Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2#include <errno.h>
3#include <inttypes.h>
4#include "util.h"
5#include "string2.h"
6#include <sys/param.h>
7#include <sys/types.h>
8#include <byteswap.h>
9#include <unistd.h>
10#include <stdio.h>
11#include <stdlib.h>
12#include <linux/compiler.h>
13#include <linux/list.h>
14#include <linux/kernel.h>
15#include <linux/bitops.h>
16#include <linux/stringify.h>
17#include <sys/stat.h>
18#include <sys/utsname.h>
19#include <linux/time64.h>
20#include <dirent.h>
21#include <bpf/libbpf.h>
22
23#include "evlist.h"
24#include "evsel.h"
25#include "header.h"
26#include "memswap.h"
27#include "../perf.h"
28#include "trace-event.h"
29#include "session.h"
30#include "symbol.h"
31#include "debug.h"
32#include "cpumap.h"
33#include "pmu.h"
34#include "vdso.h"
35#include "strbuf.h"
36#include "build-id.h"
37#include "data.h"
38#include <api/fs/fs.h>
39#include "asm/bug.h"
40#include "tool.h"
41#include "time-utils.h"
42#include "units.h"
43#include "cputopo.h"
44#include "bpf-event.h"
45
46#include "sane_ctype.h"
47
48/*
49 * magic2 = "PERFILE2"
50 * must be a numerical value to let the endianness
51 * determine the memory layout. That way we are able
52 * to detect endianness when reading the perf.data file
53 * back.
54 *
55 * we check for legacy (PERFFILE) format.
56 */
57static const char *__perf_magic1 = "PERFFILE";
58static const u64 __perf_magic2 = 0x32454c4946524550ULL;
59static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
60
61#define PERF_MAGIC __perf_magic2
62
63const char perf_version_string[] = PERF_VERSION;
64
65struct perf_file_attr {
66 struct perf_event_attr attr;
67 struct perf_file_section ids;
68};
69
70struct feat_fd {
71 struct perf_header *ph;
72 int fd;
73 void *buf; /* Either buf != NULL or fd >= 0 */
74 ssize_t offset;
75 size_t size;
76 struct perf_evsel *events;
77};
78
79void perf_header__set_feat(struct perf_header *header, int feat)
80{
81 set_bit(feat, header->adds_features);
82}
83
84void perf_header__clear_feat(struct perf_header *header, int feat)
85{
86 clear_bit(feat, header->adds_features);
87}
88
89bool perf_header__has_feat(const struct perf_header *header, int feat)
90{
91 return test_bit(feat, header->adds_features);
92}
93
94static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
95{
96 ssize_t ret = writen(ff->fd, buf, size);
97
98 if (ret != (ssize_t)size)
99 return ret < 0 ? (int)ret : -1;
100 return 0;
101}
102
103static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
104{
105 /* struct perf_event_header::size is u16 */
106 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
107 size_t new_size = ff->size;
108 void *addr;
109
110 if (size + ff->offset > max_size)
111 return -E2BIG;
112
113 while (size > (new_size - ff->offset))
114 new_size <<= 1;
115 new_size = min(max_size, new_size);
116
117 if (ff->size < new_size) {
118 addr = realloc(ff->buf, new_size);
119 if (!addr)
120 return -ENOMEM;
121 ff->buf = addr;
122 ff->size = new_size;
123 }
124
125 memcpy(ff->buf + ff->offset, buf, size);
126 ff->offset += size;
127
128 return 0;
129}
130
131/* Return: 0 if succeded, -ERR if failed. */
132int do_write(struct feat_fd *ff, const void *buf, size_t size)
133{
134 if (!ff->buf)
135 return __do_write_fd(ff, buf, size);
136 return __do_write_buf(ff, buf, size);
137}
138
139/* Return: 0 if succeded, -ERR if failed. */
140static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
141{
142 u64 *p = (u64 *) set;
143 int i, ret;
144
145 ret = do_write(ff, &size, sizeof(size));
146 if (ret < 0)
147 return ret;
148
149 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
150 ret = do_write(ff, p + i, sizeof(*p));
151 if (ret < 0)
152 return ret;
153 }
154
155 return 0;
156}
157
158/* Return: 0 if succeded, -ERR if failed. */
159int write_padded(struct feat_fd *ff, const void *bf,
160 size_t count, size_t count_aligned)
161{
162 static const char zero_buf[NAME_ALIGN];
163 int err = do_write(ff, bf, count);
164
165 if (!err)
166 err = do_write(ff, zero_buf, count_aligned - count);
167
168 return err;
169}
170
171#define string_size(str) \
172 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
173
174/* Return: 0 if succeded, -ERR if failed. */
175static int do_write_string(struct feat_fd *ff, const char *str)
176{
177 u32 len, olen;
178 int ret;
179
180 olen = strlen(str) + 1;
181 len = PERF_ALIGN(olen, NAME_ALIGN);
182
183 /* write len, incl. \0 */
184 ret = do_write(ff, &len, sizeof(len));
185 if (ret < 0)
186 return ret;
187
188 return write_padded(ff, str, olen, len);
189}
190
191static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
192{
193 ssize_t ret = readn(ff->fd, addr, size);
194
195 if (ret != size)
196 return ret < 0 ? (int)ret : -1;
197 return 0;
198}
199
200static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
201{
202 if (size > (ssize_t)ff->size - ff->offset)
203 return -1;
204
205 memcpy(addr, ff->buf + ff->offset, size);
206 ff->offset += size;
207
208 return 0;
209
210}
211
212static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
213{
214 if (!ff->buf)
215 return __do_read_fd(ff, addr, size);
216 return __do_read_buf(ff, addr, size);
217}
218
219static int do_read_u32(struct feat_fd *ff, u32 *addr)
220{
221 int ret;
222
223 ret = __do_read(ff, addr, sizeof(*addr));
224 if (ret)
225 return ret;
226
227 if (ff->ph->needs_swap)
228 *addr = bswap_32(*addr);
229 return 0;
230}
231
232static int do_read_u64(struct feat_fd *ff, u64 *addr)
233{
234 int ret;
235
236 ret = __do_read(ff, addr, sizeof(*addr));
237 if (ret)
238 return ret;
239
240 if (ff->ph->needs_swap)
241 *addr = bswap_64(*addr);
242 return 0;
243}
244
245static char *do_read_string(struct feat_fd *ff)
246{
247 u32 len;
248 char *buf;
249
250 if (do_read_u32(ff, &len))
251 return NULL;
252
253 buf = malloc(len);
254 if (!buf)
255 return NULL;
256
257 if (!__do_read(ff, buf, len)) {
258 /*
259 * strings are padded by zeroes
260 * thus the actual strlen of buf
261 * may be less than len
262 */
263 return buf;
264 }
265
266 free(buf);
267 return NULL;
268}
269
270/* Return: 0 if succeded, -ERR if failed. */
271static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
272{
273 unsigned long *set;
274 u64 size, *p;
275 int i, ret;
276
277 ret = do_read_u64(ff, &size);
278 if (ret)
279 return ret;
280
281 set = bitmap_alloc(size);
282 if (!set)
283 return -ENOMEM;
284
285 p = (u64 *) set;
286
287 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
288 ret = do_read_u64(ff, p + i);
289 if (ret < 0) {
290 free(set);
291 return ret;
292 }
293 }
294
295 *pset = set;
296 *psize = size;
297 return 0;
298}
299
300static int write_tracing_data(struct feat_fd *ff,
301 struct perf_evlist *evlist)
302{
303 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
304 return -1;
305
306 return read_tracing_data(ff->fd, &evlist->entries);
307}
308
309static int write_build_id(struct feat_fd *ff,
310 struct perf_evlist *evlist __maybe_unused)
311{
312 struct perf_session *session;
313 int err;
314
315 session = container_of(ff->ph, struct perf_session, header);
316
317 if (!perf_session__read_build_ids(session, true))
318 return -1;
319
320 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
321 return -1;
322
323 err = perf_session__write_buildid_table(session, ff);
324 if (err < 0) {
325 pr_debug("failed to write buildid table\n");
326 return err;
327 }
328 perf_session__cache_build_ids(session);
329
330 return 0;
331}
332
333static int write_hostname(struct feat_fd *ff,
334 struct perf_evlist *evlist __maybe_unused)
335{
336 struct utsname uts;
337 int ret;
338
339 ret = uname(&uts);
340 if (ret < 0)
341 return -1;
342
343 return do_write_string(ff, uts.nodename);
344}
345
346static int write_osrelease(struct feat_fd *ff,
347 struct perf_evlist *evlist __maybe_unused)
348{
349 struct utsname uts;
350 int ret;
351
352 ret = uname(&uts);
353 if (ret < 0)
354 return -1;
355
356 return do_write_string(ff, uts.release);
357}
358
359static int write_arch(struct feat_fd *ff,
360 struct perf_evlist *evlist __maybe_unused)
361{
362 struct utsname uts;
363 int ret;
364
365 ret = uname(&uts);
366 if (ret < 0)
367 return -1;
368
369 return do_write_string(ff, uts.machine);
370}
371
372static int write_version(struct feat_fd *ff,
373 struct perf_evlist *evlist __maybe_unused)
374{
375 return do_write_string(ff, perf_version_string);
376}
377
378static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
379{
380 FILE *file;
381 char *buf = NULL;
382 char *s, *p;
383 const char *search = cpuinfo_proc;
384 size_t len = 0;
385 int ret = -1;
386
387 if (!search)
388 return -1;
389
390 file = fopen("/proc/cpuinfo", "r");
391 if (!file)
392 return -1;
393
394 while (getline(&buf, &len, file) > 0) {
395 ret = strncmp(buf, search, strlen(search));
396 if (!ret)
397 break;
398 }
399
400 if (ret) {
401 ret = -1;
402 goto done;
403 }
404
405 s = buf;
406
407 p = strchr(buf, ':');
408 if (p && *(p+1) == ' ' && *(p+2))
409 s = p + 2;
410 p = strchr(s, '\n');
411 if (p)
412 *p = '\0';
413
414 /* squash extra space characters (branding string) */
415 p = s;
416 while (*p) {
417 if (isspace(*p)) {
418 char *r = p + 1;
419 char *q = r;
420 *p = ' ';
421 while (*q && isspace(*q))
422 q++;
423 if (q != (p+1))
424 while ((*r++ = *q++));
425 }
426 p++;
427 }
428 ret = do_write_string(ff, s);
429done:
430 free(buf);
431 fclose(file);
432 return ret;
433}
434
435static int write_cpudesc(struct feat_fd *ff,
436 struct perf_evlist *evlist __maybe_unused)
437{
438 const char *cpuinfo_procs[] = CPUINFO_PROC;
439 unsigned int i;
440
441 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
442 int ret;
443 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
444 if (ret >= 0)
445 return ret;
446 }
447 return -1;
448}
449
450
451static int write_nrcpus(struct feat_fd *ff,
452 struct perf_evlist *evlist __maybe_unused)
453{
454 long nr;
455 u32 nrc, nra;
456 int ret;
457
458 nrc = cpu__max_present_cpu();
459
460 nr = sysconf(_SC_NPROCESSORS_ONLN);
461 if (nr < 0)
462 return -1;
463
464 nra = (u32)(nr & UINT_MAX);
465
466 ret = do_write(ff, &nrc, sizeof(nrc));
467 if (ret < 0)
468 return ret;
469
470 return do_write(ff, &nra, sizeof(nra));
471}
472
473static int write_event_desc(struct feat_fd *ff,
474 struct perf_evlist *evlist)
475{
476 struct perf_evsel *evsel;
477 u32 nre, nri, sz;
478 int ret;
479
480 nre = evlist->nr_entries;
481
482 /*
483 * write number of events
484 */
485 ret = do_write(ff, &nre, sizeof(nre));
486 if (ret < 0)
487 return ret;
488
489 /*
490 * size of perf_event_attr struct
491 */
492 sz = (u32)sizeof(evsel->attr);
493 ret = do_write(ff, &sz, sizeof(sz));
494 if (ret < 0)
495 return ret;
496
497 evlist__for_each_entry(evlist, evsel) {
498 ret = do_write(ff, &evsel->attr, sz);
499 if (ret < 0)
500 return ret;
501 /*
502 * write number of unique id per event
503 * there is one id per instance of an event
504 *
505 * copy into an nri to be independent of the
506 * type of ids,
507 */
508 nri = evsel->ids;
509 ret = do_write(ff, &nri, sizeof(nri));
510 if (ret < 0)
511 return ret;
512
513 /*
514 * write event string as passed on cmdline
515 */
516 ret = do_write_string(ff, perf_evsel__name(evsel));
517 if (ret < 0)
518 return ret;
519 /*
520 * write unique ids for this event
521 */
522 ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
523 if (ret < 0)
524 return ret;
525 }
526 return 0;
527}
528
529static int write_cmdline(struct feat_fd *ff,
530 struct perf_evlist *evlist __maybe_unused)
531{
532 char pbuf[MAXPATHLEN], *buf;
533 int i, ret, n;
534
535 /* actual path to perf binary */
536 buf = perf_exe(pbuf, MAXPATHLEN);
537
538 /* account for binary path */
539 n = perf_env.nr_cmdline + 1;
540
541 ret = do_write(ff, &n, sizeof(n));
542 if (ret < 0)
543 return ret;
544
545 ret = do_write_string(ff, buf);
546 if (ret < 0)
547 return ret;
548
549 for (i = 0 ; i < perf_env.nr_cmdline; i++) {
550 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
551 if (ret < 0)
552 return ret;
553 }
554 return 0;
555}
556
557
558static int write_cpu_topology(struct feat_fd *ff,
559 struct perf_evlist *evlist __maybe_unused)
560{
561 struct cpu_topology *tp;
562 u32 i;
563 int ret, j;
564
565 tp = cpu_topology__new();
566 if (!tp)
567 return -1;
568
569 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
570 if (ret < 0)
571 goto done;
572
573 for (i = 0; i < tp->core_sib; i++) {
574 ret = do_write_string(ff, tp->core_siblings[i]);
575 if (ret < 0)
576 goto done;
577 }
578 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
579 if (ret < 0)
580 goto done;
581
582 for (i = 0; i < tp->thread_sib; i++) {
583 ret = do_write_string(ff, tp->thread_siblings[i]);
584 if (ret < 0)
585 break;
586 }
587
588 ret = perf_env__read_cpu_topology_map(&perf_env);
589 if (ret < 0)
590 goto done;
591
592 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
593 ret = do_write(ff, &perf_env.cpu[j].core_id,
594 sizeof(perf_env.cpu[j].core_id));
595 if (ret < 0)
596 return ret;
597 ret = do_write(ff, &perf_env.cpu[j].socket_id,
598 sizeof(perf_env.cpu[j].socket_id));
599 if (ret < 0)
600 return ret;
601 }
602done:
603 cpu_topology__delete(tp);
604 return ret;
605}
606
607
608
609static int write_total_mem(struct feat_fd *ff,
610 struct perf_evlist *evlist __maybe_unused)
611{
612 char *buf = NULL;
613 FILE *fp;
614 size_t len = 0;
615 int ret = -1, n;
616 uint64_t mem;
617
618 fp = fopen("/proc/meminfo", "r");
619 if (!fp)
620 return -1;
621
622 while (getline(&buf, &len, fp) > 0) {
623 ret = strncmp(buf, "MemTotal:", 9);
624 if (!ret)
625 break;
626 }
627 if (!ret) {
628 n = sscanf(buf, "%*s %"PRIu64, &mem);
629 if (n == 1)
630 ret = do_write(ff, &mem, sizeof(mem));
631 } else
632 ret = -1;
633 free(buf);
634 fclose(fp);
635 return ret;
636}
637
638static int write_numa_topology(struct feat_fd *ff,
639 struct perf_evlist *evlist __maybe_unused)
640{
641 struct numa_topology *tp;
642 int ret = -1;
643 u32 i;
644
645 tp = numa_topology__new();
646 if (!tp)
647 return -ENOMEM;
648
649 ret = do_write(ff, &tp->nr, sizeof(u32));
650 if (ret < 0)
651 goto err;
652
653 for (i = 0; i < tp->nr; i++) {
654 struct numa_topology_node *n = &tp->nodes[i];
655
656 ret = do_write(ff, &n->node, sizeof(u32));
657 if (ret < 0)
658 goto err;
659
660 ret = do_write(ff, &n->mem_total, sizeof(u64));
661 if (ret)
662 goto err;
663
664 ret = do_write(ff, &n->mem_free, sizeof(u64));
665 if (ret)
666 goto err;
667
668 ret = do_write_string(ff, n->cpus);
669 if (ret < 0)
670 goto err;
671 }
672
673 ret = 0;
674
675err:
676 numa_topology__delete(tp);
677 return ret;
678}
679
680/*
681 * File format:
682 *
683 * struct pmu_mappings {
684 * u32 pmu_num;
685 * struct pmu_map {
686 * u32 type;
687 * char name[];
688 * }[pmu_num];
689 * };
690 */
691
692static int write_pmu_mappings(struct feat_fd *ff,
693 struct perf_evlist *evlist __maybe_unused)
694{
695 struct perf_pmu *pmu = NULL;
696 u32 pmu_num = 0;
697 int ret;
698
699 /*
700 * Do a first pass to count number of pmu to avoid lseek so this
701 * works in pipe mode as well.
