Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2019 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24/**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50#include <linux/kernel.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/list.h>
54#include <linux/ctype.h>
55#include <linux/nl80211.h>
56#include <linux/platform_device.h>
57#include <linux/verification.h>
58#include <linux/moduleparam.h>
59#include <linux/firmware.h>
60#include <net/cfg80211.h>
61#include "core.h"
62#include "reg.h"
63#include "rdev-ops.h"
64#include "nl80211.h"
65
66/*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70#define REG_ENFORCE_GRACE_MS 60000
71
72/**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87};
88
89static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96};
97
98/*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105/* To trigger userspace events and load firmware */
106static struct platform_device *reg_pdev;
107
108/*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116/*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121static int reg_num_devs_support_basehint;
122
123/*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128static bool reg_is_indoor;
129static spinlock_t reg_indoor_lock;
130
131/* Used to track the userspace process controlling the indoor setting */
132static u32 reg_is_indoor_portid;
133
134static void restore_regulatory_settings(bool reset_user, bool cached);
135static void print_regdomain(const struct ieee80211_regdomain *rd);
136
137static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138{
139 return rcu_dereference_rtnl(cfg80211_regdomain);
140}
141
142const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143{
144 return rcu_dereference_rtnl(wiphy->regd);
145}
146
147static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148{
149 switch (dfs_region) {
150 case NL80211_DFS_UNSET:
151 return "unset";
152 case NL80211_DFS_FCC:
153 return "FCC";
154 case NL80211_DFS_ETSI:
155 return "ETSI";
156 case NL80211_DFS_JP:
157 return "JP";
158 }
159 return "Unknown";
160}
161
162enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163{
164 const struct ieee80211_regdomain *regd = NULL;
165 const struct ieee80211_regdomain *wiphy_regd = NULL;
166
167 regd = get_cfg80211_regdom();
168 if (!wiphy)
169 goto out;
170
171 wiphy_regd = get_wiphy_regdom(wiphy);
172 if (!wiphy_regd)
173 goto out;
174
175 if (wiphy_regd->dfs_region == regd->dfs_region)
176 goto out;
177
178 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179 dev_name(&wiphy->dev),
180 reg_dfs_region_str(wiphy_regd->dfs_region),
181 reg_dfs_region_str(regd->dfs_region));
182
183out:
184 return regd->dfs_region;
185}
186
187static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188{
189 if (!r)
190 return;
191 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
192}
193
194static struct regulatory_request *get_last_request(void)
195{
196 return rcu_dereference_rtnl(last_request);
197}
198
199/* Used to queue up regulatory hints */
200static LIST_HEAD(reg_requests_list);
201static spinlock_t reg_requests_lock;
202
203/* Used to queue up beacon hints for review */
204static LIST_HEAD(reg_pending_beacons);
205static spinlock_t reg_pending_beacons_lock;
206
207/* Used to keep track of processed beacon hints */
208static LIST_HEAD(reg_beacon_list);
209
210struct reg_beacon {
211 struct list_head list;
212 struct ieee80211_channel chan;
213};
214
215static void reg_check_chans_work(struct work_struct *work);
216static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217
218static void reg_todo(struct work_struct *work);
219static DECLARE_WORK(reg_work, reg_todo);
220
221/* We keep a static world regulatory domain in case of the absence of CRDA */
222static const struct ieee80211_regdomain world_regdom = {
223 .n_reg_rules = 8,
224 .alpha2 = "00",
225 .reg_rules = {
226 /* IEEE 802.11b/g, channels 1..11 */
227 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228 /* IEEE 802.11b/g, channels 12..13. */
229 REG_RULE(2467-10, 2472+10, 20, 6, 20,
230 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231 /* IEEE 802.11 channel 14 - Only JP enables
232 * this and for 802.11b only */
233 REG_RULE(2484-10, 2484+10, 20, 6, 20,
234 NL80211_RRF_NO_IR |
235 NL80211_RRF_NO_OFDM),
236 /* IEEE 802.11a, channel 36..48 */
237 REG_RULE(5180-10, 5240+10, 80, 6, 20,
238 NL80211_RRF_NO_IR |
239 NL80211_RRF_AUTO_BW),
240
241 /* IEEE 802.11a, channel 52..64 - DFS required */
242 REG_RULE(5260-10, 5320+10, 80, 6, 20,
243 NL80211_RRF_NO_IR |
244 NL80211_RRF_AUTO_BW |
245 NL80211_RRF_DFS),
246
247 /* IEEE 802.11a, channel 100..144 - DFS required */
248 REG_RULE(5500-10, 5720+10, 160, 6, 20,
249 NL80211_RRF_NO_IR |
250 NL80211_RRF_DFS),
251
252 /* IEEE 802.11a, channel 149..165 */
253 REG_RULE(5745-10, 5825+10, 80, 6, 20,
254 NL80211_RRF_NO_IR),
255
256 /* IEEE 802.11ad (60GHz), channels 1..3 */
257 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
258 }
259};
260
261/* protected by RTNL */
262static const struct ieee80211_regdomain *cfg80211_world_regdom =
263 &world_regdom;
264
265static char *ieee80211_regdom = "00";
266static char user_alpha2[2];
267static const struct ieee80211_regdomain *cfg80211_user_regdom;
268
269module_param(ieee80211_regdom, charp, 0444);
270MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
271
272static void reg_free_request(struct regulatory_request *request)
273{
274 if (request == &core_request_world)
275 return;
276
277 if (request != get_last_request())
278 kfree(request);
279}
280
281static void reg_free_last_request(void)
282{
283 struct regulatory_request *lr = get_last_request();
284
285 if (lr != &core_request_world && lr)
286 kfree_rcu(lr, rcu_head);
287}
288
289static void reg_update_last_request(struct regulatory_request *request)
290{
291 struct regulatory_request *lr;
292
293 lr = get_last_request();
294 if (lr == request)
295 return;
296
297 reg_free_last_request();
298 rcu_assign_pointer(last_request, request);
299}
300
301static void reset_regdomains(bool full_reset,
302 const struct ieee80211_regdomain *new_regdom)
303{
304 const struct ieee80211_regdomain *r;
305
306 ASSERT_RTNL();
307
308 r = get_cfg80211_regdom();
309
310 /* avoid freeing static information or freeing something twice */
311 if (r == cfg80211_world_regdom)
312 r = NULL;
313 if (cfg80211_world_regdom == &world_regdom)
314 cfg80211_world_regdom = NULL;
315 if (r == &world_regdom)
316 r = NULL;
317
318 rcu_free_regdom(r);
319 rcu_free_regdom(cfg80211_world_regdom);
320
321 cfg80211_world_regdom = &world_regdom;
322 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
323
324 if (!full_reset)
325 return;
326
327 reg_update_last_request(&core_request_world);
328}
329
330/*
331 * Dynamic world regulatory domain requested by the wireless
332 * core upon initialization
333 */
334static void update_world_regdomain(const struct ieee80211_regdomain *rd)
335{
336 struct regulatory_request *lr;
337
338 lr = get_last_request();
339
340 WARN_ON(!lr);
341
342 reset_regdomains(false, rd);
343
344 cfg80211_world_regdom = rd;
345}
346
347bool is_world_regdom(const char *alpha2)
348{
349 if (!alpha2)
350 return false;
351 return alpha2[0] == '0' && alpha2[1] == '0';
352}
353
354static bool is_alpha2_set(const char *alpha2)
355{
356 if (!alpha2)
357 return false;
358 return alpha2[0] && alpha2[1];
359}
360
361static bool is_unknown_alpha2(const char *alpha2)
362{
363 if (!alpha2)
364 return false;
365 /*
366 * Special case where regulatory domain was built by driver
367 * but a specific alpha2 cannot be determined
368 */
369 return alpha2[0] == '9' && alpha2[1] == '9';
370}
371
372static bool is_intersected_alpha2(const char *alpha2)
373{
374 if (!alpha2)
375 return false;
376 /*
377 * Special case where regulatory domain is the
378 * result of an intersection between two regulatory domain
379 * structures
380 */
381 return alpha2[0] == '9' && alpha2[1] == '8';
382}
383
384static bool is_an_alpha2(const char *alpha2)
385{
386 if (!alpha2)
387 return false;
388 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389}
390
391static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
392{
393 if (!alpha2_x || !alpha2_y)
394 return false;
395 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396}
397
398static bool regdom_changes(const char *alpha2)
399{
400 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
401
402 if (!r)
403 return true;
404 return !alpha2_equal(r->alpha2, alpha2);
405}
406
407/*
408 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410 * has ever been issued.
411 */
412static bool is_user_regdom_saved(void)
413{
414 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415 return false;
416
417 /* This would indicate a mistake on the design */
418 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419 "Unexpected user alpha2: %c%c\n",
420 user_alpha2[0], user_alpha2[1]))
421 return false;
422
423 return true;
424}
425
426static const struct ieee80211_regdomain *
427reg_copy_regd(const struct ieee80211_regdomain *src_regd)
428{
429 struct ieee80211_regdomain *regd;
430 int size_of_regd;
431 unsigned int i;
432
433 size_of_regd =
434 sizeof(struct ieee80211_regdomain) +
435 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
436
437 regd = kzalloc(size_of_regd, GFP_KERNEL);
438 if (!regd)
439 return ERR_PTR(-ENOMEM);
440
441 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
442
443 for (i = 0; i < src_regd->n_reg_rules; i++)
444 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
445 sizeof(struct ieee80211_reg_rule));
446
447 return regd;
448}
449
450static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
451{
452 ASSERT_RTNL();
453
454 if (!IS_ERR(cfg80211_user_regdom))
455 kfree(cfg80211_user_regdom);
456 cfg80211_user_regdom = reg_copy_regd(rd);
457}
458
459struct reg_regdb_apply_request {
460 struct list_head list;
461 const struct ieee80211_regdomain *regdom;
462};
463
464static LIST_HEAD(reg_regdb_apply_list);
465static DEFINE_MUTEX(reg_regdb_apply_mutex);
466
467static void reg_regdb_apply(struct work_struct *work)
468{
469 struct reg_regdb_apply_request *request;
470
471 rtnl_lock();
472
473 mutex_lock(®_regdb_apply_mutex);
474 while (!list_empty(®_regdb_apply_list)) {
475 request = list_first_entry(®_regdb_apply_list,
476 struct reg_regdb_apply_request,
477 list);
478 list_del(&request->list);
479
480 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
481 kfree(request);
482 }
483 mutex_unlock(®_regdb_apply_mutex);
484
485 rtnl_unlock();
486}
487
488static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
489
490static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
491{
492 struct reg_regdb_apply_request *request;
493
494 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
495 if (!request) {
496 kfree(regdom);
497 return -ENOMEM;
498 }
499
500 request->regdom = regdom;
501
502 mutex_lock(®_regdb_apply_mutex);
503 list_add_tail(&request->list, ®_regdb_apply_list);
504 mutex_unlock(®_regdb_apply_mutex);
505
506 schedule_work(®_regdb_work);
507 return 0;
508}
509
510#ifdef CONFIG_CFG80211_CRDA_SUPPORT
511/* Max number of consecutive attempts to communicate with CRDA */
512#define REG_MAX_CRDA_TIMEOUTS 10
513
514static u32 reg_crda_timeouts;
515
516static void crda_timeout_work(struct work_struct *work);
517static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
518
519static void crda_timeout_work(struct work_struct *work)
520{
521 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
522 rtnl_lock();
523 reg_crda_timeouts++;
524 restore_regulatory_settings(true, false);
525 rtnl_unlock();
526}
527
528static void cancel_crda_timeout(void)
529{
530 cancel_delayed_work(&crda_timeout);
531}
532
533static void cancel_crda_timeout_sync(void)
534{
535 cancel_delayed_work_sync(&crda_timeout);
536}
537
538static void reset_crda_timeouts(void)
539{
540 reg_crda_timeouts = 0;
541}
542
543/*
544 * This lets us keep regulatory code which is updated on a regulatory
545 * basis in userspace.
