Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <linux/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/sched/mm.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/skbuff.h>
97#include <linux/bpf.h>
98#include <linux/bpf_trace.h>
99#include <net/net_namespace.h>
100#include <net/sock.h>
101#include <net/busy_poll.h>
102#include <linux/rtnetlink.h>
103#include <linux/stat.h>
104#include <net/dst.h>
105#include <net/dst_metadata.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <linux/pci.h>
135#include <linux/inetdevice.h>
136#include <linux/cpu_rmap.h>
137#include <linux/static_key.h>
138#include <linux/hashtable.h>
139#include <linux/vmalloc.h>
140#include <linux/if_macvlan.h>
141#include <linux/errqueue.h>
142#include <linux/hrtimer.h>
143#include <linux/netfilter_ingress.h>
144#include <linux/crash_dump.h>
145#include <linux/sctp.h>
146#include <net/udp_tunnel.h>
147#include <linux/net_namespace.h>
148#include <linux/indirect_call_wrapper.h>
149
150#include "net-sysfs.h"
151
152#define MAX_GRO_SKBS 8
153
154/* This should be increased if a protocol with a bigger head is added. */
155#define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157static DEFINE_SPINLOCK(ptype_lock);
158static DEFINE_SPINLOCK(offload_lock);
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
161static struct list_head offload_base __read_mostly;
162
163static int netif_rx_internal(struct sk_buff *skb);
164static int call_netdevice_notifiers_info(unsigned long val,
165 struct netdev_notifier_info *info);
166static int call_netdevice_notifiers_extack(unsigned long val,
167 struct net_device *dev,
168 struct netlink_ext_ack *extack);
169static struct napi_struct *napi_by_id(unsigned int napi_id);
170
171/*
172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173 * semaphore.
174 *
175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176 *
177 * Writers must hold the rtnl semaphore while they loop through the
178 * dev_base_head list, and hold dev_base_lock for writing when they do the
179 * actual updates. This allows pure readers to access the list even
180 * while a writer is preparing to update it.
181 *
182 * To put it another way, dev_base_lock is held for writing only to
183 * protect against pure readers; the rtnl semaphore provides the
184 * protection against other writers.
185 *
186 * See, for example usages, register_netdevice() and
187 * unregister_netdevice(), which must be called with the rtnl
188 * semaphore held.
189 */
190DEFINE_RWLOCK(dev_base_lock);
191EXPORT_SYMBOL(dev_base_lock);
192
193static DEFINE_MUTEX(ifalias_mutex);
194
195/* protects napi_hash addition/deletion and napi_gen_id */
196static DEFINE_SPINLOCK(napi_hash_lock);
197
198static unsigned int napi_gen_id = NR_CPUS;
199static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200
201static seqcount_t devnet_rename_seq;
202
203static inline void dev_base_seq_inc(struct net *net)
204{
205 while (++net->dev_base_seq == 0)
206 ;
207}
208
209static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210{
211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214}
215
216static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217{
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219}
220
221static inline void rps_lock(struct softnet_data *sd)
222{
223#ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225#endif
226}
227
228static inline void rps_unlock(struct softnet_data *sd)
229{
230#ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232#endif
233}
234
235/* Device list insertion */
236static void list_netdevice(struct net_device *dev)
237{
238 struct net *net = dev_net(dev);
239
240 ASSERT_RTNL();
241
242 write_lock_bh(&dev_base_lock);
243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
247 write_unlock_bh(&dev_base_lock);
248
249 dev_base_seq_inc(net);
250}
251
252/* Device list removal
253 * caller must respect a RCU grace period before freeing/reusing dev
254 */
255static void unlist_netdevice(struct net_device *dev)
256{
257 ASSERT_RTNL();
258
259 /* Unlink dev from the device chain */
260 write_lock_bh(&dev_base_lock);
261 list_del_rcu(&dev->dev_list);
262 hlist_del_rcu(&dev->name_hlist);
263 hlist_del_rcu(&dev->index_hlist);
264 write_unlock_bh(&dev_base_lock);
265
266 dev_base_seq_inc(dev_net(dev));
267}
268
269/*
270 * Our notifier list
271 */
272
273static RAW_NOTIFIER_HEAD(netdev_chain);
274
275/*
276 * Device drivers call our routines to queue packets here. We empty the
277 * queue in the local softnet handler.
278 */
279
280DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
281EXPORT_PER_CPU_SYMBOL(softnet_data);
282
283#ifdef CONFIG_LOCKDEP
284/*
285 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
286 * according to dev->type
287 */
288static const unsigned short netdev_lock_type[] = {
289 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
290 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
291 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
292 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
293 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
294 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
295 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
296 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
297 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
298 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
299 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
300 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
301 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
302 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
303 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
304
305static const char *const netdev_lock_name[] = {
306 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
307 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
308 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
309 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
310 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
311 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
312 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
313 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
314 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
315 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
316 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
317 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
318 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
319 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
320 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
321
322static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
323static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
324
325static inline unsigned short netdev_lock_pos(unsigned short dev_type)
326{
327 int i;
328
329 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
330 if (netdev_lock_type[i] == dev_type)
331 return i;
332 /* the last key is used by default */
333 return ARRAY_SIZE(netdev_lock_type) - 1;
334}
335
336static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
337 unsigned short dev_type)
338{
339 int i;
340
341 i = netdev_lock_pos(dev_type);
342 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
343 netdev_lock_name[i]);
344}
345
346static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347{
348 int i;
349
350 i = netdev_lock_pos(dev->type);
351 lockdep_set_class_and_name(&dev->addr_list_lock,
352 &netdev_addr_lock_key[i],
353 netdev_lock_name[i]);
354}
355#else
356static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
357 unsigned short dev_type)
358{
359}
360static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
361{
362}
363#endif
364
365/*******************************************************************************
366 *
367 * Protocol management and registration routines
368 *
369 *******************************************************************************/
370
371
372/*
373 * Add a protocol ID to the list. Now that the input handler is
374 * smarter we can dispense with all the messy stuff that used to be
375 * here.
376 *
377 * BEWARE!!! Protocol handlers, mangling input packets,
378 * MUST BE last in hash buckets and checking protocol handlers
379 * MUST start from promiscuous ptype_all chain in net_bh.
380 * It is true now, do not change it.
381 * Explanation follows: if protocol handler, mangling packet, will
382 * be the first on list, it is not able to sense, that packet
383 * is cloned and should be copied-on-write, so that it will
384 * change it and subsequent readers will get broken packet.
385 * --ANK (980803)
386 */
387
388static inline struct list_head *ptype_head(const struct packet_type *pt)
389{
390 if (pt->type == htons(ETH_P_ALL))
391 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
392 else
393 return pt->dev ? &pt->dev->ptype_specific :
394 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395}
396
397/**
398 * dev_add_pack - add packet handler
399 * @pt: packet type declaration
400 *
401 * Add a protocol handler to the networking stack. The passed &packet_type
402 * is linked into kernel lists and may not be freed until it has been
403 * removed from the kernel lists.
404 *
405 * This call does not sleep therefore it can not
406 * guarantee all CPU's that are in middle of receiving packets
407 * will see the new packet type (until the next received packet).
408 */
409
410void dev_add_pack(struct packet_type *pt)
411{
412 struct list_head *head = ptype_head(pt);
413
414 spin_lock(&ptype_lock);
415 list_add_rcu(&pt->list, head);
416 spin_unlock(&ptype_lock);
417}
418EXPORT_SYMBOL(dev_add_pack);
419
420/**
421 * __dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * The packet type might still be in use by receivers
430 * and must not be freed until after all the CPU's have gone
431 * through a quiescent state.
432 */
433void __dev_remove_pack(struct packet_type *pt)
434{
435 struct list_head *head = ptype_head(pt);
436 struct packet_type *pt1;
437
438 spin_lock(&ptype_lock);
439
440 list_for_each_entry(pt1, head, list) {
441 if (pt == pt1) {
442 list_del_rcu(&pt->list);
443 goto out;
444 }
445 }
446
447 pr_warn("dev_remove_pack: %p not found\n", pt);
448out:
449 spin_unlock(&ptype_lock);
450}
451EXPORT_SYMBOL(__dev_remove_pack);
452
453/**
454 * dev_remove_pack - remove packet handler
455 * @pt: packet type declaration
456 *
457 * Remove a protocol handler that was previously added to the kernel
458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
459 * from the kernel lists and can be freed or reused once this function
460 * returns.
461 *
462 * This call sleeps to guarantee that no CPU is looking at the packet
463 * type after return.
464 */
465void dev_remove_pack(struct packet_type *pt)
466{
467 __dev_remove_pack(pt);
468
469 synchronize_net();
470}
471EXPORT_SYMBOL(dev_remove_pack);
472
473
474/**
475 * dev_add_offload - register offload handlers
476 * @po: protocol offload declaration
477 *
478 * Add protocol offload handlers to the networking stack. The passed
479 * &proto_offload is linked into kernel lists and may not be freed until
480 * it has been removed from the kernel lists.
481 *
482 * This call does not sleep therefore it can not
483 * guarantee all CPU's that are in middle of receiving packets
484 * will see the new offload handlers (until the next received packet).
485 */
486void dev_add_offload(struct packet_offload *po)
487{
488 struct packet_offload *elem;
489
490 spin_lock(&offload_lock);
491 list_for_each_entry(elem, &offload_base, list) {
492 if (po->priority < elem->priority)
493 break;
494 }
495 list_add_rcu(&po->list, elem->list.prev);
496 spin_unlock(&offload_lock);
497}
498EXPORT_SYMBOL(dev_add_offload);
499
500/**
501 * __dev_remove_offload - remove offload handler
502 * @po: packet offload declaration
503 *
504 * Remove a protocol offload handler that was previously added to the
505 * kernel offload handlers by dev_add_offload(). The passed &offload_type
506 * is removed from the kernel lists and can be freed or reused once this
507 * function returns.
508 *
509 * The packet type might still be in use by receivers
510 * and must not be freed until after all the CPU's have gone
511 * through a quiescent state.
512 */
513static void __dev_remove_offload(struct packet_offload *po)
514{
515 struct list_head *head = &offload_base;
516 struct packet_offload *po1;
517
518 spin_lock(&offload_lock);
519
520 list_for_each_entry(po1, head, list) {
521 if (po == po1) {
522 list_del_rcu(&po->list);
523 goto out;
524 }
525 }
526
527 pr_warn("dev_remove_offload: %p not found\n", po);
528out:
529 spin_unlock(&offload_lock);
530}
531
532/**
533 * dev_remove_offload - remove packet offload handler
534 * @po: packet offload declaration
535 *
536 * Remove a packet offload handler that was previously added to the kernel
537 * offload handlers by dev_add_offload(). The passed &offload_type is
538 * removed from the kernel lists and can be freed or reused once this
539 * function returns.
540 *
541 * This call sleeps to guarantee that no CPU is looking at the packet
542 * type after return.
543 */
544void dev_remove_offload(struct packet_offload *po)
545{
546 __dev_remove_offload(po);
547
548 synchronize_net();
549}
550EXPORT_SYMBOL(dev_remove_offload);
551
552/******************************************************************************
553 *
554 * Device Boot-time Settings Routines
555 *
556 ******************************************************************************/
557
558/* Boot time configuration table */
559static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
560
561/**
562 * netdev_boot_setup_add - add new setup entry
563 * @name: name of the device
564 * @map: configured settings for the device
565 *
566 * Adds new setup entry to the dev_boot_setup list. The function
567 * returns 0 on error and 1 on success. This is a generic routine to
568 * all netdevices.
569 */
570static int netdev_boot_setup_add(char *name, struct ifmap *map)
571{
572 struct netdev_boot_setup *s;
573 int i;
574
575 s = dev_boot_setup;
576 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
577 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
578 memset(s[i].name, 0, sizeof(s[i].name));
579 strlcpy(s[i].name, name, IFNAMSIZ);
580 memcpy(&s[i].map, map, sizeof(s[i].map));
581 break;
582 }
583 }
584
585 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
586}
587
588/**
589 * netdev_boot_setup_check - check boot time settings
590 * @dev: the netdevice
591 *
592 * Check boot time settings for the device.
593 * The found settings are set for the device to be used
594 * later in the device probing.
595 * Returns 0 if no settings found, 1 if they are.
596 */
597int netdev_boot_setup_check(struct net_device *dev)
598{
599 struct netdev_boot_setup *s = dev_boot_setup;
600 int i;
601
602 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
603 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
604 !strcmp(dev->name, s[i].name)) {
605 dev->irq = s[i].map.irq;
606 dev->base_addr = s[i].map.base_addr;
607 dev->mem_start = s[i].map.mem_start;
608 dev->mem_end = s[i].map.mem_end;
609 return 1;
610 }
611 }
612 return 0;
613}
614EXPORT_SYMBOL(netdev_boot_setup_check);
615
616
617/**
618 * netdev_boot_base - get address from boot time settings
619 * @prefix: prefix for network device
620 * @unit: id for network device
621 *
622 * Check boot time settings for the base address of device.
623 * The found settings are set for the device to be used
624 * later in the device probing.
625 * Returns 0 if no settings found.
626 */
627unsigned long netdev_boot_base(const char *prefix, int unit)
628{
629 const struct netdev_boot_setup *s = dev_boot_setup;
630 char name[IFNAMSIZ];
631 int i;
632
633 sprintf(name, "%s%d", prefix, unit);
634
635 /*
636 * If device already registered then return base of 1
637 * to indicate not to probe for this interface
638 */
639 if (__dev_get_by_name(&init_net, name))
640 return 1;
641
642 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
643 if (!strcmp(name, s[i].name))
644 return s[i].map.base_addr;
645 return 0;
646}
647
648/*
649 * Saves at boot time configured settings for any netdevice.
650 */
651int __init netdev_boot_setup(char *str)
652{
653 int ints[5];
654 struct ifmap map;
655
656 str = get_options(str, ARRAY_SIZE(ints), ints);
657 if (!str || !*str)
658 return 0;
659
660 /* Save settings */
661 memset(&map, 0, sizeof(map));
662 if (ints[0] > 0)
663 map.irq = ints[1];
664 if (ints[0] > 1)
665 map.base_addr = ints[2];
666 if (ints[0] > 2)
667 map.mem_start = ints[3];
668 if (ints[0] > 3)
669 map.mem_end = ints[4];
670
671 /* Add new entry to the list */
672 return netdev_boot_setup_add(str, &map);
673}
674
675__setup("netdev=", netdev_boot_setup);
676
677/*******************************************************************************
678 *
679 * Device Interface Subroutines
680 *
681 *******************************************************************************/
682
683/**
684 * dev_get_iflink - get 'iflink' value of a interface
685 * @dev: targeted interface
686 *
687 * Indicates the ifindex the interface is linked to.
688 * Physical interfaces have the same 'ifindex' and 'iflink' values.
689 */
690
691int dev_get_iflink(const struct net_device *dev)
692{
693 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
694 return dev->netdev_ops->ndo_get_iflink(dev);
695
696 return dev->ifindex;
697}
698EXPORT_SYMBOL(dev_get_iflink);
699
700/**
701 * dev_fill_metadata_dst - Retrieve tunnel egress information.
702 * @dev: targeted interface
703 * @skb: The packet.
704 *
705 * For better visibility of tunnel traffic OVS needs to retrieve
706 * egress tunnel information for a packet. Following API allows
707 * user to get this info.
708 */
709int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
710{
711 struct ip_tunnel_info *info;
712
713 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
714 return -EINVAL;
715
716 info = skb_tunnel_info_unclone(skb);
717 if (!info)
718 return -ENOMEM;
719 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
720 return -EINVAL;
721
722 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
723}
724EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
725
726/**
727 * __dev_get_by_name - find a device by its name
728 * @net: the applicable net namespace
729 * @name: name to find
730 *
731 * Find an interface by name. Must be called under RTNL semaphore
732 * or @dev_base_lock. If the name is found a pointer to the device
733 * is returned. If the name is not found then %NULL is returned. The
734 * reference counters are not incremented so the caller must be
735 * careful with locks.
736 */
737
738struct net_device *__dev_get_by_name(struct net *net, const char *name)
739{
740 struct net_device *dev;
741 struct hlist_head *head = dev_name_hash(net, name);
742
743 hlist_for_each_entry(dev, head, name_hlist)
744 if (!strncmp(dev->name, name, IFNAMSIZ))
745 return dev;
746
747 return NULL;
748}
749EXPORT_SYMBOL(__dev_get_by_name);
750
751/**
752 * dev_get_by_name_rcu - find a device by its name
753 * @net: the applicable net namespace
754 * @name: name to find
755 *
756 * Find an interface by name.
757 * If the name is found a pointer to the device is returned.
758 * If the name is not found then %NULL is returned.
759 * The reference counters are not incremented so the caller must be
760 * careful with locks. The caller must hold RCU lock.
