -1);
589
590 ret = bch_btree_map_keys(&s->op, s->iop.c,
591 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
592 cache_lookup_fn, MAP_END_KEY);
593 if (ret == -EAGAIN) {
594 continue_at(cl, cache_lookup, bcache_wq);
595 return;
596 }
597
598 /*
599 * We might meet err when searching the btree, If that happens, we will
600 * get negative ret, in this scenario we should not recover data from
601 * backing device (when cache device is dirty) because we don't know
602 * whether bkeys the read request covered are all clean.
603 *
604 * And after that happened, s->iop.status is still its initial value
605 * before we submit s->bio.bio
606 */
607 if (ret < 0) {
608 BUG_ON(ret == -EINTR);
609 if (s->d && s->d->c &&
610 !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
611 dc = container_of(s->d, struct cached_dev, disk);
612 if (dc && atomic_read(&dc->has_dirty))
613 s->recoverable = false;
614 }
615 if (!s->iop.status)
616 s->iop.status = BLK_STS_IOERR;
617 }
618
619 closure_return(cl);
620}
621
622/* Common code for the make_request functions */
623
624static void request_endio(struct bio *bio)
625{
626 struct closure *cl = bio->bi_private;
627
628 if (bio->bi_status) {
629 struct search *s = container_of(cl, struct search, cl);
630
631 s->iop.status = bio->bi_status;
632 /* Only cache read errors are recoverable */
633 s->recoverable = false;
634 }
635
636 bio_put(bio);
637 closure_put(cl);
638}
639
640static void backing_request_endio(struct bio *bio)
641{
642 struct closure *cl = bio->bi_private;
643
644 if (bio->bi_status) {
645 struct search *s = container_of(cl, struct search, cl);
646 struct cached_dev *dc = container_of(s->d,
647 struct cached_dev, disk);
648 /*
649 * If a bio has REQ_PREFLUSH for writeback mode, it is
650 * speically assembled in cached_dev_write() for a non-zero
651 * write request which has REQ_PREFLUSH. we don't set
652 * s->iop.status by this failure, the status will be decided
653 * by result of bch_data_insert() operation.
654 */
655 if (unlikely(s->iop.writeback &&
656 bio->bi_opf & REQ_PREFLUSH)) {
657 pr_err("Can't flush %s: returned bi_status %i",
658 dc->backing_dev_name, bio->bi_status);
659 } else {
660 /* set to orig_bio->bi_status in bio_complete() */
661 s->iop.status = bio->bi_status;
662 }
663 s->recoverable = false;
664 /* should count I/O error for backing device here */
665 bch_count_backing_io_errors(dc, bio);
666 }
667
668 bio_put(bio);
669 closure_put(cl);
670}
671
672static void bio_complete(struct search *s)
673{
674 if (s->orig_bio) {
675 generic_end_io_acct(s->d->disk->queue, bio_op(s->orig_bio),
676 &s->d->disk->part0, s->start_time);
677
678 trace_bcache_request_end(s->d, s->orig_bio);
679 s->orig_bio->bi_status = s->iop.status;
680 bio_endio(s->orig_bio);
681 s->orig_bio = NULL;
682 }
683}
684
685static void do_bio_hook(struct search *s,
686 struct bio *orig_bio,
687 bio_end_io_t *end_io_fn)
688{
689 struct bio *bio = &s->bio.bio;
690
691 bio_init(bio, NULL, 0);
692 __bio_clone_fast(bio, orig_bio);
693 /*
694 * bi_end_io can be set separately somewhere else, e.g. the
695 * variants in,