702 */
703 while ((pmu = perf_pmu__scan(pmu))) {
704 if (!pmu->name)
705 continue;
706 pmu_num++;
707 }
708
709 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
710 if (ret < 0)
711 return ret;
712
713 while ((pmu = perf_pmu__scan(pmu))) {
714 if (!pmu->name)
715 continue;
716
717 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
718 if (ret < 0)
719 return ret;
720
721 ret = do_write_string(ff, pmu->name);
722 if (ret < 0)
723 return ret;
724 }
725
726 return 0;
727}
728
729/*
730 * File format:
731 *
732 * struct group_descs {
733 * u32 nr_groups;
734 * struct group_desc {
735 * char name[];
736 * u32 leader_idx;
737 * u32 nr_members;
738 * }[nr_groups];
739 * };
740 */
741static int write_group_desc(struct feat_fd *ff,
742 struct perf_evlist *evlist)
743{
744 u32 nr_groups = evlist->nr_groups;
745 struct perf_evsel *evsel;
746 int ret;
747
748 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
749 if (ret < 0)
750 return ret;
751
752 evlist__for_each_entry(evlist, evsel) {
753 if (perf_evsel__is_group_leader(evsel) &&
754 evsel->nr_members > 1) {
755 const char *name = evsel->group_name ?: "{anon_group}";
756 u32 leader_idx = evsel->idx;
757 u32 nr_members = evsel->nr_members;
758
759 ret = do_write_string(ff, name);
760 if (ret < 0)
761 return ret;
762
763 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
764 if (ret < 0)
765 return ret;
766
767 ret = do_write(ff, &nr_members, sizeof(nr_members));
768 if (ret < 0)
769 return ret;
770 }
771 }
772 return 0;
773}
774
775/*
776 * Return the CPU id as a raw string.
777 *
778 * Each architecture should provide a more precise id string that
779 * can be use to match the architecture's "mapfile".
780 */
781char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
782{
783 return NULL;
784}
785
786/* Return zero when the cpuid from the mapfile.csv matches the
787 * cpuid string generated on this platform.
788 * Otherwise return non-zero.
789 */
790int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
791{
792 regex_t re;
793 regmatch_t pmatch[1];
794 int match;
795
796 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
797 /* Warn unable to generate match particular string. */
798 pr_info("Invalid regular expression %s\n", mapcpuid);
799 return 1;
800 }
801
802 match = !regexec(&re, cpuid, 1, pmatch, 0);
803 regfree(&re);
804 if (match) {
805 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
806
807 /* Verify the entire string matched. */
808 if (match_len == strlen(cpuid))
809 return 0;
810 }
811 return 1;
812}
813
814/*
815 * default get_cpuid(): nothing gets recorded
816 * actual implementation must be in arch/$(SRCARCH)/util/header.c
817 */
818int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
819{
820 return -1;
821}
822
823static int write_cpuid(struct feat_fd *ff,
824 struct perf_evlist *evlist __maybe_unused)
825{
826 char buffer[64];
827 int ret;
828
829 ret = get_cpuid(buffer, sizeof(buffer));
830 if (ret)
831 return -1;
832
833 return do_write_string(ff, buffer);
834}
835
836static int write_branch_stack(struct feat_fd *ff __maybe_unused,
837 struct perf_evlist *evlist __maybe_unused)
838{
839 return 0;
840}
841
842static int write_auxtrace(struct feat_fd *ff,
843 struct perf_evlist *evlist __maybe_unused)
844{
845 struct perf_session *session;
846 int err;
847
848 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
849 return -1;
850
851 session = container_of(ff->ph, struct perf_session, header);
852
853 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
854 if (err < 0)
855 pr_err("Failed to write auxtrace index\n");
856 return err;
857}
858
859static int write_clockid(struct feat_fd *ff,
860 struct perf_evlist *evlist __maybe_unused)
861{
862 return do_write(ff, &ff->ph->env.clockid_res_ns,
863 sizeof(ff->ph->env.clockid_res_ns));
864}
865
866static int write_dir_format(struct feat_fd *ff,
867 struct perf_evlist *evlist __maybe_unused)
868{
869 struct perf_session *session;
870 struct perf_data *data;
871
872 session = container_of(ff->ph, struct perf_session, header);
873 data = session->data;
874
875 if (WARN_ON(!perf_data__is_dir(data)))
876 return -1;
877
878 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
879}
880
881#ifdef HAVE_LIBBPF_SUPPORT
882static int write_bpf_prog_info(struct feat_fd *ff,
883 struct perf_evlist *evlist __maybe_unused)
884{
885 struct perf_env *env = &ff->ph->env;
886 struct rb_root *root;
887 struct rb_node *next;
888 int ret;
889
890 down_read(&env->bpf_progs.lock);
891
892 ret = do_write(ff, &env->bpf_progs.infos_cnt,
893 sizeof(env->bpf_progs.infos_cnt));
894 if (ret < 0)
895 goto out;
896
897 root = &env->bpf_progs.infos;
898 next = rb_first(root);
899 while (next) {
900 struct bpf_prog_info_node *node;
901 size_t len;
902
903 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
904 next = rb_next(&node->rb_node);
905 len = sizeof(struct bpf_prog_info_linear) +
906 node->info_linear->data_len;
907
908 /* before writing to file, translate address to offset */
909 bpf_program__bpil_addr_to_offs(node->info_linear);
910 ret = do_write(ff, node->info_linear, len);
911 /*
912 * translate back to address even when do_write() fails,
913 * so that this function never changes the data.
914 */
915 bpf_program__bpil_offs_to_addr(node->info_linear);
916 if (ret < 0)
917 goto out;
918 }
919out:
920 up_read(&env->bpf_progs.lock);
921 return ret;
922}
923#else // HAVE_LIBBPF_SUPPORT
924static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
925 struct perf_evlist *evlist __maybe_unused)
926{
927 return 0;
928}
929#endif // HAVE_LIBBPF_SUPPORT
930
931static int write_bpf_btf(struct feat_fd *ff,
932 struct perf_evlist *evlist __maybe_unused)
933{
934 struct perf_env *env = &ff->ph->env;
935 struct rb_root *root;
936 struct rb_node *next;
937 int ret;
938
939 down_read(&env->bpf_progs.lock);
940
941 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
942 sizeof(env->bpf_progs.btfs_cnt));
943
944 if (ret < 0)
945 goto out;
946
947 root = &env->bpf_progs.btfs;
948 next = rb_first(root);
949 while (next) {
950 struct btf_node *node;
951
952 node = rb_entry(next, struct btf_node, rb_node);
953 next = rb_next(&node->rb_node);
954 ret = do_write(ff, &node->id,
955 sizeof(u32) * 2 + node->data_size);
956 if (ret < 0)
957 goto out;
958 }
959out:
960 up_read(&env->bpf_progs.lock);
961 return ret;
962}
963
964static int cpu_cache_level__sort(const void *a, const void *b)
965{
966 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
967 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
968
969 return cache_a->level - cache_b->level;
970}
971
972static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
973{
974 if (a->level != b->level)
975 return false;
976
977 if (a->line_size != b->line_size)
978 return false;
979
980 if (a->sets != b->sets)
981 return false;
982
983 if (a->ways != b->ways)
984 return false;
985
986 if (strcmp(a->type, b->type))
987 return false;
988
989 if (strcmp(a->size, b->size))
990 return false;
991
992 if (strcmp(a->map, b->map))
993 return false;
994
995 return true;
996}
997
998static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
999{
1000 char path[PATH_MAX], file[PATH_MAX];
1001 struct stat st;
1002 size_t len;
1003
1004 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1005 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1006
1007 if (stat(file, &st))
1008 return 1;
1009
1010 scnprintf(file, PATH_MAX, "%s/level", path);
1011 if (sysfs__read_int(file, (int *) &cache->level))
1012 return -1;
1013
1014 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1015 if (sysfs__read_int(file, (int *) &cache->line_size))
1016 return -1;
1017
1018 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1019 if (sysfs__read_int(file, (int *) &cache->sets))
1020 return -1;
1021
1022 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1023 if (sysfs__read_int(file, (int *) &cache->ways))
1024 return -1;
1025
1026 scnprintf(file, PATH_MAX, "%s/type", path);
1027 if (sysfs__read_str(file, &cache->type, &len))
1028 return -1;
1029
1030 cache->type[len] = 0;
1031 cache->type = rtrim(cache->type);
1032
1033 scnprintf(file, PATH_MAX, "%s/size", path);
1034 if (sysfs__read_str(file, &cache->size, &len)) {
1035 free(cache->type);
1036 return -1;
1037 }
1038
1039 cache->size[len] = 0;
1040 cache->size = rtrim(cache->size);
1041
1042 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1043 if (sysfs__read_str(file, &cache->map, &len)) {
1044 free(cache->map);
1045 free(cache->type);
1046 return -1;
1047 }
1048
1049 cache->map[len] = 0;
1050 cache->map = rtrim(cache->map);
1051 return 0;
1052}
1053
1054static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1055{
1056 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1057}
1058
1059static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1060{
1061 u32 i, cnt = 0;
1062 long ncpus;
1063 u32 nr, cpu;
1064 u16 level;
1065
1066 ncpus = sysconf(_SC_NPROCESSORS_CONF);
1067 if (ncpus < 0)
1068 return -1;
1069
1070 nr = (u32)(ncpus & UINT_MAX);
1071
1072 for (cpu = 0; cpu < nr; cpu++) {
1073 for (level = 0; level < 10; level++) {
1074 struct cpu_cache_level c;
1075 int err;
1076
1077 err = cpu_cache_level__read(&c, cpu, level);
1078 if (err < 0)
1079 return err;
1080
1081 if (err == 1)
1082 break;
1083
1084 for (i = 0; i < cnt; i++) {
1085 if (cpu_cache_level__cmp(&c, &caches[i]))
1086 break;
1087 }
1088
1089 if (i == cnt)
1090 caches[cnt++] = c;
1091 else
1092 cpu_cache_level__free(&c);
1093
1094 if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1095 goto out;
1096 }
1097 }
1098 out:
1099 *cntp = cnt;
1100 return 0;
1101}
1102
1103#define MAX_CACHES 2000
1104
1105static int write_cache(struct feat_fd *ff,
1106 struct perf_evlist *evlist __maybe_unused)
1107{
1108 struct cpu_cache_level caches[MAX_CACHES];
1109 u32 cnt = 0, i, version = 1;
1110 int ret;
1111
1112 ret = build_caches(caches, MAX_CACHES, &cnt);
1113 if (ret)
1114 goto out;
1115
1116 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1117
1118 ret = do_write(ff, &version, sizeof(u32));
1119 if (ret < 0)
1120 goto out;
1121
1122 ret = do_write(ff, &cnt, sizeof(u32));
1123 if (ret < 0)
1124 goto out;
1125
1126 for (i = 0; i < cnt; i++) {
1127 struct cpu_cache_level *c = &caches[i];
1128
1129 #define _W(v) \
1130 ret = do_write(ff, &c->v, sizeof(u32)); \
1131 if (ret < 0) \
1132 goto out;
1133
1134 _W(level)
1135 _W(line_size)
1136 _W(sets)
1137 _W(ways)
1138 #undef _W
1139
1140 #define _W(v) \
1141 ret = do_write_string(ff, (const char *) c->v); \
1142 if (ret < 0) \
1143 goto out;
1144
1145 _W(type)
1146 _W(size)
1147 _W(map)
1148 #undef _W
1149 }
1150
1151out:
1152 for (i = 0; i < cnt; i++)
1153 cpu_cache_level__free(&caches[i]);
1154 return ret;
1155}
1156
1157static int write_stat(struct feat_fd *ff __maybe_unused,
1158 struct perf_evlist *evlist __maybe_unused)
1159{
1160 return 0;
1161}
1162
1163static int write_sample_time(struct feat_fd *ff,
1164 struct perf_evlist *evlist)
1165{
1166 int ret;
1167
1168 ret = do_write(ff, &evlist->first_sample_time,
1169 sizeof(evlist->first_sample_time));
1170 if (ret < 0)
1171 return ret;
1172
1173 return do_write(ff, &evlist->last_sample_time,
1174 sizeof(evlist->last_sample_time));
1175}
1176
1177
1178static int memory_node__read(struct memory_node *n, unsigned long idx)
1179{
1180 unsigned int phys, size = 0;
1181 char path[PATH_MAX];
1182 struct dirent *ent;
1183 DIR *dir;
1184
1185#define for_each_memory(mem, dir) \
1186 while ((ent = readdir(dir))) \
1187 if (strcmp(ent->d_name, ".") && \
1188 strcmp(ent->d_name, "..") && \
1189 sscanf(ent->d_name, "memory%u", &mem) == 1)
1190
1191 scnprintf(path, PATH_MAX,
1192 "%s/devices/system/node/node%lu",
1193 sysfs__mountpoint(), idx);
1194
1195 dir = opendir(path);
1196 if (!dir) {
1197 pr_warning("failed: cant' open memory sysfs data\n");
1198 return -1;
1199 }
1200
1201 for_each_memory(phys, dir) {
1202 size = max(phys, size);
1203 }
1204
1205 size++;
1206
1207 n->set = bitmap_alloc(size);
1208 if (!n->set) {
1209 closedir(dir);
1210 return -ENOMEM;
1211 }
1212
1213 n->node = idx;
1214 n->size = size;
1215
1216 rewinddir(dir);
1217
1218 for_each_memory(phys, dir) {
1219 set_bit(phys, n->set);
1220 }
1221
1222 closedir(dir);
1223 return 0;
1224}
1225
1226static int memory_node__sort(const void *a, const void *b)
1227{
1228 const struct memory_node *na = a;
1229 const struct memory_node *nb = b;
1230
1231 return na->node - nb->node;
1232}
1233
1234static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1235{
1236 char path[PATH_MAX];
1237 struct dirent *ent;
1238 DIR *dir;
1239 u64 cnt = 0;
1240 int ret = 0;
1241
1242 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1243 sysfs__mountpoint());
1244
1245 dir = opendir(path);
1246 if (!dir) {
1247 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1248 __func__, path);
1249 return -1;
1250 }
1251
1252 while (!ret && (ent = readdir(dir))) {
1253 unsigned int idx;
1254 int r;
1255
1256 if (!strcmp(ent->d_name, ".") ||
1257 !strcmp(ent->d_name, ".."))