761 */
762
763struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
764{
765 struct net_device *dev;
766 struct hlist_head *head = dev_name_hash(net, name);
767
768 hlist_for_each_entry_rcu(dev, head, name_hlist)
769 if (!strncmp(dev->name, name, IFNAMSIZ))
770 return dev;
771
772 return NULL;
773}
774EXPORT_SYMBOL(dev_get_by_name_rcu);
775
776/**
777 * dev_get_by_name - find a device by its name
778 * @net: the applicable net namespace
779 * @name: name to find
780 *
781 * Find an interface by name. This can be called from any
782 * context and does its own locking. The returned handle has
783 * the usage count incremented and the caller must use dev_put() to
784 * release it when it is no longer needed. %NULL is returned if no
785 * matching device is found.
786 */
787
788struct net_device *dev_get_by_name(struct net *net, const char *name)
789{
790 struct net_device *dev;
791
792 rcu_read_lock();
793 dev = dev_get_by_name_rcu(net, name);
794 if (dev)
795 dev_hold(dev);
796 rcu_read_unlock();
797 return dev;
798}
799EXPORT_SYMBOL(dev_get_by_name);
800
801/**
802 * __dev_get_by_index - find a device by its ifindex
803 * @net: the applicable net namespace
804 * @ifindex: index of device
805 *
806 * Search for an interface by index. Returns %NULL if the device
807 * is not found or a pointer to the device. The device has not
808 * had its reference counter increased so the caller must be careful
809 * about locking. The caller must hold either the RTNL semaphore
810 * or @dev_base_lock.
811 */
812
813struct net_device *__dev_get_by_index(struct net *net, int ifindex)
814{
815 struct net_device *dev;
816 struct hlist_head *head = dev_index_hash(net, ifindex);
817
818 hlist_for_each_entry(dev, head, index_hlist)
819 if (dev->ifindex == ifindex)
820 return dev;
821
822 return NULL;
823}
824EXPORT_SYMBOL(__dev_get_by_index);
825
826/**
827 * dev_get_by_index_rcu - find a device by its ifindex
828 * @net: the applicable net namespace
829 * @ifindex: index of device
830 *
831 * Search for an interface by index. Returns %NULL if the device
832 * is not found or a pointer to the device. The device has not
833 * had its reference counter increased so the caller must be careful
834 * about locking. The caller must hold RCU lock.
835 */
836
837struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
838{
839 struct net_device *dev;
840 struct hlist_head *head = dev_index_hash(net, ifindex);
841
842 hlist_for_each_entry_rcu(dev, head, index_hlist)
843 if (dev->ifindex == ifindex)
844 return dev;
845
846 return NULL;
847}
848EXPORT_SYMBOL(dev_get_by_index_rcu);
849
850
851/**
852 * dev_get_by_index - find a device by its ifindex
853 * @net: the applicable net namespace
854 * @ifindex: index of device
855 *
856 * Search for an interface by index. Returns NULL if the device
857 * is not found or a pointer to the device. The device returned has
858 * had a reference added and the pointer is safe until the user calls
859 * dev_put to indicate they have finished with it.
860 */
861
862struct net_device *dev_get_by_index(struct net *net, int ifindex)
863{
864 struct net_device *dev;
865
866 rcu_read_lock();
867 dev = dev_get_by_index_rcu(net, ifindex);
868 if (dev)
869 dev_hold(dev);
870 rcu_read_unlock();
871 return dev;
872}
873EXPORT_SYMBOL(dev_get_by_index);
874
875/**
876 * dev_get_by_napi_id - find a device by napi_id
877 * @napi_id: ID of the NAPI struct
878 *
879 * Search for an interface by NAPI ID. Returns %NULL if the device
880 * is not found or a pointer to the device. The device has not had
881 * its reference counter increased so the caller must be careful
882 * about locking. The caller must hold RCU lock.
883 */
884
885struct net_device *dev_get_by_napi_id(unsigned int napi_id)
886{
887 struct napi_struct *napi;
888
889 WARN_ON_ONCE(!rcu_read_lock_held());
890
891 if (napi_id < MIN_NAPI_ID)
892 return NULL;
893
894 napi = napi_by_id(napi_id);
895
896 return napi ? napi->dev : NULL;
897}
898EXPORT_SYMBOL(dev_get_by_napi_id);
899
900/**
901 * netdev_get_name - get a netdevice name, knowing its ifindex.
902 * @net: network namespace
903 * @name: a pointer to the buffer where the name will be stored.
904 * @ifindex: the ifindex of the interface to get the name from.
905 *
906 * The use of raw_seqcount_begin() and cond_resched() before
907 * retrying is required as we want to give the writers a chance
908 * to complete when CONFIG_PREEMPT is not set.
909 */
910int netdev_get_name(struct net *net, char *name, int ifindex)
911{
912 struct net_device *dev;
913 unsigned int seq;
914
915retry:
916 seq = raw_seqcount_begin(&devnet_rename_seq);
917 rcu_read_lock();
918 dev = dev_get_by_index_rcu(net, ifindex);
919 if (!dev) {
920 rcu_read_unlock();
921 return -ENODEV;
922 }
923
924 strcpy(name, dev->name);
925 rcu_read_unlock();
926 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
927 cond_resched();
928 goto retry;
929 }
930
931 return 0;
932}
933
934/**
935 * dev_getbyhwaddr_rcu - find a device by its hardware address
936 * @net: the applicable net namespace
937 * @type: media type of device
938 * @ha: hardware address
939 *
940 * Search for an interface by MAC address. Returns NULL if the device
941 * is not found or a pointer to the device.
942 * The caller must hold RCU or RTNL.
943 * The returned device has not had its ref count increased
944 * and the caller must therefore be careful about locking
945 *
946 */
947
948struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
949 const char *ha)
950{
951 struct net_device *dev;
952
953 for_each_netdev_rcu(net, dev)
954 if (dev->type == type &&
955 !memcmp(dev->dev_addr, ha, dev->addr_len))
956 return dev;
957
958 return NULL;
959}
960EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
961
962struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
963{
964 struct net_device *dev;
965
966 ASSERT_RTNL();
967 for_each_netdev(net, dev)
968 if (dev->type == type)
969 return dev;
970
971 return NULL;
972}
973EXPORT_SYMBOL(__dev_getfirstbyhwtype);
974
975struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
976{
977 struct net_device *dev, *ret = NULL;
978
979 rcu_read_lock();
980 for_each_netdev_rcu(net, dev)
981 if (dev->type == type) {
982 dev_hold(dev);
983 ret = dev;
984 break;
985 }
986 rcu_read_unlock();
987 return ret;
988}
989EXPORT_SYMBOL(dev_getfirstbyhwtype);
990
991/**
992 * __dev_get_by_flags - find any device with given flags
993 * @net: the applicable net namespace
994 * @if_flags: IFF_* values
995 * @mask: bitmask of bits in if_flags to check
996 *
997 * Search for any interface with the given flags. Returns NULL if a device
998 * is not found or a pointer to the device. Must be called inside
999 * rtnl_lock(), and result refcount is unchanged.
1000 */
1001
1002struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1003 unsigned short mask)
1004{
1005 struct net_device *dev, *ret;
1006
1007 ASSERT_RTNL();
1008
1009 ret = NULL;
1010 for_each_netdev(net, dev) {
1011 if (((dev->flags ^ if_flags) & mask) == 0) {
1012 ret = dev;
1013 break;
1014 }
1015 }
1016 return ret;
1017}
1018EXPORT_SYMBOL(__dev_get_by_flags);
1019
1020/**
1021 * dev_valid_name - check if name is okay for network device
1022 * @name: name string
1023 *
1024 * Network device names need to be valid file names to
1025 * to allow sysfs to work. We also disallow any kind of
1026 * whitespace.
1027 */
1028bool dev_valid_name(const char *name)
1029{
1030 if (*name == '\0')
1031 return false;
1032 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1033 return false;
1034 if (!strcmp(name, ".") || !strcmp(name, ".."))
1035 return false;
1036
1037 while (*name) {
1038 if (*name == '/' || *name == ':' || isspace(*name))
1039 return false;
1040 name++;
1041 }
1042 return true;
1043}
1044EXPORT_SYMBOL(dev_valid_name);
1045
1046/**
1047 * __dev_alloc_name - allocate a name for a device
1048 * @net: network namespace to allocate the device name in
1049 * @name: name format string
1050 * @buf: scratch buffer and result name string
1051 *
1052 * Passed a format string - eg "lt%d" it will try and find a suitable
1053 * id. It scans list of devices to build up a free map, then chooses
1054 * the first empty slot. The caller must hold the dev_base or rtnl lock
1055 * while allocating the name and adding the device in order to avoid
1056 * duplicates.
1057 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1058 * Returns the number of the unit assigned or a negative errno code.
1059 */
1060
1061static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1062{
1063 int i = 0;
1064 const char *p;
1065 const int max_netdevices = 8*PAGE_SIZE;
1066 unsigned long *inuse;
1067 struct net_device *d;
1068
1069 if (!dev_valid_name(name))
1070 return -EINVAL;
1071
1072 p = strchr(name, '%');
1073 if (p) {
1074 /*
1075 * Verify the string as this thing may have come from
1076 * the user. There must be either one "%d" and no other "%"
1077 * characters.
1078 */
1079 if (p[1] != 'd' || strchr(p + 2, '%'))
1080 return -EINVAL;
1081
1082 /* Use one page as a bit array of possible slots */
1083 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1084 if (!inuse)
1085 return -ENOMEM;
1086
1087 for_each_netdev(net, d) {
1088 if (!sscanf(d->name, name, &i))
1089 continue;
1090 if (i < 0 || i >= max_netdevices)
1091 continue;
1092
1093 /* avoid cases where sscanf is not exact inverse of printf */
1094 snprintf(buf, IFNAMSIZ, name, i);
1095 if (!strncmp(buf, d->name, IFNAMSIZ))
1096 set_bit(i, inuse);
1097 }
1098
1099 i = find_first_zero_bit(inuse, max_netdevices);
1100 free_page((unsigned long) inuse);
1101 }
1102
1103 snprintf(buf, IFNAMSIZ, name, i);
1104 if (!__dev_get_by_name(net, buf))
1105 return i;
1106
1107 /* It is possible to run out of possible slots
1108 * when the name is long and there isn't enough space left
1109 * for the digits, or if all bits are used.
1110 */
1111 return -ENFILE;
1112}
1113
1114static int dev_alloc_name_ns(struct net *net,
1115 struct net_device *dev,
1116 const char *name)
1117{
1118 char buf[IFNAMSIZ];
1119 int ret;
1120
1121 BUG_ON(!net);
1122 ret = __dev_alloc_name(net, name, buf);
1123 if (ret >= 0)
1124 strlcpy(dev->name, buf, IFNAMSIZ);
1125 return ret;
1126}
1127
1128/**
1129 * dev_alloc_name - allocate a name for a device
1130 * @dev: device
1131 * @name: name format string
1132 *
1133 * Passed a format string - eg "lt%d" it will try and find a suitable
1134 * id. It scans list of devices to build up a free map, then chooses
1135 * the first empty slot. The caller must hold the dev_base or rtnl lock
1136 * while allocating the name and adding the device in order to avoid
1137 * duplicates.
1138 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1139 * Returns the number of the unit assigned or a negative errno code.
1140 */
1141
1142int dev_alloc_name(struct net_device *dev, const char *name)
1143{
1144 return dev_alloc_name_ns(dev_net(dev), dev, name);
1145}
1146EXPORT_SYMBOL(dev_alloc_name);
1147
1148int dev_get_valid_name(struct net *net, struct net_device *dev,
1149 const char *name)
1150{
1151 BUG_ON(!net);
1152
1153 if (!dev_valid_name(name))
1154 return -EINVAL;
1155
1156 if (strchr(name, '%'))
1157 return dev_alloc_name_ns(net, dev, name);
1158 else if (__dev_get_by_name(net, name))
1159 return -EEXIST;
1160 else if (dev->name != name)
1161 strlcpy(dev->name, name, IFNAMSIZ);
1162
1163 return 0;
1164}
1165EXPORT_SYMBOL(dev_get_valid_name);
1166
1167/**
1168 * dev_change_name - change name of a device
1169 * @dev: device
1170 * @newname: name (or format string) must be at least IFNAMSIZ
1171 *
1172 * Change name of a device, can pass format strings "eth%d".
1173 * for wildcarding.
1174 */
1175int dev_change_name(struct net_device *dev, const char *newname)
1176{
1177 unsigned char old_assign_type;
1178 char oldname[IFNAMSIZ];
1179 int err = 0;
1180 int ret;
1181 struct net *net;
1182
1183 ASSERT_RTNL();
1184 BUG_ON(!dev_net(dev));
1185
1186 net = dev_net(dev);
1187 if (dev->flags & IFF_UP)
1188 return -EBUSY;
1189
1190 write_seqcount_begin(&devnet_rename_seq);
1191
1192 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1193 write_seqcount_end(&devnet_rename_seq);
1194 return 0;
1195 }
1196
1197 memcpy(oldname, dev->name, IFNAMSIZ);
1198
1199 err = dev_get_valid_name(net, dev, newname);
1200 if (err < 0) {
1201 write_seqcount_end(&devnet_rename_seq);
1202 return err;
1203 }
1204
1205 if (oldname[0] && !strchr(oldname, '%'))
1206 netdev_info(dev, "renamed from %s\n", oldname);
1207
1208 old_assign_type = dev->name_assign_type;
1209 dev->name_assign_type = NET_NAME_RENAMED;
1210
1211rollback:
1212 ret = device_rename(&dev->dev, dev->name);
1213 if (ret) {
1214 memcpy(dev->name, oldname, IFNAMSIZ);
1215 dev->name_assign_type = old_assign_type;
1216 write_seqcount_end(&devnet_rename_seq);
1217 return ret;
1218 }
1219
1220 write_seqcount_end(&devnet_rename_seq);
1221
1222 netdev_adjacent_rename_links(dev, oldname);
1223
1224 write_lock_bh(&dev_base_lock);
1225 hlist_del_rcu(&dev->name_hlist);
1226 write_unlock_bh(&dev_base_lock);
1227
1228 synchronize_rcu();
1229
1230 write_lock_bh(&dev_base_lock);
1231 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1232 write_unlock_bh(&dev_base_lock);
1233
1234 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1235 ret = notifier_to_errno(ret);
1236
1237 if (ret) {
1238 /* err >= 0 after dev_alloc_name() or stores the first errno */
1239 if (err >= 0) {
1240 err = ret;
1241 write_seqcount_begin(&devnet_rename_seq);
1242 memcpy(dev->name, oldname, IFNAMSIZ);
1243 memcpy(oldname, newname, IFNAMSIZ);
1244 dev->name_assign_type = old_assign_type;
1245 old_assign_type = NET_NAME_RENAMED;
1246 goto rollback;
1247 } else {
1248 pr_err("%s: name change rollback failed: %d\n",
1249 dev->name, ret);
1250 }
1251 }
1252
1253 return err;
1254}
1255
1256/**
1257 * dev_set_alias - change ifalias of a device
1258 * @dev: device
1259 * @alias: name up to IFALIASZ
1260 * @len: limit of bytes to copy from info
1261 *
1262 * Set ifalias for a device,
1263 */
1264int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1265{
1266 struct dev_ifalias *new_alias = NULL;
1267
1268 if (len >= IFALIASZ)
1269 return -EINVAL;
1270
1271 if (len) {
1272 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1273 if (!new_alias)
1274 return -ENOMEM;
1275
1276 memcpy(new_alias->ifalias, alias, len);
1277 new_alias->ifalias[len] = 0;
1278 }
1279
1280 mutex_lock(&ifalias_mutex);
1281 rcu_swap_protected(dev->ifalias, new_alias,
1282 mutex_is_locked(&ifalias_mutex));
1283 mutex_unlock(&ifalias_mutex);
1284
1285 if (new_alias)
1286 kfree_rcu(new_alias, rcuhead);
1287
1288 return len;
1289}
1290EXPORT_SYMBOL(dev_set_alias);
1291
1292/**
1293 * dev_get_alias - get ifalias of a device
1294 * @dev: device
1295 * @name: buffer to store name of ifalias
1296 * @len: size of buffer
1297 *
1298 * get ifalias for a device. Caller must make sure dev cannot go
1299 * away, e.g. rcu read lock or own a reference count to device.
1300 */
1301int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1302{
1303 const struct dev_ifalias *alias;
1304 int ret = 0;
1305
1306 rcu_read_lock();
1307 alias = rcu_dereference(dev->ifalias);
1308 if (alias)
1309 ret = snprintf(name, len, "%s", alias->ifalias);
1310 rcu_read_unlock();
1311
1312 return ret;
1313}
1314
1315/**
1316 * netdev_features_change - device changes features
1317 * @dev: device to cause notification
1318 *
1319 * Called to indicate a device has changed features.