696 * - cache_bio->bi_end_io from cached_dev_cache_miss()
697 * - n->bi_end_io from cache_lookup_fn()
698 */
699 bio->bi_end_io = end_io_fn;
700 bio->bi_private = &s->cl;
701
702 bio_cnt_set(bio, 3);
703}
704
705static void search_free(struct closure *cl)
706{
707 struct search *s = container_of(cl, struct search, cl);
708
709 atomic_dec(&s->d->c->search_inflight);
710
711 if (s->iop.bio)
712 bio_put(s->iop.bio);
713
714 bio_complete(s);
715 closure_debug_destroy(cl);
716 mempool_free(s, &s->d->c->search);
717}
718
719static inline struct search *search_alloc(struct bio *bio,
720 struct bcache_device *d)
721{
722 struct search *s;
723
724 s = mempool_alloc(&d->c->search, GFP_NOIO);
725
726 closure_init(&s->cl, NULL);
727 do_bio_hook(s, bio, request_endio);
728 atomic_inc(&d->c->search_inflight);
729
730 s->orig_bio = bio;
731 s->cache_miss = NULL;
732 s->cache_missed = 0;
733 s->d = d;
734 s->recoverable = 1;
735 s->write = op_is_write(bio_op(bio));
736 s->read_dirty_data = 0;
737 s->start_time = jiffies;
738
739 s->iop.c = d->c;
740 s->iop.bio = NULL;
741 s->iop.inode = d->id;
742 s->iop.write_point = hash_long((unsigned long) current, 16);
743 s->iop.write_prio = 0;
744 s->iop.status = 0;
745 s->iop.flags = 0;
746 s->iop.flush_journal = op_is_flush(bio->bi_opf);
747 s->iop.wq = bcache_wq;
748
749 return s;
750}
751
752/* Cached devices */
753
754static void cached_dev_bio_complete(struct closure *cl)
755{
756 struct search *s = container_of(cl, struct search, cl);
757 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
758
759 search_free(cl);
760 cached_dev_put(dc);
761}
762
763/* Process reads */
764
765static void cached_dev_cache_miss_done(struct closure *cl)
766{
767 struct search *s = container_of(cl, struct search, cl);
768
769 if (s->iop.replace_collision)
770 bch_mark_cache_miss_collision(s->iop.c, s->d);
771
772 if (s->iop.bio)
773 bio_free_pages(s->iop.bio);
774
775 cached_dev_bio_complete(cl);
776}
777
778static void cached_dev_read_error(struct closure *cl)
779{
780 struct search *s = container_of(cl, struct search, cl);
781 struct bio *bio = &s->bio.bio;
782
783 /*
784 * If read request hit dirty data (s->read_dirty_data is true),
785 * then recovery a failed read request from cached device may
786 * get a stale data back. So read failure recovery is only
787 * permitted when read request hit clean data in cache device,
788 * or when cache read race happened.
789 */
790 if (s->recoverable && !s->read_dirty_data) {
791 /* Retry from the backing device: */
792 trace_bcache_read_retry(s->orig_bio);
793
794 s->iop.status = 0;
795 do_bio_hook(s, s->orig_bio, backing_request_endio);
796
797 /* XXX: invalidate cache */
798
799 /* I/O request sent to backing device */
800 closure_bio_submit(s->iop.c, bio, cl);
801 }
802
803 continue_at(cl, cached_dev_cache_miss_done, NULL);
804}
805
806static void cached_dev_read_done(struct closure *cl)
807{
808 struct search *s = container_of(cl, struct search, cl);
809 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
810
811 /*
812 * We had a cache miss; cache_bio now contains data ready to be inserted
813 * into the cache.