546 */
547static int call_crda(const char *alpha2)
548{
549 char country[12];
550 char *env[] = { country, NULL };
551 int ret;
552
553 snprintf(country, sizeof(country), "COUNTRY=%c%c",
554 alpha2[0], alpha2[1]);
555
556 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
557 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
558 return -EINVAL;
559 }
560
561 if (!is_world_regdom((char *) alpha2))
562 pr_debug("Calling CRDA for country: %c%c\n",
563 alpha2[0], alpha2[1]);
564 else
565 pr_debug("Calling CRDA to update world regulatory domain\n");
566
567 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
568 if (ret)
569 return ret;
570
571 queue_delayed_work(system_power_efficient_wq,
572 &crda_timeout, msecs_to_jiffies(3142));
573 return 0;
574}
575#else
576static inline void cancel_crda_timeout(void) {}
577static inline void cancel_crda_timeout_sync(void) {}
578static inline void reset_crda_timeouts(void) {}
579static inline int call_crda(const char *alpha2)
580{
581 return -ENODATA;
582}
583#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
584
585/* code to directly load a firmware database through request_firmware */
586static const struct fwdb_header *regdb;
587
588struct fwdb_country {
589 u8 alpha2[2];
590 __be16 coll_ptr;
591 /* this struct cannot be extended */
592} __packed __aligned(4);
593
594struct fwdb_collection {
595 u8 len;
596 u8 n_rules;
597 u8 dfs_region;
598 /* no optional data yet */
599 /* aligned to 2, then followed by __be16 array of rule pointers */
600} __packed __aligned(4);
601
602enum fwdb_flags {
603 FWDB_FLAG_NO_OFDM = BIT(0),
604 FWDB_FLAG_NO_OUTDOOR = BIT(1),
605 FWDB_FLAG_DFS = BIT(2),
606 FWDB_FLAG_NO_IR = BIT(3),
607 FWDB_FLAG_AUTO_BW = BIT(4),
608};
609
610struct fwdb_wmm_ac {
611 u8 ecw;
612 u8 aifsn;
613 __be16 cot;
614} __packed;
615
616struct fwdb_wmm_rule {
617 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
618 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
619} __packed;
620
621struct fwdb_rule {
622 u8 len;
623 u8 flags;
624 __be16 max_eirp;
625 __be32 start, end, max_bw;
626 /* start of optional data */
627 __be16 cac_timeout;
628 __be16 wmm_ptr;
629} __packed __aligned(4);
630
631#define FWDB_MAGIC 0x52474442
632#define FWDB_VERSION 20
633
634struct fwdb_header {
635 __be32 magic;
636 __be32 version;
637 struct fwdb_country country[];
638} __packed __aligned(4);
639
640static int ecw2cw(int ecw)
641{
642 return (1 << ecw) - 1;
643}
644
645static bool valid_wmm(struct fwdb_wmm_rule *rule)
646{
647 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
648 int i;
649
650 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
651 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
652 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
653 u8 aifsn = ac[i].aifsn;
654
655 if (cw_min >= cw_max)
656 return false;
657
658 if (aifsn < 1)
659 return false;
660 }
661
662 return true;
663}
664
665static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
666{
667 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
668
669 if ((u8 *)rule + sizeof(rule->len) > data + size)
670 return false;
671
672 /* mandatory fields */
673 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
674 return false;
675 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
676 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
677 struct fwdb_wmm_rule *wmm;
678
679 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
680 return false;
681
682 wmm = (void *)(data + wmm_ptr);
683
684 if (!valid_wmm(wmm))
685 return false;
686 }
687 return true;
688}
689
690static bool valid_country(const u8 *data, unsigned int size,
691 const struct fwdb_country *country)
692{
693 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
694 struct fwdb_collection *coll = (void *)(data + ptr);
695 __be16 *rules_ptr;
696 unsigned int i;
697
698 /* make sure we can read len/n_rules */
699 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
700 return false;
701
702 /* make sure base struct and all rules fit */
703 if ((u8 *)coll + ALIGN(coll->len, 2) +
704 (coll->n_rules * 2) > data + size)
705 return false;
706
707 /* mandatory fields must exist */
708 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
709 return false;
710
711 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
712
713 for (i = 0; i < coll->n_rules; i++) {
714 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
715
716 if (!valid_rule(data, size, rule_ptr))
717 return false;
718 }
719
720 return true;
721}
722
723#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
724static struct key *builtin_regdb_keys;
725
726static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
727{
728 const u8 *end = p + buflen;
729 size_t plen;
730 key_ref_t key;
731
732 while (p < end) {
733 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
734 * than 256 bytes in size.
735 */
736 if (end - p < 4)
737 goto dodgy_cert;
738 if (p[0] != 0x30 &&
739 p[1] != 0x82)
740 goto dodgy_cert;
741 plen = (p[2] << 8) | p[3];
742 plen += 4;
743 if (plen > end - p)
744 goto dodgy_cert;
745
746 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
747 "asymmetric", NULL, p, plen,
748 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
749 KEY_USR_VIEW | KEY_USR_READ),
750 KEY_ALLOC_NOT_IN_QUOTA |
751 KEY_ALLOC_BUILT_IN |
752 KEY_ALLOC_BYPASS_RESTRICTION);
753 if (IS_ERR(key)) {
754 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
755 PTR_ERR(key));
756 } else {
757 pr_notice("Loaded X.509 cert '%s'\n",
758 key_ref_to_ptr(key)->description);
759 key_ref_put(key);
760 }
761 p += plen;
762 }
763
764 return;
765
766dodgy_cert:
767 pr_err("Problem parsing in-kernel X.509 certificate list\n");
768}
769
770static int __init load_builtin_regdb_keys(void)
771{
772 builtin_regdb_keys =
773 keyring_alloc(".builtin_regdb_keys",
774 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
775 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
776 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
777 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
778 if (IS_ERR(builtin_regdb_keys))
779 return PTR_ERR(builtin_regdb_keys);
780
781 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
782
783#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
784 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
785#endif
786#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
787 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
788 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
789#endif
790
791 return 0;
792}
793
794static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
795{
796 const struct firmware *sig;
797 bool result;
798
799 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
800 return false;
801
802 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
803 builtin_regdb_keys,
804 VERIFYING_UNSPECIFIED_SIGNATURE,
805 NULL, NULL) == 0;
806
807 release_firmware(sig);
808
809 return result;
810}
811
812static void free_regdb_keyring(void)
813{
814 key_put(builtin_regdb_keys);
815}
816#else
817static int load_builtin_regdb_keys(void)
818{
819 return 0;
820}
821
822static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
823{
824 return true;
825}
826
827static void free_regdb_keyring(void)
828{
829}
830#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
831
832static bool valid_regdb(const u8 *data, unsigned int size)
833{
834 const struct fwdb_header *hdr = (void *)data;
835 const struct fwdb_country *country;
836
837 if (size < sizeof(*hdr))
838 return false;
839
840 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
841 return false;
842
843 if (hdr->version != cpu_to_be32(FWDB_VERSION))
844 return false;
845
846 if (!regdb_has_valid_signature(data, size))
847 return false;
848
849 country = &hdr->country[0];
850 while ((u8 *)(country + 1) <= data + size) {
851 if (!country->coll_ptr)
852 break;
853 if (!valid_country(data, size, country))
854 return false;
855 country++;
856 }
857
858 return true;
859}
860
861static void set_wmm_rule(const struct fwdb_header *db,
862 const struct fwdb_country *country,
863 const struct fwdb_rule *rule,
864 struct ieee80211_reg_rule *rrule)
865{
866 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
867 struct fwdb_wmm_rule *wmm;
868 unsigned int i, wmm_ptr;
869
870 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
871 wmm = (void *)((u8 *)db + wmm_ptr);
872
873 if (!valid_wmm(wmm)) {
874 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
875 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
876 country->alpha2[0], country->alpha2[1]);
877 return;
878 }
879
880 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
881 wmm_rule->client[i].cw_min =
882 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
883 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
884 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
885 wmm_rule->client[i].cot =
886 1000 * be16_to_cpu(wmm->client[i].cot);
887 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
888 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
889 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
890 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
891 }
892
893 rrule->has_wmm = true;
894}
895
896static int __regdb_query_wmm(const struct fwdb_header *db,
897 const struct fwdb_country *country, int freq,
898 struct ieee80211_reg_rule *rrule)
899{
900 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
901 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
902 int i;
903
904 for (i = 0; i < coll->n_rules; i++) {
905 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
906 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
907 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
908
909 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
910 continue;
911
912 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
913 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
914 set_wmm_rule(db, country, rule, rrule);
915 return 0;
916 }
917 }
918
919 return -ENODATA;
920}
921
922int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
923{
924 const struct fwdb_header *hdr = regdb;
925 const struct fwdb_country *country;
926
927 if (!regdb)
928 return -ENODATA;
929
930 if (IS_ERR(regdb))
931 return PTR_ERR(regdb);
932
933 country = &hdr->country[0];
934 while (country->coll_ptr) {
935 if (alpha2_equal(alpha2, country->alpha2))
936 return __regdb_query_wmm(regdb, country, freq, rule);
937
938 country++;
939 }
940
941 return -ENODATA;
942}
943EXPORT_SYMBOL(reg_query_regdb_wmm);
944
945static int regdb_query_country(const struct fwdb_header *db,
946 const struct fwdb_country *country)
947{
948 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
949 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
950 struct ieee80211_regdomain *regdom;
951 unsigned int size_of_regd, i;
952
953 size_of_regd = sizeof(struct ieee80211_regdomain) +
954 coll->n_rules * sizeof(struct ieee80211_reg_rule);
955
956 regdom = kzalloc(size_of_regd, GFP_KERNEL);
957 if (!regdom)
958 return -ENOMEM;
959
960 regdom->n_reg_rules = coll->n_rules;
961 regdom->alpha2[0] = country->alpha2[0];
962 regdom->alpha2[1] = country->alpha2[1];
963 regdom->dfs_region = coll->dfs_region;
964
965 for (i = 0; i < regdom->n_reg_rules; i++) {
966 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
967 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
968 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
969 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
970
971 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
972 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
973 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
974
975 rrule->power_rule.max_antenna_gain = 0;
976 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
977
978 rrule->flags = 0;
979 if (rule->flags & FWDB_FLAG_NO_OFDM)
980 rrule->flags |= NL80211_RRF_NO_OFDM;
981 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
982 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
983 if (rule->flags & FWDB_FLAG_DFS)
984 rrule->flags |= NL80211_RRF_DFS;
985 if (rule->flags & FWDB_FLAG_NO_IR)
986 rrule->flags |= NL80211_RRF_NO_IR;
987 if (rule->flags & FWDB_FLAG_AUTO_BW)
988 rrule->flags |= NL80211_RRF_AUTO_BW;
989
990 rrule->dfs_cac_ms = 0;
991
992 /* handle optional data */
993 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
994 rrule->dfs_cac_ms =
995 1000 * be16_to_cpu(rule->cac_timeout);
996 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
997 set_wmm_rule(db, country, rule, rrule);
998 }
999
1000 return reg_schedule_apply(regdom);
1001}
1002
1003static int query_regdb(const char *alpha2)
1004{
1005 const struct fwdb_header *hdr = regdb;
1006 const struct fwdb_country *country;
1007
1008 ASSERT_RTNL();
1009
1010 if (IS_ERR(regdb))
1011 return PTR_ERR(regdb);
1012
1013 country = &hdr->country[0];
1014 while (country->coll_ptr) {
1015 if (alpha2_equal(alpha2, country->alpha2))
1016 return regdb_query_country(regdb, country);
1017 country++;
1018 }
1019
1020 return -ENODATA;
1021}
1022
1023static void regdb_fw_cb(const struct firmware *fw, void *context)
1024{
1025 int set_error = 0;
1026 bool restore = true;
1027 void *db;
1028
1029 if (!fw) {
1030 pr_info("failed to load regulatory.db\n");
1031 set_error = -ENODATA;
1032 } else if (!valid_regdb(fw->data, fw->size)) {
1033 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1034 set_error = -EINVAL;
1035 }
1036
1037 rtnl_lock();
1038 if (regdb && !IS_ERR(regdb)) {
1039 /* negative case - a bug
1040 * positive case - can happen due to race in case of multiple cb's in
1041 * queue, due to usage of asynchronous callback
1042 *
1043 * Either case, just restore and free new db.
1044 */
1045 } else if (set_error) {
1046 regdb = ERR_PTR(set_error);
1047 } else if (fw) {
1048 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1049 if (db) {
1050 regdb = db;
1051 restore = context && query_regdb(context);
1052 } else {
1053 restore = true;
1054 }
1055 }
1056
1057 if (restore)
1058 restore_regulatory_settings(true, false);
1059
1060 rtnl_unlock();
1061
1062 kfree(context);
1063
1064 release_firmware(fw);
1065}
1066
1067static int query_regdb_file(const char *alpha2)
1068{
1069 ASSERT_RTNL();
1070
1071 if (regdb)
1072 return query_regdb(alpha2);
1073
1074 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1075 if (!alpha2)
1076 return -ENOMEM;
1077
1078 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1079 ®_pdev->dev, GFP_KERNEL,
1080 (void *)alpha2, regdb_fw_cb);
1081}
1082
1083int reg_reload_regdb(void)
1084{
1085 const struct firmware *fw;
1086 void *db;
1087 int err;
1088
1089 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1090 if (err)
1091 return err;
1092
1093 if (!valid_regdb(fw->data, fw->size)) {
1094 err = -ENODATA;
1095 goto out;
1096 }
1097
1098 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1099 if (!db) {
1100 err = -ENOMEM;
1101 goto out;
1102 }
1103
1104 rtnl_lock();
1105 if (!IS_ERR_OR_NULL(regdb))
1106 kfree(regdb);
1107 regdb = db;
1108 rtnl_unlock();
1109
1110 out:
1111 release_firmware(fw);
1112 return err;
1113}
1114
1115static bool reg_query_database(struct regulatory_request *request)
1116{
1117 if (query_regdb_file(request->alpha2) == 0)
1118 return true;
1119
1120 if (call_crda(request->alpha2) == 0)
1121 return true;
1122
1123 return false;
1124}
1125
1126bool reg_is_valid_request(const char *alpha2)
1127{
1128 struct regulatory_request *lr = get_last_request();
1129
1130 if (!lr || lr->processed)
1131 return false;
1132
1133 return alpha2_equal(lr->alpha2, alpha2);
1134}
1135
1136static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1137{
1138 struct regulatory_request *lr = get_last_request();
1139
1140 /*
1141 * Follow the driver's regulatory domain, if present, unless a country
1142 * IE has been processed or a user wants to help complaince further
1143 */
1144 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1145 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1146 wiphy->regd)
1147 return get_wiphy_regdom(wiphy);
1148
1149 return get_cfg80211_regdom();
1150}
1151
1152static unsigned int
1153reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1154 const struct ieee80211_reg_rule *rule)
1155{
1156 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1157 const struct ieee80211_freq_range *freq_range_tmp;
1158 const struct ieee80211_reg_rule *tmp;
1159 u32 start_freq, end_freq, idx, no;
1160
1161 for (idx = 0; idx < rd->n_reg_rules; idx++)
1162 if (rule == &rd->reg_rules[idx])
1163 break;
1164
1165 if (idx == rd->n_reg_rules)
1166 return 0;
1167
1168 /* get start_freq */
1169 no = idx;
1170
1171 while (no) {
1172 tmp = &rd->reg_rules[--no];
1173 freq_range_tmp = &tmp->freq_range;
1174
1175 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1176 break;
1177
1178 freq_range = freq_range_tmp;
1179 }
1180
1181 start_freq = freq_range->start_freq_khz;
1182
1183 /* get end_freq */
1184 freq_range = &rule->freq_range;
1185 no = idx;
1186
1187 while (no < rd->n_reg_rules - 1) {
1188 tmp = &rd->reg_rules[++no];
1189 freq_range_tmp = &tmp->freq_range;
1190
1191 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1192 break;
1193
1194 freq_range = freq_range_tmp;
1195 }
1196
1197 end_freq = freq_range->end_freq_khz;
1198
1199 return end_freq - start_freq;
1200}
1201
1202unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1203 const struct ieee80211_reg_rule *rule)
1204{
1205 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1206
1207 if (rule->flags & NL80211_RRF_NO_160MHZ)
1208 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1209 if (rule->flags & NL80211_RRF_NO_80MHZ)
1210 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1211
1212 /*
1213 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1214 * are not allowed.