1258 continue;
1259
1260 r = sscanf(ent->d_name, "node%u", &idx);
1261 if (r != 1)
1262 continue;
1263
1264 if (WARN_ONCE(cnt >= size,
1265 "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1266 return -1;
1267
1268 ret = memory_node__read(&nodes[cnt++], idx);
1269 }
1270
1271 *cntp = cnt;
1272 closedir(dir);
1273
1274 if (!ret)
1275 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1276
1277 return ret;
1278}
1279
1280#define MAX_MEMORY_NODES 2000
1281
1282/*
1283 * The MEM_TOPOLOGY holds physical memory map for every
1284 * node in system. The format of data is as follows:
1285 *
1286 * 0 - version | for future changes
1287 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1288 * 16 - count | number of nodes
1289 *
1290 * For each node we store map of physical indexes for
1291 * each node:
1292 *
1293 * 32 - node id | node index
1294 * 40 - size | size of bitmap
1295 * 48 - bitmap | bitmap of memory indexes that belongs to node
1296 */
1297static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1298 struct perf_evlist *evlist __maybe_unused)
1299{
1300 static struct memory_node nodes[MAX_MEMORY_NODES];
1301 u64 bsize, version = 1, i, nr;
1302 int ret;
1303
1304 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1305 (unsigned long long *) &bsize);
1306 if (ret)
1307 return ret;
1308
1309 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1310 if (ret)
1311 return ret;
1312
1313 ret = do_write(ff, &version, sizeof(version));
1314 if (ret < 0)
1315 goto out;
1316
1317 ret = do_write(ff, &bsize, sizeof(bsize));
1318 if (ret < 0)
1319 goto out;
1320
1321 ret = do_write(ff, &nr, sizeof(nr));
1322 if (ret < 0)
1323 goto out;
1324
1325 for (i = 0; i < nr; i++) {
1326 struct memory_node *n = &nodes[i];
1327
1328 #define _W(v) \
1329 ret = do_write(ff, &n->v, sizeof(n->v)); \
1330 if (ret < 0) \
1331 goto out;
1332
1333 _W(node)
1334 _W(size)
1335
1336 #undef _W
1337
1338 ret = do_write_bitmap(ff, n->set, n->size);
1339 if (ret < 0)
1340 goto out;
1341 }
1342
1343out:
1344 return ret;
1345}
1346
1347static void print_hostname(struct feat_fd *ff, FILE *fp)
1348{
1349 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1350}
1351
1352static void print_osrelease(struct feat_fd *ff, FILE *fp)
1353{
1354 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1355}
1356
1357static void print_arch(struct feat_fd *ff, FILE *fp)
1358{
1359 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1360}
1361
1362static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1363{
1364 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1365}
1366
1367static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1368{
1369 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1370 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1371}
1372
1373static void print_version(struct feat_fd *ff, FILE *fp)
1374{
1375 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1376}
1377
1378static void print_cmdline(struct feat_fd *ff, FILE *fp)
1379{
1380 int nr, i;
1381
1382 nr = ff->ph->env.nr_cmdline;
1383
1384 fprintf(fp, "# cmdline : ");
1385
1386 for (i = 0; i < nr; i++) {
1387 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1388 if (!argv_i) {
1389 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1390 } else {
1391 char *mem = argv_i;
1392 do {
1393 char *quote = strchr(argv_i, '\'');
1394 if (!quote)
1395 break;
1396 *quote++ = '\0';
1397 fprintf(fp, "%s\\\'", argv_i);
1398 argv_i = quote;
1399 } while (1);
1400 fprintf(fp, "%s ", argv_i);
1401 free(mem);
1402 }
1403 }
1404 fputc('\n', fp);
1405}
1406
1407static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1408{
1409 struct perf_header *ph = ff->ph;
1410 int cpu_nr = ph->env.nr_cpus_avail;
1411 int nr, i;
1412 char *str;
1413
1414 nr = ph->env.nr_sibling_cores;
1415 str = ph->env.sibling_cores;
1416
1417 for (i = 0; i < nr; i++) {
1418 fprintf(fp, "# sibling cores : %s\n", str);
1419 str += strlen(str) + 1;
1420 }
1421
1422 nr = ph->env.nr_sibling_threads;
1423 str = ph->env.sibling_threads;
1424
1425 for (i = 0; i < nr; i++) {
1426 fprintf(fp, "# sibling threads : %s\n", str);
1427 str += strlen(str) + 1;
1428 }
1429
1430 if (ph->env.cpu != NULL) {
1431 for (i = 0; i < cpu_nr; i++)
1432 fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
1433 ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
1434 } else
1435 fprintf(fp, "# Core ID and Socket ID information is not available\n");
1436}
1437
1438static void print_clockid(struct feat_fd *ff, FILE *fp)
1439{
1440 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1441 ff->ph->env.clockid_res_ns * 1000);
1442}
1443
1444static void print_dir_format(struct feat_fd *ff, FILE *fp)
1445{
1446 struct perf_session *session;
1447 struct perf_data *data;
1448
1449 session = container_of(ff->ph, struct perf_session, header);
1450 data = session->data;
1451
1452 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1453}
1454
1455static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1456{
1457 struct perf_env *env = &ff->ph->env;
1458 struct rb_root *root;
1459 struct rb_node *next;
1460
1461 down_read(&env->bpf_progs.lock);
1462
1463 root = &env->bpf_progs.infos;
1464 next = rb_first(root);
1465
1466 while (next) {
1467 struct bpf_prog_info_node *node;
1468
1469 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1470 next = rb_next(&node->rb_node);
1471
1472 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1473 env, fp);
1474 }
1475
1476 up_read(&env->bpf_progs.lock);
1477}
1478
1479static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1480{
1481 struct perf_env *env = &ff->ph->env;
1482 struct rb_root *root;
1483 struct rb_node *next;
1484
1485 down_read(&env->bpf_progs.lock);
1486
1487 root = &env->bpf_progs.btfs;
1488 next = rb_first(root);
1489
1490 while (next) {
1491 struct btf_node *node;
1492
1493 node = rb_entry(next, struct btf_node, rb_node);
1494 next = rb_next(&node->rb_node);
1495 fprintf(fp, "# btf info of id %u\n", node->id);
1496 }
1497
1498 up_read(&env->bpf_progs.lock);
1499}
1500
1501static void free_event_desc(struct perf_evsel *events)
1502{
1503 struct perf_evsel *evsel;
1504
1505 if (!events)
1506 return;
1507
1508 for (evsel = events; evsel->attr.size; evsel++) {
1509 zfree(&evsel->name);
1510 zfree(&evsel->id);
1511 }
1512
1513 free(events);
1514}
1515
1516static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1517{
1518 struct perf_evsel *evsel, *events = NULL;
1519 u64 *id;
1520 void *buf = NULL;
1521 u32 nre, sz, nr, i, j;
1522 size_t msz;
1523
1524 /* number of events */
1525 if (do_read_u32(ff, &nre))
1526 goto error;
1527
1528 if (do_read_u32(ff, &sz))
1529 goto error;
1530
1531 /* buffer to hold on file attr struct */
1532 buf = malloc(sz);
1533 if (!buf)
1534 goto error;
1535
1536 /* the last event terminates with evsel->attr.size == 0: */
1537 events = calloc(nre + 1, sizeof(*events));
1538 if (!events)
1539 goto error;
1540
1541 msz = sizeof(evsel->attr);
1542 if (sz < msz)
1543 msz = sz;
1544
1545 for (i = 0, evsel = events; i < nre; evsel++, i++) {
1546 evsel->idx = i;
1547
1548 /*
1549 * must read entire on-file attr struct to
1550 * sync up with layout.