814 *
815 * First, we copy the data we just read from cache_bio's bounce buffers
816 * to the buffers the original bio pointed to:
817 */
818
819 if (s->iop.bio) {
820 bio_reset(s->iop.bio);
821 s->iop.bio->bi_iter.bi_sector =
822 s->cache_miss->bi_iter.bi_sector;
823 bio_copy_dev(s->iop.bio, s->cache_miss);
824 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
825 bch_bio_map(s->iop.bio, NULL);
826
827 bio_copy_data(s->cache_miss, s->iop.bio);
828
829 bio_put(s->cache_miss);
830 s->cache_miss = NULL;
831 }
832
833 if (verify(dc) && s->recoverable && !s->read_dirty_data)
834 bch_data_verify(dc, s->orig_bio);
835
836 bio_complete(s);
837
838 if (s->iop.bio &&
839 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
840 BUG_ON(!s->iop.replace);
841 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
842 }
843
844 continue_at(cl, cached_dev_cache_miss_done, NULL);
845}
846
847static void cached_dev_read_done_bh(struct closure *cl)
848{
849 struct search *s = container_of(cl, struct search, cl);
850 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
851
852 bch_mark_cache_accounting(s->iop.c, s->d,
853 !s->cache_missed, s->iop.bypass);
854 trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
855
856 if (s->iop.status)
857 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
858 else if (s->iop.bio || verify(dc))
859 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
860 else
861 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
862}
863
864static int cached_dev_cache_miss(struct btree *b, struct search *s,
865 struct bio *bio, unsigned int sectors)
866{
867 int ret = MAP_CONTINUE;
868 unsigned int reada = 0;
869 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
870 struct bio *miss, *cache_bio;
871
872 s->cache_missed = 1;
873
874 if (s->cache_miss || s->iop.bypass) {
875 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
876 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
877 goto out_submit;
878 }
879
880 if (!(bio->bi_opf & REQ_RAHEAD) &&
881 !(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
882 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
883 reada = min_t(sector_t, dc->readahead >> 9,
884 get_capacity(bio->bi_disk) - bio_end_sector(bio));
885
886 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
887
888 s->iop.replace_key = KEY(s->iop.inode,
889 bio->bi_iter.bi_sector + s->insert_bio_sectors,
890 s->insert_bio_sectors);
891
892 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
893 if (ret)
894 return ret;
895
896 s->iop.replace = true;
897
898 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
899
900 /* btree_search_recurse()'s btree iterator is no good anymore */
901 ret = miss == bio ? MAP_DONE : -EINTR;
902
903 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
904 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
905 &dc->disk.bio_split);
906 if (!cache_bio)
907 goto out_submit;
908
909 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
910 bio_copy_dev(cache_bio, miss);
911 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
912
913 cache_bio->bi_end_io = backing_request_endio;
914 cache_bio->bi_private = &s->cl;
915
916 bch_bio_map(cache_bio, NULL);
917 if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
918 goto out_put;
919
920 if (reada)
921 bch_mark_cache_readahead(s->iop.c, s->d);
922
923 s->cache_miss = miss;
924 s->iop.bio = cache_bio;
925 bio_get(cache_bio);
926 /* I/O request sent to backing device */
927 closure_bio_submit(s->iop.c, cache_bio, &s->cl);
928
929 return ret;
930out_put:
931 bio_put(cache_bio);
932out_submit:
933 miss->bi_end_io = backing_request_endio;
934 miss->bi_private = &s->cl;
935 /* I/O request sent to backing device */
936 closure_bio_submit(s->iop.c, miss, &s->cl);
937 return ret;
938}
939
940static void cached_dev_read(struct cached_dev *dc, struct search *s)
941{
942 struct closure *cl = &s->cl;
943
944 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
945 continue_at(cl, cached_dev_read_done_bh, NULL);
946}
947
948/* Process writes */
949
950static void cached_dev_write_complete(struct closure *cl)
951{
952 struct search *s = container_of(cl, struct search, cl);
953 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
954
955 up_read_non_owner(&dc->writeback_lock);
956 cached_dev_bio_complete(cl);
957}
958
959static void cached_dev_write(struct cached_dev *dc, struct search *s)
960{
961 struct closure *cl = &s->cl;
962 struct bio *bio = &s->bio.bio;
963 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
964 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
965
966 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
967
968 down_read_non_owner(&dc->writeback_lock);
969 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
970 /*
971 * We overlap with some dirty data undergoing background
972 * writeback, force this write to writeback
973 */
974 s->iop.bypass = false;
975 s->iop.writeback = true;
976 }
977
978 /*
979 * Discards aren't _required_ to do anything, so skipping if
980 * check_overlapping returned true is ok
981 *
982 * But check_overlapping drops dirty keys for which io hasn't started,
983 * so we still want to call it.
984 */
985 if (bio_op(bio) == REQ_OP_DISCARD)
986 s->iop.bypass = true;
987
988 if (should_writeback(dc, s->orig_bio,
989 cache_mode(dc),
990 s->iop.bypass)) {
991 s->iop.bypass = false;
992 s->iop.writeback = true;
993 }
994
995 if (s->iop.bypass) {
996 s->iop.bio = s->orig_bio;
997 bio_get(s->iop.bio);
998
999 if (bio_op(bio) == REQ_OP_DISCARD &&
1000 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1001 goto insert_data;
1002
1003 /* I/O request sent to backing device */
1004 bio->bi_end_io = backing_request_endio;
1005 closure_bio_submit(s->iop.c, bio, cl);
1006
1007 } else if (s->iop.writeback) {
1008 bch_writeback_add(dc);
1009 s->iop.bio = bio;
1010
1011 if (bio->bi_opf & REQ_PREFLUSH) {
1012 /*
1013 * Also need to send a flush to the backing
1014 * device.