1215 */
1216 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1217 rule->flags & NL80211_RRF_NO_HT40PLUS)
1218 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1219
1220 return bw;
1221}
1222
1223/* Sanity check on a regulatory rule */
1224static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1225{
1226 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1227 u32 freq_diff;
1228
1229 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1230 return false;
1231
1232 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1233 return false;
1234
1235 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1236
1237 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1238 freq_range->max_bandwidth_khz > freq_diff)
1239 return false;
1240
1241 return true;
1242}
1243
1244static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1245{
1246 const struct ieee80211_reg_rule *reg_rule = NULL;
1247 unsigned int i;
1248
1249 if (!rd->n_reg_rules)
1250 return false;
1251
1252 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1253 return false;
1254
1255 for (i = 0; i < rd->n_reg_rules; i++) {
1256 reg_rule = &rd->reg_rules[i];
1257 if (!is_valid_reg_rule(reg_rule))
1258 return false;
1259 }
1260
1261 return true;
1262}
1263
1264/**
1265 * freq_in_rule_band - tells us if a frequency is in a frequency band
1266 * @freq_range: frequency rule we want to query
1267 * @freq_khz: frequency we are inquiring about
1268 *
1269 * This lets us know if a specific frequency rule is or is not relevant to
1270 * a specific frequency's band. Bands are device specific and artificial
1271 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1272 * however it is safe for now to assume that a frequency rule should not be
1273 * part of a frequency's band if the start freq or end freq are off by more
1274 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1275 * 60 GHz band.
1276 * This resolution can be lowered and should be considered as we add
1277 * regulatory rule support for other "bands".
1278 **/
1279static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1280 u32 freq_khz)
1281{
1282#define ONE_GHZ_IN_KHZ 1000000
1283 /*
1284 * From 802.11ad: directional multi-gigabit (DMG):
1285 * Pertaining to operation in a frequency band containing a channel
1286 * with the Channel starting frequency above 45 GHz.
1287 */
1288 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1289 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1290 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1291 return true;
1292 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1293 return true;
1294 return false;
1295#undef ONE_GHZ_IN_KHZ
1296}
1297
1298/*
1299 * Later on we can perhaps use the more restrictive DFS
1300 * region but we don't have information for that yet so
1301 * for now simply disallow conflicts.
1302 */
1303static enum nl80211_dfs_regions
1304reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1305 const enum nl80211_dfs_regions dfs_region2)
1306{
1307 if (dfs_region1 != dfs_region2)
1308 return NL80211_DFS_UNSET;
1309 return dfs_region1;
1310}
1311
1312/*
1313 * Helper for regdom_intersect(), this does the real
1314 * mathematical intersection fun
1315 */
1316static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1317 const struct ieee80211_regdomain *rd2,
1318 const struct ieee80211_reg_rule *rule1,
1319 const struct ieee80211_reg_rule *rule2,
1320 struct ieee80211_reg_rule *intersected_rule)
1321{
1322 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1323 struct ieee80211_freq_range *freq_range;
1324 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1325 struct ieee80211_power_rule *power_rule;
1326 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1327
1328 freq_range1 = &rule1->freq_range;
1329 freq_range2 = &rule2->freq_range;
1330 freq_range = &intersected_rule->freq_range;
1331
1332 power_rule1 = &rule1->power_rule;
1333 power_rule2 = &rule2->power_rule;
1334 power_rule = &intersected_rule->power_rule;
1335
1336 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1337 freq_range2->start_freq_khz);
1338 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1339 freq_range2->end_freq_khz);
1340
1341 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1342 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1343
1344 if (rule1->flags & NL80211_RRF_AUTO_BW)
1345 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1346 if (rule2->flags & NL80211_RRF_AUTO_BW)
1347 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1348
1349 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1350
1351 intersected_rule->flags = rule1->flags | rule2->flags;
1352
1353 /*
1354 * In case NL80211_RRF_AUTO_BW requested for both rules
1355 * set AUTO_BW in intersected rule also. Next we will
1356 * calculate BW correctly in handle_channel function.
1357 * In other case remove AUTO_BW flag while we calculate
1358 * maximum bandwidth correctly and auto calculation is
1359 * not required.
1360 */
1361 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1362 (rule2->flags & NL80211_RRF_AUTO_BW))
1363 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1364 else
1365 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1366
1367 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1368 if (freq_range->max_bandwidth_khz > freq_diff)
1369 freq_range->max_bandwidth_khz = freq_diff;
1370
1371 power_rule->max_eirp = min(power_rule1->max_eirp,
1372 power_rule2->max_eirp);
1373 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1374 power_rule2->max_antenna_gain);
1375
1376 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1377 rule2->dfs_cac_ms);
1378
1379 if (!is_valid_reg_rule(intersected_rule))
1380 return -EINVAL;
1381
1382 return 0;
1383}
1384
1385/* check whether old rule contains new rule */
1386static bool rule_contains(struct ieee80211_reg_rule *r1,
1387 struct ieee80211_reg_rule *r2)
1388{
1389 /* for simplicity, currently consider only same flags */
1390 if (r1->flags != r2->flags)
1391 return false;
1392
1393 /* verify r1 is more restrictive */
1394 if ((r1->power_rule.max_antenna_gain >
1395 r2->power_rule.max_antenna_gain) ||
1396 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1397 return false;
1398
1399 /* make sure r2's range is contained within r1 */
1400 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1401 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1402 return false;
1403
1404 /* and finally verify that r1.max_bw >= r2.max_bw */
1405 if (r1->freq_range.max_bandwidth_khz <
1406 r2->freq_range.max_bandwidth_khz)
1407 return false;
1408
1409 return true;
1410}
1411
1412/* add or extend current rules. do nothing if rule is already contained */
1413static void add_rule(struct ieee80211_reg_rule *rule,
1414 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1415{
1416 struct ieee80211_reg_rule *tmp_rule;
1417 int i;
1418
1419 for (i = 0; i < *n_rules; i++) {
1420 tmp_rule = ®_rules[i];
1421 /* rule is already contained - do nothing */
1422 if (rule_contains(tmp_rule, rule))
1423 return;
1424
1425 /* extend rule if possible */
1426 if (rule_contains(rule, tmp_rule)) {
1427 memcpy(tmp_rule, rule, sizeof(*rule));
1428 return;
1429 }
1430 }
1431
1432 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1433 (*n_rules)++;
1434}
1435
1436/**
1437 * regdom_intersect - do the intersection between two regulatory domains
1438 * @rd1: first regulatory domain
1439 * @rd2: second regulatory domain
1440 *
1441 * Use this function to get the intersection between two regulatory domains.
1442 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1443 * as no one single alpha2 can represent this regulatory domain.
1444 *
1445 * Returns a pointer to the regulatory domain structure which will hold the
1446 * resulting intersection of rules between rd1 and rd2. We will
1447 * kzalloc() this structure for you.
1448 */
1449static struct ieee80211_regdomain *
1450regdom_intersect(const struct ieee80211_regdomain *rd1,
1451 const struct ieee80211_regdomain *rd2)
1452{
1453 int r, size_of_regd;
1454 unsigned int x, y;
1455 unsigned int num_rules = 0;
1456 const struct ieee80211_reg_rule *rule1, *rule2;
1457 struct ieee80211_reg_rule intersected_rule;
1458 struct ieee80211_regdomain *rd;
1459
1460 if (!rd1 || !rd2)
1461 return NULL;
1462
1463 /*
1464 * First we get a count of the rules we'll need, then we actually
1465 * build them. This is to so we can malloc() and free() a
1466 * regdomain once. The reason we use reg_rules_intersect() here
1467 * is it will return -EINVAL if the rule computed makes no sense.
1468 * All rules that do check out OK are valid.
1469 */
1470
1471 for (x = 0; x < rd1->n_reg_rules; x++) {
1472 rule1 = &rd1->reg_rules[x];
1473 for (y = 0; y < rd2->n_reg_rules; y++) {
1474 rule2 = &rd2->reg_rules[y];
1475 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1476 &intersected_rule))
1477 num_rules++;
1478 }
1479 }
1480
1481 if (!num_rules)
1482 return NULL;
1483
1484 size_of_regd = sizeof(struct ieee80211_regdomain) +
1485 num_rules * sizeof(struct ieee80211_reg_rule);
1486
1487 rd = kzalloc(size_of_regd, GFP_KERNEL);
1488 if (!rd)
1489 return NULL;
1490
1491 for (x = 0; x < rd1->n_reg_rules; x++) {
1492 rule1 = &rd1->reg_rules[x];
1493 for (y = 0; y < rd2->n_reg_rules; y++) {
1494 rule2 = &rd2->reg_rules[y];
1495 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1496 &intersected_rule);
1497 /*
1498 * No need to memset here the intersected rule here as
1499 * we're not using the stack anymore
1500 */
1501 if (r)
1502 continue;
1503
1504 add_rule(&intersected_rule, rd->reg_rules,
1505 &rd->n_reg_rules);
1506 }
1507 }
1508
1509 rd->alpha2[0] = '9';
1510 rd->alpha2[1] = '8';
1511 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1512 rd2->dfs_region);
1513
1514 return rd;
1515}
1516
1517/*
1518 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1519 * want to just have the channel structure use these
1520 */
1521static u32 map_regdom_flags(u32 rd_flags)
1522{
1523 u32 channel_flags = 0;
1524 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1525 channel_flags |= IEEE80211_CHAN_NO_IR;
1526 if (rd_flags & NL80211_RRF_DFS)
1527 channel_flags |= IEEE80211_CHAN_RADAR;
1528 if (rd_flags & NL80211_RRF_NO_OFDM)
1529 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1530 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1531 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1532 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1533 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1534 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1535 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1536 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1537 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1538 if (rd_flags & NL80211_RRF_NO_80MHZ)
1539 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1540 if (rd_flags & NL80211_RRF_NO_160MHZ)
1541 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1542 return channel_flags;
1543}
1544
1545static const struct ieee80211_reg_rule *
1546freq_reg_info_regd(u32 center_freq,
1547 const struct ieee80211_regdomain *regd, u32 bw)
1548{
1549 int i;
1550 bool band_rule_found = false;
1551 bool bw_fits = false;
1552
1553 if (!regd)
1554 return ERR_PTR(-EINVAL);
1555
1556 for (i = 0; i < regd->n_reg_rules; i++) {
1557 const struct ieee80211_reg_rule *rr;
1558 const struct ieee80211_freq_range *fr = NULL;
1559
1560 rr = ®d->reg_rules[i];
1561 fr = &rr->freq_range;
1562
1563 /*
1564 * We only need to know if one frequency rule was
1565 * was in center_freq's band, that's enough, so lets
1566 * not overwrite it once found
1567 */
1568 if (!band_rule_found)
1569 band_rule_found = freq_in_rule_band(fr, center_freq);
1570
1571 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1572
1573 if (band_rule_found && bw_fits)
1574 return rr;
1575 }
1576
1577 if (!band_rule_found)
1578 return ERR_PTR(-ERANGE);
1579
1580 return ERR_PTR(-EINVAL);
1581}
1582
1583static const struct ieee80211_reg_rule *
1584__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1585{
1586 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1587 const struct ieee80211_reg_rule *reg_rule = NULL;
1588 u32 bw;
1589
1590 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1591 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1592 if (!IS_ERR(reg_rule))
1593 return reg_rule;
1594 }
1595
1596 return reg_rule;
1597}
1598
1599const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1600 u32 center_freq)
1601{
1602 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1603}
1604EXPORT_SYMBOL(freq_reg_info);
1605
1606const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1607{
1608 switch (initiator) {
1609 case NL80211_REGDOM_SET_BY_CORE:
1610 return "core";
1611 case NL80211_REGDOM_SET_BY_USER:
1612 return "user";
1613 case NL80211_REGDOM_SET_BY_DRIVER:
1614 return "driver";
1615 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1616 return "country element";
1617 default:
1618 WARN_ON(1);
1619 return "bug";
1620 }
1621}
1622EXPORT_SYMBOL(reg_initiator_name);
1623
1624static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1625 const struct ieee80211_reg_rule *reg_rule,
1626 const struct ieee80211_channel *chan)
1627{
1628 const struct ieee80211_freq_range *freq_range = NULL;
1629 u32 max_bandwidth_khz, bw_flags = 0;
1630
1631 freq_range = ®_rule->freq_range;
1632
1633 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1634 /* Check if auto calculation requested */
1635 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1636 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1637
1638 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1639 if (!cfg80211_does_bw_fit_range(freq_range,
1640 MHZ_TO_KHZ(chan->center_freq),
1641 MHZ_TO_KHZ(10)))
1642 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1643 if (!cfg80211_does_bw_fit_range(freq_range,
1644 MHZ_TO_KHZ(chan->center_freq),
1645 MHZ_TO_KHZ(20)))
1646 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1647
1648 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1649 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1650 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1651 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1652 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1653 bw_flags |= IEEE80211_CHAN_NO_HT40;
1654 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1655 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1656 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1657 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1658 return bw_flags;
1659}
1660
1661/*
1662 * Note that right now we assume the desired channel bandwidth
1663 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1664 * per channel, the primary and the extension channel).