1320 */
1321void netdev_features_change(struct net_device *dev)
1322{
1323 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1324}
1325EXPORT_SYMBOL(netdev_features_change);
1326
1327/**
1328 * netdev_state_change - device changes state
1329 * @dev: device to cause notification
1330 *
1331 * Called to indicate a device has changed state. This function calls
1332 * the notifier chains for netdev_chain and sends a NEWLINK message
1333 * to the routing socket.
1334 */
1335void netdev_state_change(struct net_device *dev)
1336{
1337 if (dev->flags & IFF_UP) {
1338 struct netdev_notifier_change_info change_info = {
1339 .info.dev = dev,
1340 };
1341
1342 call_netdevice_notifiers_info(NETDEV_CHANGE,
1343 &change_info.info);
1344 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1345 }
1346}
1347EXPORT_SYMBOL(netdev_state_change);
1348
1349/**
1350 * netdev_notify_peers - notify network peers about existence of @dev
1351 * @dev: network device
1352 *
1353 * Generate traffic such that interested network peers are aware of
1354 * @dev, such as by generating a gratuitous ARP. This may be used when
1355 * a device wants to inform the rest of the network about some sort of
1356 * reconfiguration such as a failover event or virtual machine
1357 * migration.
1358 */
1359void netdev_notify_peers(struct net_device *dev)
1360{
1361 rtnl_lock();
1362 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1363 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1364 rtnl_unlock();
1365}
1366EXPORT_SYMBOL(netdev_notify_peers);
1367
1368static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1369{
1370 const struct net_device_ops *ops = dev->netdev_ops;
1371 int ret;
1372
1373 ASSERT_RTNL();
1374
1375 if (!netif_device_present(dev))
1376 return -ENODEV;
1377
1378 /* Block netpoll from trying to do any rx path servicing.
1379 * If we don't do this there is a chance ndo_poll_controller
1380 * or ndo_poll may be running while we open the device
1381 */
1382 netpoll_poll_disable(dev);
1383
1384 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1385 ret = notifier_to_errno(ret);
1386 if (ret)
1387 return ret;
1388
1389 set_bit(__LINK_STATE_START, &dev->state);
1390
1391 if (ops->ndo_validate_addr)
1392 ret = ops->ndo_validate_addr(dev);
1393
1394 if (!ret && ops->ndo_open)
1395 ret = ops->ndo_open(dev);
1396
1397 netpoll_poll_enable(dev);
1398
1399 if (ret)
1400 clear_bit(__LINK_STATE_START, &dev->state);
1401 else {
1402 dev->flags |= IFF_UP;
1403 dev_set_rx_mode(dev);
1404 dev_activate(dev);
1405 add_device_randomness(dev->dev_addr, dev->addr_len);
1406 }
1407
1408 return ret;
1409}
1410
1411/**
1412 * dev_open - prepare an interface for use.
1413 * @dev: device to open
1414 * @extack: netlink extended ack
1415 *
1416 * Takes a device from down to up state. The device's private open
1417 * function is invoked and then the multicast lists are loaded. Finally
1418 * the device is moved into the up state and a %NETDEV_UP message is
1419 * sent to the netdev notifier chain.
1420 *
1421 * Calling this function on an active interface is a nop. On a failure
1422 * a negative errno code is returned.
1423 */
1424int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1425{
1426 int ret;
1427
1428 if (dev->flags & IFF_UP)
1429 return 0;
1430
1431 ret = __dev_open(dev, extack);
1432 if (ret < 0)
1433 return ret;
1434
1435 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1436 call_netdevice_notifiers(NETDEV_UP, dev);
1437
1438 return ret;
1439}
1440EXPORT_SYMBOL(dev_open);
1441
1442static void __dev_close_many(struct list_head *head)
1443{
1444 struct net_device *dev;
1445
1446 ASSERT_RTNL();
1447 might_sleep();
1448
1449 list_for_each_entry(dev, head, close_list) {
1450 /* Temporarily disable netpoll until the interface is down */
1451 netpoll_poll_disable(dev);
1452
1453 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1454
1455 clear_bit(__LINK_STATE_START, &dev->state);
1456
1457 /* Synchronize to scheduled poll. We cannot touch poll list, it
1458 * can be even on different cpu. So just clear netif_running().
1459 *
1460 * dev->stop() will invoke napi_disable() on all of it's
1461 * napi_struct instances on this device.
1462 */
1463 smp_mb__after_atomic(); /* Commit netif_running(). */
1464 }
1465
1466 dev_deactivate_many(head);
1467
1468 list_for_each_entry(dev, head, close_list) {
1469 const struct net_device_ops *ops = dev->netdev_ops;
1470
1471 /*
1472 * Call the device specific close. This cannot fail.
1473 * Only if device is UP
1474 *
1475 * We allow it to be called even after a DETACH hot-plug
1476 * event.
1477 */
1478 if (ops->ndo_stop)
1479 ops->ndo_stop(dev);
1480
1481 dev->flags &= ~IFF_UP;
1482 netpoll_poll_enable(dev);
1483 }
1484}
1485
1486static void __dev_close(struct net_device *dev)
1487{
1488 LIST_HEAD(single);
1489
1490 list_add(&dev->close_list, &single);
1491 __dev_close_many(&single);
1492 list_del(&single);
1493}
1494
1495void dev_close_many(struct list_head *head, bool unlink)
1496{
1497 struct net_device *dev, *tmp;
1498
1499 /* Remove the devices that don't need to be closed */
1500 list_for_each_entry_safe(dev, tmp, head, close_list)
1501 if (!(dev->flags & IFF_UP))
1502 list_del_init(&dev->close_list);
1503
1504 __dev_close_many(head);
1505
1506 list_for_each_entry_safe(dev, tmp, head, close_list) {
1507 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1508 call_netdevice_notifiers(NETDEV_DOWN, dev);
1509 if (unlink)
1510 list_del_init(&dev->close_list);
1511 }
1512}
1513EXPORT_SYMBOL(dev_close_many);
1514
1515/**
1516 * dev_close - shutdown an interface.
1517 * @dev: device to shutdown
1518 *
1519 * This function moves an active device into down state. A
1520 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1521 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1522 * chain.
1523 */
1524void dev_close(struct net_device *dev)
1525{
1526 if (dev->flags & IFF_UP) {
1527 LIST_HEAD(single);
1528
1529 list_add(&dev->close_list, &single);
1530 dev_close_many(&single, true);
1531 list_del(&single);
1532 }
1533}
1534EXPORT_SYMBOL(dev_close);
1535
1536
1537/**
1538 * dev_disable_lro - disable Large Receive Offload on a device
1539 * @dev: device
1540 *
1541 * Disable Large Receive Offload (LRO) on a net device. Must be
1542 * called under RTNL. This is needed if received packets may be
1543 * forwarded to another interface.
1544 */
1545void dev_disable_lro(struct net_device *dev)
1546{
1547 struct net_device *lower_dev;
1548 struct list_head *iter;
1549
1550 dev->wanted_features &= ~NETIF_F_LRO;
1551 netdev_update_features(dev);
1552
1553 if (unlikely(dev->features & NETIF_F_LRO))
1554 netdev_WARN(dev, "failed to disable LRO!\n");
1555
1556 netdev_for_each_lower_dev(dev, lower_dev, iter)
1557 dev_disable_lro(lower_dev);
1558}
1559EXPORT_SYMBOL(dev_disable_lro);
1560
1561/**
1562 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1563 * @dev: device
1564 *
1565 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1566 * called under RTNL. This is needed if Generic XDP is installed on
1567 * the device.
1568 */
1569static void dev_disable_gro_hw(struct net_device *dev)
1570{
1571 dev->wanted_features &= ~NETIF_F_GRO_HW;
1572 netdev_update_features(dev);
1573
1574 if (unlikely(dev->features & NETIF_F_GRO_HW))
1575 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1576}
1577
1578const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1579{
1580#define N(val) \
1581 case NETDEV_##val: \
1582 return "NETDEV_" __stringify(val);
1583 switch (cmd) {
1584 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1585 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1586 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1587 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1588 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1589 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1590 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1591 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1592 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1593 N(PRE_CHANGEADDR)
1594 }
1595#undef N
1596 return "UNKNOWN_NETDEV_EVENT";
1597}
1598EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1599
1600static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1601 struct net_device *dev)
1602{
1603 struct netdev_notifier_info info = {
1604 .dev = dev,
1605 };
1606
1607 return nb->notifier_call(nb, val, &info);
1608}
1609
1610static int dev_boot_phase = 1;
1611
1612/**
1613 * register_netdevice_notifier - register a network notifier block
1614 * @nb: notifier
1615 *
1616 * Register a notifier to be called when network device events occur.
1617 * The notifier passed is linked into the kernel structures and must
1618 * not be reused until it has been unregistered. A negative errno code
1619 * is returned on a failure.
1620 *
1621 * When registered all registration and up events are replayed
1622 * to the new notifier to allow device to have a race free
1623 * view of the network device list.
1624 */
1625
1626int register_netdevice_notifier(struct notifier_block *nb)
1627{
1628 struct net_device *dev;
1629 struct net_device *last;
1630 struct net *net;
1631 int err;
1632
1633 /* Close race with setup_net() and cleanup_net() */
1634 down_write(&pernet_ops_rwsem);
1635 rtnl_lock();
1636 err = raw_notifier_chain_register(&netdev_chain, nb);
1637 if (err)
1638 goto unlock;
1639 if (dev_boot_phase)
1640 goto unlock;
1641 for_each_net(net) {
1642 for_each_netdev(net, dev) {
1643 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1644 err = notifier_to_errno(err);
1645 if (err)
1646 goto rollback;
1647
1648 if (!(dev->flags & IFF_UP))
1649 continue;
1650
1651 call_netdevice_notifier(nb, NETDEV_UP, dev);
1652 }
1653 }
1654
1655unlock:
1656 rtnl_unlock();
1657 up_write(&pernet_ops_rwsem);
1658 return err;
1659
1660rollback:
1661 last = dev;
1662 for_each_net(net) {
1663 for_each_netdev(net, dev) {
1664 if (dev == last)
1665 goto outroll;
1666
1667 if (dev->flags & IFF_UP) {
1668 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1669 dev);
1670 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1671 }
1672 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1673 }
1674 }
1675
1676outroll:
1677 raw_notifier_chain_unregister(&netdev_chain, nb);
1678 goto unlock;
1679}
1680EXPORT_SYMBOL(register_netdevice_notifier);
1681
1682/**
1683 * unregister_netdevice_notifier - unregister a network notifier block
1684 * @nb: notifier
1685 *
1686 * Unregister a notifier previously registered by
1687 * register_netdevice_notifier(). The notifier is unlinked into the
1688 * kernel structures and may then be reused. A negative errno code
1689 * is returned on a failure.
1690 *
1691 * After unregistering unregister and down device events are synthesized
1692 * for all devices on the device list to the removed notifier to remove
1693 * the need for special case cleanup code.
1694 */
1695
1696int unregister_netdevice_notifier(struct notifier_block *nb)
1697{
1698 struct net_device *dev;
1699 struct net *net;
1700 int err;
1701
1702 /* Close race with setup_net() and cleanup_net() */
1703 down_write(&pernet_ops_rwsem);
1704 rtnl_lock();
1705 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1706 if (err)
1707 goto unlock;
1708
1709 for_each_net(net) {
1710 for_each_netdev(net, dev) {
1711 if (dev->flags & IFF_UP) {
1712 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1713 dev);
1714 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1715 }
1716 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1717 }
1718 }
1719unlock:
1720 rtnl_unlock();
1721 up_write(&pernet_ops_rwsem);
1722 return err;
1723}
1724EXPORT_SYMBOL(unregister_netdevice_notifier);
1725
1726/**
1727 * call_netdevice_notifiers_info - call all network notifier blocks
1728 * @val: value passed unmodified to notifier function
1729 * @info: notifier information data
1730 *
1731 * Call all network notifier blocks. Parameters and return value
1732 * are as for raw_notifier_call_chain().
1733 */
1734
1735static int call_netdevice_notifiers_info(unsigned long val,
1736 struct netdev_notifier_info *info)
1737{
1738 ASSERT_RTNL();
1739 return raw_notifier_call_chain(&netdev_chain, val, info);
1740}
1741
1742static int call_netdevice_notifiers_extack(unsigned long val,
1743 struct net_device *dev,
1744 struct netlink_ext_ack *extack)
1745{
1746 struct netdev_notifier_info info = {
1747 .dev = dev,
1748 .extack = extack,
1749 };
1750
1751 return call_netdevice_notifiers_info(val, &info);
1752}
1753
1754/**
1755 * call_netdevice_notifiers - call all network notifier blocks
1756 * @val: value passed unmodified to notifier function
1757 * @dev: net_device pointer passed unmodified to notifier function
1758 *
1759 * Call all network notifier blocks. Parameters and return value
1760 * are as for raw_notifier_call_chain().
1761 */
1762
1763int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1764{
1765 return call_netdevice_notifiers_extack(val, dev, NULL);
1766}
1767EXPORT_SYMBOL(call_netdevice_notifiers);
1768
1769/**
1770 * call_netdevice_notifiers_mtu - call all network notifier blocks
1771 * @val: value passed unmodified to notifier function
1772 * @dev: net_device pointer passed unmodified to notifier function
1773 * @arg: additional u32 argument passed to the notifier function
1774 *
1775 * Call all network notifier blocks. Parameters and return value
1776 * are as for raw_notifier_call_chain().
1777 */
1778static int call_netdevice_notifiers_mtu(unsigned long val,
1779 struct net_device *dev, u32 arg)
1780{
1781 struct netdev_notifier_info_ext info = {
1782 .info.dev = dev,
1783 .ext.mtu = arg,
1784 };
1785
1786 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1787
1788 return call_netdevice_notifiers_info(val, &info.info);
1789}
1790
1791#ifdef CONFIG_NET_INGRESS
1792static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1793
1794void net_inc_ingress_queue(void)
1795{
1796 static_branch_inc(&ingress_needed_key);
1797}
1798EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1799
1800void net_dec_ingress_queue(void)
1801{
1802 static_branch_dec(&ingress_needed_key);
1803}
1804EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1805#endif
1806
1807#ifdef CONFIG_NET_EGRESS
1808static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1809
1810void net_inc_egress_queue(void)
1811{
1812 static_branch_inc(&egress_needed_key);
1813}
1814EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1815
1816void net_dec_egress_queue(void)
1817{
1818 static_branch_dec(&egress_needed_key);
1819}
1820EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1821#endif
1822
1823static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1824#ifdef CONFIG_JUMP_LABEL
1825static atomic_t netstamp_needed_deferred;
1826static atomic_t netstamp_wanted;
1827static void netstamp_clear(struct work_struct *work)
1828{
1829 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1830 int wanted;
1831
1832 wanted = atomic_add_return(deferred, &netstamp_wanted);
1833 if (wanted > 0)
1834 static_branch_enable(&netstamp_needed_key);
1835 else
1836 static_branch_disable(&netstamp_needed_key);
1837}
1838static DECLARE_WORK(netstamp_work, netstamp_clear);
1839#endif
1840
1841void net_enable_timestamp(void)
1842{
1843#ifdef CONFIG_JUMP_LABEL
1844 int wanted;
1845
1846 while (1) {
1847 wanted = atomic_read(&netstamp_wanted);
1848 if (wanted <= 0)
1849 break;
1850 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1851 return;
1852 }
1853 atomic_inc(&netstamp_needed_deferred);
1854 schedule_work(&netstamp_work);
1855#else
1856 static_branch_inc(&netstamp_needed_key);
1857#endif
1858}
1859EXPORT_SYMBOL(net_enable_timestamp);
1860
1861void net_disable_timestamp(void)
1862{
1863#ifdef CONFIG_JUMP_LABEL
1864 int wanted;
1865
1866 while (1) {
1867 wanted = atomic_read(&netstamp_wanted);
1868 if (wanted <= 1)
1869 break;
1870 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1871 return;
1872 }
1873 atomic_dec(&netstamp_needed_deferred);
1874 schedule_work(&netstamp_work);
1875#else
1876 static_branch_dec(&netstamp_needed_key);
1877#endif
1878}
1879EXPORT_SYMBOL(net_disable_timestamp);
1880
1881static inline void net_timestamp_set(struct sk_buff *skb)
1882{
1883 skb->tstamp = 0;
1884 if (static_branch_unlikely(&netstamp_needed_key))
1885 __net_timestamp(skb);
1886}
1887
1888#define net_timestamp_check(COND, SKB) \
1889 if (static_branch_unlikely(&netstamp_needed_key)) { \
1890 if ((COND) && !(SKB)->tstamp) \
1891 __net_timestamp(SKB); \
1892 } \
1893
1894bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1895{
1896 unsigned int len;
1897
1898 if (!(dev->flags & IFF_UP))
1899 return false;
1900
1901 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1902 if (skb->len <= len)
1903 return true;
1904
1905 /* if TSO is enabled, we don't care about the length as the packet
1906 * could be forwarded without being segmented before
1907 */
1908 if (skb_is_gso(skb))
1909 return true;
1910
1911 return false;
1912}
1913EXPORT_SYMBOL_GPL(is_skb_forwardable);
1914
1915int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1916{
1917 int ret = ____dev_forward_skb(dev, skb);
1918
1919 if (likely(!ret)) {
1920 skb->protocol = eth_type_trans(skb, dev);
1921 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1922 }
1923
1924 return ret;
1925}
1926EXPORT_SYMBOL_GPL(__dev_forward_skb);
1927
1928/**
1929 * dev_forward_skb - loopback an skb to another netif
1930 *
1931 * @dev: destination network device
1932 * @skb: buffer to forward
1933 *
1934 * return values:
1935 * NET_RX_SUCCESS (no congestion)
1936 * NET_RX_DROP (packet was dropped, but freed)
1937 *
1938 * dev_forward_skb can be used for injecting an skb from the
1939 * start_xmit function of one device into the receive queue
1940 * of another device.