1015 */
1016 struct bio *flush;
1017
1018 flush = bio_alloc_bioset(GFP_NOIO, 0,
1019 &dc->disk.bio_split);
1020 if (!flush) {
1021 s->iop.status = BLK_STS_RESOURCE;
1022 goto insert_data;
1023 }
1024 bio_copy_dev(flush, bio);
1025 flush->bi_end_io = backing_request_endio;
1026 flush->bi_private = cl;
1027 flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1028 /* I/O request sent to backing device */
1029 closure_bio_submit(s->iop.c, flush, cl);
1030 }
1031 } else {
1032 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split);
1033 /* I/O request sent to backing device */
1034 bio->bi_end_io = backing_request_endio;
1035 closure_bio_submit(s->iop.c, bio, cl);
1036 }
1037
1038insert_data:
1039 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1040 continue_at(cl, cached_dev_write_complete, NULL);
1041}
1042
1043static void cached_dev_nodata(struct closure *cl)
1044{
1045 struct search *s = container_of(cl, struct search, cl);
1046 struct bio *bio = &s->bio.bio;
1047
1048 if (s->iop.flush_journal)
1049 bch_journal_meta(s->iop.c, cl);
1050
1051 /* If it's a flush, we send the flush to the backing device too */
1052 bio->bi_end_io = backing_request_endio;
1053 closure_bio_submit(s->iop.c, bio, cl);
1054
1055 continue_at(cl, cached_dev_bio_complete, NULL);
1056}
1057
1058struct detached_dev_io_private {
1059 struct bcache_device *d;
1060 unsigned long start_time;
1061 bio_end_io_t *bi_end_io;
1062 void *bi_private;
1063};
1064
1065static void detached_dev_end_io(struct bio *bio)
1066{
1067 struct detached_dev_io_private *ddip;
1068
1069 ddip = bio->bi_private;
1070 bio->bi_end_io = ddip->bi_end_io;
1071 bio->bi_private = ddip->bi_private;
1072
1073 generic_end_io_acct(ddip->d->disk->queue, bio_op(bio),
1074 &ddip->d->disk->part0, ddip->start_time);
1075
1076 if (bio->bi_status) {
1077 struct cached_dev *dc = container_of(ddip->d,
1078 struct cached_dev, disk);
1079 /* should count I/O error for backing device here */
1080 bch_count_backing_io_errors(dc, bio);
1081 }
1082
1083 kfree(ddip);
1084 bio->bi_end_io(bio);
1085}
1086
1087static void detached_dev_do_request(struct bcache_device *d, struct bio *bio)
1088{
1089 struct detached_dev_io_private *ddip;
1090 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1091
1092 /*
1093 * no need to call closure_get(&dc->disk.cl),
1094 * because upper layer had already opened bcache device,
1095 * which would call closure_get(&dc->disk.cl)
1096 */
1097 ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1098 ddip->d = d;
1099 ddip->start_time = jiffies;
1100 ddip->bi_end_io = bio->bi_end_io;
1101 ddip->bi_private = bio->bi_private;
1102 bio->bi_end_io = detached_dev_end_io;
1103 bio->bi_private = ddip;
1104
1105 if ((bio_op(bio) == REQ_OP_DISCARD) &&
1106 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1107 bio->bi_end_io(bio);
1108 else
1109 generic_make_request(bio);
1110}
1111
1112static void quit_max_writeback_rate(struct cache_set *c,
1113 struct cached_dev *this_dc)
1114{
1115 int i;
1116 struct bcache_device *d;
1117 struct cached_dev *dc;
1118
1119 /*
1120 * mutex bch_register_lock may compete with other parallel requesters,
1121 * or attach/detach operations on other backing device. Waiting to
1122 * the mutex lock may increase I/O request latency for seconds or more.