1551 */
1552 if (__do_read(ff, buf, sz))
1553 goto error;
1554
1555 if (ff->ph->needs_swap)
1556 perf_event__attr_swap(buf);
1557
1558 memcpy(&evsel->attr, buf, msz);
1559
1560 if (do_read_u32(ff, &nr))
1561 goto error;
1562
1563 if (ff->ph->needs_swap)
1564 evsel->needs_swap = true;
1565
1566 evsel->name = do_read_string(ff);
1567 if (!evsel->name)
1568 goto error;
1569
1570 if (!nr)
1571 continue;
1572
1573 id = calloc(nr, sizeof(*id));
1574 if (!id)
1575 goto error;
1576 evsel->ids = nr;
1577 evsel->id = id;
1578
1579 for (j = 0 ; j < nr; j++) {
1580 if (do_read_u64(ff, id))
1581 goto error;
1582 id++;
1583 }
1584 }
1585out:
1586 free(buf);
1587 return events;
1588error:
1589 free_event_desc(events);
1590 events = NULL;
1591 goto out;
1592}
1593
1594static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1595 void *priv __maybe_unused)
1596{
1597 return fprintf(fp, ", %s = %s", name, val);
1598}
1599
1600static void print_event_desc(struct feat_fd *ff, FILE *fp)
1601{
1602 struct perf_evsel *evsel, *events;
1603 u32 j;
1604 u64 *id;
1605
1606 if (ff->events)
1607 events = ff->events;
1608 else
1609 events = read_event_desc(ff);
1610
1611 if (!events) {
1612 fprintf(fp, "# event desc: not available or unable to read\n");
1613 return;
1614 }
1615
1616 for (evsel = events; evsel->attr.size; evsel++) {
1617 fprintf(fp, "# event : name = %s, ", evsel->name);
1618
1619 if (evsel->ids) {
1620 fprintf(fp, ", id = {");
1621 for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1622 if (j)
1623 fputc(',', fp);
1624 fprintf(fp, " %"PRIu64, *id);
1625 }
1626 fprintf(fp, " }");
1627 }
1628
1629 perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1630
1631 fputc('\n', fp);
1632 }
1633
1634 free_event_desc(events);
1635 ff->events = NULL;
1636}
1637
1638static void print_total_mem(struct feat_fd *ff, FILE *fp)
1639{
1640 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1641}
1642
1643static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1644{
1645 int i;
1646 struct numa_node *n;
1647
1648 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1649 n = &ff->ph->env.numa_nodes[i];
1650
1651 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
1652 " free = %"PRIu64" kB\n",
1653 n->node, n->mem_total, n->mem_free);
1654
1655 fprintf(fp, "# node%u cpu list : ", n->node);
1656 cpu_map__fprintf(n->map, fp);
1657 }
1658}
1659
1660static void print_cpuid(struct feat_fd *ff, FILE *fp)
1661{
1662 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1663}
1664
1665static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1666{
1667 fprintf(fp, "# contains samples with branch stack\n");
1668}
1669
1670static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1671{
1672 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1673}
1674
1675static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1676{
1677 fprintf(fp, "# contains stat data\n");
1678}
1679
1680static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1681{
1682 int i;
1683
1684 fprintf(fp, "# CPU cache info:\n");
1685 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1686 fprintf(fp, "# ");
1687 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1688 }
1689}
1690
1691static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1692{
1693 const char *delimiter = "# pmu mappings: ";
1694 char *str, *tmp;
1695 u32 pmu_num;
1696 u32 type;
1697
1698 pmu_num = ff->ph->env.nr_pmu_mappings;
1699 if (!pmu_num) {
1700 fprintf(fp, "# pmu mappings: not available\n");
1701 return;
1702 }
1703
1704 str = ff->ph->env.pmu_mappings;
1705
1706 while (pmu_num) {
1707 type = strtoul(str, &tmp, 0);
1708 if (*tmp != ':')
1709 goto error;
1710
1711 str = tmp + 1;
1712 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1713
1714 delimiter = ", ";
1715 str += strlen(str) + 1;
1716 pmu_num--;
1717 }
1718
1719 fprintf(fp, "\n");
1720
1721 if (!pmu_num)
1722 return;
1723error:
1724 fprintf(fp, "# pmu mappings: unable to read\n");
1725}
1726
1727static void print_group_desc(struct feat_fd *ff, FILE *fp)
1728{
1729 struct perf_session *session;
1730 struct perf_evsel *evsel;
1731 u32 nr = 0;
1732
1733 session = container_of(ff->ph, struct perf_session, header);
1734
1735 evlist__for_each_entry(session->evlist, evsel) {
1736 if (perf_evsel__is_group_leader(evsel) &&
1737 evsel->nr_members > 1) {
1738 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1739 perf_evsel__name(evsel));
1740
1741 nr = evsel->nr_members - 1;
1742 } else if (nr) {
1743 fprintf(fp, ",%s", perf_evsel__name(evsel));
1744
1745 if (--nr == 0)
1746 fprintf(fp, "}\n");
1747 }
1748 }
1749}
1750
1751static void print_sample_time(struct feat_fd *ff, FILE *fp)
1752{
1753 struct perf_session *session;
1754 char time_buf[32];
1755 double d;
1756
1757 session = container_of(ff->ph, struct perf_session, header);
1758
1759 timestamp__scnprintf_usec(session->evlist->first_sample_time,
1760 time_buf, sizeof(time_buf));
1761 fprintf(fp, "# time of first sample : %s\n", time_buf);
1762
1763 timestamp__scnprintf_usec(session->evlist->last_sample_time,
1764 time_buf, sizeof(time_buf));
1765 fprintf(fp, "# time of last sample : %s\n", time_buf);
1766
1767 d = (double)(session->evlist->last_sample_time -
1768 session->evlist->first_sample_time) / NSEC_PER_MSEC;
1769
1770 fprintf(fp, "# sample duration : %10.3f ms\n", d);
1771}
1772
1773static void memory_node__fprintf(struct memory_node *n,
1774 unsigned long long bsize, FILE *fp)
1775{
1776 char buf_map[100], buf_size[50];
1777 unsigned long long size;
1778
1779 size = bsize * bitmap_weight(n->set, n->size);
1780 unit_number__scnprintf(buf_size, 50, size);
1781
1782 bitmap_scnprintf(n->set, n->size, buf_map, 100);
1783 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1784}
1785
1786static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1787{
1788 struct memory_node *nodes;
1789 int i, nr;
1790
1791 nodes = ff->ph->env.memory_nodes;
1792 nr = ff->ph->env.nr_memory_nodes;
1793
1794 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1795 nr, ff->ph->env.memory_bsize);
1796
1797 for (i = 0; i < nr; i++) {
1798 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1799 }
1800}
1801
1802static int __event_process_build_id(struct build_id_event *bev,
1803 char *filename,
1804 struct perf_session *session)
1805{
1806 int err = -1;
1807 struct machine *machine;
1808 u16 cpumode;
1809 struct dso *dso;
1810 enum dso_kernel_type dso_type;
1811
1812 machine = perf_session__findnew_machine(session, bev->pid);
1813 if (!machine)
1814 goto out;
1815
1816 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1817
1818 switch (cpumode) {
1819 case PERF_RECORD_MISC_KERNEL:
1820 dso_type = DSO_TYPE_KERNEL;
1821 break;
1822 case PERF_RECORD_MISC_GUEST_KERNEL:
1823 dso_type = DSO_TYPE_GUEST_KERNEL;
1824 break;
1825 case PERF_RECORD_MISC_USER:
1826 case PERF_RECORD_MISC_GUEST_USER:
1827 dso_type = DSO_TYPE_USER;
1828 break;
1829 default:
1830 goto out;
1831 }
1832
1833 dso = machine__findnew_dso(machine, filename);
1834 if (dso != NULL) {
1835 char sbuild_id[SBUILD_ID_SIZE];
1836
1837 dso__set_build_id(dso, &bev->build_id);
1838
1839 if (dso_type != DSO_TYPE_USER) {
1840 struct kmod_path m = { .name = NULL, };
1841
1842 if (!kmod_path__parse_name(&m, filename) && m.kmod)
1843 dso__set_module_info(dso, &m, machine);
1844 else
1845 dso->kernel = dso_type;
1846
1847 free(m.name);
1848 }
1849
1850 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1851 sbuild_id);
1852 pr_debug("build id event received for %s: %s\n",
1853 dso->long_name, sbuild_id);
1854 dso__put(dso);
1855 }
1856
1857 err = 0;
1858out:
1859 return err;
1860}
1861
1862static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1863 int input, u64 offset, u64 size)
1864{
1865 struct perf_session *session = container_of(header, struct perf_session, header);
1866 struct {
1867 struct perf_event_header header;
1868 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1869 char filename[0];
1870 } old_bev;
1871 struct build_id_event bev;
1872 char filename[PATH_MAX];
1873 u64 limit = offset + size;
1874
1875 while (offset < limit) {
1876 ssize_t len;
1877
1878 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1879 return -1;
1880
1881 if (header->needs_swap)
1882 perf_event_header__bswap(&old_bev.header);
1883
1884 len = old_bev.header.size - sizeof(old_bev);
1885 if (readn(input, filename, len) != len)
1886 return -1;
1887
1888 bev.header = old_bev.header;
1889
1890 /*
1891 * As the pid is the missing value, we need to fill
1892 * it properly. The header.misc value give us nice hint.
1893 */
1894 bev.pid = HOST_KERNEL_ID;
1895 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1896 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1897 bev.pid = DEFAULT_GUEST_KERNEL_ID;
1898
1899 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1900 __event_process_build_id(&bev, filename, session);
1901
1902 offset += bev.header.size;
1903 }
1904
1905 return 0;
1906}
1907
1908static int perf_header__read_build_ids(struct perf_header *header,
1909 int input, u64 offset, u64 size)
1910{
1911 struct perf_session *session = container_of(header, struct perf_session, header);
1912 struct build_id_event bev;
1913 char filename[PATH_MAX];
1914 u64 limit = offset + size, orig_offset = offset;
1915 int err = -1;
1916
1917 while (offset < limit) {
1918 ssize_t len;
1919
1920 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1921 goto out;
1922
1923 if (header->needs_swap)
1924 perf_event_header__bswap(&bev.header);
1925
1926 len = bev.header.size - sizeof(bev);
1927 if (readn(input, filename, len) != len)
1928 goto out;
1929 /*
1930 * The a1645ce1 changeset:
1931 *
1932 * "perf: 'perf kvm' tool for monitoring guest performance from host"
1933 *
1934 * Added a field to struct build_id_event that broke the file
1935 * format.
1936 *
1937 * Since the kernel build-id is the first entry, process the
1938 * table using the old format if the well known
1939 * '[kernel.kallsyms]' string for the kernel build-id has the
1940 * first 4 characters chopped off (where the pid_t sits).
1941 */
1942 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
1943 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
1944 return -1;
1945 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
1946 }
1947
1948 __event_process_build_id(&bev, filename, session);
1949
1950 offset += bev.header.size;
1951 }
1952 err = 0;
1953out:
1954 return err;
1955}
1956
1957/* Macro for features that simply need to read and store a string. */
1958#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
1959static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
1960{\
1961 ff->ph->env.__feat_env = do_read_string(ff); \
1962 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
1963}
1964
1965FEAT_PROCESS_STR_FUN(hostname, hostname);
1966FEAT_PROCESS_STR_FUN(osrelease, os_release);
1967FEAT_PROCESS_STR_FUN(version, version);
1968FEAT_PROCESS_STR_FUN(arch, arch);
1969FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
1970FEAT_PROCESS_STR_FUN(cpuid, cpuid);
1971
1972static int process_tracing_data(struct feat_fd *ff, void *data)
1973{
1974 ssize_t ret = trace_report(ff->fd, data, false);
1975
1976 return ret < 0 ? -1 : 0;
1977}
1978
1979static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
1980{
1981 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
1982 pr_debug("Failed to read buildids, continuing...\n");
1983 return 0;
1984}
1985
1986static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
1987{
1988 int ret;
1989 u32 nr_cpus_avail, nr_cpus_online;
1990
1991 ret = do_read_u32(ff, &nr_cpus_avail);
1992 if (ret)
1993 return ret;
1994
1995 ret = do_read_u32(ff, &nr_cpus_online);
1996 if (ret)
1997 return ret;
1998 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
1999 ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2000 return 0;
2001}
2002
2003static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2004{
2005 u64 total_mem;
2006 int ret;
2007
2008 ret = do_read_u64(ff, &total_mem);
2009 if (ret)
2010 return -1;
2011 ff->ph->env.total_mem = (unsigned long long)total_mem;
2012 return 0;
2013}
2014
2015static struct perf_evsel *
2016perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
2017{
2018 struct perf_evsel *evsel;
2019
2020 evlist__for_each_entry(evlist, evsel) {
2021 if (evsel->idx == idx)
2022 return evsel;
2023 }
2024
2025 return NULL;
2026}
2027
2028static void
2029perf_evlist__set_event_name(struct perf_evlist *evlist,
2030 struct perf_evsel *event)
2031{
2032 struct perf_evsel *evsel;
2033
2034 if (!event->name)
2035 return;
2036
2037 evsel = perf_evlist__find_by_index(evlist, event->idx);
2038 if (!evsel)
2039 return;
2040
2041 if (evsel->name)
2042 return;
2043
2044 evsel->name = strdup(event->name);
2045}
2046
2047static int
2048process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2049{
2050 struct perf_session *session;
2051 struct perf_evsel *evsel, *events = read_event_desc(ff);
2052
2053 if (!events)
2054 return 0;
2055
2056 session = container_of(ff->ph, struct perf_session, header);
2057
2058 if (session->data->is_pipe) {
2059 /* Save events for reading later by print_event_desc,
2060 * since they can't be read again in pipe mode. */
2061 ff->events = events;
2062 }
2063
2064 for (evsel = events; evsel->attr.size; evsel++)
2065 perf_evlist__set_event_name(session->evlist, evsel);
2066
2067 if (!session->data->is_pipe)
2068 free_event_desc(events);
2069
2070 return 0;
2071}
2072
2073static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2074{
2075 char *str, *cmdline = NULL, **argv = NULL;
2076 u32 nr, i, len = 0;
2077
2078 if (do_read_u32(ff, &nr))
2079 return -1;
2080
2081 ff->ph->env.nr_cmdline = nr;
2082
2083 cmdline = zalloc(ff->size + nr + 1);
2084 if (!cmdline)
2085 return -1;
2086
2087 argv = zalloc(sizeof(char *) * (nr + 1));
2088 if (!argv)
2089 goto error;
2090
2091 for (i = 0; i < nr; i++) {
2092 str = do_read_string(ff);
2093 if (!str)
2094 goto error;
2095
2096 argv[i] = cmdline + len;
2097 memcpy(argv[i], str, strlen(str) + 1);
2098 len += strlen(str) + 1;
2099 free(str);
2100 }
2101 ff->ph->env.cmdline = cmdline;
2102 ff->ph->env.cmdline_argv = (const char **) argv;
2103 return 0;
2104
2105error:
2106 free(argv);
2107 free(cmdline);
2108 return -1;
2109}
2110
2111static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2112{
2113 u32 nr, i;
2114 char *str;
2115 struct strbuf sb;
2116 int cpu_nr = ff->ph->env.nr_cpus_avail;
2117 u64 size = 0;
2118 struct perf_header *ph = ff->ph;
2119 bool do_core_id_test = true;
2120
2121 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2122 if (!ph->env.cpu)
2123 return -1;
2124
2125 if (do_read_u32(ff, &nr))
2126 goto free_cpu;
2127
2128 ph->env.nr_sibling_cores = nr;
2129 size += sizeof(u32);
2130 if (strbuf_init(&sb, 128) < 0)
2131 goto free_cpu;
2132
2133 for (i = 0; i < nr; i++) {
2134 str = do_read_string(ff);
2135 if (!str)
2136 goto error;
2137
2138 /* include a NULL character at the end */
2139 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2140 goto error;
2141 size += string_size(str);
2142 free(str);
2143 }
2144 ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2145
2146 if (do_read_u32(ff, &nr))
2147 return -1;
2148
2149 ph->env.nr_sibling_threads = nr;
2150 size += sizeof(u32);
2151
2152 for (i = 0; i < nr; i++) {
2153 str = do_read_string(ff);
2154 if (!str)
2155 goto error;
2156
2157 /* include a NULL character at the end */
2158 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2159 goto error;
2160 size += string_size(str);
2161 free(str);
2162 }
2163 ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2164
2165 /*
2166 * The header may be from old perf,
2167 * which doesn't include core id and socket id information.