1941 *
1942 * The receiving device may be in another namespace, so
1943 * we have to clear all information in the skb that could
1944 * impact namespace isolation.
1945 */
1946int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1947{
1948 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1949}
1950EXPORT_SYMBOL_GPL(dev_forward_skb);
1951
1952static inline int deliver_skb(struct sk_buff *skb,
1953 struct packet_type *pt_prev,
1954 struct net_device *orig_dev)
1955{
1956 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1957 return -ENOMEM;
1958 refcount_inc(&skb->users);
1959 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1960}
1961
1962static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1963 struct packet_type **pt,
1964 struct net_device *orig_dev,
1965 __be16 type,
1966 struct list_head *ptype_list)
1967{
1968 struct packet_type *ptype, *pt_prev = *pt;
1969
1970 list_for_each_entry_rcu(ptype, ptype_list, list) {
1971 if (ptype->type != type)
1972 continue;
1973 if (pt_prev)
1974 deliver_skb(skb, pt_prev, orig_dev);
1975 pt_prev = ptype;
1976 }
1977 *pt = pt_prev;
1978}
1979
1980static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1981{
1982 if (!ptype->af_packet_priv || !skb->sk)
1983 return false;
1984
1985 if (ptype->id_match)
1986 return ptype->id_match(ptype, skb->sk);
1987 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1988 return true;
1989
1990 return false;
1991}
1992
1993/**
1994 * dev_nit_active - return true if any network interface taps are in use
1995 *
1996 * @dev: network device to check for the presence of taps
1997 */
1998bool dev_nit_active(struct net_device *dev)
1999{
2000 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2001}
2002EXPORT_SYMBOL_GPL(dev_nit_active);
2003
2004/*
2005 * Support routine. Sends outgoing frames to any network
2006 * taps currently in use.
2007 */
2008
2009void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2010{
2011 struct packet_type *ptype;
2012 struct sk_buff *skb2 = NULL;
2013 struct packet_type *pt_prev = NULL;
2014 struct list_head *ptype_list = &ptype_all;
2015
2016 rcu_read_lock();
2017again:
2018 list_for_each_entry_rcu(ptype, ptype_list, list) {
2019 if (ptype->ignore_outgoing)
2020 continue;
2021
2022 /* Never send packets back to the socket
2023 * they originated from - MvS (miquels@drinkel.ow.org)
2024 */
2025 if (skb_loop_sk(ptype, skb))
2026 continue;
2027
2028 if (pt_prev) {
2029 deliver_skb(skb2, pt_prev, skb->dev);
2030 pt_prev = ptype;
2031 continue;
2032 }
2033
2034 /* need to clone skb, done only once */
2035 skb2 = skb_clone(skb, GFP_ATOMIC);
2036 if (!skb2)
2037 goto out_unlock;
2038
2039 net_timestamp_set(skb2);
2040
2041 /* skb->nh should be correctly
2042 * set by sender, so that the second statement is
2043 * just protection against buggy protocols.
2044 */
2045 skb_reset_mac_header(skb2);
2046
2047 if (skb_network_header(skb2) < skb2->data ||
2048 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2049 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2050 ntohs(skb2->protocol),
2051 dev->name);
2052 skb_reset_network_header(skb2);
2053 }
2054
2055 skb2->transport_header = skb2->network_header;
2056 skb2->pkt_type = PACKET_OUTGOING;
2057 pt_prev = ptype;
2058 }
2059
2060 if (ptype_list == &ptype_all) {
2061 ptype_list = &dev->ptype_all;
2062 goto again;
2063 }
2064out_unlock:
2065 if (pt_prev) {
2066 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2067 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2068 else
2069 kfree_skb(skb2);
2070 }
2071 rcu_read_unlock();
2072}
2073EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2074
2075/**
2076 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2077 * @dev: Network device
2078 * @txq: number of queues available
2079 *
2080 * If real_num_tx_queues is changed the tc mappings may no longer be
2081 * valid. To resolve this verify the tc mapping remains valid and if
2082 * not NULL the mapping. With no priorities mapping to this
2083 * offset/count pair it will no longer be used. In the worst case TC0
2084 * is invalid nothing can be done so disable priority mappings. If is
2085 * expected that drivers will fix this mapping if they can before
2086 * calling netif_set_real_num_tx_queues.
2087 */
2088static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2089{
2090 int i;
2091 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2092
2093 /* If TC0 is invalidated disable TC mapping */
2094 if (tc->offset + tc->count > txq) {
2095 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2096 dev->num_tc = 0;
2097 return;
2098 }
2099
2100 /* Invalidated prio to tc mappings set to TC0 */
2101 for (i = 1; i < TC_BITMASK + 1; i++) {
2102 int q = netdev_get_prio_tc_map(dev, i);
2103
2104 tc = &dev->tc_to_txq[q];
2105 if (tc->offset + tc->count > txq) {
2106 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2107 i, q);
2108 netdev_set_prio_tc_map(dev, i, 0);
2109 }
2110 }
2111}
2112
2113int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2114{
2115 if (dev->num_tc) {
2116 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2117 int i;
2118
2119 /* walk through the TCs and see if it falls into any of them */
2120 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2121 if ((txq - tc->offset) < tc->count)
2122 return i;
2123 }
2124
2125 /* didn't find it, just return -1 to indicate no match */
2126 return -1;
2127 }
2128
2129 return 0;
2130}
2131EXPORT_SYMBOL(netdev_txq_to_tc);
2132
2133#ifdef CONFIG_XPS
2134struct static_key xps_needed __read_mostly;
2135EXPORT_SYMBOL(xps_needed);
2136struct static_key xps_rxqs_needed __read_mostly;
2137EXPORT_SYMBOL(xps_rxqs_needed);
2138static DEFINE_MUTEX(xps_map_mutex);
2139#define xmap_dereference(P) \
2140 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2141
2142static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2143 int tci, u16 index)
2144{
2145 struct xps_map *map = NULL;
2146 int pos;
2147
2148 if (dev_maps)
2149 map = xmap_dereference(dev_maps->attr_map[tci]);
2150 if (!map)
2151 return false;
2152
2153 for (pos = map->len; pos--;) {
2154 if (map->queues[pos] != index)
2155 continue;
2156
2157 if (map->len > 1) {
2158 map->queues[pos] = map->queues[--map->len];
2159 break;
2160 }
2161
2162 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2163 kfree_rcu(map, rcu);
2164 return false;
2165 }
2166
2167 return true;
2168}
2169
2170static bool remove_xps_queue_cpu(struct net_device *dev,
2171 struct xps_dev_maps *dev_maps,
2172 int cpu, u16 offset, u16 count)
2173{
2174 int num_tc = dev->num_tc ? : 1;
2175 bool active = false;
2176 int tci;
2177
2178 for (tci = cpu * num_tc; num_tc--; tci++) {
2179 int i, j;
2180
2181 for (i = count, j = offset; i--; j++) {
2182 if (!remove_xps_queue(dev_maps, tci, j))
2183 break;
2184 }
2185
2186 active |= i < 0;
2187 }
2188
2189 return active;
2190}
2191
2192static void reset_xps_maps(struct net_device *dev,
2193 struct xps_dev_maps *dev_maps,
2194 bool is_rxqs_map)
2195{
2196 if (is_rxqs_map) {
2197 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2198 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2199 } else {
2200 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2201 }
2202 static_key_slow_dec_cpuslocked(&xps_needed);
2203 kfree_rcu(dev_maps, rcu);
2204}
2205
2206static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2207 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2208 u16 offset, u16 count, bool is_rxqs_map)
2209{
2210 bool active = false;
2211 int i, j;
2212
2213 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2214 j < nr_ids;)
2215 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2216 count);
2217 if (!active)
2218 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2219
2220 if (!is_rxqs_map) {
2221 for (i = offset + (count - 1); count--; i--) {
2222 netdev_queue_numa_node_write(
2223 netdev_get_tx_queue(dev, i),
2224 NUMA_NO_NODE);
2225 }
2226 }
2227}
2228
2229static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2230 u16 count)
2231{
2232 const unsigned long *possible_mask = NULL;
2233 struct xps_dev_maps *dev_maps;
2234 unsigned int nr_ids;
2235
2236 if (!static_key_false(&xps_needed))
2237 return;
2238
2239 cpus_read_lock();
2240 mutex_lock(&xps_map_mutex);
2241
2242 if (static_key_false(&xps_rxqs_needed)) {
2243 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2244 if (dev_maps) {
2245 nr_ids = dev->num_rx_queues;
2246 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2247 offset, count, true);
2248 }
2249 }
2250
2251 dev_maps = xmap_dereference(dev->xps_cpus_map);
2252 if (!dev_maps)
2253 goto out_no_maps;
2254
2255 if (num_possible_cpus() > 1)
2256 possible_mask = cpumask_bits(cpu_possible_mask);
2257 nr_ids = nr_cpu_ids;
2258 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2259 false);
2260
2261out_no_maps:
2262 mutex_unlock(&xps_map_mutex);
2263 cpus_read_unlock();
2264}
2265
2266static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2267{
2268 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2269}
2270
2271static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2272 u16 index, bool is_rxqs_map)
2273{
2274 struct xps_map *new_map;
2275 int alloc_len = XPS_MIN_MAP_ALLOC;
2276 int i, pos;
2277
2278 for (pos = 0; map && pos < map->len; pos++) {
2279 if (map->queues[pos] != index)
2280 continue;
2281 return map;
2282 }
2283
2284 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2285 if (map) {
2286 if (pos < map->alloc_len)
2287 return map;
2288
2289 alloc_len = map->alloc_len * 2;
2290 }
2291
2292 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2293 * map
2294 */
2295 if (is_rxqs_map)
2296 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2297 else
2298 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2299 cpu_to_node(attr_index));
2300 if (!new_map)
2301 return NULL;
2302
2303 for (i = 0; i < pos; i++)
2304 new_map->queues[i] = map->queues[i];
2305 new_map->alloc_len = alloc_len;
2306 new_map->len = pos;
2307
2308 return new_map;
2309}
2310
2311/* Must be called under cpus_read_lock */
2312int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2313 u16 index, bool is_rxqs_map)
2314{
2315 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2316 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2317 int i, j, tci, numa_node_id = -2;
2318 int maps_sz, num_tc = 1, tc = 0;
2319 struct xps_map *map, *new_map;
2320 bool active = false;
2321 unsigned int nr_ids;
2322
2323 if (dev->num_tc) {
2324 /* Do not allow XPS on subordinate device directly */
2325 num_tc = dev->num_tc;
2326 if (num_tc < 0)
2327 return -EINVAL;
2328
2329 /* If queue belongs to subordinate dev use its map */
2330 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2331
2332 tc = netdev_txq_to_tc(dev, index);
2333 if (tc < 0)
2334 return -EINVAL;
2335 }
2336
2337 mutex_lock(&xps_map_mutex);
2338 if (is_rxqs_map) {
2339 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2340 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2341 nr_ids = dev->num_rx_queues;
2342 } else {
2343 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2344 if (num_possible_cpus() > 1) {
2345 online_mask = cpumask_bits(cpu_online_mask);
2346 possible_mask = cpumask_bits(cpu_possible_mask);
2347 }
2348 dev_maps = xmap_dereference(dev->xps_cpus_map);
2349 nr_ids = nr_cpu_ids;
2350 }
2351
2352 if (maps_sz < L1_CACHE_BYTES)
2353 maps_sz = L1_CACHE_BYTES;
2354
2355 /* allocate memory for queue storage */
2356 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2357 j < nr_ids;) {
2358 if (!new_dev_maps)
2359 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2360 if (!new_dev_maps) {
2361 mutex_unlock(&xps_map_mutex);
2362 return -ENOMEM;
2363 }
2364
2365 tci = j * num_tc + tc;
2366 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2367 NULL;
2368
2369 map = expand_xps_map(map, j, index, is_rxqs_map);
2370 if (!map)
2371 goto error;
2372
2373 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2374 }
2375
2376 if (!new_dev_maps)
2377 goto out_no_new_maps;
2378
2379 if (!dev_maps) {
2380 /* Increment static keys at most once per type */
2381 static_key_slow_inc_cpuslocked(&xps_needed);
2382 if (is_rxqs_map)
2383 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2384 }
2385
2386 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2387 j < nr_ids;) {
2388 /* copy maps belonging to foreign traffic classes */
2389 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2390 /* fill in the new device map from the old device map */
2391 map = xmap_dereference(dev_maps->attr_map[tci]);
2392 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2393 }
2394
2395 /* We need to explicitly update tci as prevous loop
2396 * could break out early if dev_maps is NULL.
2397 */
2398 tci = j * num_tc + tc;
2399
2400 if (netif_attr_test_mask(j, mask, nr_ids) &&
2401 netif_attr_test_online(j, online_mask, nr_ids)) {
2402 /* add tx-queue to CPU/rx-queue maps */
2403 int pos = 0;
2404
2405 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2406 while ((pos < map->len) && (map->queues[pos] != index))
2407 pos++;
2408
2409 if (pos == map->len)
2410 map->queues[map->len++] = index;
2411#ifdef CONFIG_NUMA
2412 if (!is_rxqs_map) {
2413 if (numa_node_id == -2)
2414 numa_node_id = cpu_to_node(j);
2415 else if (numa_node_id != cpu_to_node(j))
2416 numa_node_id = -1;
2417 }
2418#endif
2419 } else if (dev_maps) {
2420 /* fill in the new device map from the old device map */
2421 map = xmap_dereference(dev_maps->attr_map[tci]);
2422 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2423 }
2424
2425 /* copy maps belonging to foreign traffic classes */
2426 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2427 /* fill in the new device map from the old device map */
2428 map = xmap_dereference(dev_maps->attr_map[tci]);
2429 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2430 }
2431 }
2432
2433 if (is_rxqs_map)
2434 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2435 else
2436 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2437
2438 /* Cleanup old maps */
2439 if (!dev_maps)
2440 goto out_no_old_maps;
2441
2442 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2443 j < nr_ids;) {
2444 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2445 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2446 map = xmap_dereference(dev_maps->attr_map[tci]);
2447 if (map && map != new_map)
2448 kfree_rcu(map, rcu);
2449 }
2450 }
2451
2452 kfree_rcu(dev_maps, rcu);
2453
2454out_no_old_maps:
2455 dev_maps = new_dev_maps;
2456 active = true;
2457
2458out_no_new_maps:
2459 if (!is_rxqs_map) {
2460 /* update Tx queue numa node */
2461 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2462 (numa_node_id >= 0) ?
2463 numa_node_id : NUMA_NO_NODE);
2464 }
2465
2466 if (!dev_maps)
2467 goto out_no_maps;
2468
2469 /* removes tx-queue from unused CPUs/rx-queues */
2470 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2471 j < nr_ids;) {
2472 for (i = tc, tci = j * num_tc; i--; tci++)
2473 active |= remove_xps_queue(dev_maps, tci, index);
2474 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2475 !netif_attr_test_online(j, online_mask, nr_ids))
2476 active |= remove_xps_queue(dev_maps, tci, index);
2477 for (i = num_tc - tc, tci++; --i; tci++)
2478 active |= remove_xps_queue(dev_maps, tci, index);
2479 }
2480
2481 /* free map if not active */
2482 if (!active)
2483 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2484
2485out_no_maps:
2486 mutex_unlock(&xps_map_mutex);
2487
2488 return 0;
2489error:
2490 /* remove any maps that we added */
2491 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2492 j < nr_ids;) {
2493 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2494 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2495 map = dev_maps ?