1665 */
1666static void handle_channel(struct wiphy *wiphy,
1667 enum nl80211_reg_initiator initiator,
1668 struct ieee80211_channel *chan)
1669{
1670 u32 flags, bw_flags = 0;
1671 const struct ieee80211_reg_rule *reg_rule = NULL;
1672 const struct ieee80211_power_rule *power_rule = NULL;
1673 struct wiphy *request_wiphy = NULL;
1674 struct regulatory_request *lr = get_last_request();
1675 const struct ieee80211_regdomain *regd;
1676
1677 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1678
1679 flags = chan->orig_flags;
1680
1681 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1682 if (IS_ERR(reg_rule)) {
1683 /*
1684 * We will disable all channels that do not match our
1685 * received regulatory rule unless the hint is coming
1686 * from a Country IE and the Country IE had no information
1687 * about a band. The IEEE 802.11 spec allows for an AP
1688 * to send only a subset of the regulatory rules allowed,
1689 * so an AP in the US that only supports 2.4 GHz may only send
1690 * a country IE with information for the 2.4 GHz band
1691 * while 5 GHz is still supported.
1692 */
1693 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1694 PTR_ERR(reg_rule) == -ERANGE)
1695 return;
1696
1697 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1698 request_wiphy && request_wiphy == wiphy &&
1699 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1700 pr_debug("Disabling freq %d MHz for good\n",
1701 chan->center_freq);
1702 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1703 chan->flags = chan->orig_flags;
1704 } else {
1705 pr_debug("Disabling freq %d MHz\n",
1706 chan->center_freq);
1707 chan->flags |= IEEE80211_CHAN_DISABLED;
1708 }
1709 return;
1710 }
1711
1712 regd = reg_get_regdomain(wiphy);
1713
1714 power_rule = ®_rule->power_rule;
1715 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1716
1717 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1718 request_wiphy && request_wiphy == wiphy &&
1719 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1720 /*
1721 * This guarantees the driver's requested regulatory domain
1722 * will always be used as a base for further regulatory
1723 * settings
1724 */
1725 chan->flags = chan->orig_flags =
1726 map_regdom_flags(reg_rule->flags) | bw_flags;
1727 chan->max_antenna_gain = chan->orig_mag =
1728 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1729 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1730 (int) MBM_TO_DBM(power_rule->max_eirp);
1731
1732 if (chan->flags & IEEE80211_CHAN_RADAR) {
1733 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1734 if (reg_rule->dfs_cac_ms)
1735 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1736 }
1737
1738 return;
1739 }
1740
1741 chan->dfs_state = NL80211_DFS_USABLE;
1742 chan->dfs_state_entered = jiffies;
1743
1744 chan->beacon_found = false;
1745 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1746 chan->max_antenna_gain =
1747 min_t(int, chan->orig_mag,
1748 MBI_TO_DBI(power_rule->max_antenna_gain));
1749 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1750
1751 if (chan->flags & IEEE80211_CHAN_RADAR) {
1752 if (reg_rule->dfs_cac_ms)
1753 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1754 else
1755 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1756 }
1757
1758 if (chan->orig_mpwr) {
1759 /*
1760 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1761 * will always follow the passed country IE power settings.
1762 */
1763 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1764 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1765 chan->max_power = chan->max_reg_power;
1766 else
1767 chan->max_power = min(chan->orig_mpwr,
1768 chan->max_reg_power);
1769 } else
1770 chan->max_power = chan->max_reg_power;
1771}
1772
1773static void handle_band(struct wiphy *wiphy,
1774 enum nl80211_reg_initiator initiator,
1775 struct ieee80211_supported_band *sband)
1776{
1777 unsigned int i;
1778
1779 if (!sband)
1780 return;
1781
1782 for (i = 0; i < sband->n_channels; i++)
1783 handle_channel(wiphy, initiator, &sband->channels[i]);
1784}
1785
1786static bool reg_request_cell_base(struct regulatory_request *request)
1787{
1788 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1789 return false;
1790 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1791}
1792
1793bool reg_last_request_cell_base(void)
1794{
1795 return reg_request_cell_base(get_last_request());
1796}
1797
1798#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1799/* Core specific check */
1800static enum reg_request_treatment
1801reg_ignore_cell_hint(struct regulatory_request *pending_request)
1802{
1803 struct regulatory_request *lr = get_last_request();
1804
1805 if (!reg_num_devs_support_basehint)
1806 return REG_REQ_IGNORE;
1807
1808 if (reg_request_cell_base(lr) &&
1809 !regdom_changes(pending_request->alpha2))
1810 return REG_REQ_ALREADY_SET;
1811
1812 return REG_REQ_OK;
1813}
1814
1815/* Device specific check */
1816static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1817{
1818 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1819}
1820#else
1821static enum reg_request_treatment
1822reg_ignore_cell_hint(struct regulatory_request *pending_request)
1823{
1824 return REG_REQ_IGNORE;
1825}
1826
1827static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1828{
1829 return true;
1830}
1831#endif
1832
1833static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1834{
1835 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1836 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1837 return true;
1838 return false;
1839}
1840
1841static bool ignore_reg_update(struct wiphy *wiphy,
1842 enum nl80211_reg_initiator initiator)
1843{
1844 struct regulatory_request *lr = get_last_request();
1845
1846 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1847 return true;
1848
1849 if (!lr) {
1850 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1851 reg_initiator_name(initiator));
1852 return true;
1853 }
1854
1855 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1856 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1857 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1858 reg_initiator_name(initiator));
1859 return true;
1860 }
1861
1862 /*
1863 * wiphy->regd will be set once the device has its own
1864 * desired regulatory domain set
1865 */
1866 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1867 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1868 !is_world_regdom(lr->alpha2)) {
1869 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1870 reg_initiator_name(initiator));
1871 return true;
1872 }
1873
1874 if (reg_request_cell_base(lr))
1875 return reg_dev_ignore_cell_hint(wiphy);
1876
1877 return false;
1878}
1879
1880static bool reg_is_world_roaming(struct wiphy *wiphy)
1881{
1882 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1883 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1884 struct regulatory_request *lr = get_last_request();
1885
1886 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1887 return true;
1888
1889 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1890 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1891 return true;
1892
1893 return false;
1894}
1895
1896static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1897 struct reg_beacon *reg_beacon)
1898{
1899 struct ieee80211_supported_band *sband;
1900 struct ieee80211_channel *chan;
1901 bool channel_changed = false;
1902 struct ieee80211_channel chan_before;
1903
1904 sband = wiphy->bands[reg_beacon->chan.band];
1905 chan = &sband->channels[chan_idx];
1906
1907 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1908 return;
1909
1910 if (chan->beacon_found)
1911 return;
1912
1913 chan->beacon_found = true;
1914
1915 if (!reg_is_world_roaming(wiphy))
1916 return;
1917
1918 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1919 return;
1920
1921 chan_before = *chan;
1922
1923 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1924 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1925 channel_changed = true;
1926 }
1927
1928 if (channel_changed)
1929 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1930}
1931
1932/*
1933 * Called when a scan on a wiphy finds a beacon on
1934 * new channel
1935 */
1936static void wiphy_update_new_beacon(struct wiphy *wiphy,
1937 struct reg_beacon *reg_beacon)
1938{
1939 unsigned int i;
1940 struct ieee80211_supported_band *sband;
1941
1942 if (!wiphy->bands[reg_beacon->chan.band])
1943 return;
1944
1945 sband = wiphy->bands[reg_beacon->chan.band];
1946
1947 for (i = 0; i < sband->n_channels; i++)
1948 handle_reg_beacon(wiphy, i, reg_beacon);
1949}
1950
1951/*
1952 * Called upon reg changes or a new wiphy is added
1953 */
1954static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1955{
1956 unsigned int i;
1957 struct ieee80211_supported_band *sband;
1958 struct reg_beacon *reg_beacon;
1959
1960 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
1961 if (!wiphy->bands[reg_beacon->chan.band])
1962 continue;
1963 sband = wiphy->bands[reg_beacon->chan.band];
1964 for (i = 0; i < sband->n_channels; i++)
1965 handle_reg_beacon(wiphy, i, reg_beacon);
1966 }
1967}
1968
1969/* Reap the advantages of previously found beacons */
1970static void reg_process_beacons(struct wiphy *wiphy)
1971{
1972 /*
1973 * Means we are just firing up cfg80211, so no beacons would
1974 * have been processed yet.
1975 */
1976 if (!last_request)
1977 return;
1978 wiphy_update_beacon_reg(wiphy);
1979}
1980
1981static bool is_ht40_allowed(struct ieee80211_channel *chan)
1982{
1983 if (!chan)
1984 return false;
1985 if (chan->flags & IEEE80211_CHAN_DISABLED)
1986 return false;
1987 /* This would happen when regulatory rules disallow HT40 completely */
1988 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1989 return false;
1990 return true;
1991}
1992
1993static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1994 struct ieee80211_channel *channel)
1995{
1996 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1997 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1998 const struct ieee80211_regdomain *regd;
1999 unsigned int i;
2000 u32 flags;
2001
2002 if (!is_ht40_allowed(channel)) {
2003 channel->flags |= IEEE80211_CHAN_NO_HT40;
2004 return;
2005 }
2006
2007 /*
2008 * We need to ensure the extension channels exist to
2009 * be able to use HT40- or HT40+, this finds them (or not)
2010 */
2011 for (i = 0; i < sband->n_channels; i++) {
2012 struct ieee80211_channel *c = &sband->channels[i];
2013
2014 if (c->center_freq == (channel->center_freq - 20))
2015 channel_before = c;
2016 if (c->center_freq == (channel->center_freq + 20))
2017 channel_after = c;
2018 }
2019
2020 flags = 0;
2021 regd = get_wiphy_regdom(wiphy);
2022 if (regd) {
2023 const struct ieee80211_reg_rule *reg_rule =
2024 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2025 regd, MHZ_TO_KHZ(20));
2026
2027 if (!IS_ERR(reg_rule))
2028 flags = reg_rule->flags;
2029 }
2030
2031 /*
2032 * Please note that this assumes target bandwidth is 20 MHz,
2033 * if that ever changes we also need to change the below logic
2034 * to include that as well.
2035 */
2036 if (!is_ht40_allowed(channel_before) ||
2037 flags & NL80211_RRF_NO_HT40MINUS)
2038 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2039 else
2040 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2041
2042 if (!is_ht40_allowed(channel_after) ||
2043 flags & NL80211_RRF_NO_HT40PLUS)
2044 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2045 else
2046 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2047}
2048
2049static void reg_process_ht_flags_band(struct wiphy *wiphy,
2050 struct ieee80211_supported_band *sband)
2051{
2052 unsigned int i;
2053
2054 if (!sband)
2055 return;
2056
2057 for (i = 0; i < sband->n_channels; i++)
2058 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2059}
2060
2061static void reg_process_ht_flags(struct wiphy *wiphy)
2062{
2063 enum nl80211_band band;
2064
2065 if (!wiphy)
2066 return;
2067
2068 for (band = 0; band < NUM_NL80211_BANDS; band++)
2069 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2070}
2071
2072static void reg_call_notifier(struct wiphy *wiphy,
2073 struct regulatory_request *request)
2074{
2075 if (wiphy->reg_notifier)
2076 wiphy->reg_notifier(wiphy, request);
2077}
2078
2079static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2080{
2081 struct cfg80211_chan_def chandef;
2082 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2083 enum nl80211_iftype iftype;
2084
2085 wdev_lock(wdev);
2086 iftype = wdev->iftype;
2087
2088 /* make sure the interface is active */
2089 if (!wdev->netdev || !netif_running(wdev->netdev))
2090 goto wdev_inactive_unlock;
2091
2092 switch (iftype) {
2093 case NL80211_IFTYPE_AP:
2094 case NL80211_IFTYPE_P2P_GO:
2095 if (!wdev->beacon_interval)
2096 goto wdev_inactive_unlock;
2097 chandef = wdev->chandef;
2098 break;
2099 case NL80211_IFTYPE_ADHOC:
2100 if (!wdev->ssid_len)
2101 goto wdev_inactive_unlock;
2102 chandef = wdev->chandef;
2103 break;
2104 case NL80211_IFTYPE_STATION:
2105 case NL80211_IFTYPE_P2P_CLIENT:
2106 if (!wdev->current_bss ||
2107 !wdev->current_bss->pub.channel)
2108 goto wdev_inactive_unlock;
2109
2110 if (!rdev->ops->get_channel ||
2111 rdev_get_channel(rdev, wdev, &chandef))
2112 cfg80211_chandef_create(&chandef,
2113 wdev->current_bss->pub.channel,
2114 NL80211_CHAN_NO_HT);
2115 break;
2116 case NL80211_IFTYPE_MONITOR:
2117 case NL80211_IFTYPE_AP_VLAN:
2118 case NL80211_IFTYPE_P2P_DEVICE:
2119 /* no enforcement required */
2120 break;
2121 default:
2122 /* others not implemented for now */
2123 WARN_ON(1);
2124 break;
2125 }
2126
2127 wdev_unlock(wdev);
2128
2129 switch (iftype) {
2130 case NL80211_IFTYPE_AP:
2131 case NL80211_IFTYPE_P2P_GO:
2132 case NL80211_IFTYPE_ADHOC:
2133 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2134 case NL80211_IFTYPE_STATION:
2135 case NL80211_IFTYPE_P2P_CLIENT:
2136 return cfg80211_chandef_usable(wiphy, &chandef,
2137 IEEE80211_CHAN_DISABLED);
2138 default:
2139 break;
2140 }
2141
2142 return true;
2143
2144wdev_inactive_unlock:
2145 wdev_unlock(wdev);
2146 return true;
2147}
2148
2149static void reg_leave_invalid_chans(struct wiphy *wiphy)
2150{
2151 struct wireless_dev *wdev;
2152 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2153
2154 ASSERT_RTNL();
2155
2156 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2157 if (!reg_wdev_chan_valid(wiphy, wdev))
2158 cfg80211_leave(rdev, wdev);
2159}
2160
2161static void reg_check_chans_work(struct work_struct *work)
2162{
2163 struct cfg80211_registered_device *rdev;
2164
2165 pr_debug("Verifying active interfaces after reg change\n");
2166 rtnl_lock();
2167
2168 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2169 if (!(rdev->wiphy.regulatory_flags &
2170 REGULATORY_IGNORE_STALE_KICKOFF))
2171 reg_leave_invalid_chans(&rdev->wiphy);
2172
2173 rtnl_unlock();
2174}
2175
2176static void reg_check_channels(void)
2177{
2178 /*
2179 * Give usermode a chance to do something nicer (move to another
2180 * channel, orderly disconnection), before forcing a disconnection.