2168 */
2169 if (ff->size <= size) {
2170 zfree(&ph->env.cpu);
2171 return 0;
2172 }
2173
2174 /* On s390 the socket_id number is not related to the numbers of cpus.
2175 * The socket_id number might be higher than the numbers of cpus.
2176 * This depends on the configuration.
2177 */
2178 if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4))
2179 do_core_id_test = false;
2180
2181 for (i = 0; i < (u32)cpu_nr; i++) {
2182 if (do_read_u32(ff, &nr))
2183 goto free_cpu;
2184
2185 ph->env.cpu[i].core_id = nr;
2186
2187 if (do_read_u32(ff, &nr))
2188 goto free_cpu;
2189
2190 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2191 pr_debug("socket_id number is too big."
2192 "You may need to upgrade the perf tool.\n");
2193 goto free_cpu;
2194 }
2195
2196 ph->env.cpu[i].socket_id = nr;
2197 }
2198
2199 return 0;
2200
2201error:
2202 strbuf_release(&sb);
2203free_cpu:
2204 zfree(&ph->env.cpu);
2205 return -1;
2206}
2207
2208static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2209{
2210 struct numa_node *nodes, *n;
2211 u32 nr, i;
2212 char *str;
2213
2214 /* nr nodes */
2215 if (do_read_u32(ff, &nr))
2216 return -1;
2217
2218 nodes = zalloc(sizeof(*nodes) * nr);
2219 if (!nodes)
2220 return -ENOMEM;
2221
2222 for (i = 0; i < nr; i++) {
2223 n = &nodes[i];
2224
2225 /* node number */
2226 if (do_read_u32(ff, &n->node))
2227 goto error;
2228
2229 if (do_read_u64(ff, &n->mem_total))
2230 goto error;
2231
2232 if (do_read_u64(ff, &n->mem_free))
2233 goto error;
2234
2235 str = do_read_string(ff);
2236 if (!str)
2237 goto error;
2238
2239 n->map = cpu_map__new(str);
2240 if (!n->map)
2241 goto error;
2242
2243 free(str);
2244 }
2245 ff->ph->env.nr_numa_nodes = nr;
2246 ff->ph->env.numa_nodes = nodes;
2247 return 0;
2248
2249error:
2250 free(nodes);
2251 return -1;
2252}
2253
2254static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2255{
2256 char *name;
2257 u32 pmu_num;
2258 u32 type;
2259 struct strbuf sb;
2260
2261 if (do_read_u32(ff, &pmu_num))
2262 return -1;
2263
2264 if (!pmu_num) {
2265 pr_debug("pmu mappings not available\n");
2266 return 0;
2267 }
2268
2269 ff->ph->env.nr_pmu_mappings = pmu_num;
2270 if (strbuf_init(&sb, 128) < 0)
2271 return -1;
2272
2273 while (pmu_num) {
2274 if (do_read_u32(ff, &type))
2275 goto error;
2276
2277 name = do_read_string(ff);
2278 if (!name)
2279 goto error;
2280
2281 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2282 goto error;
2283 /* include a NULL character at the end */
2284 if (strbuf_add(&sb, "", 1) < 0)
2285 goto error;
2286
2287 if (!strcmp(name, "msr"))
2288 ff->ph->env.msr_pmu_type = type;
2289
2290 free(name);
2291 pmu_num--;
2292 }
2293 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2294 return 0;
2295
2296error:
2297 strbuf_release(&sb);
2298 return -1;
2299}
2300
2301static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2302{
2303 size_t ret = -1;
2304 u32 i, nr, nr_groups;
2305 struct perf_session *session;
2306 struct perf_evsel *evsel, *leader = NULL;
2307 struct group_desc {
2308 char *name;
2309 u32 leader_idx;
2310 u32 nr_members;
2311 } *desc;
2312
2313 if (do_read_u32(ff, &nr_groups))
2314 return -1;
2315
2316 ff->ph->env.nr_groups = nr_groups;
2317 if (!nr_groups) {
2318 pr_debug("group desc not available\n");
2319 return 0;
2320 }
2321
2322 desc = calloc(nr_groups, sizeof(*desc));
2323 if (!desc)
2324 return -1;
2325
2326 for (i = 0; i < nr_groups; i++) {
2327 desc[i].name = do_read_string(ff);
2328 if (!desc[i].name)
2329 goto out_free;
2330
2331 if (do_read_u32(ff, &desc[i].leader_idx))
2332 goto out_free;
2333
2334 if (do_read_u32(ff, &desc[i].nr_members))
2335 goto out_free;
2336 }
2337
2338 /*
2339 * Rebuild group relationship based on the group_desc
2340 */
2341 session = container_of(ff->ph, struct perf_session, header);
2342 session->evlist->nr_groups = nr_groups;
2343
2344 i = nr = 0;
2345 evlist__for_each_entry(session->evlist, evsel) {
2346 if (evsel->idx == (int) desc[i].leader_idx) {
2347 evsel->leader = evsel;
2348 /* {anon_group} is a dummy name */
2349 if (strcmp(desc[i].name, "{anon_group}")) {
2350 evsel->group_name = desc[i].name;
2351 desc[i].name = NULL;
2352 }
2353 evsel->nr_members = desc[i].nr_members;
2354
2355 if (i >= nr_groups || nr > 0) {
2356 pr_debug("invalid group desc\n");
2357 goto out_free;
2358 }
2359
2360 leader = evsel;
2361 nr = evsel->nr_members - 1;
2362 i++;
2363 } else if (nr) {
2364 /* This is a group member */
2365 evsel->leader = leader;
2366
2367 nr--;
2368 }
2369 }
2370
2371 if (i != nr_groups || nr != 0) {
2372 pr_debug("invalid group desc\n");
2373 goto out_free;
2374 }
2375
2376 ret = 0;
2377out_free:
2378 for (i = 0; i < nr_groups; i++)
2379 zfree(&desc[i].name);
2380 free(desc);
2381
2382 return ret;
2383}
2384
2385static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2386{
2387 struct perf_session *session;
2388 int err;
2389
2390 session = container_of(ff->ph, struct perf_session, header);
2391
2392 err = auxtrace_index__process(ff->fd, ff->size, session,
2393 ff->ph->needs_swap);
2394 if (err < 0)
2395 pr_err("Failed to process auxtrace index\n");
2396 return err;
2397}
2398
2399static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2400{
2401 struct cpu_cache_level *caches;
2402 u32 cnt, i, version;
2403
2404 if (do_read_u32(ff, &version))
2405 return -1;
2406
2407 if (version != 1)
2408 return -1;
2409
2410 if (do_read_u32(ff, &cnt))
2411 return -1;
2412
2413 caches = zalloc(sizeof(*caches) * cnt);
2414 if (!caches)
2415 return -1;
2416
2417 for (i = 0; i < cnt; i++) {
2418 struct cpu_cache_level c;
2419
2420 #define _R(v) \
2421 if (do_read_u32(ff, &c.v))\
2422 goto out_free_caches; \
2423
2424 _R(level)
2425 _R(line_size)
2426 _R(sets)
2427 _R(ways)
2428 #undef _R
2429
2430 #define _R(v) \
2431 c.v = do_read_string(ff); \
2432 if (!c.v) \
2433 goto out_free_caches;
2434
2435 _R(type)
2436 _R(size)
2437 _R(map)
2438 #undef _R
2439
2440 caches[i] = c;
2441 }
2442
2443 ff->ph->env.caches = caches;
2444 ff->ph->env.caches_cnt = cnt;
2445 return 0;
2446out_free_caches:
2447 free(caches);
2448 return -1;
2449}
2450
2451static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2452{
2453 struct perf_session *session;
2454 u64 first_sample_time, last_sample_time;
2455 int ret;
2456
2457 session = container_of(ff->ph, struct perf_session, header);
2458
2459 ret = do_read_u64(ff, &first_sample_time);
2460 if (ret)
2461 return -1;
2462
2463 ret = do_read_u64(ff, &last_sample_time);
2464 if (ret)
2465 return -1;
2466
2467 session->evlist->first_sample_time = first_sample_time;
2468 session->evlist->last_sample_time = last_sample_time;
2469 return 0;
2470}
2471
2472static int process_mem_topology(struct feat_fd *ff,
2473 void *data __maybe_unused)
2474{
2475 struct memory_node *nodes;
2476 u64 version, i, nr, bsize;
2477 int ret = -1;
2478
2479 if (do_read_u64(ff, &version))
2480 return -1;
2481
2482 if (version != 1)
2483 return -1;
2484
2485 if (do_read_u64(ff, &bsize))
2486 return -1;
2487
2488 if (do_read_u64(ff, &nr))
2489 return -1;
2490
2491 nodes = zalloc(sizeof(*nodes) * nr);
2492 if (!nodes)
2493 return -1;
2494
2495 for (i = 0; i < nr; i++) {
2496 struct memory_node n;
2497
2498 #define _R(v) \
2499 if (do_read_u64(ff, &n.v)) \
2500 goto out; \
2501
2502 _R(node)
2503 _R(size)
2504
2505 #undef _R
2506
2507 if (do_read_bitmap(ff, &n.set, &n.size))
2508 goto out;
2509
2510 nodes[i] = n;
2511 }
2512
2513 ff->ph->env.memory_bsize = bsize;
2514 ff->ph->env.memory_nodes = nodes;
2515 ff->ph->env.nr_memory_nodes = nr;
2516 ret = 0;
2517
2518out:
2519 if (ret)
2520 free(nodes);
2521 return ret;
2522}
2523
2524static int process_clockid(struct feat_fd *ff,
2525 void *data __maybe_unused)
2526{
2527 if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2528 return -1;
2529
2530 return 0;
2531}
2532
2533static int process_dir_format(struct feat_fd *ff,
2534 void *_data __maybe_unused)
2535{
2536 struct perf_session *session;
2537 struct perf_data *data;
2538
2539 session = container_of(ff->ph, struct perf_session, header);
2540 data = session->data;
2541
2542 if (WARN_ON(!perf_data__is_dir(data)))
2543 return -1;
2544
2545 return do_read_u64(ff, &data->dir.version);
2546}
2547
2548#ifdef HAVE_LIBBPF_SUPPORT
2549static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2550{
2551 struct bpf_prog_info_linear *info_linear;
2552 struct bpf_prog_info_node *info_node;
2553 struct perf_env *env = &ff->ph->env;
2554 u32 count, i;
2555 int err = -1;
2556
2557 if (ff->ph->needs_swap) {
2558 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2559 return 0;
2560 }
2561
2562 if (do_read_u32(ff, &count))
2563 return -1;
2564
2565 down_write(&env->bpf_progs.lock);
2566
2567 for (i = 0; i < count; ++i) {
2568 u32 info_len, data_len;
2569
2570 info_linear = NULL;
2571 info_node = NULL;
2572 if (do_read_u32(ff, &info_len))
2573 goto out;
2574 if (do_read_u32(ff, &data_len))
2575 goto out;
2576
2577 if (info_len > sizeof(struct bpf_prog_info)) {
2578 pr_warning("detected invalid bpf_prog_info\n");
2579 goto out;
2580 }
2581
2582 info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2583 data_len);
2584 if (!info_linear)
2585 goto out;
2586 info_linear->info_len = sizeof(struct bpf_prog_info);
2587 info_linear->data_len = data_len;
2588 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2589 goto out;
2590 if (__do_read(ff, &info_linear->info, info_len))
2591 goto out;
2592 if (info_len < sizeof(struct bpf_prog_info))
2593 memset(((void *)(&info_linear->info)) + info_len, 0,
2594 sizeof(struct bpf_prog_info) - info_len);
2595
2596 if (__do_read(ff, info_linear->data, data_len))
2597 goto out;
2598
2599 info_node = malloc(sizeof(struct bpf_prog_info_node));
2600 if (!info_node)
2601 goto out;
2602
2603 /* after reading from file, translate offset to address */
2604 bpf_program__bpil_offs_to_addr(info_linear);
2605 info_node->info_linear = info_linear;
2606 perf_env__insert_bpf_prog_info(env, info_node);
2607 }
2608
2609 return 0;
2610out:
2611 free(info_linear);
2612 free(info_node);
2613 up_write(&env->bpf_progs.lock);
2614 return err;
2615}
2616#else // HAVE_LIBBPF_SUPPORT
2617static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2618{
2619 return 0;
2620}
2621#endif // HAVE_LIBBPF_SUPPORT
2622
2623static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2624{
2625 struct perf_env *env = &ff->ph->env;
2626 u32 count, i;
2627
2628 if (ff->ph->needs_swap) {
2629 pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2630 return 0;
2631 }
2632
2633 if (do_read_u32(ff, &count))
2634 return -1;
2635
2636 down_write(&env->bpf_progs.lock);
2637
2638 for (i = 0; i < count; ++i) {
2639 struct btf_node *node;
2640 u32 id, data_size;
2641
2642 if (do_read_u32(ff, &id))
2643 return -1;
2644 if (do_read_u32(ff, &data_size))
2645 return -1;
2646
2647 node = malloc(sizeof(struct btf_node) + data_size);
2648 if (!node)
2649 return -1;
2650
2651 node->id = id;
2652 node->data_size = data_size;
2653
2654 if (__do_read(ff, node->data, data_size)) {
2655 free(node);
2656 return -1;
2657 }
2658
2659 perf_env__insert_btf(env, node);
2660 }
2661
2662 up_write(&env->bpf_progs.lock);
2663 return 0;
2664}
2665
2666struct feature_ops {
2667 int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2668 void (*print)(struct feat_fd *ff, FILE *fp);
2669 int (*process)(struct feat_fd *ff, void *data);
2670 const char *name;
2671 bool full_only;
2672 bool synthesize;
2673};
2674
2675#define FEAT_OPR(n, func, __full_only) \
2676 [HEADER_##n] = { \
2677 .name = __stringify(n), \
2678 .write = write_##func, \
2679 .print = print_##func, \
2680 .full_only = __full_only, \
2681 .process = process_##func, \
2682 .synthesize = true \
2683 }
2684
2685#define FEAT_OPN(n, func, __full_only) \
2686 [HEADER_##n] = { \
2687 .name = __stringify(n), \
2688 .write = write_##func, \
2689 .print = print_##func, \
2690 .full_only = __full_only, \
2691 .process = process_##func \
2692 }
2693
2694/* feature_ops not implemented: */
2695#define print_tracing_data NULL
2696#define print_build_id NULL
2697
2698#define process_branch_stack NULL
2699#define process_stat NULL
2700
2701
2702static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2703 FEAT_OPN(TRACING_DATA, tracing_data, false),
2704 FEAT_OPN(BUILD_ID, build_id, false),
2705 FEAT_OPR(HOSTNAME, hostname, false),
2706 FEAT_OPR(OSRELEASE, osrelease, false),
2707 FEAT_OPR(VERSION, version, false),
2708 FEAT_OPR(ARCH, arch, false),
2709 FEAT_OPR(NRCPUS, nrcpus, false),
2710 FEAT_OPR(CPUDESC, cpudesc, false),
2711 FEAT_OPR(CPUID, cpuid, false),
2712 FEAT_OPR(TOTAL_MEM, total_mem, false),
2713 FEAT_OPR(EVENT_DESC, event_desc, false),
2714 FEAT_OPR(CMDLINE, cmdline, false),
2715 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