2496 xmap_dereference(dev_maps->attr_map[tci]) :
2497 NULL;
2498 if (new_map && new_map != map)
2499 kfree(new_map);
2500 }
2501 }
2502
2503 mutex_unlock(&xps_map_mutex);
2504
2505 kfree(new_dev_maps);
2506 return -ENOMEM;
2507}
2508EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2509
2510int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2511 u16 index)
2512{
2513 int ret;
2514
2515 cpus_read_lock();
2516 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2517 cpus_read_unlock();
2518
2519 return ret;
2520}
2521EXPORT_SYMBOL(netif_set_xps_queue);
2522
2523#endif
2524static void netdev_unbind_all_sb_channels(struct net_device *dev)
2525{
2526 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2527
2528 /* Unbind any subordinate channels */
2529 while (txq-- != &dev->_tx[0]) {
2530 if (txq->sb_dev)
2531 netdev_unbind_sb_channel(dev, txq->sb_dev);
2532 }
2533}
2534
2535void netdev_reset_tc(struct net_device *dev)
2536{
2537#ifdef CONFIG_XPS
2538 netif_reset_xps_queues_gt(dev, 0);
2539#endif
2540 netdev_unbind_all_sb_channels(dev);
2541
2542 /* Reset TC configuration of device */
2543 dev->num_tc = 0;
2544 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2545 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2546}
2547EXPORT_SYMBOL(netdev_reset_tc);
2548
2549int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2550{
2551 if (tc >= dev->num_tc)
2552 return -EINVAL;
2553
2554#ifdef CONFIG_XPS
2555 netif_reset_xps_queues(dev, offset, count);
2556#endif
2557 dev->tc_to_txq[tc].count = count;
2558 dev->tc_to_txq[tc].offset = offset;
2559 return 0;
2560}
2561EXPORT_SYMBOL(netdev_set_tc_queue);
2562
2563int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2564{
2565 if (num_tc > TC_MAX_QUEUE)
2566 return -EINVAL;
2567
2568#ifdef CONFIG_XPS
2569 netif_reset_xps_queues_gt(dev, 0);
2570#endif
2571 netdev_unbind_all_sb_channels(dev);
2572
2573 dev->num_tc = num_tc;
2574 return 0;
2575}
2576EXPORT_SYMBOL(netdev_set_num_tc);
2577
2578void netdev_unbind_sb_channel(struct net_device *dev,
2579 struct net_device *sb_dev)
2580{
2581 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2582
2583#ifdef CONFIG_XPS
2584 netif_reset_xps_queues_gt(sb_dev, 0);
2585#endif
2586 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2587 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2588
2589 while (txq-- != &dev->_tx[0]) {
2590 if (txq->sb_dev == sb_dev)
2591 txq->sb_dev = NULL;
2592 }
2593}
2594EXPORT_SYMBOL(netdev_unbind_sb_channel);
2595
2596int netdev_bind_sb_channel_queue(struct net_device *dev,
2597 struct net_device *sb_dev,
2598 u8 tc, u16 count, u16 offset)
2599{
2600 /* Make certain the sb_dev and dev are already configured */
2601 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2602 return -EINVAL;
2603
2604 /* We cannot hand out queues we don't have */
2605 if ((offset + count) > dev->real_num_tx_queues)
2606 return -EINVAL;
2607
2608 /* Record the mapping */
2609 sb_dev->tc_to_txq[tc].count = count;
2610 sb_dev->tc_to_txq[tc].offset = offset;
2611
2612 /* Provide a way for Tx queue to find the tc_to_txq map or
2613 * XPS map for itself.
2614 */
2615 while (count--)
2616 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2617
2618 return 0;
2619}
2620EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2621
2622int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2623{
2624 /* Do not use a multiqueue device to represent a subordinate channel */
2625 if (netif_is_multiqueue(dev))
2626 return -ENODEV;
2627
2628 /* We allow channels 1 - 32767 to be used for subordinate channels.
2629 * Channel 0 is meant to be "native" mode and used only to represent
2630 * the main root device. We allow writing 0 to reset the device back
2631 * to normal mode after being used as a subordinate channel.
2632 */
2633 if (channel > S16_MAX)
2634 return -EINVAL;
2635
2636 dev->num_tc = -channel;
2637
2638 return 0;
2639}
2640EXPORT_SYMBOL(netdev_set_sb_channel);
2641
2642/*
2643 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2644 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2645 */
2646int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2647{
2648 bool disabling;
2649 int rc;
2650
2651 disabling = txq < dev->real_num_tx_queues;
2652
2653 if (txq < 1 || txq > dev->num_tx_queues)
2654 return -EINVAL;
2655
2656 if (dev->reg_state == NETREG_REGISTERED ||
2657 dev->reg_state == NETREG_UNREGISTERING) {
2658 ASSERT_RTNL();
2659
2660 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2661 txq);
2662 if (rc)
2663 return rc;
2664
2665 if (dev->num_tc)
2666 netif_setup_tc(dev, txq);
2667
2668 dev->real_num_tx_queues = txq;
2669
2670 if (disabling) {
2671 synchronize_net();
2672 qdisc_reset_all_tx_gt(dev, txq);
2673#ifdef CONFIG_XPS
2674 netif_reset_xps_queues_gt(dev, txq);
2675#endif
2676 }
2677 } else {
2678 dev->real_num_tx_queues = txq;
2679 }
2680
2681 return 0;
2682}
2683EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2684
2685#ifdef CONFIG_SYSFS
2686/**
2687 * netif_set_real_num_rx_queues - set actual number of RX queues used
2688 * @dev: Network device
2689 * @rxq: Actual number of RX queues
2690 *
2691 * This must be called either with the rtnl_lock held or before
2692 * registration of the net device. Returns 0 on success, or a
2693 * negative error code. If called before registration, it always
2694 * succeeds.
2695 */
2696int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2697{
2698 int rc;
2699
2700 if (rxq < 1 || rxq > dev->num_rx_queues)
2701 return -EINVAL;
2702
2703 if (dev->reg_state == NETREG_REGISTERED) {
2704 ASSERT_RTNL();
2705
2706 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2707 rxq);
2708 if (rc)
2709 return rc;
2710 }
2711
2712 dev->real_num_rx_queues = rxq;
2713 return 0;
2714}
2715EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2716#endif
2717
2718/**
2719 * netif_get_num_default_rss_queues - default number of RSS queues
2720 *
2721 * This routine should set an upper limit on the number of RSS queues
2722 * used by default by multiqueue devices.
2723 */
2724int netif_get_num_default_rss_queues(void)
2725{
2726 return is_kdump_kernel() ?
2727 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2728}
2729EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2730
2731static void __netif_reschedule(struct Qdisc *q)
2732{
2733 struct softnet_data *sd;
2734 unsigned long flags;
2735
2736 local_irq_save(flags);
2737 sd = this_cpu_ptr(&softnet_data);
2738 q->next_sched = NULL;
2739 *sd->output_queue_tailp = q;
2740 sd->output_queue_tailp = &q->next_sched;
2741 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2742 local_irq_restore(flags);
2743}
2744
2745void __netif_schedule(struct Qdisc *q)
2746{
2747 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2748 __netif_reschedule(q);
2749}
2750EXPORT_SYMBOL(__netif_schedule);
2751
2752struct dev_kfree_skb_cb {
2753 enum skb_free_reason reason;
2754};
2755
2756static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2757{
2758 return (struct dev_kfree_skb_cb *)skb->cb;
2759}
2760
2761void netif_schedule_queue(struct netdev_queue *txq)
2762{
2763 rcu_read_lock();
2764 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2765 struct Qdisc *q = rcu_dereference(txq->qdisc);
2766
2767 __netif_schedule(q);
2768 }
2769 rcu_read_unlock();
2770}
2771EXPORT_SYMBOL(netif_schedule_queue);
2772
2773void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2774{
2775 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2776 struct Qdisc *q;
2777
2778 rcu_read_lock();
2779 q = rcu_dereference(dev_queue->qdisc);
2780 __netif_schedule(q);
2781 rcu_read_unlock();
2782 }
2783}
2784EXPORT_SYMBOL(netif_tx_wake_queue);
2785
2786void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2787{
2788 unsigned long flags;
2789
2790 if (unlikely(!skb))
2791 return;
2792
2793 if (likely(refcount_read(&skb->users) == 1)) {
2794 smp_rmb();
2795 refcount_set(&skb->users, 0);
2796 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2797 return;
2798 }
2799 get_kfree_skb_cb(skb)->reason = reason;
2800 local_irq_save(flags);
2801 skb->next = __this_cpu_read(softnet_data.completion_queue);
2802 __this_cpu_write(softnet_data.completion_queue, skb);
2803 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2804 local_irq_restore(flags);
2805}
2806EXPORT_SYMBOL(__dev_kfree_skb_irq);
2807
2808void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2809{
2810 if (in_irq() || irqs_disabled())
2811 __dev_kfree_skb_irq(skb, reason);
2812 else
2813 dev_kfree_skb(skb);
2814}
2815EXPORT_SYMBOL(__dev_kfree_skb_any);
2816
2817
2818/**
2819 * netif_device_detach - mark device as removed
2820 * @dev: network device
2821 *
2822 * Mark device as removed from system and therefore no longer available.
2823 */
2824void netif_device_detach(struct net_device *dev)
2825{
2826 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2827 netif_running(dev)) {
2828 netif_tx_stop_all_queues(dev);
2829 }
2830}
2831EXPORT_SYMBOL(netif_device_detach);
2832
2833/**
2834 * netif_device_attach - mark device as attached
2835 * @dev: network device
2836 *
2837 * Mark device as attached from system and restart if needed.
2838 */
2839void netif_device_attach(struct net_device *dev)
2840{
2841 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2842 netif_running(dev)) {
2843 netif_tx_wake_all_queues(dev);
2844 __netdev_watchdog_up(dev);
2845 }
2846}
2847EXPORT_SYMBOL(netif_device_attach);
2848
2849/*
2850 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2851 * to be used as a distribution range.
2852 */
2853static u16 skb_tx_hash(const struct net_device *dev,
2854 const struct net_device *sb_dev,
2855 struct sk_buff *skb)
2856{
2857 u32 hash;
2858 u16 qoffset = 0;
2859 u16 qcount = dev->real_num_tx_queues;
2860
2861 if (dev->num_tc) {
2862 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2863
2864 qoffset = sb_dev->tc_to_txq[tc].offset;
2865 qcount = sb_dev->tc_to_txq[tc].count;
2866 }
2867
2868 if (skb_rx_queue_recorded(skb)) {
2869 hash = skb_get_rx_queue(skb);
2870 while (unlikely(hash >= qcount))
2871 hash -= qcount;
2872 return hash + qoffset;
2873 }
2874
2875 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2876}
2877
2878static void skb_warn_bad_offload(const struct sk_buff *skb)
2879{
2880 static const netdev_features_t null_features;
2881 struct net_device *dev = skb->dev;
2882 const char *name = "";
2883
2884 if (!net_ratelimit())
2885 return;
2886
2887 if (dev) {
2888 if (dev->dev.parent)
2889 name = dev_driver_string(dev->dev.parent);
2890 else
2891 name = netdev_name(dev);
2892 }
2893 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2894 "gso_type=%d ip_summed=%d\n",
2895 name, dev ? &dev->features : &null_features,
2896 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2897 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2898 skb_shinfo(skb)->gso_type, skb->ip_summed);
2899}
2900
2901/*
2902 * Invalidate hardware checksum when packet is to be mangled, and
2903 * complete checksum manually on outgoing path.
2904 */
2905int skb_checksum_help(struct sk_buff *skb)
2906{
2907 __wsum csum;
2908 int ret = 0, offset;
2909
2910 if (skb->ip_summed == CHECKSUM_COMPLETE)
2911 goto out_set_summed;
2912
2913 if (unlikely(skb_shinfo(skb)->gso_size)) {
2914 skb_warn_bad_offload(skb);
2915 return -EINVAL;
2916 }
2917
2918 /* Before computing a checksum, we should make sure no frag could
2919 * be modified by an external entity : checksum could be wrong.
2920 */
2921 if (skb_has_shared_frag(skb)) {
2922 ret = __skb_linearize(skb);
2923 if (ret)
2924 goto out;
2925 }
2926
2927 offset = skb_checksum_start_offset(skb);
2928 BUG_ON(offset >= skb_headlen(skb));
2929 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2930
2931 offset += skb->csum_offset;
2932 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2933
2934 if (skb_cloned(skb) &&
2935 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2936 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2937 if (ret)
2938 goto out;
2939 }
2940
2941 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2942out_set_summed:
2943 skb->ip_summed = CHECKSUM_NONE;
2944out:
2945 return ret;
2946}
2947EXPORT_SYMBOL(skb_checksum_help);
2948
2949int skb_crc32c_csum_help(struct sk_buff *skb)
2950{
2951 __le32 crc32c_csum;
2952 int ret = 0, offset, start;
2953
2954 if (skb->ip_summed != CHECKSUM_PARTIAL)
2955 goto out;
2956
2957 if (unlikely(skb_is_gso(skb)))
2958 goto out;
2959
2960 /* Before computing a checksum, we should make sure no frag could
2961 * be modified by an external entity : checksum could be wrong.
2962 */
2963 if (unlikely(skb_has_shared_frag(skb))) {
2964 ret = __skb_linearize(skb);
2965 if (ret)
2966 goto out;
2967 }
2968 start = skb_checksum_start_offset(skb);
2969 offset = start + offsetof(struct sctphdr, checksum);
2970 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2971 ret = -EINVAL;
2972 goto out;
2973 }
2974 if (skb_cloned(skb) &&
2975 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2976 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2977 if (ret)
2978 goto out;
2979 }
2980 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2981 skb->len - start, ~(__u32)0,
2982 crc32c_csum_stub));
2983 *(__le32 *)(skb->data + offset) = crc32c_csum;
2984 skb->ip_summed = CHECKSUM_NONE;
2985 skb->csum_not_inet = 0;
2986out:
2987 return ret;
2988}
2989
2990__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2991{
2992 __be16 type = skb->protocol;
2993
2994 /* Tunnel gso handlers can set protocol to ethernet. */
2995 if (type == htons(ETH_P_TEB)) {
2996 struct ethhdr *eth;
2997
2998 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2999 return 0;
3000
3001 eth = (struct ethhdr *)skb->data;
3002 type = eth->h_proto;
3003 }
3004
3005 return __vlan_get_protocol(skb, type, depth);
3006}
3007
3008/**
3009 * skb_mac_gso_segment - mac layer segmentation handler.
3010 * @skb: buffer to segment
3011 * @features: features for the output path (see dev->features)
3012 */
3013struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3014 netdev_features_t features)
3015{
3016 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3017 struct packet_offload *ptype;
3018 int vlan_depth = skb->mac_len;
3019 __be16 type = skb_network_protocol(skb, &vlan_depth);
3020
3021 if (unlikely(!type))
3022 return ERR_PTR(-EINVAL);
3023
3024 __skb_pull(skb, vlan_depth);
3025
3026 rcu_read_lock();
3027 list_for_each_entry_rcu(ptype, &offload_base, list) {
3028 if (ptype->type == type && ptype->callbacks.gso_segment) {
3029 segs = ptype->callbacks.gso_segment(skb, features);
3030 break;
3031 }
3032 }
3033 rcu_read_unlock();
3034
3035 __skb_push(skb, skb->data - skb_mac_header(skb));
3036
3037 return segs;
3038}
3039EXPORT_SYMBOL(skb_mac_gso_segment);
3040
3041
3042/* openvswitch calls this on rx path, so we need a different check.
3043 */
3044static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3045{
3046 if (tx_path)
3047 return skb->ip_summed != CHECKSUM_PARTIAL &&
3048 skb->ip_summed != CHECKSUM_UNNECESSARY;
3049
3050 return skb->ip_summed == CHECKSUM_NONE;
3051}
3052
3053/**
3054 * __skb_gso_segment - Perform segmentation on skb.
3055 * @skb: buffer to segment
3056 * @features: features for the output path (see dev->features)
3057 * @tx_path: whether it is called in TX path
3058 *
3059 * This function segments the given skb and returns a list of segments.
3060 *
3061 * It may return NULL if the skb requires no segmentation. This is
3062 * only possible when GSO is used for verifying header integrity.
3063 *
3064 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3065 */
3066struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3067 netdev_features_t features, bool tx_path)
3068{
3069 struct sk_buff *segs;
3070
3071 if (unlikely(skb_needs_check(skb, tx_path))) {
3072 int err;
3073
3074 /* We're going to init ->check field in TCP or UDP header */
3075 err = skb_cow_head(skb, 0);
3076 if (err < 0)
3077 return ERR_PTR(err);
3078 }
3079
3080 /* Only report GSO partial support if it will enable us to
3081 * support segmentation on this frame without needing additional
3082 * work.