2181 */
2182 mod_delayed_work(system_power_efficient_wq,
2183 ®_check_chans,
2184 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2185}
2186
2187static void wiphy_update_regulatory(struct wiphy *wiphy,
2188 enum nl80211_reg_initiator initiator)
2189{
2190 enum nl80211_band band;
2191 struct regulatory_request *lr = get_last_request();
2192
2193 if (ignore_reg_update(wiphy, initiator)) {
2194 /*
2195 * Regulatory updates set by CORE are ignored for custom
2196 * regulatory cards. Let us notify the changes to the driver,
2197 * as some drivers used this to restore its orig_* reg domain.
2198 */
2199 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2200 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2201 !(wiphy->regulatory_flags &
2202 REGULATORY_WIPHY_SELF_MANAGED))
2203 reg_call_notifier(wiphy, lr);
2204 return;
2205 }
2206
2207 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2208
2209 for (band = 0; band < NUM_NL80211_BANDS; band++)
2210 handle_band(wiphy, initiator, wiphy->bands[band]);
2211
2212 reg_process_beacons(wiphy);
2213 reg_process_ht_flags(wiphy);
2214 reg_call_notifier(wiphy, lr);
2215}
2216
2217static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2218{
2219 struct cfg80211_registered_device *rdev;
2220 struct wiphy *wiphy;
2221
2222 ASSERT_RTNL();
2223
2224 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2225 wiphy = &rdev->wiphy;
2226 wiphy_update_regulatory(wiphy, initiator);
2227 }
2228
2229 reg_check_channels();
2230}
2231
2232static void handle_channel_custom(struct wiphy *wiphy,
2233 struct ieee80211_channel *chan,
2234 const struct ieee80211_regdomain *regd)
2235{
2236 u32 bw_flags = 0;
2237 const struct ieee80211_reg_rule *reg_rule = NULL;
2238 const struct ieee80211_power_rule *power_rule = NULL;
2239 u32 bw;
2240
2241 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2242 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2243 regd, bw);
2244 if (!IS_ERR(reg_rule))
2245 break;
2246 }
2247
2248 if (IS_ERR(reg_rule)) {
2249 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2250 chan->center_freq);
2251 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2252 chan->flags |= IEEE80211_CHAN_DISABLED;
2253 } else {
2254 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2255 chan->flags = chan->orig_flags;
2256 }
2257 return;
2258 }
2259
2260 power_rule = ®_rule->power_rule;
2261 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2262
2263 chan->dfs_state_entered = jiffies;
2264 chan->dfs_state = NL80211_DFS_USABLE;
2265
2266 chan->beacon_found = false;
2267
2268 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2269 chan->flags = chan->orig_flags | bw_flags |
2270 map_regdom_flags(reg_rule->flags);
2271 else
2272 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2273
2274 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2275 chan->max_reg_power = chan->max_power =
2276 (int) MBM_TO_DBM(power_rule->max_eirp);
2277
2278 if (chan->flags & IEEE80211_CHAN_RADAR) {
2279 if (reg_rule->dfs_cac_ms)
2280 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2281 else
2282 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2283 }
2284
2285 chan->max_power = chan->max_reg_power;
2286}
2287
2288static void handle_band_custom(struct wiphy *wiphy,
2289 struct ieee80211_supported_band *sband,
2290 const struct ieee80211_regdomain *regd)
2291{
2292 unsigned int i;
2293
2294 if (!sband)
2295 return;
2296
2297 for (i = 0; i < sband->n_channels; i++)
2298 handle_channel_custom(wiphy, &sband->channels[i], regd);
2299}
2300
2301/* Used by drivers prior to wiphy registration */
2302void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2303 const struct ieee80211_regdomain *regd)
2304{
2305 enum nl80211_band band;
2306 unsigned int bands_set = 0;
2307
2308 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2309 "wiphy should have REGULATORY_CUSTOM_REG\n");
2310 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2311
2312 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2313 if (!wiphy->bands[band])
2314 continue;
2315 handle_band_custom(wiphy, wiphy->bands[band], regd);
2316 bands_set++;
2317 }
2318
2319 /*
2320 * no point in calling this if it won't have any effect
2321 * on your device's supported bands.
2322 */
2323 WARN_ON(!bands_set);
2324}
2325EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2326
2327static void reg_set_request_processed(void)
2328{
2329 bool need_more_processing = false;
2330 struct regulatory_request *lr = get_last_request();
2331
2332 lr->processed = true;
2333
2334 spin_lock(®_requests_lock);
2335 if (!list_empty(®_requests_list))
2336 need_more_processing = true;
2337 spin_unlock(®_requests_lock);
2338
2339 cancel_crda_timeout();
2340
2341 if (need_more_processing)
2342 schedule_work(®_work);
2343}
2344
2345/**
2346 * reg_process_hint_core - process core regulatory requests
2347 * @pending_request: a pending core regulatory request
2348 *
2349 * The wireless subsystem can use this function to process
2350 * a regulatory request issued by the regulatory core.
2351 */
2352static enum reg_request_treatment
2353reg_process_hint_core(struct regulatory_request *core_request)
2354{
2355 if (reg_query_database(core_request)) {
2356 core_request->intersect = false;
2357 core_request->processed = false;
2358 reg_update_last_request(core_request);
2359 return REG_REQ_OK;
2360 }
2361
2362 return REG_REQ_IGNORE;
2363}
2364
2365static enum reg_request_treatment
2366__reg_process_hint_user(struct regulatory_request *user_request)
2367{
2368 struct regulatory_request *lr = get_last_request();
2369
2370 if (reg_request_cell_base(user_request))
2371 return reg_ignore_cell_hint(user_request);
2372
2373 if (reg_request_cell_base(lr))
2374 return REG_REQ_IGNORE;
2375
2376 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2377 return REG_REQ_INTERSECT;
2378 /*
2379 * If the user knows better the user should set the regdom
2380 * to their country before the IE is picked up
2381 */
2382 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2383 lr->intersect)
2384 return REG_REQ_IGNORE;
2385 /*
2386 * Process user requests only after previous user/driver/core
2387 * requests have been processed
2388 */
2389 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2390 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2391 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2392 regdom_changes(lr->alpha2))
2393 return REG_REQ_IGNORE;
2394
2395 if (!regdom_changes(user_request->alpha2))
2396 return REG_REQ_ALREADY_SET;
2397
2398 return REG_REQ_OK;
2399}
2400
2401/**
2402 * reg_process_hint_user - process user regulatory requests
2403 * @user_request: a pending user regulatory request
2404 *
2405 * The wireless subsystem can use this function to process
2406 * a regulatory request initiated by userspace.
2407 */
2408static enum reg_request_treatment
2409reg_process_hint_user(struct regulatory_request *user_request)
2410{
2411 enum reg_request_treatment treatment;
2412
2413 treatment = __reg_process_hint_user(user_request);
2414 if (treatment == REG_REQ_IGNORE ||
2415 treatment == REG_REQ_ALREADY_SET)
2416 return REG_REQ_IGNORE;
2417
2418 user_request->intersect = treatment == REG_REQ_INTERSECT;
2419 user_request->processed = false;
2420
2421 if (reg_query_database(user_request)) {
2422 reg_update_last_request(user_request);
2423 user_alpha2[0] = user_request->alpha2[0];
2424 user_alpha2[1] = user_request->alpha2[1];
2425 return REG_REQ_OK;
2426 }
2427
2428 return REG_REQ_IGNORE;
2429}
2430
2431static enum reg_request_treatment
2432__reg_process_hint_driver(struct regulatory_request *driver_request)
2433{
2434 struct regulatory_request *lr = get_last_request();
2435
2436 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2437 if (regdom_changes(driver_request->alpha2))
2438 return REG_REQ_OK;
2439 return REG_REQ_ALREADY_SET;
2440 }
2441
2442 /*
2443 * This would happen if you unplug and plug your card
2444 * back in or if you add a new device for which the previously
2445 * loaded card also agrees on the regulatory domain.
2446 */
2447 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2448 !regdom_changes(driver_request->alpha2))
2449 return REG_REQ_ALREADY_SET;
2450
2451 return REG_REQ_INTERSECT;
2452}
2453
2454/**
2455 * reg_process_hint_driver - process driver regulatory requests
2456 * @driver_request: a pending driver regulatory request
2457 *
2458 * The wireless subsystem can use this function to process
2459 * a regulatory request issued by an 802.11 driver.
2460 *
2461 * Returns one of the different reg request treatment values.
2462 */
2463static enum reg_request_treatment
2464reg_process_hint_driver(struct wiphy *wiphy,
2465 struct regulatory_request *driver_request)
2466{
2467 const struct ieee80211_regdomain *regd, *tmp;
2468 enum reg_request_treatment treatment;
2469
2470 treatment = __reg_process_hint_driver(driver_request);
2471
2472 switch (treatment) {
2473 case REG_REQ_OK:
2474 break;
2475 case REG_REQ_IGNORE:
2476 return REG_REQ_IGNORE;
2477 case REG_REQ_INTERSECT:
2478 case REG_REQ_ALREADY_SET:
2479 regd = reg_copy_regd(get_cfg80211_regdom());
2480 if (IS_ERR(regd))
2481 return REG_REQ_IGNORE;
2482
2483 tmp = get_wiphy_regdom(wiphy);
2484 rcu_assign_pointer(wiphy->regd, regd);
2485 rcu_free_regdom(tmp);
2486 }
2487
2488
2489 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2490 driver_request->processed = false;
2491
2492 /*
2493 * Since CRDA will not be called in this case as we already
2494 * have applied the requested regulatory domain before we just
2495 * inform userspace we have processed the request
2496 */
2497 if (treatment == REG_REQ_ALREADY_SET) {
2498 nl80211_send_reg_change_event(driver_request);
2499 reg_update_last_request(driver_request);
2500 reg_set_request_processed();
2501 return REG_REQ_ALREADY_SET;
2502 }
2503
2504 if (reg_query_database(driver_request)) {
2505 reg_update_last_request(driver_request);
2506 return REG_REQ_OK;
2507 }
2508
2509 return REG_REQ_IGNORE;
2510}
2511
2512static enum reg_request_treatment
2513__reg_process_hint_country_ie(struct wiphy *wiphy,
2514 struct regulatory_request *country_ie_request)
2515{
2516 struct wiphy *last_wiphy = NULL;
2517 struct regulatory_request *lr = get_last_request();
2518
2519 if (reg_request_cell_base(lr)) {
2520 /* Trust a Cell base station over the AP's country IE */
2521 if (regdom_changes(country_ie_request->alpha2))
2522 return REG_REQ_IGNORE;
2523 return REG_REQ_ALREADY_SET;
2524 } else {
2525 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2526 return REG_REQ_IGNORE;
2527 }
2528
2529 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2530 return -EINVAL;
2531
2532 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2533 return REG_REQ_OK;
2534
2535 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2536
2537 if (last_wiphy != wiphy) {
2538 /*
2539 * Two cards with two APs claiming different
2540 * Country IE alpha2s. We could
2541 * intersect them, but that seems unlikely
2542 * to be correct. Reject second one for now.
2543 */
2544 if (regdom_changes(country_ie_request->alpha2))
2545 return REG_REQ_IGNORE;
2546 return REG_REQ_ALREADY_SET;
2547 }
2548
2549 if (regdom_changes(country_ie_request->alpha2))
2550 return REG_REQ_OK;
2551 return REG_REQ_ALREADY_SET;
2552}
2553
2554/**
2555 * reg_process_hint_country_ie - process regulatory requests from country IEs
2556 * @country_ie_request: a regulatory request from a country IE
2557 *
2558 * The wireless subsystem can use this function to process
2559 * a regulatory request issued by a country Information Element.
2560 *
2561 * Returns one of the different reg request treatment values.
2562 */
2563static enum reg_request_treatment
2564reg_process_hint_country_ie(struct wiphy *wiphy,
2565 struct regulatory_request *country_ie_request)
2566{
2567 enum reg_request_treatment treatment;
2568
2569 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2570
2571 switch (treatment) {
2572 case REG_REQ_OK:
2573 break;
2574 case REG_REQ_IGNORE:
2575 return REG_REQ_IGNORE;
2576 case REG_REQ_ALREADY_SET:
2577 reg_free_request(country_ie_request);
2578 return REG_REQ_ALREADY_SET;
2579 case REG_REQ_INTERSECT:
2580 /*
2581 * This doesn't happen yet, not sure we
2582 * ever want to support it for this case.