1123 * To avoid such situation, if mutext_trylock() failed, only writeback
1124 * rate of current cached device is set to 1, and __update_write_back()
1125 * will decide writeback rate of other cached devices (remember now
1126 * c->idle_counter is 0 already).
1127 */
1128 if (mutex_trylock(&bch_register_lock)) {
1129 for (i = 0; i < c->devices_max_used; i++) {
1130 if (!c->devices[i])
1131 continue;
1132
1133 if (UUID_FLASH_ONLY(&c->uuids[i]))
1134 continue;
1135
1136 d = c->devices[i];
1137 dc = container_of(d, struct cached_dev, disk);
1138 /*
1139 * set writeback rate to default minimum value,
1140 * then let update_writeback_rate() to decide the
1141 * upcoming rate.
1142 */
1143 atomic_long_set(&dc->writeback_rate.rate, 1);
1144 }
1145 mutex_unlock(&bch_register_lock);
1146 } else
1147 atomic_long_set(&this_dc->writeback_rate.rate, 1);
1148}
1149
1150/* Cached devices - read & write stuff */
1151
1152static blk_qc_t cached_dev_make_request(struct request_queue *q,
1153 struct bio *bio)
1154{
1155 struct search *s;
1156 struct bcache_device *d = bio->bi_disk->private_data;
1157 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1158 int rw = bio_data_dir(bio);
1159
1160 if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1161 dc->io_disable)) {
1162 bio->bi_status = BLK_STS_IOERR;
1163 bio_endio(bio);
1164 return BLK_QC_T_NONE;
1165 }
1166
1167 if (likely(d->c)) {
1168 if (atomic_read(&d->c->idle_counter))
1169 atomic_set(&d->c->idle_counter, 0);
1170 /*
1171 * If at_max_writeback_rate of cache set is true and new I/O
1172 * comes, quit max writeback rate of all cached devices
1173 * attached to this cache set, and set at_max_writeback_rate
1174 * to false.
1175 */
1176 if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) {
1177 atomic_set(&d->c->at_max_writeback_rate, 0);
1178 quit_max_writeback_rate(d->c, dc);
1179 }
1180 }
1181
1182 generic_start_io_acct(q,
1183 bio_op(bio),
1184 bio_sectors(bio),
1185 &d->disk->part0);
1186
1187 bio_set_dev(bio, dc->bdev);
1188 bio->bi_iter.bi_sector += dc->sb.data_offset;
1189
1190 if (cached_dev_get(dc)) {
1191 s = search_alloc(bio, d);
1192 trace_bcache_request_start(s->d, bio);
1193
1194 if (!bio->bi_iter.bi_size) {
1195 /*
1196 * can't call bch_journal_meta from under
1197 * generic_make_request
1198 */
1199 continue_at_nobarrier(&s->cl,
1200 cached_dev_nodata,
1201 bcache_wq);
1202 } else {
1203 s->iop.bypass = check_should_bypass(dc, bio);
1204
1205 if (rw)
1206 cached_dev_write(dc, s);
1207 else
1208 cached_dev_read(dc, s);
1209 }
1210 } else
1211 /* I/O request sent to backing device */
1212 detached_dev_do_request(d, bio);
1213
1214 return BLK_QC_T_NONE;
1215}
1216
1217static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1218 unsigned int cmd, unsigned long arg)
1219{
1220 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1221
1222 if (dc->io_disable)
1223 return -EIO;
1224
1225 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1226}
1227
1228static int cached_dev_congested(void *data, int bits)
1229{
1230 struct bcache_device *d = data;
1231 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1232 struct request_queue *q = bdev_get_queue(dc->bdev);
1233 int ret = 0;
1234
1235 if (bdi_congested(q->backing_dev_info, bits))
1236 return 1;
1237
1238 if (cached_dev_get(dc)) {
1239 unsigned int i;
1240 struct cache *ca;
1241
1242 for_each_cache(ca, d->c, i) {
1243 q = bdev_get_queue(ca->bdev);
1244 ret |= bdi_congested(q->backing_dev_info, bits);
1245 }
1246