2716 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
2717 FEAT_OPN(BRANCH_STACK, branch_stack, false),
2718 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
2719 FEAT_OPR(GROUP_DESC, group_desc, false),
2720 FEAT_OPN(AUXTRACE, auxtrace, false),
2721 FEAT_OPN(STAT, stat, false),
2722 FEAT_OPN(CACHE, cache, true),
2723 FEAT_OPR(SAMPLE_TIME, sample_time, false),
2724 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
2725 FEAT_OPR(CLOCKID, clockid, false),
2726 FEAT_OPN(DIR_FORMAT, dir_format, false),
2727 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
2728 FEAT_OPR(BPF_BTF, bpf_btf, false),
2729};
2730
2731struct header_print_data {
2732 FILE *fp;
2733 bool full; /* extended list of headers */
2734};
2735
2736static int perf_file_section__fprintf_info(struct perf_file_section *section,
2737 struct perf_header *ph,
2738 int feat, int fd, void *data)
2739{
2740 struct header_print_data *hd = data;
2741 struct feat_fd ff;
2742
2743 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2744 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2745 "%d, continuing...\n", section->offset, feat);
2746 return 0;
2747 }
2748 if (feat >= HEADER_LAST_FEATURE) {
2749 pr_warning("unknown feature %d\n", feat);
2750 return 0;
2751 }
2752 if (!feat_ops[feat].print)
2753 return 0;
2754
2755 ff = (struct feat_fd) {
2756 .fd = fd,
2757 .ph = ph,
2758 };
2759
2760 if (!feat_ops[feat].full_only || hd->full)
2761 feat_ops[feat].print(&ff, hd->fp);
2762 else
2763 fprintf(hd->fp, "# %s info available, use -I to display\n",
2764 feat_ops[feat].name);
2765
2766 return 0;
2767}
2768
2769int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2770{
2771 struct header_print_data hd;
2772 struct perf_header *header = &session->header;
2773 int fd = perf_data__fd(session->data);
2774 struct stat st;
2775 time_t stctime;
2776 int ret, bit;
2777
2778 hd.fp = fp;
2779 hd.full = full;
2780
2781 ret = fstat(fd, &st);
2782 if (ret == -1)
2783 return -1;
2784
2785 stctime = st.st_ctime;
2786 fprintf(fp, "# captured on : %s", ctime(&stctime));
2787
2788 fprintf(fp, "# header version : %u\n", header->version);
2789 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
2790 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
2791 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
2792
2793 perf_header__process_sections(header, fd, &hd,
2794 perf_file_section__fprintf_info);
2795
2796 if (session->data->is_pipe)
2797 return 0;
2798
2799 fprintf(fp, "# missing features: ");
2800 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2801 if (bit)
2802 fprintf(fp, "%s ", feat_ops[bit].name);
2803 }
2804
2805 fprintf(fp, "\n");
2806 return 0;
2807}
2808
2809static int do_write_feat(struct feat_fd *ff, int type,
2810 struct perf_file_section **p,
2811 struct perf_evlist *evlist)
2812{
2813 int err;
2814 int ret = 0;
2815
2816 if (perf_header__has_feat(ff->ph, type)) {
2817 if (!feat_ops[type].write)
2818 return -1;
2819
2820 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2821 return -1;
2822
2823 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2824
2825 err = feat_ops[type].write(ff, evlist);
2826 if (err < 0) {
2827 pr_debug("failed to write feature %s\n", feat_ops[type].name);
2828
2829 /* undo anything written */
2830 lseek(ff->fd, (*p)->offset, SEEK_SET);
2831
2832 return -1;
2833 }
2834 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2835 (*p)++;
2836 }
2837 return ret;
2838}
2839
2840static int perf_header__adds_write(struct perf_header *header,
2841 struct perf_evlist *evlist, int fd)
2842{
2843 int nr_sections;
2844 struct feat_fd ff;
2845 struct perf_file_section *feat_sec, *p;
2846 int sec_size;
2847 u64 sec_start;
2848 int feat;
2849 int err;
2850
2851 ff = (struct feat_fd){
2852 .fd = fd,
2853 .ph = header,
2854 };
2855
2856 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2857 if (!nr_sections)
2858 return 0;
2859
2860 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2861 if (feat_sec == NULL)
2862 return -ENOMEM;
2863
2864 sec_size = sizeof(*feat_sec) * nr_sections;
2865
2866 sec_start = header->feat_offset;
2867 lseek(fd, sec_start + sec_size, SEEK_SET);
2868
2869 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2870 if (do_write_feat(&ff, feat, &p, evlist))
2871 perf_header__clear_feat(header, feat);
2872 }
2873
2874 lseek(fd, sec_start, SEEK_SET);
2875 /*
2876 * may write more than needed due to dropped feature, but
2877 * this is okay, reader will skip the missing entries
2878 */
2879 err = do_write(&ff, feat_sec, sec_size);
2880 if (err < 0)
2881 pr_debug("failed to write feature section\n");
2882 free(feat_sec);
2883 return err;
2884}
2885
2886int perf_header__write_pipe(int fd)
2887{
2888 struct perf_pipe_file_header f_header;
2889 struct feat_fd ff;
2890 int err;
2891
2892 ff = (struct feat_fd){ .fd = fd };
2893
2894 f_header = (struct perf_pipe_file_header){
2895 .magic = PERF_MAGIC,
2896 .size = sizeof(f_header),
2897 };
2898
2899 err = do_write(&ff, &f_header, sizeof(f_header));
2900 if (err < 0) {
2901 pr_debug("failed to write perf pipe header\n");
2902 return err;
2903 }
2904
2905 return 0;
2906}
2907
2908int perf_session__write_header(struct perf_session *session,
2909 struct perf_evlist *evlist,
2910 int fd, bool at_exit)
2911{
2912 struct perf_file_header f_header;
2913 struct perf_file_attr f_attr;
2914 struct perf_header *header = &session->header;
2915 struct perf_evsel *evsel;
2916 struct feat_fd ff;
2917 u64 attr_offset;
2918 int err;
2919
2920 ff = (struct feat_fd){ .fd = fd};
2921 lseek(fd, sizeof(f_header), SEEK_SET);
2922
2923 evlist__for_each_entry(session->evlist, evsel) {
2924 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2925 err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
2926 if (err < 0) {
2927 pr_debug("failed to write perf header\n");
2928 return err;
2929 }
2930 }
2931
2932 attr_offset = lseek(ff.fd, 0, SEEK_CUR);
2933
2934 evlist__for_each_entry(evlist, evsel) {
2935 f_attr = (struct perf_file_attr){
2936 .attr = evsel->attr,
2937 .ids = {
2938 .offset = evsel->id_offset,
2939 .size = evsel->ids * sizeof(u64),
2940 }
2941 };
2942 err = do_write(&ff, &f_attr, sizeof(f_attr));
2943 if (err < 0) {
2944 pr_debug("failed to write perf header attribute\n");
2945 return err;
2946 }
2947 }
2948
2949 if (!header->data_offset)
2950 header->data_offset = lseek(fd, 0, SEEK_CUR);
2951 header->feat_offset = header->data_offset + header->data_size;
2952
2953 if (at_exit) {
2954 err = perf_header__adds_write(header, evlist, fd);
2955 if (err < 0)
2956 return err;
2957 }
2958
2959 f_header = (struct perf_file_header){
2960 .magic = PERF_MAGIC,
2961 .size = sizeof(f_header),
2962 .attr_size = sizeof(f_attr),
2963 .attrs = {
2964 .offset = attr_offset,
2965 .size = evlist->nr_entries * sizeof(f_attr),
2966 },
2967 .data = {
2968 .offset = header->data_offset,
2969 .size = header->data_size,
2970 },
2971 /* event_types is ignored, store zeros */
2972 };
2973
2974 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
2975
2976 lseek(fd, 0, SEEK_SET);
2977 err = do_write(&ff, &f_header, sizeof(f_header));
2978 if (err < 0) {
2979 pr_debug("failed to write perf header\n");
2980 return err;
2981 }
2982 lseek(fd, header->data_offset + header->data_size, SEEK_SET);
2983
2984 return 0;
2985}
2986
2987static int perf_header__getbuffer64(struct perf_header *header,
2988 int fd, void *buf, size_t size)
2989{
2990 if (readn(fd, buf, size) <= 0)
2991 return -1;
2992
2993 if (header->needs_swap)
2994 mem_bswap_64(buf, size);
2995
2996 return 0;
2997}
2998
2999int perf_header__process_sections(struct perf_header *header, int fd,
3000 void *data,
3001 int (*process)(struct perf_file_section *section,
3002 struct perf_header *ph,
3003 int feat, int fd, void *data))
3004{
3005 struct perf_file_section *feat_sec, *sec;
3006 int nr_sections;
3007 int sec_size;
3008 int feat;
3009 int err;
3010
3011 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3012 if (!nr_sections)
3013 return 0;
3014
3015 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3016 if (!feat_sec)
3017 return -1;
3018
3019 sec_size = sizeof(*feat_sec) * nr_sections;
3020
3021 lseek(fd, header->feat_offset, SEEK_SET);
3022
3023 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3024 if (err < 0)
3025 goto out_free;
3026
3027 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3028 err = process(sec++, header, feat, fd, data);
3029 if (err < 0)
3030 goto out_free;
3031 }
3032 err = 0;
3033out_free:
3034 free(feat_sec);
3035 return err;
3036}
3037
3038static const int attr_file_abi_sizes[] = {
3039 [0] = PERF_ATTR_SIZE_VER0,
3040 [1] = PERF_ATTR_SIZE_VER1,
3041 [2] = PERF_ATTR_SIZE_VER2,
3042 [3] = PERF_ATTR_SIZE_VER3,
3043 [4] = PERF_ATTR_SIZE_VER4,
3044 0,
3045};
3046
3047/*
3048 * In the legacy file format, the magic number is not used to encode endianness.
3049 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3050 * on ABI revisions, we need to try all combinations for all endianness to
3051 * detect the endianness.
3052 */
3053static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3054{
3055 uint64_t ref_size, attr_size;
3056 int i;
3057
3058 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3059 ref_size = attr_file_abi_sizes[i]
3060 + sizeof(struct perf_file_section);
3061 if (hdr_sz != ref_size) {
3062 attr_size = bswap_64(hdr_sz);
3063 if (attr_size != ref_size)
3064 continue;
3065
3066 ph->needs_swap = true;
3067 }
3068 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3069 i,
3070 ph->needs_swap);
3071 return 0;
3072 }
3073 /* could not determine endianness */
3074 return -1;
3075}
3076
3077#define PERF_PIPE_HDR_VER0 16
3078
3079static const size_t attr_pipe_abi_sizes[] = {
3080 [0] = PERF_PIPE_HDR_VER0,
3081 0,
3082};
3083
3084/*
3085 * In the legacy pipe format, there is an implicit assumption that endiannesss
3086 * between host recording the samples, and host parsing the samples is the
3087 * same. This is not always the case given that the pipe output may always be
3088 * redirected into a file and analyzed on a different machine with possibly a
3089 * different endianness and perf_event ABI revsions in the perf tool itself.
3090 */
3091static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3092{
3093 u64 attr_size;
3094 int i;
3095
3096 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3097 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3098 attr_size = bswap_64(hdr_sz);
3099 if (attr_size != hdr_sz)
3100 continue;
3101
3102 ph->needs_swap = true;
3103 }
3104 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3105 return 0;
3106 }
3107 return -1;
3108}
3109
3110bool is_perf_magic(u64 magic)
3111{
3112 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3113 || magic == __perf_magic2
3114 || magic == __perf_magic2_sw)
3115 return true;
3116
3117 return false;
3118}
3119
3120static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3121 bool is_pipe, struct perf_header *ph)
3122{
3123 int ret;
3124
3125 /* check for legacy format */
3126 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3127 if (ret == 0) {
3128 ph->version = PERF_HEADER_VERSION_1;
3129 pr_debug("legacy perf.data format\n");
3130 if (is_pipe)
3131 return try_all_pipe_abis(hdr_sz, ph);
3132
3133 return try_all_file_abis(hdr_sz, ph);
3134 }
3135 /*
3136 * the new magic number serves two purposes:
3137 * - unique number to identify actual perf.data files
3138 * - encode endianness of file
3139 */
3140 ph->version = PERF_HEADER_VERSION_2;
3141
3142 /* check magic number with one endianness */
3143 if (magic == __perf_magic2)
3144 return 0;
3145
3146 /* check magic number with opposite endianness */
3147 if (magic != __perf_magic2_sw)
3148 return -1;
3149
3150 ph->needs_swap = true;
3151
3152 return 0;
3153}
3154
3155int perf_file_header__read(struct perf_file_header *header,
3156 struct perf_header *ph, int fd)
3157{
3158 ssize_t ret;
3159
3160 lseek(fd, 0, SEEK_SET);
3161
3162 ret = readn(fd, header, sizeof(*header));
3163 if (ret <= 0)
3164 return -1;
3165
3166 if (check_magic_endian(header->magic,
3167 header->attr_size, false, ph) < 0) {
3168 pr_debug("magic/endian check failed\n");
3169 return -1;
3170 }
3171
3172 if (ph->needs_swap) {
3173 mem_bswap_64(header, offsetof(struct perf_file_header,
3174 adds_features));
3175 }
3176
3177 if (header->size != sizeof(*header)) {
3178 /* Support the previous format */
3179 if (header->size == offsetof(typeof(*header), adds_features))
3180 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3181 else
3182 return -1;
3183 } else if (ph->needs_swap) {
3184 /*
3185 * feature bitmap is declared as an array of unsigned longs --
3186 * not good since its size can differ between the host that
3187 * generated the data file and the host analyzing the file.