2583 */
2584 WARN_ONCE(1, "Unexpected intersection for country elements");
2585 return REG_REQ_IGNORE;
2586 }
2587
2588 country_ie_request->intersect = false;
2589 country_ie_request->processed = false;
2590
2591 if (reg_query_database(country_ie_request)) {
2592 reg_update_last_request(country_ie_request);
2593 return REG_REQ_OK;
2594 }
2595
2596 return REG_REQ_IGNORE;
2597}
2598
2599bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2600{
2601 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2602 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2603 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2604 bool dfs_domain_same;
2605
2606 rcu_read_lock();
2607
2608 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2609 wiphy1_regd = rcu_dereference(wiphy1->regd);
2610 if (!wiphy1_regd)
2611 wiphy1_regd = cfg80211_regd;
2612
2613 wiphy2_regd = rcu_dereference(wiphy2->regd);
2614 if (!wiphy2_regd)
2615 wiphy2_regd = cfg80211_regd;
2616
2617 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2618
2619 rcu_read_unlock();
2620
2621 return dfs_domain_same;
2622}
2623
2624static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2625 struct ieee80211_channel *src_chan)
2626{
2627 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2628 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2629 return;
2630
2631 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2632 src_chan->flags & IEEE80211_CHAN_DISABLED)
2633 return;
2634
2635 if (src_chan->center_freq == dst_chan->center_freq &&
2636 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2637 dst_chan->dfs_state = src_chan->dfs_state;
2638 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2639 }
2640}
2641
2642static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2643 struct wiphy *src_wiphy)
2644{
2645 struct ieee80211_supported_band *src_sband, *dst_sband;
2646 struct ieee80211_channel *src_chan, *dst_chan;
2647 int i, j, band;
2648
2649 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2650 return;
2651
2652 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2653 dst_sband = dst_wiphy->bands[band];
2654 src_sband = src_wiphy->bands[band];
2655 if (!dst_sband || !src_sband)
2656 continue;
2657
2658 for (i = 0; i < dst_sband->n_channels; i++) {
2659 dst_chan = &dst_sband->channels[i];
2660 for (j = 0; j < src_sband->n_channels; j++) {
2661 src_chan = &src_sband->channels[j];
2662 reg_copy_dfs_chan_state(dst_chan, src_chan);
2663 }
2664 }
2665 }
2666}
2667
2668static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2669{
2670 struct cfg80211_registered_device *rdev;
2671
2672 ASSERT_RTNL();
2673
2674 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2675 if (wiphy == &rdev->wiphy)
2676 continue;
2677 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2678 }
2679}
2680
2681/* This processes *all* regulatory hints */
2682static void reg_process_hint(struct regulatory_request *reg_request)
2683{
2684 struct wiphy *wiphy = NULL;
2685 enum reg_request_treatment treatment;
2686 enum nl80211_reg_initiator initiator = reg_request->initiator;
2687
2688 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2689 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2690
2691 switch (initiator) {
2692 case NL80211_REGDOM_SET_BY_CORE:
2693 treatment = reg_process_hint_core(reg_request);
2694 break;
2695 case NL80211_REGDOM_SET_BY_USER:
2696 treatment = reg_process_hint_user(reg_request);
2697 break;
2698 case NL80211_REGDOM_SET_BY_DRIVER:
2699 if (!wiphy)
2700 goto out_free;
2701 treatment = reg_process_hint_driver(wiphy, reg_request);
2702 break;
2703 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2704 if (!wiphy)
2705 goto out_free;
2706 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2707 break;
2708 default:
2709 WARN(1, "invalid initiator %d\n", initiator);
2710 goto out_free;
2711 }
2712
2713 if (treatment == REG_REQ_IGNORE)
2714 goto out_free;
2715
2716 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2717 "unexpected treatment value %d\n", treatment);
2718
2719 /* This is required so that the orig_* parameters are saved.
2720 * NOTE: treatment must be set for any case that reaches here!
2721 */
2722 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2723 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2724 wiphy_update_regulatory(wiphy, initiator);
2725 wiphy_all_share_dfs_chan_state(wiphy);
2726 reg_check_channels();
2727 }
2728
2729 return;
2730
2731out_free:
2732 reg_free_request(reg_request);
2733}
2734
2735static void notify_self_managed_wiphys(struct regulatory_request *request)
2736{
2737 struct cfg80211_registered_device *rdev;
2738 struct wiphy *wiphy;
2739
2740 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2741 wiphy = &rdev->wiphy;
2742 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2743 request->initiator == NL80211_REGDOM_SET_BY_USER)
2744 reg_call_notifier(wiphy, request);
2745 }
2746}
2747
2748/*
2749 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2750 * Regulatory hints come on a first come first serve basis and we
2751 * must process each one atomically.
2752 */
2753static void reg_process_pending_hints(void)
2754{
2755 struct regulatory_request *reg_request, *lr;
2756
2757 lr = get_last_request();
2758
2759 /* When last_request->processed becomes true this will be rescheduled */
2760 if (lr && !lr->processed) {
2761 reg_process_hint(lr);
2762 return;
2763 }
2764
2765 spin_lock(®_requests_lock);
2766
2767 if (list_empty(®_requests_list)) {
2768 spin_unlock(®_requests_lock);
2769 return;
2770 }
2771
2772 reg_request = list_first_entry(®_requests_list,
2773 struct regulatory_request,
2774 list);
2775 list_del_init(®_request->list);
2776
2777 spin_unlock(®_requests_lock);
2778
2779 notify_self_managed_wiphys(reg_request);
2780
2781 reg_process_hint(reg_request);
2782
2783 lr = get_last_request();
2784
2785 spin_lock(®_requests_lock);
2786 if (!list_empty(®_requests_list) && lr && lr->processed)
2787 schedule_work(®_work);
2788 spin_unlock(®_requests_lock);
2789}
2790
2791/* Processes beacon hints -- this has nothing to do with country IEs */
2792static void reg_process_pending_beacon_hints(void)
2793{
2794 struct cfg80211_registered_device *rdev;
2795 struct reg_beacon *pending_beacon, *tmp;
2796
2797 /* This goes through the _pending_ beacon list */
2798 spin_lock_bh(®_pending_beacons_lock);
2799
2800 list_for_each_entry_safe(pending_beacon, tmp,
2801 ®_pending_beacons, list) {
2802 list_del_init(&pending_beacon->list);
2803
2804 /* Applies the beacon hint to current wiphys */
2805 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2806 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2807
2808 /* Remembers the beacon hint for new wiphys or reg changes */
2809 list_add_tail(&pending_beacon->list, ®_beacon_list);
2810 }
2811
2812 spin_unlock_bh(®_pending_beacons_lock);
2813}
2814
2815static void reg_process_self_managed_hints(void)
2816{
2817 struct cfg80211_registered_device *rdev;
2818 struct wiphy *wiphy;
2819 const struct ieee80211_regdomain *tmp;
2820 const struct ieee80211_regdomain *regd;
2821 enum nl80211_band band;
2822 struct regulatory_request request = {};
2823
2824 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2825 wiphy = &rdev->wiphy;
2826
2827 spin_lock(®_requests_lock);
2828 regd = rdev->requested_regd;
2829 rdev->requested_regd = NULL;
2830 spin_unlock(®_requests_lock);
2831
2832 if (regd == NULL)
2833 continue;
2834
2835 tmp = get_wiphy_regdom(wiphy);
2836 rcu_assign_pointer(wiphy->regd, regd);
2837 rcu_free_regdom(tmp);
2838
2839 for (band = 0; band < NUM_NL80211_BANDS; band++)
2840 handle_band_custom(wiphy, wiphy->bands[band], regd);
2841
2842 reg_process_ht_flags(wiphy);
2843
2844 request.wiphy_idx = get_wiphy_idx(wiphy);
2845 request.alpha2[0] = regd->alpha2[0];
2846 request.alpha2[1] = regd->alpha2[1];
2847 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2848
2849 nl80211_send_wiphy_reg_change_event(&request);
2850 }
2851
2852 reg_check_channels();
2853}
2854
2855static void reg_todo(struct work_struct *work)
2856{
2857 rtnl_lock();
2858 reg_process_pending_hints();
2859 reg_process_pending_beacon_hints();
2860 reg_process_self_managed_hints();
2861 rtnl_unlock();
2862}
2863
2864static void queue_regulatory_request(struct regulatory_request *request)
2865{
2866 request->alpha2[0] = toupper(request->alpha2[0]);
2867 request->alpha2[1] = toupper(request->alpha2[1]);
2868
2869 spin_lock(®_requests_lock);
2870 list_add_tail(&request->list, ®_requests_list);
2871 spin_unlock(®_requests_lock);
2872
2873 schedule_work(®_work);
2874}
2875
2876/*
2877 * Core regulatory hint -- happens during cfg80211_init()
2878 * and when we restore regulatory settings.
2879 */
2880static int regulatory_hint_core(const char *alpha2)
2881{
2882 struct regulatory_request *request;
2883
2884 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2885 if (!request)
2886 return -ENOMEM;
2887
2888 request->alpha2[0] = alpha2[0];
2889 request->alpha2[1] = alpha2[1];
2890 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2891 request->wiphy_idx = WIPHY_IDX_INVALID;
2892
2893 queue_regulatory_request(request);
2894
2895 return 0;
2896}
2897
2898/* User hints */
2899int regulatory_hint_user(const char *alpha2,
2900 enum nl80211_user_reg_hint_type user_reg_hint_type)
2901{
2902 struct regulatory_request *request;
2903
2904 if (WARN_ON(!alpha2))
2905 return -EINVAL;
2906
2907 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2908 if (!request)
2909 return -ENOMEM;
2910
2911 request->wiphy_idx = WIPHY_IDX_INVALID;
2912 request->alpha2[0] = alpha2[0];
2913 request->alpha2[1] = alpha2[1];
2914 request->initiator = NL80211_REGDOM_SET_BY_USER;
2915 request->user_reg_hint_type = user_reg_hint_type;
2916
2917 /* Allow calling CRDA again */
2918 reset_crda_timeouts();
2919
2920 queue_regulatory_request(request);
2921
2922 return 0;
2923}
2924
2925int regulatory_hint_indoor(bool is_indoor, u32 portid)
2926{
2927 spin_lock(®_indoor_lock);
2928
2929 /* It is possible that more than one user space process is trying to
2930 * configure the indoor setting. To handle such cases, clear the indoor
2931 * setting in case that some process does not think that the device
2932 * is operating in an indoor environment. In addition, if a user space
2933 * process indicates that it is controlling the indoor setting, save its
2934 * portid, i.e., make it the owner.
2935 */
2936 reg_is_indoor = is_indoor;
2937 if (reg_is_indoor) {
2938 if (!reg_is_indoor_portid)
2939 reg_is_indoor_portid = portid;
2940 } else {
2941 reg_is_indoor_portid = 0;
2942 }
2943
2944 spin_unlock(®_indoor_lock);
2945
2946 if (!is_indoor)
2947 reg_check_channels();
2948
2949 return 0;
2950}
2951
2952void regulatory_netlink_notify(u32 portid)
2953{
2954 spin_lock(®_indoor_lock);
2955
2956 if (reg_is_indoor_portid != portid) {
2957 spin_unlock(®_indoor_lock);
2958 return;
2959 }
2960
2961 reg_is_indoor = false;
2962 reg_is_indoor_portid = 0;
2963
2964 spin_unlock(®_indoor_lock);
2965
2966 reg_check_channels();
2967}
2968
2969/* Driver hints */
2970int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2971{
2972 struct regulatory_request *request;
2973
2974 if (WARN_ON(!alpha2 || !wiphy))
2975 return -EINVAL;
2976
2977 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2978
2979 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2980 if (!request)
2981 return -ENOMEM;
2982
2983 request->wiphy_idx = get_wiphy_idx(wiphy);
2984
2985 request->alpha2[0] = alpha2[0];
2986 request->alpha2[1] = alpha2[1];
2987 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2988
2989 /* Allow calling CRDA again */
2990 reset_crda_timeouts();
2991
2992 queue_regulatory_request(request);
2993
2994 return 0;
2995}
2996EXPORT_SYMBOL(regulatory_hint);
2997
2998void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2999 const u8 *country_ie, u8 country_ie_len)
3000{
3001 char alpha2[2];
3002 enum environment_cap env = ENVIRON_ANY;
3003 struct regulatory_request *request = NULL, *lr;
3004
3005 /* IE len must be evenly divisible by 2 */
3006 if (country_ie_len & 0x01)
3007 return;
3008
3009 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3010 return;
3011
3012 request = kzalloc(sizeof(*request), GFP_KERNEL);
3013 if (!request)
3014 return;
3015
3016 alpha2[0] = country_ie[0];
3017 alpha2[1] = country_ie[1];
3018
3019 if (country_ie[2] == 'I')
3020 env = ENVIRON_INDOOR;
3021 else if (country_ie[2] == 'O')
3022 env = ENVIRON_OUTDOOR;
3023
3024 rcu_read_lock();
3025 lr = get_last_request();
3026
3027 if (unlikely(!lr))
3028 goto out;
3029
3030 /*
3031 * We will run this only upon a successful connection on cfg80211.
3032 * We leave conflict resolution to the workqueue, where can hold
3033 * the RTNL.