1247 cached_dev_put(dc);
1248 }
1249
1250 return ret;
1251}
1252
1253void bch_cached_dev_request_init(struct cached_dev *dc)
1254{
1255 struct gendisk *g = dc->disk.disk;
1256
1257 g->queue->make_request_fn = cached_dev_make_request;
1258 g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1259 dc->disk.cache_miss = cached_dev_cache_miss;
1260 dc->disk.ioctl = cached_dev_ioctl;
1261}
1262
1263/* Flash backed devices */
1264
1265static int flash_dev_cache_miss(struct btree *b, struct search *s,
1266 struct bio *bio, unsigned int sectors)
1267{
1268 unsigned int bytes = min(sectors, bio_sectors(bio)) << 9;
1269
1270 swap(bio->bi_iter.bi_size, bytes);
1271 zero_fill_bio(bio);
1272 swap(bio->bi_iter.bi_size, bytes);
1273
1274 bio_advance(bio, bytes);
1275
1276 if (!bio->bi_iter.bi_size)
1277 return MAP_DONE;
1278
1279 return MAP_CONTINUE;
1280}
1281
1282static void flash_dev_nodata(struct closure *cl)
1283{
1284 struct search *s = container_of(cl, struct search, cl);
1285
1286 if (s->iop.flush_journal)
1287 bch_journal_meta(s->iop.c, cl);
1288
1289 continue_at(cl, search_free, NULL);
1290}
1291
1292static blk_qc_t flash_dev_make_request(struct request_queue *q,
1293 struct bio *bio)
1294{
1295 struct search *s;
1296 struct closure *cl;
1297 struct bcache_device *d = bio->bi_disk->private_data;
1298
1299 if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1300 bio->bi_status = BLK_STS_IOERR;
1301 bio_endio(bio);
1302 return BLK_QC_T_NONE;
1303 }
1304
1305 generic_start_io_acct(q, bio_op(bio), bio_sectors(bio), &d->disk->part0);
1306
1307 s = search_alloc(bio, d);
1308 cl = &s->cl;
1309 bio = &s->bio.bio;
1310
1311 trace_bcache_request_start(s->d, bio);
1312
1313 if (!bio->bi_iter.bi_size) {
1314 /*
1315 * can't call bch_journal_meta from under
1316 * generic_make_request
1317 */
1318 continue_at_nobarrier(&s->cl,
1319 flash_dev_nodata,
1320 bcache_wq);
1321 return BLK_QC_T_NONE;
1322 } else if (bio_data_dir(bio)) {
1323 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1324 &KEY(d->id, bio->bi_iter.bi_sector, 0),
1325 &KEY(d->id, bio_end_sector(bio), 0));
1326
1327 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0;
1328 s->iop.writeback = true;
1329 s->iop.bio = bio;
1330
1331 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1332 } else {
1333 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1334 }
1335
1336 continue_at(cl, search_free, NULL);
1337 return BLK_QC_T_NONE;
1338}
1339
1340static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1341 unsigned int cmd, unsigned long arg)
1342{
1343 return -ENOTTY;
1344}
1345
1346static int flash_dev_congested(void *data, int bits)
1347{
1348 struct bcache_device *d = data;
1349 struct request_queue *q;
1350 struct cache *ca;
1351 unsigned int i;
1352 int ret = 0;
1353
1354 for_each_cache(ca, d->c, i) {
1355 q = bdev_get_queue(ca->bdev);
1356 ret |= bdi_congested(q->backing_dev_info, bits);
1357 }
1358
1359 return ret;
1360}
1361
1362void bch_flash_dev_request_init(struct bcache_device *d)
1363{
1364 struct gendisk *g = d->disk;
1365
1366 g->queue->make_request_fn = flash_dev_make_request;
1367 g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1368 d->cache_miss = flash_dev_cache_miss;
1369 d->ioctl = flash_dev_ioctl;
1370}
1371
1372void bch_request_exit(void)
1373{
1374 kmem_cache_destroy(bch_search_cache);
1375}
1376
1377int __init bch_request_init(void)
1378{
1379 bch_search_cache = KMEM_CACHE(search, 0);
1380 if (!bch_search_cache)
1381 return -ENOMEM;
1382
1383 return 0;
1384}