3083 */
3084 if (features & NETIF_F_GSO_PARTIAL) {
3085 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3086 struct net_device *dev = skb->dev;
3087
3088 partial_features |= dev->features & dev->gso_partial_features;
3089 if (!skb_gso_ok(skb, features | partial_features))
3090 features &= ~NETIF_F_GSO_PARTIAL;
3091 }
3092
3093 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3094 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3095
3096 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3097 SKB_GSO_CB(skb)->encap_level = 0;
3098
3099 skb_reset_mac_header(skb);
3100 skb_reset_mac_len(skb);
3101
3102 segs = skb_mac_gso_segment(skb, features);
3103
3104 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3105 skb_warn_bad_offload(skb);
3106
3107 return segs;
3108}
3109EXPORT_SYMBOL(__skb_gso_segment);
3110
3111/* Take action when hardware reception checksum errors are detected. */
3112#ifdef CONFIG_BUG
3113void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3114{
3115 if (net_ratelimit()) {
3116 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3117 if (dev)
3118 pr_err("dev features: %pNF\n", &dev->features);
3119 pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3120 skb->len, skb->data_len, skb->pkt_type,
3121 skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3122 skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3123 skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
3124 dump_stack();
3125 }
3126}
3127EXPORT_SYMBOL(netdev_rx_csum_fault);
3128#endif
3129
3130/* XXX: check that highmem exists at all on the given machine. */
3131static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3132{
3133#ifdef CONFIG_HIGHMEM
3134 int i;
3135
3136 if (!(dev->features & NETIF_F_HIGHDMA)) {
3137 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3138 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3139
3140 if (PageHighMem(skb_frag_page(frag)))
3141 return 1;
3142 }
3143 }
3144#endif
3145 return 0;
3146}
3147
3148/* If MPLS offload request, verify we are testing hardware MPLS features
3149 * instead of standard features for the netdev.
3150 */
3151#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3152static netdev_features_t net_mpls_features(struct sk_buff *skb,
3153 netdev_features_t features,
3154 __be16 type)
3155{
3156 if (eth_p_mpls(type))
3157 features &= skb->dev->mpls_features;
3158
3159 return features;
3160}
3161#else
3162static netdev_features_t net_mpls_features(struct sk_buff *skb,
3163 netdev_features_t features,
3164 __be16 type)
3165{
3166 return features;
3167}
3168#endif
3169
3170static netdev_features_t harmonize_features(struct sk_buff *skb,
3171 netdev_features_t features)
3172{
3173 int tmp;
3174 __be16 type;
3175
3176 type = skb_network_protocol(skb, &tmp);
3177 features = net_mpls_features(skb, features, type);
3178
3179 if (skb->ip_summed != CHECKSUM_NONE &&
3180 !can_checksum_protocol(features, type)) {
3181 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3182 }
3183 if (illegal_highdma(skb->dev, skb))
3184 features &= ~NETIF_F_SG;
3185
3186 return features;
3187}
3188
3189netdev_features_t passthru_features_check(struct sk_buff *skb,
3190 struct net_device *dev,
3191 netdev_features_t features)
3192{
3193 return features;
3194}
3195EXPORT_SYMBOL(passthru_features_check);
3196
3197static netdev_features_t dflt_features_check(struct sk_buff *skb,
3198 struct net_device *dev,
3199 netdev_features_t features)
3200{
3201 return vlan_features_check(skb, features);
3202}
3203
3204static netdev_features_t gso_features_check(const struct sk_buff *skb,
3205 struct net_device *dev,
3206 netdev_features_t features)
3207{
3208 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3209
3210 if (gso_segs > dev->gso_max_segs)
3211 return features & ~NETIF_F_GSO_MASK;
3212
3213 /* Support for GSO partial features requires software
3214 * intervention before we can actually process the packets
3215 * so we need to strip support for any partial features now
3216 * and we can pull them back in after we have partially
3217 * segmented the frame.
3218 */
3219 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3220 features &= ~dev->gso_partial_features;
3221
3222 /* Make sure to clear the IPv4 ID mangling feature if the
3223 * IPv4 header has the potential to be fragmented.
3224 */
3225 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3226 struct iphdr *iph = skb->encapsulation ?
3227 inner_ip_hdr(skb) : ip_hdr(skb);
3228
3229 if (!(iph->frag_off & htons(IP_DF)))
3230 features &= ~NETIF_F_TSO_MANGLEID;
3231 }
3232
3233 return features;
3234}
3235
3236netdev_features_t netif_skb_features(struct sk_buff *skb)
3237{
3238 struct net_device *dev = skb->dev;
3239 netdev_features_t features = dev->features;
3240
3241 if (skb_is_gso(skb))
3242 features = gso_features_check(skb, dev, features);
3243
3244 /* If encapsulation offload request, verify we are testing
3245 * hardware encapsulation features instead of standard
3246 * features for the netdev
3247 */
3248 if (skb->encapsulation)
3249 features &= dev->hw_enc_features;
3250
3251 if (skb_vlan_tagged(skb))
3252 features = netdev_intersect_features(features,
3253 dev->vlan_features |
3254 NETIF_F_HW_VLAN_CTAG_TX |
3255 NETIF_F_HW_VLAN_STAG_TX);
3256
3257 if (dev->netdev_ops->ndo_features_check)
3258 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3259 features);
3260 else
3261 features &= dflt_features_check(skb, dev, features);
3262
3263 return harmonize_features(skb, features);
3264}
3265EXPORT_SYMBOL(netif_skb_features);
3266
3267static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3268 struct netdev_queue *txq, bool more)
3269{
3270 unsigned int len;
3271 int rc;
3272
3273 if (dev_nit_active(dev))
3274 dev_queue_xmit_nit(skb, dev);
3275
3276 len = skb->len;
3277 trace_net_dev_start_xmit(skb, dev);
3278 rc = netdev_start_xmit(skb, dev, txq, more);
3279 trace_net_dev_xmit(skb, rc, dev, len);
3280
3281 return rc;
3282}
3283
3284struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3285 struct netdev_queue *txq, int *ret)
3286{
3287 struct sk_buff *skb = first;
3288 int rc = NETDEV_TX_OK;
3289
3290 while (skb) {
3291 struct sk_buff *next = skb->next;
3292
3293 skb_mark_not_on_list(skb);
3294 rc = xmit_one(skb, dev, txq, next != NULL);
3295 if (unlikely(!dev_xmit_complete(rc))) {
3296 skb->next = next;
3297 goto out;
3298 }
3299
3300 skb = next;
3301 if (netif_tx_queue_stopped(txq) && skb) {
3302 rc = NETDEV_TX_BUSY;
3303 break;
3304 }
3305 }
3306
3307out:
3308 *ret = rc;
3309 return skb;
3310}
3311
3312static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3313 netdev_features_t features)
3314{
3315 if (skb_vlan_tag_present(skb) &&
3316 !vlan_hw_offload_capable(features, skb->vlan_proto))
3317 skb = __vlan_hwaccel_push_inside(skb);
3318 return skb;
3319}
3320
3321int skb_csum_hwoffload_help(struct sk_buff *skb,
3322 const netdev_features_t features)
3323{
3324 if (unlikely(skb->csum_not_inet))
3325 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3326 skb_crc32c_csum_help(skb);
3327
3328 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3329}
3330EXPORT_SYMBOL(skb_csum_hwoffload_help);
3331
3332static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3333{
3334 netdev_features_t features;
3335
3336 features = netif_skb_features(skb);
3337 skb = validate_xmit_vlan(skb, features);
3338 if (unlikely(!skb))
3339 goto out_null;
3340
3341 skb = sk_validate_xmit_skb(skb, dev);
3342 if (unlikely(!skb))
3343 goto out_null;
3344
3345 if (netif_needs_gso(skb, features)) {
3346 struct sk_buff *segs;
3347
3348 segs = skb_gso_segment(skb, features);
3349 if (IS_ERR(segs)) {
3350 goto out_kfree_skb;
3351 } else if (segs) {
3352 consume_skb(skb);
3353 skb = segs;
3354 }
3355 } else {
3356 if (skb_needs_linearize(skb, features) &&
3357 __skb_linearize(skb))
3358 goto out_kfree_skb;
3359
3360 /* If packet is not checksummed and device does not
3361 * support checksumming for this protocol, complete
3362 * checksumming here.
3363 */
3364 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3365 if (skb->encapsulation)
3366 skb_set_inner_transport_header(skb,
3367 skb_checksum_start_offset(skb));
3368 else
3369 skb_set_transport_header(skb,
3370 skb_checksum_start_offset(skb));
3371 if (skb_csum_hwoffload_help(skb, features))
3372 goto out_kfree_skb;
3373 }
3374 }
3375
3376 skb = validate_xmit_xfrm(skb, features, again);
3377
3378 return skb;
3379
3380out_kfree_skb:
3381 kfree_skb(skb);
3382out_null:
3383 atomic_long_inc(&dev->tx_dropped);
3384 return NULL;
3385}
3386
3387struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3388{
3389 struct sk_buff *next, *head = NULL, *tail;
3390
3391 for (; skb != NULL; skb = next) {
3392 next = skb->next;
3393 skb_mark_not_on_list(skb);
3394
3395 /* in case skb wont be segmented, point to itself */
3396 skb->prev = skb;
3397
3398 skb = validate_xmit_skb(skb, dev, again);
3399 if (!skb)
3400 continue;
3401
3402 if (!head)
3403 head = skb;
3404 else
3405 tail->next = skb;
3406 /* If skb was segmented, skb->prev points to
3407 * the last segment. If not, it still contains skb.
3408 */
3409 tail = skb->prev;
3410 }
3411 return head;
3412}
3413EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3414
3415static void qdisc_pkt_len_init(struct sk_buff *skb)
3416{
3417 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3418
3419 qdisc_skb_cb(skb)->pkt_len = skb->len;
3420
3421 /* To get more precise estimation of bytes sent on wire,
3422 * we add to pkt_len the headers size of all segments
3423 */
3424 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3425 unsigned int hdr_len;
3426 u16 gso_segs = shinfo->gso_segs;
3427
3428 /* mac layer + network layer */
3429 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3430
3431 /* + transport layer */
3432 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3433 const struct tcphdr *th;
3434 struct tcphdr _tcphdr;
3435
3436 th = skb_header_pointer(skb, skb_transport_offset(skb),
3437 sizeof(_tcphdr), &_tcphdr);
3438 if (likely(th))
3439 hdr_len += __tcp_hdrlen(th);
3440 } else {
3441 struct udphdr _udphdr;
3442
3443 if (skb_header_pointer(skb, skb_transport_offset(skb),
3444 sizeof(_udphdr), &_udphdr))
3445 hdr_len += sizeof(struct udphdr);
3446 }
3447
3448 if (shinfo->gso_type & SKB_GSO_DODGY)
3449 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3450 shinfo->gso_size);
3451
3452 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3453 }
3454}
3455
3456static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3457 struct net_device *dev,
3458 struct netdev_queue *txq)
3459{
3460 spinlock_t *root_lock = qdisc_lock(q);
3461 struct sk_buff *to_free = NULL;
3462 bool contended;
3463 int rc;
3464
3465 qdisc_calculate_pkt_len(skb, q);
3466
3467 if (q->flags & TCQ_F_NOLOCK) {
3468 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3469 __qdisc_drop(skb, &to_free);
3470 rc = NET_XMIT_DROP;
3471 } else {
3472 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3473 qdisc_run(q);
3474 }
3475
3476 if (unlikely(to_free))
3477 kfree_skb_list(to_free);
3478 return rc;
3479 }
3480
3481 /*
3482 * Heuristic to force contended enqueues to serialize on a
3483 * separate lock before trying to get qdisc main lock.
3484 * This permits qdisc->running owner to get the lock more
3485 * often and dequeue packets faster.
3486 */
3487 contended = qdisc_is_running(q);
3488 if (unlikely(contended))
3489 spin_lock(&q->busylock);
3490
3491 spin_lock(root_lock);
3492 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3493 __qdisc_drop(skb, &to_free);
3494 rc = NET_XMIT_DROP;
3495 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3496 qdisc_run_begin(q)) {
3497 /*
3498 * This is a work-conserving queue; there are no old skbs
3499 * waiting to be sent out; and the qdisc is not running -
3500 * xmit the skb directly.
3501 */
3502
3503 qdisc_bstats_update(q, skb);
3504
3505 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3506 if (unlikely(contended)) {
3507 spin_unlock(&q->busylock);
3508 contended = false;
3509 }
3510 __qdisc_run(q);
3511 }
3512
3513 qdisc_run_end(q);
3514 rc = NET_XMIT_SUCCESS;
3515 } else {
3516 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3517 if (qdisc_run_begin(q)) {
3518 if (unlikely(contended)) {
3519 spin_unlock(&q->busylock);
3520 contended = false;
3521 }
3522 __qdisc_run(q);
3523 qdisc_run_end(q);
3524 }
3525 }
3526 spin_unlock(root_lock);
3527 if (unlikely(to_free))
3528 kfree_skb_list(to_free);
3529 if (unlikely(contended))
3530 spin_unlock(&q->busylock);
3531 return rc;
3532}
3533
3534#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3535static void skb_update_prio(struct sk_buff *skb)
3536{
3537 const struct netprio_map *map;
3538 const struct sock *sk;
3539 unsigned int prioidx;
3540
3541 if (skb->priority)
3542 return;
3543 map = rcu_dereference_bh(skb->dev->priomap);
3544 if (!map)
3545 return;
3546 sk = skb_to_full_sk(skb);
3547 if (!sk)
3548 return;
3549
3550 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3551
3552 if (prioidx < map->priomap_len)
3553 skb->priority = map->priomap[prioidx];
3554}
3555#else
3556#define skb_update_prio(skb)
3557#endif
3558
3559DEFINE_PER_CPU(int, xmit_recursion);
3560EXPORT_SYMBOL(xmit_recursion);
3561
3562/**
3563 * dev_loopback_xmit - loop back @skb
3564 * @net: network namespace this loopback is happening in
3565 * @sk: sk needed to be a netfilter okfn
3566 * @skb: buffer to transmit
3567 */
3568int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3569{
3570 skb_reset_mac_header(skb);
3571 __skb_pull(skb, skb_network_offset(skb));
3572 skb->pkt_type = PACKET_LOOPBACK;
3573 skb->ip_summed = CHECKSUM_UNNECESSARY;
3574 WARN_ON(!skb_dst(skb));
3575 skb_dst_force(skb);
3576 netif_rx_ni(skb);
3577 return 0;
3578}
3579EXPORT_SYMBOL(dev_loopback_xmit);
3580
3581#ifdef CONFIG_NET_EGRESS
3582static struct sk_buff *
3583sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3584{
3585 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3586 struct tcf_result cl_res;
3587
3588 if (!miniq)
3589 return skb;
3590
3591 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3592 mini_qdisc_bstats_cpu_update(miniq, skb);
3593
3594 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3595 case TC_ACT_OK:
3596 case TC_ACT_RECLASSIFY:
3597 skb->tc_index = TC_H_MIN(cl_res.classid);
3598 break;
3599 case TC_ACT_SHOT:
3600 mini_qdisc_qstats_cpu_drop(miniq);
3601 *ret = NET_XMIT_DROP;
3602 kfree_skb(skb);
3603 return NULL;
3604 case TC_ACT_STOLEN:
3605 case TC_ACT_QUEUED:
3606 case TC_ACT_TRAP:
3607 *ret = NET_XMIT_SUCCESS;
3608 consume_skb(skb);
3609 return NULL;
3610 case TC_ACT_REDIRECT:
3611 /* No need to push/pop skb's mac_header here on egress! */
3612 skb_do_redirect(skb);
3613 *ret = NET_XMIT_SUCCESS;
3614 return NULL;
3615 default:
3616 break;
3617 }
3618
3619 return skb;
3620}
3621#endif /* CONFIG_NET_EGRESS */
3622
3623#ifdef CONFIG_XPS
3624static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3625 struct xps_dev_maps *dev_maps, unsigned int tci)
3626{
3627 struct xps_map *map;
3628 int queue_index = -1;
3629
3630 if (dev->num_tc) {
3631 tci *= dev->num_tc;
3632 tci += netdev_get_prio_tc_map(dev, skb->priority);
3633 }
3634
3635 map = rcu_dereference(dev_maps->attr_map[tci]);
3636 if (map) {
3637 if (map->len == 1)
3638 queue_index = map->queues[0];
3639 else
3640 queue_index = map->queues[reciprocal_scale(
3641 skb_get_hash(skb), map->len)];
3642 if (unlikely(queue_index >= dev->real_num_tx_queues))
3643 queue_index = -1;
3644 }
3645 return queue_index;
3646}
3647#endif
3648
3649static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3650 struct sk_buff *skb)
3651{
3652#ifdef CONFIG_XPS
3653 struct xps_dev_maps *dev_maps;
3654 struct sock *sk = skb->sk;
3655 int queue_index = -1;
3656
3657 if (!static_key_false(&xps_needed))
3658 return -1;
3659
3660 rcu_read_lock();
3661 if (!static_key_false(&xps_rxqs_needed))
3662 goto get_cpus_map;
3663
3664 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3665 if (dev_maps) {
3666 int tci = sk_rx_queue_get(sk);
3667
3668 if (tci >= 0 && tci < dev->num_rx_queues)
3669 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3670 tci);
3671 }
3672
3673get_cpus_map:
3674 if (queue_index < 0) {
3675 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3676 if (dev_maps) {
3677 unsigned int tci = skb->sender_cpu - 1;
3678
3679 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3680 tci);
3681 }
3682 }
3683 rcu_read_unlock();
3684
3685 return queue_index;
3686#else
3687 return -1;
3688#endif
3689}
3690
3691u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3692 struct net_device *sb_dev,
3693 select_queue_fallback_t fallback)
3694{
3695 return 0;
3696}
3697EXPORT_SYMBOL(dev_pick_tx_zero);
3698
3699u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3700 struct net_device *sb_dev,
3701 select_queue_fallback_t fallback)
3702{
3703 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3704}
3705EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3706
3707static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3708 struct net_device *sb_dev)
3709{
3710 struct sock *sk = skb->sk;
3711 int queue_index = sk_tx_queue_get(sk);
3712
3713 sb_dev = sb_dev ? : dev;
3714
3715 if (queue_index < 0 || skb->ooo_okay ||
3716 queue_index >= dev->real_num_tx_queues) {
3717 int new_index = get_xps_queue(dev, sb_dev, skb);
3718
3719 if (new_index < 0)
3720 new_index = skb_tx_hash(dev, sb_dev, skb);
3721
3722 if (queue_index != new_index && sk &&
3723 sk_fullsock(sk) &&
3724 rcu_access_pointer(sk->sk_dst_cache))
3725 sk_tx_queue_set(sk, new_index);
3726
3727 queue_index = new_index;
3728 }
3729
3730 return queue_index;
3731}
3732
3733struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3734 struct sk_buff *skb,
3735 struct net_device *sb_dev)
3736{
3737 int queue_index = 0;
3738
3739#ifdef CONFIG_XPS
3740 u32 sender_cpu = skb->sender_cpu - 1;
3741
3742 if (sender_cpu >= (u32)NR_CPUS)
3743 skb->sender_cpu = raw_smp_processor_id() + 1;
3744#endif
3745
3746 if (dev->real_num_tx_queues != 1) {
3747 const struct net_device_ops *ops = dev->netdev_ops;
3748
3749 if (ops->ndo_select_queue)
3750 queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3751 __netdev_pick_tx);
3752 else
3753 queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3754
3755 queue_index = netdev_cap_txqueue(dev, queue_index);
3756 }
3757
3758 skb_set_queue_mapping(skb, queue_index);
3759 return netdev_get_tx_queue(dev, queue_index);
3760}
3761
3762/**
3763 * __dev_queue_xmit - transmit a buffer
3764 * @skb: buffer to transmit
3765 * @sb_dev: suboordinate device used for L2 forwarding offload
3766 *
3767 * Queue a buffer for transmission to a network device. The caller must
3768 * have set the device and priority and built the buffer before calling
3769 * this function. The function can be called from an interrupt.