3034 */
3035 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3036 lr->wiphy_idx != WIPHY_IDX_INVALID)
3037 goto out;
3038
3039 request->wiphy_idx = get_wiphy_idx(wiphy);
3040 request->alpha2[0] = alpha2[0];
3041 request->alpha2[1] = alpha2[1];
3042 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3043 request->country_ie_env = env;
3044
3045 /* Allow calling CRDA again */
3046 reset_crda_timeouts();
3047
3048 queue_regulatory_request(request);
3049 request = NULL;
3050out:
3051 kfree(request);
3052 rcu_read_unlock();
3053}
3054
3055static void restore_alpha2(char *alpha2, bool reset_user)
3056{
3057 /* indicates there is no alpha2 to consider for restoration */
3058 alpha2[0] = '9';
3059 alpha2[1] = '7';
3060
3061 /* The user setting has precedence over the module parameter */
3062 if (is_user_regdom_saved()) {
3063 /* Unless we're asked to ignore it and reset it */
3064 if (reset_user) {
3065 pr_debug("Restoring regulatory settings including user preference\n");
3066 user_alpha2[0] = '9';
3067 user_alpha2[1] = '7';
3068
3069 /*
3070 * If we're ignoring user settings, we still need to
3071 * check the module parameter to ensure we put things
3072 * back as they were for a full restore.
3073 */
3074 if (!is_world_regdom(ieee80211_regdom)) {
3075 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3076 ieee80211_regdom[0], ieee80211_regdom[1]);
3077 alpha2[0] = ieee80211_regdom[0];
3078 alpha2[1] = ieee80211_regdom[1];
3079 }
3080 } else {
3081 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3082 user_alpha2[0], user_alpha2[1]);
3083 alpha2[0] = user_alpha2[0];
3084 alpha2[1] = user_alpha2[1];
3085 }
3086 } else if (!is_world_regdom(ieee80211_regdom)) {
3087 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3088 ieee80211_regdom[0], ieee80211_regdom[1]);
3089 alpha2[0] = ieee80211_regdom[0];
3090 alpha2[1] = ieee80211_regdom[1];
3091 } else
3092 pr_debug("Restoring regulatory settings\n");
3093}
3094
3095static void restore_custom_reg_settings(struct wiphy *wiphy)
3096{
3097 struct ieee80211_supported_band *sband;
3098 enum nl80211_band band;
3099 struct ieee80211_channel *chan;
3100 int i;
3101
3102 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3103 sband = wiphy->bands[band];
3104 if (!sband)
3105 continue;
3106 for (i = 0; i < sband->n_channels; i++) {
3107 chan = &sband->channels[i];
3108 chan->flags = chan->orig_flags;
3109 chan->max_antenna_gain = chan->orig_mag;
3110 chan->max_power = chan->orig_mpwr;
3111 chan->beacon_found = false;
3112 }
3113 }
3114}
3115
3116/*
3117 * Restoring regulatory settings involves ingoring any
3118 * possibly stale country IE information and user regulatory
3119 * settings if so desired, this includes any beacon hints
3120 * learned as we could have traveled outside to another country
3121 * after disconnection. To restore regulatory settings we do
3122 * exactly what we did at bootup:
3123 *
3124 * - send a core regulatory hint
3125 * - send a user regulatory hint if applicable
3126 *
3127 * Device drivers that send a regulatory hint for a specific country
3128 * keep their own regulatory domain on wiphy->regd so that does does
3129 * not need to be remembered.
3130 */
3131static void restore_regulatory_settings(bool reset_user, bool cached)
3132{
3133 char alpha2[2];
3134 char world_alpha2[2];
3135 struct reg_beacon *reg_beacon, *btmp;
3136 LIST_HEAD(tmp_reg_req_list);
3137 struct cfg80211_registered_device *rdev;
3138
3139 ASSERT_RTNL();
3140
3141 /*
3142 * Clear the indoor setting in case that it is not controlled by user
3143 * space, as otherwise there is no guarantee that the device is still
3144 * operating in an indoor environment.
3145 */
3146 spin_lock(®_indoor_lock);
3147 if (reg_is_indoor && !reg_is_indoor_portid) {
3148 reg_is_indoor = false;
3149 reg_check_channels();
3150 }
3151 spin_unlock(®_indoor_lock);
3152
3153 reset_regdomains(true, &world_regdom);
3154 restore_alpha2(alpha2, reset_user);
3155
3156 /*
3157 * If there's any pending requests we simply
3158 * stash them to a temporary pending queue and
3159 * add then after we've restored regulatory
3160 * settings.
3161 */
3162 spin_lock(®_requests_lock);
3163 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3164 spin_unlock(®_requests_lock);
3165
3166 /* Clear beacon hints */
3167 spin_lock_bh(®_pending_beacons_lock);
3168 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3169 list_del(®_beacon->list);
3170 kfree(reg_beacon);
3171 }
3172 spin_unlock_bh(®_pending_beacons_lock);
3173
3174 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3175 list_del(®_beacon->list);
3176 kfree(reg_beacon);
3177 }
3178
3179 /* First restore to the basic regulatory settings */
3180 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3181 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3182
3183 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3184 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3185 continue;
3186 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3187 restore_custom_reg_settings(&rdev->wiphy);
3188 }
3189
3190 if (cached && (!is_an_alpha2(alpha2) ||
3191 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3192 reset_regdomains(false, cfg80211_world_regdom);
3193 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3194 print_regdomain(get_cfg80211_regdom());
3195 nl80211_send_reg_change_event(&core_request_world);
3196 reg_set_request_processed();
3197
3198 if (is_an_alpha2(alpha2) &&
3199 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3200 struct regulatory_request *ureq;
3201
3202 spin_lock(®_requests_lock);
3203 ureq = list_last_entry(®_requests_list,
3204 struct regulatory_request,
3205 list);
3206 list_del(&ureq->list);
3207 spin_unlock(®_requests_lock);
3208
3209 notify_self_managed_wiphys(ureq);
3210 reg_update_last_request(ureq);
3211 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3212 REGD_SOURCE_CACHED);
3213 }
3214 } else {
3215 regulatory_hint_core(world_alpha2);
3216
3217 /*
3218 * This restores the ieee80211_regdom module parameter
3219 * preference or the last user requested regulatory
3220 * settings, user regulatory settings takes precedence.
3221 */
3222 if (is_an_alpha2(alpha2))
3223 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3224 }
3225
3226 spin_lock(®_requests_lock);
3227 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3228 spin_unlock(®_requests_lock);
3229
3230 pr_debug("Kicking the queue\n");
3231
3232 schedule_work(®_work);
3233}
3234
3235static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3236{
3237 struct cfg80211_registered_device *rdev;
3238 struct wireless_dev *wdev;
3239
3240 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3241 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3242 wdev_lock(wdev);
3243 if (!(wdev->wiphy->regulatory_flags & flag)) {
3244 wdev_unlock(wdev);
3245 return false;
3246 }
3247 wdev_unlock(wdev);
3248 }
3249 }
3250
3251 return true;
3252}
3253
3254void regulatory_hint_disconnect(void)
3255{
3256 /* Restore of regulatory settings is not required when wiphy(s)
3257 * ignore IE from connected access point but clearance of beacon hints
3258 * is required when wiphy(s) supports beacon hints.
3259 */
3260 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3261 struct reg_beacon *reg_beacon, *btmp;
3262
3263 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3264 return;
3265
3266 spin_lock_bh(®_pending_beacons_lock);
3267 list_for_each_entry_safe(reg_beacon, btmp,
3268 ®_pending_beacons, list) {
3269 list_del(®_beacon->list);
3270 kfree(reg_beacon);
3271 }
3272 spin_unlock_bh(®_pending_beacons_lock);
3273
3274 list_for_each_entry_safe(reg_beacon, btmp,
3275 ®_beacon_list, list) {
3276 list_del(®_beacon->list);
3277 kfree(reg_beacon);
3278 }
3279
3280 return;
3281 }
3282
3283 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3284 restore_regulatory_settings(false, true);
3285}
3286
3287static bool freq_is_chan_12_13_14(u32 freq)
3288{
3289 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3290 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3291 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3292 return true;
3293 return false;
3294}
3295
3296static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3297{
3298 struct reg_beacon *pending_beacon;
3299
3300 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3301 if (beacon_chan->center_freq ==
3302 pending_beacon->chan.center_freq)
3303 return true;
3304 return false;
3305}
3306
3307int regulatory_hint_found_beacon(struct wiphy *wiphy,
3308 struct ieee80211_channel *beacon_chan,
3309 gfp_t gfp)
3310{
3311 struct reg_beacon *reg_beacon;
3312 bool processing;
3313
3314 if (beacon_chan->beacon_found ||
3315 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3316 (beacon_chan->band == NL80211_BAND_2GHZ &&
3317 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3318 return 0;
3319
3320 spin_lock_bh(®_pending_beacons_lock);
3321 processing = pending_reg_beacon(beacon_chan);
3322 spin_unlock_bh(®_pending_beacons_lock);
3323
3324 if (processing)
3325 return 0;
3326
3327 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3328 if (!reg_beacon)
3329 return -ENOMEM;
3330
3331 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3332 beacon_chan->center_freq,
3333 ieee80211_frequency_to_channel(beacon_chan->center_freq),
3334 wiphy_name(wiphy));
3335
3336 memcpy(®_beacon->chan, beacon_chan,
3337 sizeof(struct ieee80211_channel));
3338
3339 /*
3340 * Since we can be called from BH or and non-BH context
3341 * we must use spin_lock_bh()
3342 */
3343 spin_lock_bh(®_pending_beacons_lock);
3344 list_add_tail(®_beacon->list, ®_pending_beacons);
3345 spin_unlock_bh(®_pending_beacons_lock);
3346
3347 schedule_work(®_work);
3348
3349 return 0;
3350}
3351
3352static void print_rd_rules(const struct ieee80211_regdomain *rd)
3353{
3354 unsigned int i;
3355 const struct ieee80211_reg_rule *reg_rule = NULL;
3356 const struct ieee80211_freq_range *freq_range = NULL;
3357 const struct ieee80211_power_rule *power_rule = NULL;
3358 char bw[32], cac_time[32];
3359
3360 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3361
3362 for (i = 0; i < rd->n_reg_rules; i++) {
3363 reg_rule = &rd->reg_rules[i];
3364 freq_range = ®_rule->freq_range;
3365 power_rule = ®_rule->power_rule;
3366
3367 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3368 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3369 freq_range->max_bandwidth_khz,
3370 reg_get_max_bandwidth(rd, reg_rule));
3371 else
3372 snprintf(bw, sizeof(bw), "%d KHz",
3373 freq_range->max_bandwidth_khz);
3374
3375 if (reg_rule->flags & NL80211_RRF_DFS)
3376 scnprintf(cac_time, sizeof(cac_time), "%u s",
3377 reg_rule->dfs_cac_ms/1000);
3378 else
3379 scnprintf(cac_time, sizeof(cac_time), "N/A");
3380
3381
3382 /*
3383 * There may not be documentation for max antenna gain
3384 * in certain regions
3385 */
3386 if (power_rule->max_antenna_gain)
3387 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3388 freq_range->start_freq_khz,
3389 freq_range->end_freq_khz,
3390 bw,
3391 power_rule->max_antenna_gain,
3392 power_rule->max_eirp,
3393 cac_time);
3394 else
3395 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3396 freq_range->start_freq_khz,
3397 freq_range->end_freq_khz,
3398 bw,
3399 power_rule->max_eirp,
3400 cac_time);
3401 }
3402}
3403
3404bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3405{
3406 switch (dfs_region) {
3407 case NL80211_DFS_UNSET:
3408 case NL80211_DFS_FCC:
3409 case NL80211_DFS_ETSI:
3410 case NL80211_DFS_JP:
3411 return true;
3412 default:
3413 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3414 return false;
3415 }
3416}
3417
3418static void print_regdomain(const struct ieee80211_regdomain *rd)
3419{
3420 struct regulatory_request *lr = get_last_request();
3421
3422 if (is_intersected_alpha2(rd->alpha2)) {
3423 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3424 struct cfg80211_registered_device *rdev;
3425 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3426 if (rdev) {
3427 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3428 rdev->country_ie_alpha2[0],
3429 rdev->country_ie_alpha2[1]);
3430 } else
3431 pr_debug("Current regulatory domain intersected:\n");
3432 } else
3433 pr_debug("Current regulatory domain intersected:\n");
3434 } else if (is_world_regdom(rd->alpha2)) {
3435 pr_debug("World regulatory domain updated:\n");
3436 } else {
3437 if (is_unknown_alpha2(rd->alpha2))
3438 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3439 else {
3440 if (reg_request_cell_base(lr))
3441 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3442 rd->alpha2[0], rd->alpha2[1]);
3443 else
3444 pr_debug("Regulatory domain changed to country: %c%c\n",
3445 rd->alpha2[0], rd->alpha2[1]);
3446 }
3447 }
3448
3449 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3450 print_rd_rules(rd);
3451}
3452
3453static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3454{
3455 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3456 print_rd_rules(rd);
3457}
3458
3459static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3460{
3461 if (!is_world_regdom(rd->alpha2))
3462 return -EINVAL;
3463 update_world_regdomain(rd);
3464 return 0;
3465}
3466
3467static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3468 struct regulatory_request *user_request)
3469{
3470 const struct ieee80211_regdomain *intersected_rd = NULL;
3471
3472 if (!regdom_changes(rd->alpha2))
3473 return -EALREADY;
3474
3475 if (!is_valid_rd(rd)) {
3476 pr_err("Invalid regulatory domain detected: %c%c\n",
3477 rd->alpha2[0], rd->alpha2[1]);
3478 print_regdomain_info(rd);
3479 return -EINVAL;
3480 }
3481
3482 if (!user_request->intersect) {
3483 reset_regdomains(false, rd);
3484 return 0;
3485 }
3486
3487 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3488 if (!intersected_rd)
3489 return -EINVAL;
3490
3491 kfree(rd);
3492 rd = NULL;
3493 reset_regdomains(false, intersected_rd);
3494
3495 return 0;
3496}
3497
3498static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3499 struct regulatory_request *driver_request)
3500{
3501 const struct ieee80211_regdomain *regd;
3502 const struct ieee80211_regdomain *intersected_rd = NULL;
3503 const struct ieee80211_regdomain *tmp;
3504 struct wiphy *request_wiphy;
3505
3506 if (is_world_regdom(rd->alpha2))
3507 return -EINVAL;
3508
3509 if (!regdom_changes(rd->alpha2))
3510 return -EALREADY;
3511
3512 if (!is_valid_rd(rd)) {
3513 pr_err("Invalid regulatory domain detected: %c%c\n",
3514 rd->alpha2[0], rd->alpha2[1]);
3515 print_regdomain_info(rd);
3516 return -EINVAL;
3517 }
3518
3519 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3520 if (!request_wiphy)
3521 return -ENODEV;
3522
3523 if (!driver_request->intersect) {
3524 if (request_wiphy->regd)
3525 return -EALREADY;
3526
3527 regd = reg_copy_regd(rd);
3528 if (IS_ERR(regd))
3529 return PTR_ERR(regd);
3530
3531 rcu_assign_pointer(request_wiphy->regd, regd);
3532 reset_regdomains(false, rd);
3533 return 0;
3534 }
3535
3536 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3537 if (!intersected_rd)
3538 return -EINVAL;
3539
3540 /*
3541 * We can trash what CRDA provided now.