3188 *
3189 * We need to handle endianness, but we don't know the size of
3190 * the unsigned long where the file was generated. Take a best
3191 * guess at determining it: try 64-bit swap first (ie., file
3192 * created on a 64-bit host), and check if the hostname feature
3193 * bit is set (this feature bit is forced on as of fbe96f2).
3194 * If the bit is not, undo the 64-bit swap and try a 32-bit
3195 * swap. If the hostname bit is still not set (e.g., older data
3196 * file), punt and fallback to the original behavior --
3197 * clearing all feature bits and setting buildid.
3198 */
3199 mem_bswap_64(&header->adds_features,
3200 BITS_TO_U64(HEADER_FEAT_BITS));
3201
3202 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3203 /* unswap as u64 */
3204 mem_bswap_64(&header->adds_features,
3205 BITS_TO_U64(HEADER_FEAT_BITS));
3206
3207 /* unswap as u32 */
3208 mem_bswap_32(&header->adds_features,
3209 BITS_TO_U32(HEADER_FEAT_BITS));
3210 }
3211
3212 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3213 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3214 set_bit(HEADER_BUILD_ID, header->adds_features);
3215 }
3216 }
3217
3218 memcpy(&ph->adds_features, &header->adds_features,
3219 sizeof(ph->adds_features));
3220
3221 ph->data_offset = header->data.offset;
3222 ph->data_size = header->data.size;
3223 ph->feat_offset = header->data.offset + header->data.size;
3224 return 0;
3225}
3226
3227static int perf_file_section__process(struct perf_file_section *section,
3228 struct perf_header *ph,
3229 int feat, int fd, void *data)
3230{
3231 struct feat_fd fdd = {
3232 .fd = fd,
3233 .ph = ph,
3234 .size = section->size,
3235 .offset = section->offset,
3236 };
3237
3238 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3239 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3240 "%d, continuing...\n", section->offset, feat);
3241 return 0;
3242 }
3243
3244 if (feat >= HEADER_LAST_FEATURE) {
3245 pr_debug("unknown feature %d, continuing...\n", feat);
3246 return 0;
3247 }
3248
3249 if (!feat_ops[feat].process)
3250 return 0;
3251
3252 return feat_ops[feat].process(&fdd, data);
3253}
3254
3255static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3256 struct perf_header *ph, int fd,
3257 bool repipe)
3258{
3259 struct feat_fd ff = {
3260 .fd = STDOUT_FILENO,
3261 .ph = ph,
3262 };
3263 ssize_t ret;
3264
3265 ret = readn(fd, header, sizeof(*header));
3266 if (ret <= 0)
3267 return -1;
3268
3269 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3270 pr_debug("endian/magic failed\n");
3271 return -1;
3272 }
3273
3274 if (ph->needs_swap)
3275 header->size = bswap_64(header->size);
3276
3277 if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3278 return -1;
3279
3280 return 0;
3281}
3282
3283static int perf_header__read_pipe(struct perf_session *session)
3284{
3285 struct perf_header *header = &session->header;
3286 struct perf_pipe_file_header f_header;
3287
3288 if (perf_file_header__read_pipe(&f_header, header,
3289 perf_data__fd(session->data),
3290 session->repipe) < 0) {
3291 pr_debug("incompatible file format\n");
3292 return -EINVAL;
3293 }
3294
3295 return 0;
3296}
3297
3298static int read_attr(int fd, struct perf_header *ph,
3299 struct perf_file_attr *f_attr)
3300{
3301 struct perf_event_attr *attr = &f_attr->attr;
3302 size_t sz, left;
3303 size_t our_sz = sizeof(f_attr->attr);
3304 ssize_t ret;
3305
3306 memset(f_attr, 0, sizeof(*f_attr));
3307
3308 /* read minimal guaranteed structure */
3309 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3310 if (ret <= 0) {
3311 pr_debug("cannot read %d bytes of header attr\n",
3312 PERF_ATTR_SIZE_VER0);
3313 return -1;
3314 }
3315
3316 /* on file perf_event_attr size */
3317 sz = attr->size;
3318
3319 if (ph->needs_swap)
3320 sz = bswap_32(sz);
3321
3322 if (sz == 0) {
3323 /* assume ABI0 */
3324 sz = PERF_ATTR_SIZE_VER0;
3325 } else if (sz > our_sz) {
3326 pr_debug("file uses a more recent and unsupported ABI"
3327 " (%zu bytes extra)\n", sz - our_sz);
3328 return -1;
3329 }
3330 /* what we have not yet read and that we know about */
3331 left = sz - PERF_ATTR_SIZE_VER0;
3332 if (left) {
3333 void *ptr = attr;
3334 ptr += PERF_ATTR_SIZE_VER0;
3335
3336 ret = readn(fd, ptr, left);
3337 }
3338 /* read perf_file_section, ids are read in caller */
3339 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3340
3341 return ret <= 0 ? -1 : 0;
3342}
3343
3344static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3345 struct tep_handle *pevent)
3346{
3347 struct tep_event *event;
3348 char bf[128];
3349
3350 /* already prepared */
3351 if (evsel->tp_format)
3352 return 0;
3353
3354 if (pevent == NULL) {
3355 pr_debug("broken or missing trace data\n");
3356 return -1;
3357 }
3358
3359 event = tep_find_event(pevent, evsel->attr.config);
3360 if (event == NULL) {
3361 pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3362 return -1;
3363 }
3364
3365 if (!evsel->name) {
3366 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3367 evsel->name = strdup(bf);
3368 if (evsel->name == NULL)
3369 return -1;
3370 }
3371
3372 evsel->tp_format = event;
3373 return 0;
3374}
3375
3376static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3377 struct tep_handle *pevent)
3378{
3379 struct perf_evsel *pos;
3380
3381 evlist__for_each_entry(evlist, pos) {
3382 if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
3383 perf_evsel__prepare_tracepoint_event(pos, pevent))
3384 return -1;
3385 }
3386
3387 return 0;
3388}
3389
3390int perf_session__read_header(struct perf_session *session)
3391{
3392 struct perf_data *data = session->data;
3393 struct perf_header *header = &session->header;
3394 struct perf_file_header f_header;
3395 struct perf_file_attr f_attr;
3396 u64 f_id;
3397 int nr_attrs, nr_ids, i, j;
3398 int fd = perf_data__fd(data);
3399
3400 session->evlist = perf_evlist__new();
3401 if (session->evlist == NULL)
3402 return -ENOMEM;
3403
3404 session->evlist->env = &header->env;
3405 session->machines.host.env = &header->env;
3406 if (perf_data__is_pipe(data))
3407 return perf_header__read_pipe(session);
3408
3409 if (perf_file_header__read(&f_header, header, fd) < 0)
3410 return -EINVAL;
3411
3412 /*
3413 * Sanity check that perf.data was written cleanly; data size is
3414 * initialized to 0 and updated only if the on_exit function is run.
3415 * If data size is still 0 then the file contains only partial
3416 * information. Just warn user and process it as much as it can.
3417 */
3418 if (f_header.data.size == 0) {
3419 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3420 "Was the 'perf record' command properly terminated?\n",
3421 data->file.path);
3422 }
3423
3424 nr_attrs = f_header.attrs.size / f_header.attr_size;
3425 lseek(fd, f_header.attrs.offset, SEEK_SET);
3426
3427 for (i = 0; i < nr_attrs; i++) {
3428 struct perf_evsel *evsel;
3429 off_t tmp;
3430
3431 if (read_attr(fd, header, &f_attr) < 0)
3432 goto out_errno;
3433
3434 if (header->needs_swap) {
3435 f_attr.ids.size = bswap_64(f_attr.ids.size);
3436 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3437 perf_event__attr_swap(&f_attr.attr);
3438 }
3439
3440 tmp = lseek(fd, 0, SEEK_CUR);
3441 evsel = perf_evsel__new(&f_attr.attr);
3442
3443 if (evsel == NULL)
3444 goto out_delete_evlist;
3445
3446 evsel->needs_swap = header->needs_swap;
3447 /*
3448 * Do it before so that if perf_evsel__alloc_id fails, this
3449 * entry gets purged too at perf_evlist__delete().
3450 */
3451 perf_evlist__add(session->evlist, evsel);
3452
3453 nr_ids = f_attr.ids.size / sizeof(u64);
3454 /*
3455 * We don't have the cpu and thread maps on the header, so
3456 * for allocating the perf_sample_id table we fake 1 cpu and
3457 * hattr->ids threads.
3458 */
3459 if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3460 goto out_delete_evlist;
3461
3462 lseek(fd, f_attr.ids.offset, SEEK_SET);
3463
3464 for (j = 0; j < nr_ids; j++) {
3465 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3466 goto out_errno;
3467
3468 perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3469 }
3470
3471 lseek(fd, tmp, SEEK_SET);
3472 }
3473
3474 perf_header__process_sections(header, fd, &session->tevent,
3475 perf_file_section__process);
3476
3477 if (perf_evlist__prepare_tracepoint_events(session->evlist,
3478 session->tevent.pevent))
3479 goto out_delete_evlist;
3480
3481 return 0;
3482out_errno:
3483 return -errno;
3484
3485out_delete_evlist:
3486 perf_evlist__delete(session->evlist);
3487 session->evlist = NULL;
3488 return -ENOMEM;
3489}
3490
3491int perf_event__synthesize_attr(struct perf_tool *tool,
3492 struct perf_event_attr *attr, u32 ids, u64 *id,
3493 perf_event__handler_t process)
3494{
3495 union perf_event *ev;
3496 size_t size;
3497 int err;
3498
3499 size = sizeof(struct perf_event_attr);
3500 size = PERF_ALIGN(size, sizeof(u64));
3501 size += sizeof(struct perf_event_header);
3502 size += ids * sizeof(u64);
3503
3504 ev = malloc(size);
3505
3506 if (ev == NULL)
3507 return -ENOMEM;
3508
3509 ev->attr.attr = *attr;
3510 memcpy(ev->attr.id, id, ids * sizeof(u64));
3511
3512 ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3513 ev->attr.header.size = (u16)size;
3514
3515 if (ev->attr.header.size == size)
3516 err = process(tool, ev, NULL, NULL);
3517 else
3518 err = -E2BIG;
3519
3520 free(ev);
3521
3522 return err;
3523}
3524
3525int perf_event__synthesize_features(struct perf_tool *tool,
3526 struct perf_session *session,
3527 struct perf_evlist *evlist,
3528 perf_event__handler_t process)
3529{
3530 struct perf_header *header = &session->header;
3531 struct feat_fd ff;
3532 struct feature_event *fe;
3533 size_t sz, sz_hdr;
3534 int feat, ret;
3535
3536 sz_hdr = sizeof(fe->header);
3537 sz = sizeof(union perf_event);
3538 /* get a nice alignment */
3539 sz = PERF_ALIGN(sz, page_size);
3540
3541 memset(&ff, 0, sizeof(ff));
3542
3543 ff.buf = malloc(sz);
3544 if (!ff.buf)
3545 return -ENOMEM;
3546
3547 ff.size = sz - sz_hdr;
3548
3549 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3550 if (!feat_ops[feat].synthesize) {
3551 pr_debug("No record header feature for header :%d\n", feat);
3552 continue;
3553 }
3554
3555 ff.offset = sizeof(*fe);
3556
3557 ret = feat_ops[feat].write(&ff, evlist);
3558 if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3559 pr_debug("Error writing feature\n");
3560 continue;
3561 }
3562 /* ff.buf may have changed due to realloc in do_write() */
3563 fe = ff.buf;
3564 memset(fe, 0, sizeof(*fe));
3565
3566 fe->feat_id = feat;
3567 fe->header.type = PERF_RECORD_HEADER_FEATURE;
3568 fe->header.size = ff.offset;
3569
3570 ret = process(tool, ff.buf, NULL, NULL);
3571 if (ret) {
3572 free(ff.buf);
3573 return ret;
3574 }
3575 }
3576
3577 /* Send HEADER_LAST_FEATURE mark. */
3578 fe = ff.buf;
3579 fe->feat_id = HEADER_LAST_FEATURE;
3580 fe->header.type = PERF_RECORD_HEADER_FEATURE;
3581 fe->header.size = sizeof(*fe);
3582
3583 ret = process(tool, ff.buf, NULL, NULL);
3584
3585 free(ff.buf);
3586 return ret;
3587}
3588
3589int perf_event__process_feature(struct perf_session *session,
3590 union perf_event *event)
3591{
3592 struct perf_tool *tool = session->tool;
3593 struct feat_fd ff = { .fd = 0 };
3594 struct feature_event *fe = (struct feature_event *)event;
3595 int type = fe->header.type;
3596 u64 feat = fe->feat_id;
3597
3598 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3599 pr_warning("invalid record type %d in pipe-mode\n", type);
3600 return 0;
3601 }
3602 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3603 pr_warning("invalid record type %d in pipe-mode\n", type);
3604 return -1;
3605 }
3606
3607 if (!feat_ops[feat].process)
3608 return 0;
3609
3610 ff.buf = (void *)fe->data;
3611 ff.size = event->header.size - sizeof(event->header);
3612 ff.ph = &session->header;
3613
3614 if (feat_ops[feat].process(&ff, NULL))
3615 return -1;
3616
3617 if (!feat_ops[feat].print || !tool->show_feat_hdr)
3618 return 0;
3619
3620 if (!feat_ops[feat].full_only ||
3621 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3622 feat_ops[feat].print(&ff, stdout);