3770 *
3771 * A negative errno code is returned on a failure. A success does not
3772 * guarantee the frame will be transmitted as it may be dropped due
3773 * to congestion or traffic shaping.
3774 *
3775 * -----------------------------------------------------------------------------------
3776 * I notice this method can also return errors from the queue disciplines,
3777 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3778 * be positive.
3779 *
3780 * Regardless of the return value, the skb is consumed, so it is currently
3781 * difficult to retry a send to this method. (You can bump the ref count
3782 * before sending to hold a reference for retry if you are careful.)
3783 *
3784 * When calling this method, interrupts MUST be enabled. This is because
3785 * the BH enable code must have IRQs enabled so that it will not deadlock.
3786 * --BLG
3787 */
3788static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3789{
3790 struct net_device *dev = skb->dev;
3791 struct netdev_queue *txq;
3792 struct Qdisc *q;
3793 int rc = -ENOMEM;
3794 bool again = false;
3795
3796 skb_reset_mac_header(skb);
3797
3798 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3799 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3800
3801 /* Disable soft irqs for various locks below. Also
3802 * stops preemption for RCU.
3803 */
3804 rcu_read_lock_bh();
3805
3806 skb_update_prio(skb);
3807
3808 qdisc_pkt_len_init(skb);
3809#ifdef CONFIG_NET_CLS_ACT
3810 skb->tc_at_ingress = 0;
3811# ifdef CONFIG_NET_EGRESS
3812 if (static_branch_unlikely(&egress_needed_key)) {
3813 skb = sch_handle_egress(skb, &rc, dev);
3814 if (!skb)
3815 goto out;
3816 }
3817# endif
3818#endif
3819 /* If device/qdisc don't need skb->dst, release it right now while
3820 * its hot in this cpu cache.
3821 */
3822 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3823 skb_dst_drop(skb);
3824 else
3825 skb_dst_force(skb);
3826
3827 txq = netdev_pick_tx(dev, skb, sb_dev);
3828 q = rcu_dereference_bh(txq->qdisc);
3829
3830 trace_net_dev_queue(skb);
3831 if (q->enqueue) {
3832 rc = __dev_xmit_skb(skb, q, dev, txq);
3833 goto out;
3834 }
3835
3836 /* The device has no queue. Common case for software devices:
3837 * loopback, all the sorts of tunnels...
3838
3839 * Really, it is unlikely that netif_tx_lock protection is necessary
3840 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3841 * counters.)
3842 * However, it is possible, that they rely on protection
3843 * made by us here.
3844
3845 * Check this and shot the lock. It is not prone from deadlocks.
3846 *Either shot noqueue qdisc, it is even simpler 8)
3847 */
3848 if (dev->flags & IFF_UP) {
3849 int cpu = smp_processor_id(); /* ok because BHs are off */
3850
3851 if (txq->xmit_lock_owner != cpu) {
3852 if (unlikely(__this_cpu_read(xmit_recursion) >
3853 XMIT_RECURSION_LIMIT))
3854 goto recursion_alert;
3855
3856 skb = validate_xmit_skb(skb, dev, &again);
3857 if (!skb)
3858 goto out;
3859
3860 HARD_TX_LOCK(dev, txq, cpu);
3861
3862 if (!netif_xmit_stopped(txq)) {
3863 __this_cpu_inc(xmit_recursion);
3864 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3865 __this_cpu_dec(xmit_recursion);
3866 if (dev_xmit_complete(rc)) {
3867 HARD_TX_UNLOCK(dev, txq);
3868 goto out;
3869 }
3870 }
3871 HARD_TX_UNLOCK(dev, txq);
3872 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3873 dev->name);
3874 } else {
3875 /* Recursion is detected! It is possible,
3876 * unfortunately
3877 */
3878recursion_alert:
3879 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3880 dev->name);
3881 }
3882 }
3883
3884 rc = -ENETDOWN;
3885 rcu_read_unlock_bh();
3886
3887 atomic_long_inc(&dev->tx_dropped);
3888 kfree_skb_list(skb);
3889 return rc;
3890out:
3891 rcu_read_unlock_bh();
3892 return rc;
3893}
3894
3895int dev_queue_xmit(struct sk_buff *skb)
3896{
3897 return __dev_queue_xmit(skb, NULL);
3898}
3899EXPORT_SYMBOL(dev_queue_xmit);
3900
3901int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3902{
3903 return __dev_queue_xmit(skb, sb_dev);
3904}
3905EXPORT_SYMBOL(dev_queue_xmit_accel);
3906
3907int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3908{
3909 struct net_device *dev = skb->dev;
3910 struct sk_buff *orig_skb = skb;
3911 struct netdev_queue *txq;
3912 int ret = NETDEV_TX_BUSY;
3913 bool again = false;
3914
3915 if (unlikely(!netif_running(dev) ||
3916 !netif_carrier_ok(dev)))
3917 goto drop;
3918
3919 skb = validate_xmit_skb_list(skb, dev, &again);
3920 if (skb != orig_skb)
3921 goto drop;
3922
3923 skb_set_queue_mapping(skb, queue_id);
3924 txq = skb_get_tx_queue(dev, skb);
3925
3926 local_bh_disable();
3927
3928 HARD_TX_LOCK(dev, txq, smp_processor_id());
3929 if (!netif_xmit_frozen_or_drv_stopped(txq))
3930 ret = netdev_start_xmit(skb, dev, txq, false);
3931 HARD_TX_UNLOCK(dev, txq);
3932
3933 local_bh_enable();
3934
3935 if (!dev_xmit_complete(ret))
3936 kfree_skb(skb);
3937
3938 return ret;
3939drop:
3940 atomic_long_inc(&dev->tx_dropped);
3941 kfree_skb_list(skb);
3942 return NET_XMIT_DROP;
3943}
3944EXPORT_SYMBOL(dev_direct_xmit);
3945
3946/*************************************************************************
3947 * Receiver routines
3948 *************************************************************************/
3949
3950int netdev_max_backlog __read_mostly = 1000;
3951EXPORT_SYMBOL(netdev_max_backlog);
3952
3953int netdev_tstamp_prequeue __read_mostly = 1;
3954int netdev_budget __read_mostly = 300;
3955unsigned int __read_mostly netdev_budget_usecs = 2000;
3956int weight_p __read_mostly = 64; /* old backlog weight */
3957int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3958int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3959int dev_rx_weight __read_mostly = 64;
3960int dev_tx_weight __read_mostly = 64;
3961
3962/* Called with irq disabled */
3963static inline void ____napi_schedule(struct softnet_data *sd,
3964 struct napi_struct *napi)
3965{
3966 list_add_tail(&napi->poll_list, &sd->poll_list);
3967 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3968}
3969
3970#ifdef CONFIG_RPS
3971
3972/* One global table that all flow-based protocols share. */
3973struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3974EXPORT_SYMBOL(rps_sock_flow_table);
3975u32 rps_cpu_mask __read_mostly;
3976EXPORT_SYMBOL(rps_cpu_mask);
3977
3978struct static_key rps_needed __read_mostly;
3979EXPORT_SYMBOL(rps_needed);
3980struct static_key rfs_needed __read_mostly;
3981EXPORT_SYMBOL(rfs_needed);
3982
3983static struct rps_dev_flow *
3984set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3985 struct rps_dev_flow *rflow, u16 next_cpu)
3986{
3987 if (next_cpu < nr_cpu_ids) {
3988#ifdef CONFIG_RFS_ACCEL
3989 struct netdev_rx_queue *rxqueue;
3990 struct rps_dev_flow_table *flow_table;
3991 struct rps_dev_flow *old_rflow;
3992 u32 flow_id;
3993 u16 rxq_index;
3994 int rc;
3995
3996 /* Should we steer this flow to a different hardware queue? */
3997 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3998 !(dev->features & NETIF_F_NTUPLE))
3999 goto out;
4000 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4001 if (rxq_index == skb_get_rx_queue(skb))
4002 goto out;
4003
4004 rxqueue = dev->_rx + rxq_index;
4005 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4006 if (!flow_table)
4007 goto out;
4008 flow_id = skb_get_hash(skb) & flow_table->mask;
4009 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4010 rxq_index, flow_id);
4011 if (rc < 0)
4012 goto out;
4013 old_rflow = rflow;
4014 rflow = &flow_table->flows[flow_id];
4015 rflow->filter = rc;
4016 if (old_rflow->filter == rflow->filter)
4017 old_rflow->filter = RPS_NO_FILTER;
4018 out:
4019#endif
4020 rflow->last_qtail =
4021 per_cpu(softnet_data, next_cpu).input_queue_head;
4022 }
4023
4024 rflow->cpu = next_cpu;
4025 return rflow;
4026}
4027
4028/*
4029 * get_rps_cpu is called from netif_receive_skb and returns the target
4030 * CPU from the RPS map of the receiving queue for a given skb.
4031 * rcu_read_lock must be held on entry.
4032 */
4033static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4034 struct rps_dev_flow **rflowp)
4035{
4036 const struct rps_sock_flow_table *sock_flow_table;
4037 struct netdev_rx_queue *rxqueue = dev->_rx;
4038 struct rps_dev_flow_table *flow_table;
4039 struct rps_map *map;
4040 int cpu = -1;
4041 u32 tcpu;
4042 u32 hash;
4043
4044 if (skb_rx_queue_recorded(skb)) {
4045 u16 index = skb_get_rx_queue(skb);
4046
4047 if (unlikely(index >= dev->real_num_rx_queues)) {
4048 WARN_ONCE(dev->real_num_rx_queues > 1,
4049 "%s received packet on queue %u, but number "
4050 "of RX queues is %u\n",
4051 dev->name, index, dev->real_num_rx_queues);
4052 goto done;
4053 }
4054 rxqueue += index;
4055 }
4056
4057 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4058
4059 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4060 map = rcu_dereference(rxqueue->rps_map);
4061 if (!flow_table && !map)
4062 goto done;
4063
4064 skb_reset_network_header(skb);
4065 hash = skb_get_hash(skb);
4066 if (!hash)
4067 goto done;
4068
4069 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4070 if (flow_table && sock_flow_table) {
4071 struct rps_dev_flow *rflow;
4072 u32 next_cpu;
4073 u32 ident;
4074
4075 /* First check into global flow table if there is a match */
4076 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4077 if ((ident ^ hash) & ~rps_cpu_mask)
4078 goto try_rps;
4079
4080 next_cpu = ident & rps_cpu_mask;
4081
4082 /* OK, now we know there is a match,
4083 * we can look at the local (per receive queue) flow table
4084 */
4085 rflow = &flow_table->flows[hash & flow_table->mask];
4086 tcpu = rflow->cpu;
4087
4088 /*
4089 * If the desired CPU (where last recvmsg was done) is
4090 * different from current CPU (one in the rx-queue flow
4091 * table entry), switch if one of the following holds:
4092 * - Current CPU is unset (>= nr_cpu_ids).
4093 * - Current CPU is offline.
4094 * - The current CPU's queue tail has advanced beyond the
4095 * last packet that was enqueued using this table entry.
4096 * This guarantees that all previous packets for the flow
4097 * have been dequeued, thus preserving in order delivery.
4098 */
4099 if (unlikely(tcpu != next_cpu) &&
4100 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4101 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4102 rflow->last_qtail)) >= 0)) {
4103 tcpu = next_cpu;
4104 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4105 }
4106
4107 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4108 *rflowp = rflow;
4109 cpu = tcpu;
4110 goto done;
4111 }
4112 }
4113
4114try_rps:
4115
4116 if (map) {
4117 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4118 if (cpu_online(tcpu)) {
4119 cpu = tcpu;
4120 goto done;
4121 }
4122 }
4123
4124done:
4125 return cpu;
4126}
4127
4128#ifdef CONFIG_RFS_ACCEL
4129
4130/**
4131 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4132 * @dev: Device on which the filter was set
4133 * @rxq_index: RX queue index
4134 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4135 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4136 *
4137 * Drivers that implement ndo_rx_flow_steer() should periodically call
4138 * this function for each installed filter and remove the filters for
4139 * which it returns %true.
4140 */
4141bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4142 u32 flow_id, u16 filter_id)
4143{
4144 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4145 struct rps_dev_flow_table *flow_table;
4146 struct rps_dev_flow *rflow;
4147 bool expire = true;
4148 unsigned int cpu;
4149
4150 rcu_read_lock();
4151 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4152 if (flow_table && flow_id <= flow_table->mask) {
4153 rflow = &flow_table->flows[flow_id];
4154 cpu = READ_ONCE(rflow->cpu);
4155 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4156 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4157 rflow->last_qtail) <
4158 (int)(10 * flow_table->mask)))
4159 expire = false;
4160 }
4161 rcu_read_unlock();
4162 return expire;
4163}
4164EXPORT_SYMBOL(rps_may_expire_flow);
4165
4166#endif /* CONFIG_RFS_ACCEL */
4167
4168/* Called from hardirq (IPI) context */
4169static void rps_trigger_softirq(void *data)
4170{
4171 struct softnet_data *sd = data;
4172
4173 ____napi_schedule(sd, &sd->backlog);
4174 sd->received_rps++;
4175}
4176
4177#endif /* CONFIG_RPS */
4178
4179/*
4180 * Check if this softnet_data structure is another cpu one
4181 * If yes, queue it to our IPI list and return 1
4182 * If no, return 0
4183 */
4184static int rps_ipi_queued(struct softnet_data *sd)
4185{
4186#ifdef CONFIG_RPS
4187 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4188
4189 if (sd != mysd) {
4190 sd->rps_ipi_next = mysd->rps_ipi_list;
4191 mysd->rps_ipi_list = sd;
4192
4193 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4194 return 1;
4195 }
4196#endif /* CONFIG_RPS */
4197 return 0;
4198}
4199
4200#ifdef CONFIG_NET_FLOW_LIMIT
4201int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4202#endif
4203
4204static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4205{
4206#ifdef CONFIG_NET_FLOW_LIMIT
4207 struct sd_flow_limit *fl;
4208 struct softnet_data *sd;
4209 unsigned int old_flow, new_flow;
4210
4211 if (qlen < (netdev_max_backlog >> 1))
4212 return false;
4213
4214 sd = this_cpu_ptr(&softnet_data);
4215
4216 rcu_read_lock();
4217 fl = rcu_dereference(sd->flow_limit);
4218 if (fl) {
4219 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4220 old_flow = fl->history[fl->history_head];
4221 fl->history[fl->history_head] = new_flow;
4222
4223 fl->history_head++;
4224 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4225
4226 if (likely(fl->buckets[old_flow]))
4227 fl->buckets[old_flow]--;
4228
4229 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4230 fl->count++;
4231 rcu_read_unlock();
4232 return true;
4233 }
4234 }
4235 rcu_read_unlock();
4236#endif
4237 return false;
4238}
4239
4240/*
4241 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4242 * queue (may be a remote CPU queue).