3542 * However if a driver requested this specific regulatory
3543 * domain we keep it for its private use
3544 */
3545 tmp = get_wiphy_regdom(request_wiphy);
3546 rcu_assign_pointer(request_wiphy->regd, rd);
3547 rcu_free_regdom(tmp);
3548
3549 rd = NULL;
3550
3551 reset_regdomains(false, intersected_rd);
3552
3553 return 0;
3554}
3555
3556static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3557 struct regulatory_request *country_ie_request)
3558{
3559 struct wiphy *request_wiphy;
3560
3561 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3562 !is_unknown_alpha2(rd->alpha2))
3563 return -EINVAL;
3564
3565 /*
3566 * Lets only bother proceeding on the same alpha2 if the current
3567 * rd is non static (it means CRDA was present and was used last)
3568 * and the pending request came in from a country IE
3569 */
3570
3571 if (!is_valid_rd(rd)) {
3572 pr_err("Invalid regulatory domain detected: %c%c\n",
3573 rd->alpha2[0], rd->alpha2[1]);
3574 print_regdomain_info(rd);
3575 return -EINVAL;
3576 }
3577
3578 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3579 if (!request_wiphy)
3580 return -ENODEV;
3581
3582 if (country_ie_request->intersect)
3583 return -EINVAL;
3584
3585 reset_regdomains(false, rd);
3586 return 0;
3587}
3588
3589/*
3590 * Use this call to set the current regulatory domain. Conflicts with
3591 * multiple drivers can be ironed out later. Caller must've already
3592 * kmalloc'd the rd structure.
3593 */
3594int set_regdom(const struct ieee80211_regdomain *rd,
3595 enum ieee80211_regd_source regd_src)
3596{
3597 struct regulatory_request *lr;
3598 bool user_reset = false;
3599 int r;
3600
3601 if (IS_ERR_OR_NULL(rd))
3602 return -ENODATA;
3603
3604 if (!reg_is_valid_request(rd->alpha2)) {
3605 kfree(rd);
3606 return -EINVAL;
3607 }
3608
3609 if (regd_src == REGD_SOURCE_CRDA)
3610 reset_crda_timeouts();
3611
3612 lr = get_last_request();
3613
3614 /* Note that this doesn't update the wiphys, this is done below */
3615 switch (lr->initiator) {
3616 case NL80211_REGDOM_SET_BY_CORE:
3617 r = reg_set_rd_core(rd);
3618 break;
3619 case NL80211_REGDOM_SET_BY_USER:
3620 cfg80211_save_user_regdom(rd);
3621 r = reg_set_rd_user(rd, lr);
3622 user_reset = true;
3623 break;
3624 case NL80211_REGDOM_SET_BY_DRIVER:
3625 r = reg_set_rd_driver(rd, lr);
3626 break;
3627 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3628 r = reg_set_rd_country_ie(rd, lr);
3629 break;
3630 default:
3631 WARN(1, "invalid initiator %d\n", lr->initiator);
3632 kfree(rd);
3633 return -EINVAL;
3634 }
3635
3636 if (r) {
3637 switch (r) {
3638 case -EALREADY:
3639 reg_set_request_processed();
3640 break;
3641 default:
3642 /* Back to world regulatory in case of errors */
3643 restore_regulatory_settings(user_reset, false);
3644 }
3645
3646 kfree(rd);
3647 return r;
3648 }
3649
3650 /* This would make this whole thing pointless */
3651 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3652 return -EINVAL;
3653
3654 /* update all wiphys now with the new established regulatory domain */
3655 update_all_wiphy_regulatory(lr->initiator);
3656
3657 print_regdomain(get_cfg80211_regdom());
3658
3659 nl80211_send_reg_change_event(lr);
3660
3661 reg_set_request_processed();
3662
3663 return 0;
3664}
3665
3666static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3667 struct ieee80211_regdomain *rd)
3668{
3669 const struct ieee80211_regdomain *regd;
3670 const struct ieee80211_regdomain *prev_regd;
3671 struct cfg80211_registered_device *rdev;
3672
3673 if (WARN_ON(!wiphy || !rd))
3674 return -EINVAL;
3675
3676 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3677 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3678 return -EPERM;
3679
3680 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3681 print_regdomain_info(rd);
3682 return -EINVAL;
3683 }
3684
3685 regd = reg_copy_regd(rd);
3686 if (IS_ERR(regd))
3687 return PTR_ERR(regd);
3688
3689 rdev = wiphy_to_rdev(wiphy);
3690
3691 spin_lock(®_requests_lock);
3692 prev_regd = rdev->requested_regd;
3693 rdev->requested_regd = regd;
3694 spin_unlock(®_requests_lock);
3695
3696 kfree(prev_regd);
3697 return 0;
3698}
3699
3700int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3701 struct ieee80211_regdomain *rd)
3702{
3703 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3704
3705 if (ret)
3706 return ret;
3707
3708 schedule_work(®_work);
3709 return 0;
3710}
3711EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3712
3713int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3714 struct ieee80211_regdomain *rd)
3715{
3716 int ret;
3717
3718 ASSERT_RTNL();
3719
3720 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3721 if (ret)
3722 return ret;
3723
3724 /* process the request immediately */
3725 reg_process_self_managed_hints();
3726 return 0;
3727}
3728EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3729
3730void wiphy_regulatory_register(struct wiphy *wiphy)
3731{
3732 struct regulatory_request *lr = get_last_request();
3733
3734 /* self-managed devices ignore beacon hints and country IE */
3735 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3736 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3737 REGULATORY_COUNTRY_IE_IGNORE;
3738
3739 /*
3740 * The last request may have been received before this
3741 * registration call. Call the driver notifier if
3742 * initiator is USER and user type is CELL_BASE.
3743 */
3744 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
3745 lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE)
3746 reg_call_notifier(wiphy, lr);
3747 }
3748
3749 if (!reg_dev_ignore_cell_hint(wiphy))
3750 reg_num_devs_support_basehint++;
3751
3752 wiphy_update_regulatory(wiphy, lr->initiator);
3753 wiphy_all_share_dfs_chan_state(wiphy);
3754}
3755
3756void wiphy_regulatory_deregister(struct wiphy *wiphy)
3757{
3758 struct wiphy *request_wiphy = NULL;
3759 struct regulatory_request *lr;
3760
3761 lr = get_last_request();
3762
3763 if (!reg_dev_ignore_cell_hint(wiphy))
3764 reg_num_devs_support_basehint--;
3765
3766 rcu_free_regdom(get_wiphy_regdom(wiphy));
3767 RCU_INIT_POINTER(wiphy->regd, NULL);
3768
3769 if (lr)
3770 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3771
3772 if (!request_wiphy || request_wiphy != wiphy)
3773 return;
3774
3775 lr->wiphy_idx = WIPHY_IDX_INVALID;
3776 lr->country_ie_env = ENVIRON_ANY;
3777}
3778
3779/*
3780 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3781 * UNII band definitions
3782 */
3783int cfg80211_get_unii(int freq)
3784{
3785 /* UNII-1 */
3786 if (freq >= 5150 && freq <= 5250)
3787 return 0;
3788
3789 /* UNII-2A */
3790 if (freq > 5250 && freq <= 5350)
3791 return 1;
3792
3793 /* UNII-2B */
3794 if (freq > 5350 && freq <= 5470)
3795 return 2;
3796
3797 /* UNII-2C */
3798 if (freq > 5470 && freq <= 5725)
3799 return 3;
3800
3801 /* UNII-3 */
3802 if (freq > 5725 && freq <= 5825)
3803 return 4;
3804
3805 return -EINVAL;
3806}
3807
3808bool regulatory_indoor_allowed(void)
3809{
3810 return reg_is_indoor;
3811}
3812
3813bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3814{
3815 const struct ieee80211_regdomain *regd = NULL;
3816 const struct ieee80211_regdomain *wiphy_regd = NULL;
3817 bool pre_cac_allowed = false;
3818
3819 rcu_read_lock();
3820
3821 regd = rcu_dereference(cfg80211_regdomain);
3822 wiphy_regd = rcu_dereference(wiphy->regd);
3823 if (!wiphy_regd) {
3824 if (regd->dfs_region == NL80211_DFS_ETSI)
3825 pre_cac_allowed = true;
3826
3827 rcu_read_unlock();
3828
3829 return pre_cac_allowed;
3830 }
3831
3832 if (regd->dfs_region == wiphy_regd->dfs_region &&
3833 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3834 pre_cac_allowed = true;
3835
3836 rcu_read_unlock();
3837
3838 return pre_cac_allowed;
3839}
3840
3841void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3842 struct cfg80211_chan_def *chandef,
3843 enum nl80211_dfs_state dfs_state,
3844 enum nl80211_radar_event event)
3845{
3846 struct cfg80211_registered_device *rdev;
3847
3848 ASSERT_RTNL();
3849
3850 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3851 return;
3852
3853 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3854 if (wiphy == &rdev->wiphy)
3855 continue;
3856
3857 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3858 continue;
3859
3860 if (!ieee80211_get_channel(&rdev->wiphy,
3861 chandef->chan->center_freq))
3862 continue;
3863
3864 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3865
3866 if (event == NL80211_RADAR_DETECTED ||
3867 event == NL80211_RADAR_CAC_FINISHED)
3868 cfg80211_sched_dfs_chan_update(rdev);
3869
3870 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3871 }
3872}
3873
3874static int __init regulatory_init_db(void)
3875{
3876 int err;
3877
3878 /*
3879 * It's possible that - due to other bugs/issues - cfg80211
3880 * never called regulatory_init() below, or that it failed;
3881 * in that case, don't try to do any further work here as
3882 * it's doomed to lead to crashes.
3883 */
3884 if (IS_ERR_OR_NULL(reg_pdev))
3885 return -EINVAL;
3886
3887 err = load_builtin_regdb_keys();
3888 if (err)
3889 return err;
3890
3891 /* We always try to get an update for the static regdomain */
3892 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3893 if (err) {
3894 if (err == -ENOMEM) {
3895 platform_device_unregister(reg_pdev);
3896 return err;
3897 }
3898 /*
3899 * N.B. kobject_uevent_env() can fail mainly for when we're out
3900 * memory which is handled and propagated appropriately above
3901 * but it can also fail during a netlink_broadcast() or during
3902 * early boot for call_usermodehelper(). For now treat these
3903 * errors as non-fatal.
3904 */
3905 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3906 }
3907
3908 /*
3909 * Finally, if the user set the module parameter treat it
3910 * as a user hint.
3911 */
3912 if (!is_world_regdom(ieee80211_regdom))
3913 regulatory_hint_user(ieee80211_regdom,
3914 NL80211_USER_REG_HINT_USER);
3915
3916 return 0;
3917}
3918#ifndef MODULE
3919late_initcall(regulatory_init_db);
3920#endif
3921
3922int __init regulatory_init(void)
3923{
3924 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3925 if (IS_ERR(reg_pdev))
3926 return PTR_ERR(reg_pdev);
3927
3928 spin_lock_init(®_requests_lock);
3929 spin_lock_init(®_pending_beacons_lock);
3930 spin_lock_init(®_indoor_lock);
3931
3932 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3933
3934 user_alpha2[0] = '9';
3935 user_alpha2[1] = '7';
3936
3937#ifdef MODULE
3938 return regulatory_init_db();
3939#else
3940 return 0;
3941#endif
3942}
3943
3944void regulatory_exit(void)
3945{
3946 struct regulatory_request *reg_request, *tmp;
3947 struct reg_beacon *reg_beacon, *btmp;
3948
3949 cancel_work_sync(®_work);
3950 cancel_crda_timeout_sync();
3951 cancel_delayed_work_sync(®_check_chans);
3952
3953 /* Lock to suppress warnings */
3954 rtnl_lock();
3955 reset_regdomains(true, NULL);
3956 rtnl_unlock();
3957
3958 dev_set_uevent_suppress(®_pdev->dev, true);
3959
3960 platform_device_unregister(reg_pdev);
3961
3962 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3963 list_del(®_beacon->list);
3964 kfree(reg_beacon);
3965 }
3966
3967 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3968 list_del(®_beacon->list);
3969 kfree(reg_beacon);
3970 }
3971
3972 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
3973 list_del(®_request->list);
3974 kfree(reg_request);
3975 }
3976
3977 if (!IS_ERR_OR_NULL(regdb))
3978 kfree(regdb);
3979 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
3980 kfree(cfg80211_user_regdom);
3981
3982 free_regdb_keyring();
3983}