3623 } else {
3624 fprintf(stdout, "# %s info available, use -I to display\n",
3625 feat_ops[feat].name);
3626 }
3627
3628 return 0;
3629}
3630
3631static struct event_update_event *
3632event_update_event__new(size_t size, u64 type, u64 id)
3633{
3634 struct event_update_event *ev;
3635
3636 size += sizeof(*ev);
3637 size = PERF_ALIGN(size, sizeof(u64));
3638
3639 ev = zalloc(size);
3640 if (ev) {
3641 ev->header.type = PERF_RECORD_EVENT_UPDATE;
3642 ev->header.size = (u16)size;
3643 ev->type = type;
3644 ev->id = id;
3645 }
3646 return ev;
3647}
3648
3649int
3650perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3651 struct perf_evsel *evsel,
3652 perf_event__handler_t process)
3653{
3654 struct event_update_event *ev;
3655 size_t size = strlen(evsel->unit);
3656 int err;
3657
3658 ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3659 if (ev == NULL)
3660 return -ENOMEM;
3661
3662 strlcpy(ev->data, evsel->unit, size + 1);
3663 err = process(tool, (union perf_event *)ev, NULL, NULL);
3664 free(ev);
3665 return err;
3666}
3667
3668int
3669perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3670 struct perf_evsel *evsel,
3671 perf_event__handler_t process)
3672{
3673 struct event_update_event *ev;
3674 struct event_update_event_scale *ev_data;
3675 int err;
3676
3677 ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3678 if (ev == NULL)
3679 return -ENOMEM;
3680
3681 ev_data = (struct event_update_event_scale *) ev->data;
3682 ev_data->scale = evsel->scale;
3683 err = process(tool, (union perf_event*) ev, NULL, NULL);
3684 free(ev);
3685 return err;
3686}
3687
3688int
3689perf_event__synthesize_event_update_name(struct perf_tool *tool,
3690 struct perf_evsel *evsel,
3691 perf_event__handler_t process)
3692{
3693 struct event_update_event *ev;
3694 size_t len = strlen(evsel->name);
3695 int err;
3696
3697 ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3698 if (ev == NULL)
3699 return -ENOMEM;
3700
3701 strlcpy(ev->data, evsel->name, len + 1);
3702 err = process(tool, (union perf_event*) ev, NULL, NULL);
3703 free(ev);
3704 return err;
3705}
3706
3707int
3708perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3709 struct perf_evsel *evsel,
3710 perf_event__handler_t process)
3711{
3712 size_t size = sizeof(struct event_update_event);
3713 struct event_update_event *ev;
3714 int max, err;
3715 u16 type;
3716
3717 if (!evsel->own_cpus)
3718 return 0;
3719
3720 ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3721 if (!ev)
3722 return -ENOMEM;
3723
3724 ev->header.type = PERF_RECORD_EVENT_UPDATE;
3725 ev->header.size = (u16)size;
3726 ev->type = PERF_EVENT_UPDATE__CPUS;
3727 ev->id = evsel->id[0];
3728
3729 cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3730 evsel->own_cpus,
3731 type, max);
3732
3733 err = process(tool, (union perf_event*) ev, NULL, NULL);
3734 free(ev);
3735 return err;
3736}
3737
3738size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3739{
3740 struct event_update_event *ev = &event->event_update;
3741 struct event_update_event_scale *ev_scale;
3742 struct event_update_event_cpus *ev_cpus;
3743 struct cpu_map *map;
3744 size_t ret;
3745
3746 ret = fprintf(fp, "\n... id: %" PRIu64 "\n", ev->id);
3747
3748 switch (ev->type) {
3749 case PERF_EVENT_UPDATE__SCALE:
3750 ev_scale = (struct event_update_event_scale *) ev->data;
3751 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3752 break;
3753 case PERF_EVENT_UPDATE__UNIT:
3754 ret += fprintf(fp, "... unit: %s\n", ev->data);
3755 break;
3756 case PERF_EVENT_UPDATE__NAME:
3757 ret += fprintf(fp, "... name: %s\n", ev->data);
3758 break;
3759 case PERF_EVENT_UPDATE__CPUS:
3760 ev_cpus = (struct event_update_event_cpus *) ev->data;
3761 ret += fprintf(fp, "... ");
3762
3763 map = cpu_map__new_data(&ev_cpus->cpus);
3764 if (map)
3765 ret += cpu_map__fprintf(map, fp);
3766 else
3767 ret += fprintf(fp, "failed to get cpus\n");
3768 break;
3769 default:
3770 ret += fprintf(fp, "... unknown type\n");
3771 break;
3772 }
3773
3774 return ret;
3775}
3776
3777int perf_event__synthesize_attrs(struct perf_tool *tool,
3778 struct perf_evlist *evlist,
3779 perf_event__handler_t process)
3780{
3781 struct perf_evsel *evsel;
3782 int err = 0;
3783
3784 evlist__for_each_entry(evlist, evsel) {
3785 err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3786 evsel->id, process);
3787 if (err) {
3788 pr_debug("failed to create perf header attribute\n");
3789 return err;
3790 }
3791 }
3792
3793 return err;
3794}
3795
3796static bool has_unit(struct perf_evsel *counter)
3797{
3798 return counter->unit && *counter->unit;
3799}
3800
3801static bool has_scale(struct perf_evsel *counter)
3802{
3803 return counter->scale != 1;
3804}
3805
3806int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3807 struct perf_evlist *evsel_list,
3808 perf_event__handler_t process,
3809 bool is_pipe)
3810{
3811 struct perf_evsel *counter;
3812 int err;
3813
3814 /*
3815 * Synthesize other events stuff not carried within
3816 * attr event - unit, scale, name
3817 */
3818 evlist__for_each_entry(evsel_list, counter) {
3819 if (!counter->supported)
3820 continue;
3821
3822 /*
3823 * Synthesize unit and scale only if it's defined.
3824 */
3825 if (has_unit(counter)) {
3826 err = perf_event__synthesize_event_update_unit(tool, counter, process);
3827 if (err < 0) {
3828 pr_err("Couldn't synthesize evsel unit.\n");
3829 return err;
3830 }
3831 }
3832
3833 if (has_scale(counter)) {
3834 err = perf_event__synthesize_event_update_scale(tool, counter, process);
3835 if (err < 0) {
3836 pr_err("Couldn't synthesize evsel counter.\n");
3837 return err;
3838 }
3839 }
3840
3841 if (counter->own_cpus) {
3842 err = perf_event__synthesize_event_update_cpus(tool, counter, process);
3843 if (err < 0) {
3844 pr_err("Couldn't synthesize evsel cpus.\n");
3845 return err;
3846 }
3847 }
3848
3849 /*
3850 * Name is needed only for pipe output,
3851 * perf.data carries event names.
3852 */
3853 if (is_pipe) {
3854 err = perf_event__synthesize_event_update_name(tool, counter, process);
3855 if (err < 0) {
3856 pr_err("Couldn't synthesize evsel name.\n");
3857 return err;
3858 }
3859 }
3860 }
3861 return 0;
3862}
3863
3864int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3865 union perf_event *event,
3866 struct perf_evlist **pevlist)
3867{
3868 u32 i, ids, n_ids;
3869 struct perf_evsel *evsel;
3870 struct perf_evlist *evlist = *pevlist;
3871
3872 if (evlist == NULL) {
3873 *pevlist = evlist = perf_evlist__new();
3874 if (evlist == NULL)
3875 return -ENOMEM;
3876 }
3877
3878 evsel = perf_evsel__new(&event->attr.attr);
3879 if (evsel == NULL)
3880 return -ENOMEM;
3881
3882 perf_evlist__add(evlist, evsel);
3883
3884 ids = event->header.size;
3885 ids -= (void *)&event->attr.id - (void *)event;
3886 n_ids = ids / sizeof(u64);
3887 /*
3888 * We don't have the cpu and thread maps on the header, so
3889 * for allocating the perf_sample_id table we fake 1 cpu and
3890 * hattr->ids threads.
3891 */
3892 if (perf_evsel__alloc_id(evsel, 1, n_ids))
3893 return -ENOMEM;
3894
3895 for (i = 0; i < n_ids; i++) {
3896 perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3897 }
3898
3899 return 0;
3900}
3901
3902int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3903 union perf_event *event,
3904 struct perf_evlist **pevlist)
3905{
3906 struct event_update_event *ev = &event->event_update;
3907 struct event_update_event_scale *ev_scale;
3908 struct event_update_event_cpus *ev_cpus;
3909 struct perf_evlist *evlist;
3910 struct perf_evsel *evsel;
3911 struct cpu_map *map;
3912
3913 if (!pevlist || *pevlist == NULL)
3914 return -EINVAL;
3915
3916 evlist = *pevlist;
3917
3918 evsel = perf_evlist__id2evsel(evlist, ev->id);
3919 if (evsel == NULL)
3920 return -EINVAL;
3921
3922 switch (ev->type) {
3923 case PERF_EVENT_UPDATE__UNIT:
3924 evsel->unit = strdup(ev->data);
3925 break;
3926 case PERF_EVENT_UPDATE__NAME:
3927 evsel->name = strdup(ev->data);
3928 break;
3929 case PERF_EVENT_UPDATE__SCALE:
3930 ev_scale = (struct event_update_event_scale *) ev->data;
3931 evsel->scale = ev_scale->scale;
3932 break;
3933 case PERF_EVENT_UPDATE__CPUS:
3934 ev_cpus = (struct event_update_event_cpus *) ev->data;
3935
3936 map = cpu_map__new_data(&ev_cpus->cpus);
3937 if (map)
3938 evsel->own_cpus = map;
3939 else
3940 pr_err("failed to get event_update cpus\n");
3941 default:
3942 break;
3943 }
3944
3945 return 0;
3946}
3947
3948int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
3949 struct perf_evlist *evlist,
3950 perf_event__handler_t process)
3951{
3952 union perf_event ev;
3953 struct tracing_data *tdata;
3954 ssize_t size = 0, aligned_size = 0, padding;
3955 struct feat_fd ff;
3956 int err __maybe_unused = 0;
3957
3958 /*
3959 * We are going to store the size of the data followed
3960 * by the data contents. Since the fd descriptor is a pipe,
3961 * we cannot seek back to store the size of the data once
3962 * we know it. Instead we:
3963 *
3964 * - write the tracing data to the temp file
3965 * - get/write the data size to pipe
3966 * - write the tracing data from the temp file
3967 * to the pipe
3968 */
3969 tdata = tracing_data_get(&evlist->entries, fd, true);
3970 if (!tdata)
3971 return -1;
3972
3973 memset(&ev, 0, sizeof(ev));
3974
3975 ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
3976 size = tdata->size;
3977 aligned_size = PERF_ALIGN(size, sizeof(u64));
3978 padding = aligned_size - size;
3979 ev.tracing_data.header.size = sizeof(ev.tracing_data);
3980 ev.tracing_data.size = aligned_size;
3981
3982 process(tool, &ev, NULL, NULL);
3983
3984 /*
3985 * The put function will copy all the tracing data
3986 * stored in temp file to the pipe.
3987 */
3988 tracing_data_put(tdata);
3989
3990 ff = (struct feat_fd){ .fd = fd };
3991 if (write_padded(&ff, NULL, 0, padding))
3992 return -1;
3993
3994 return aligned_size;
3995}
3996
3997int perf_event__process_tracing_data(struct perf_session *session,
3998 union perf_event *event)
3999{
4000 ssize_t size_read, padding, size = event->tracing_data.size;
4001 int fd = perf_data__fd(session->data);
4002 off_t offset = lseek(fd, 0, SEEK_CUR);
4003 char buf[BUFSIZ];
4004
4005 /* setup for reading amidst mmap */
4006 lseek(fd, offset + sizeof(struct tracing_data_event),
4007 SEEK_SET);
4008
4009 size_read = trace_report(fd, &session->tevent,
4010 session->repipe);
4011 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4012
4013 if (readn(fd, buf, padding) < 0) {
4014 pr_err("%s: reading input file", __func__);
4015 return -1;
4016 }
4017 if (session->repipe) {
4018 int retw = write(STDOUT_FILENO, buf, padding);
4019 if (retw <= 0 || retw != padding) {
4020 pr_err("%s: repiping tracing data padding", __func__);
4021 return -1;
4022 }
4023 }
4024
4025 if (size_read + padding != size) {
4026 pr_err("%s: tracing data size mismatch", __func__);
4027 return -1;
4028 }
4029
4030 perf_evlist__prepare_tracepoint_events(session->evlist,
4031 session->tevent.pevent);
4032
4033 return size_read + padding;
4034}
4035
4036int perf_event__synthesize_build_id(struct perf_tool *tool,
4037 struct dso *pos, u16 misc,
4038 perf_event__handler_t process,
4039 struct machine *machine)
4040{
4041 union perf_event ev;
4042 size_t len;
4043 int err = 0;
4044
4045 if (!pos->hit)
4046 return err;
4047
4048 memset(&ev, 0, sizeof(ev));
4049
4050 len = pos->long_name_len + 1;
4051 len = PERF_ALIGN(len, NAME_ALIGN);
4052 memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
4053 ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
4054 ev.build_id.header.misc = misc;
4055 ev.build_id.pid = machine->pid;
4056 ev.build_id.header.size = sizeof(ev.build_id) + len;
4057 memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
4058
4059 err = process(tool, &ev, NULL, machine);
4060
4061 return err;
4062}
4063
4064int perf_event__process_build_id(struct perf_session *session,
4065 union perf_event *event)
4066{
4067 __event_process_build_id(&event->build_id,
4068 event->build_id.filename,
4069 session);
4070 return 0;
4071}