4243 */
4244static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4245 unsigned int *qtail)
4246{
4247 struct softnet_data *sd;
4248 unsigned long flags;
4249 unsigned int qlen;
4250
4251 sd = &per_cpu(softnet_data, cpu);
4252
4253 local_irq_save(flags);
4254
4255 rps_lock(sd);
4256 if (!netif_running(skb->dev))
4257 goto drop;
4258 qlen = skb_queue_len(&sd->input_pkt_queue);
4259 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4260 if (qlen) {
4261enqueue:
4262 __skb_queue_tail(&sd->input_pkt_queue, skb);
4263 input_queue_tail_incr_save(sd, qtail);
4264 rps_unlock(sd);
4265 local_irq_restore(flags);
4266 return NET_RX_SUCCESS;
4267 }
4268
4269 /* Schedule NAPI for backlog device
4270 * We can use non atomic operation since we own the queue lock
4271 */
4272 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4273 if (!rps_ipi_queued(sd))
4274 ____napi_schedule(sd, &sd->backlog);
4275 }
4276 goto enqueue;
4277 }
4278
4279drop:
4280 sd->dropped++;
4281 rps_unlock(sd);
4282
4283 local_irq_restore(flags);
4284
4285 atomic_long_inc(&skb->dev->rx_dropped);
4286 kfree_skb(skb);
4287 return NET_RX_DROP;
4288}
4289
4290static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4291{
4292 struct net_device *dev = skb->dev;
4293 struct netdev_rx_queue *rxqueue;
4294
4295 rxqueue = dev->_rx;
4296
4297 if (skb_rx_queue_recorded(skb)) {
4298 u16 index = skb_get_rx_queue(skb);
4299
4300 if (unlikely(index >= dev->real_num_rx_queues)) {
4301 WARN_ONCE(dev->real_num_rx_queues > 1,
4302 "%s received packet on queue %u, but number "
4303 "of RX queues is %u\n",
4304 dev->name, index, dev->real_num_rx_queues);
4305
4306 return rxqueue; /* Return first rxqueue */
4307 }
4308 rxqueue += index;
4309 }
4310 return rxqueue;
4311}
4312
4313static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4314 struct xdp_buff *xdp,
4315 struct bpf_prog *xdp_prog)
4316{
4317 struct netdev_rx_queue *rxqueue;
4318 void *orig_data, *orig_data_end;
4319 u32 metalen, act = XDP_DROP;
4320 __be16 orig_eth_type;
4321 struct ethhdr *eth;
4322 bool orig_bcast;
4323 int hlen, off;
4324 u32 mac_len;
4325
4326 /* Reinjected packets coming from act_mirred or similar should
4327 * not get XDP generic processing.
4328 */
4329 if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4330 return XDP_PASS;
4331
4332 /* XDP packets must be linear and must have sufficient headroom
4333 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4334 * native XDP provides, thus we need to do it here as well.
4335 */
4336 if (skb_is_nonlinear(skb) ||
4337 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4338 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4339 int troom = skb->tail + skb->data_len - skb->end;
4340
4341 /* In case we have to go down the path and also linearize,
4342 * then lets do the pskb_expand_head() work just once here.
4343 */
4344 if (pskb_expand_head(skb,
4345 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4346 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4347 goto do_drop;
4348 if (skb_linearize(skb))
4349 goto do_drop;
4350 }
4351
4352 /* The XDP program wants to see the packet starting at the MAC
4353 * header.
4354 */
4355 mac_len = skb->data - skb_mac_header(skb);
4356 hlen = skb_headlen(skb) + mac_len;
4357 xdp->data = skb->data - mac_len;
4358 xdp->data_meta = xdp->data;
4359 xdp->data_end = xdp->data + hlen;
4360 xdp->data_hard_start = skb->data - skb_headroom(skb);
4361 orig_data_end = xdp->data_end;
4362 orig_data = xdp->data;
4363 eth = (struct ethhdr *)xdp->data;
4364 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4365 orig_eth_type = eth->h_proto;
4366
4367 rxqueue = netif_get_rxqueue(skb);
4368 xdp->rxq = &rxqueue->xdp_rxq;
4369
4370 act = bpf_prog_run_xdp(xdp_prog, xdp);
4371
4372 off = xdp->data - orig_data;
4373 if (off > 0)
4374 __skb_pull(skb, off);
4375 else if (off < 0)
4376 __skb_push(skb, -off);
4377 skb->mac_header += off;
4378
4379 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4380 * pckt.
4381 */
4382 off = orig_data_end - xdp->data_end;
4383 if (off != 0) {
4384 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4385 skb->len -= off;
4386
4387 }
4388
4389 /* check if XDP changed eth hdr such SKB needs update */
4390 eth = (struct ethhdr *)xdp->data;
4391 if ((orig_eth_type != eth->h_proto) ||
4392 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4393 __skb_push(skb, ETH_HLEN);
4394 skb->protocol = eth_type_trans(skb, skb->dev);
4395 }
4396
4397 switch (act) {
4398 case XDP_REDIRECT:
4399 case XDP_TX:
4400 __skb_push(skb, mac_len);
4401 break;
4402 case XDP_PASS:
4403 metalen = xdp->data - xdp->data_meta;
4404 if (metalen)
4405 skb_metadata_set(skb, metalen);
4406 break;
4407 default:
4408 bpf_warn_invalid_xdp_action(act);
4409 /* fall through */
4410 case XDP_ABORTED:
4411 trace_xdp_exception(skb->dev, xdp_prog, act);
4412 /* fall through */
4413 case XDP_DROP:
4414 do_drop:
4415 kfree_skb(skb);
4416 break;
4417 }
4418
4419 return act;
4420}
4421
4422/* When doing generic XDP we have to bypass the qdisc layer and the
4423 * network taps in order to match in-driver-XDP behavior.
4424 */
4425void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4426{
4427 struct net_device *dev = skb->dev;
4428 struct netdev_queue *txq;
4429 bool free_skb = true;
4430 int cpu, rc;
4431
4432 txq = netdev_pick_tx(dev, skb, NULL);
4433 cpu = smp_processor_id();
4434 HARD_TX_LOCK(dev, txq, cpu);
4435 if (!netif_xmit_stopped(txq)) {
4436 rc = netdev_start_xmit(skb, dev, txq, 0);
4437 if (dev_xmit_complete(rc))
4438 free_skb = false;
4439 }
4440 HARD_TX_UNLOCK(dev, txq);
4441 if (free_skb) {
4442 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4443 kfree_skb(skb);
4444 }
4445}
4446EXPORT_SYMBOL_GPL(generic_xdp_tx);
4447
4448static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4449
4450int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4451{
4452 if (xdp_prog) {
4453 struct xdp_buff xdp;
4454 u32 act;
4455 int err;
4456
4457 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4458 if (act != XDP_PASS) {
4459 switch (act) {
4460 case XDP_REDIRECT:
4461 err = xdp_do_generic_redirect(skb->dev, skb,
4462 &xdp, xdp_prog);
4463 if (err)
4464 goto out_redir;
4465 break;
4466 case XDP_TX:
4467 generic_xdp_tx(skb, xdp_prog);
4468 break;
4469 }
4470 return XDP_DROP;
4471 }
4472 }
4473 return XDP_PASS;
4474out_redir:
4475 kfree_skb(skb);
4476 return XDP_DROP;
4477}
4478EXPORT_SYMBOL_GPL(do_xdp_generic);
4479
4480static int netif_rx_internal(struct sk_buff *skb)
4481{
4482 int ret;
4483
4484 net_timestamp_check(netdev_tstamp_prequeue, skb);
4485
4486 trace_netif_rx(skb);
4487
4488 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4489 int ret;
4490
4491 preempt_disable();
4492 rcu_read_lock();
4493 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4494 rcu_read_unlock();
4495 preempt_enable();
4496
4497 /* Consider XDP consuming the packet a success from
4498 * the netdev point of view we do not want to count
4499 * this as an error.
4500 */
4501 if (ret != XDP_PASS)
4502 return NET_RX_SUCCESS;
4503 }
4504
4505#ifdef CONFIG_RPS
4506 if (static_key_false(&rps_needed)) {
4507 struct rps_dev_flow voidflow, *rflow = &voidflow;
4508 int cpu;
4509
4510 preempt_disable();
4511 rcu_read_lock();
4512
4513 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4514 if (cpu < 0)
4515 cpu = smp_processor_id();
4516
4517 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4518
4519 rcu_read_unlock();
4520 preempt_enable();
4521 } else
4522#endif
4523 {
4524 unsigned int qtail;
4525
4526 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4527 put_cpu();
4528 }
4529 return ret;
4530}
4531
4532/**
4533 * netif_rx - post buffer to the network code
4534 * @skb: buffer to post
4535 *
4536 * This function receives a packet from a device driver and queues it for
4537 * the upper (protocol) levels to process. It always succeeds. The buffer
4538 * may be dropped during processing for congestion control or by the
4539 * protocol layers.
4540 *
4541 * return values:
4542 * NET_RX_SUCCESS (no congestion)
4543 * NET_RX_DROP (packet was dropped)
4544 *
4545 */
4546
4547int netif_rx(struct sk_buff *skb)
4548{
4549 int ret;
4550
4551 trace_netif_rx_entry(skb);
4552
4553 ret = netif_rx_internal(skb);
4554 trace_netif_rx_exit(ret);
4555
4556 return ret;
4557}
4558EXPORT_SYMBOL(netif_rx);
4559
4560int netif_rx_ni(struct sk_buff *skb)
4561{
4562 int err;
4563
4564 trace_netif_rx_ni_entry(skb);
4565
4566 preempt_disable();
4567 err = netif_rx_internal(skb);
4568 if (local_softirq_pending())
4569 do_softirq();
4570 preempt_enable();
4571 trace_netif_rx_ni_exit(err);
4572
4573 return err;
4574}
4575EXPORT_SYMBOL(netif_rx_ni);
4576
4577static __latent_entropy void net_tx_action(struct softirq_action *h)
4578{
4579 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4580
4581 if (sd->completion_queue) {
4582 struct sk_buff *clist;
4583
4584 local_irq_disable();
4585 clist = sd->completion_queue;
4586 sd->completion_queue = NULL;
4587 local_irq_enable();
4588
4589 while (clist) {
4590 struct sk_buff *skb = clist;
4591
4592 clist = clist->next;
4593
4594 WARN_ON(refcount_read(&skb->users));
4595 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4596 trace_consume_skb(skb);
4597 else
4598 trace_kfree_skb(skb, net_tx_action);
4599
4600 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4601 __kfree_skb(skb);
4602 else
4603 __kfree_skb_defer(skb);
4604 }
4605
4606 __kfree_skb_flush();
4607 }
4608
4609 if (sd->output_queue) {
4610 struct Qdisc *head;
4611
4612 local_irq_disable();
4613 head = sd->output_queue;
4614 sd->output_queue = NULL;
4615 sd->output_queue_tailp = &sd->output_queue;
4616 local_irq_enable();
4617
4618 while (head) {
4619 struct Qdisc *q = head;
4620 spinlock_t *root_lock = NULL;
4621
4622 head = head->next_sched;
4623
4624 if (!(q->flags & TCQ_F_NOLOCK)) {
4625 root_lock = qdisc_lock(q);
4626 spin_lock(root_lock);
4627 }
4628 /* We need to make sure head->next_sched is read
4629 * before clearing __QDISC_STATE_SCHED
4630 */
4631 smp_mb__before_atomic();
4632 clear_bit(__QDISC_STATE_SCHED, &q->state);
4633 qdisc_run(q);
4634 if (root_lock)
4635 spin_unlock(root_lock);
4636 }
4637 }
4638
4639 xfrm_dev_backlog(sd);
4640}
4641
4642#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4643/* This hook is defined here for ATM LANE */
4644int (*br_fdb_test_addr_hook)(struct net_device *dev,
4645 unsigned char *addr) __read_mostly;
4646EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4647#endif
4648
4649static inline struct sk_buff *
4650sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4651 struct net_device *orig_dev)
4652{
4653#ifdef CONFIG_NET_CLS_ACT
4654 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4655 struct tcf_result cl_res;
4656
4657 /* If there's at least one ingress present somewhere (so
4658 * we get here via enabled static key), remaining devices
4659 * that are not configured with an ingress qdisc will bail
4660 * out here.
4661 */
4662 if (!miniq)
4663 return skb;
4664
4665 if (*pt_prev) {
4666 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4667 *pt_prev = NULL;
4668 }
4669
4670 qdisc_skb_cb(skb)->pkt_len = skb->len;
4671 skb->tc_at_ingress = 1;
4672 mini_qdisc_bstats_cpu_update(miniq, skb);
4673
4674 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4675 case TC_ACT_OK:
4676 case TC_ACT_RECLASSIFY:
4677 skb->tc_index = TC_H_MIN(cl_res.classid);
4678 break;
4679 case TC_ACT_SHOT:
4680 mini_qdisc_qstats_cpu_drop(miniq);
4681 kfree_skb(skb);
4682 return NULL;
4683 case TC_ACT_STOLEN:
4684 case TC_ACT_QUEUED:
4685 case TC_ACT_TRAP:
4686 consume_skb(skb);
4687 return NULL;
4688 case TC_ACT_REDIRECT:
4689 /* skb_mac_header check was done by cls/act_bpf, so
4690 * we can safely push the L2 header back before
4691 * redirecting to another netdev
4692 */
4693 __skb_push(skb, skb->mac_len);
4694 skb_do_redirect(skb);
4695 return NULL;
4696 case TC_ACT_REINSERT:
4697 /* this does not scrub the packet, and updates stats on error */
4698 skb_tc_reinsert(skb, &cl_res);
4699 return NULL;
4700 default:
4701 break;
4702 }
4703#endif /* CONFIG_NET_CLS_ACT */
4704 return skb;
4705}
4706
4707/**
4708 * netdev_is_rx_handler_busy - check if receive handler is registered
4709 * @dev: device to check
4710 *
4711 * Check if a receive handler is already registered for a given device.
4712 * Return true if there one.
4713 *
4714 * The caller must hold the rtnl_mutex.
4715 */
4716bool netdev_is_rx_handler_busy(struct net_device *dev)
4717{
4718 ASSERT_RTNL();
4719 return dev && rtnl_dereference(dev->rx_handler);
4720}
4721EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4722
4723/**
4724 * netdev_rx_handler_register - register receive handler
4725 * @dev: device to register a handler for
4726 * @rx_handler: receive handler to register
4727 * @rx_handler_data: data pointer that is used by rx handler
4728 *
4729 * Register a receive handler for a device. This handler will then be
4730 * called from __netif_receive_skb. A negative errno code is returned
4731 * on a failure.
4732 *
4733 * The caller must hold the rtnl_mutex.
4734 *
4735 * For a general description of rx_handler, see enum rx_handler_result.
4736 */
4737int netdev_rx_handler_register(struct net_device *dev,
4738 rx_handler_func_t *rx_handler,
4739 void *rx_handler_data)
4740{
4741 if (netdev_is_rx_handler_busy(dev))
4742 return -EBUSY;
4743
4744 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4745 return -EINVAL;
4746
4747 /* Note: rx_handler_data must be set before rx_handler */
4748 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4749 rcu_assign_pointer(dev->rx_handler, rx_handler);
4750
4751 return 0;
4752}
4753EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4754
4755/**
4756 * netdev_rx_handler_unregister - unregister receive handler
4757 * @dev: device to unregister a handler from
4758 *
4759 * Unregister a receive handler from a device.
4760 *
4761 * The caller must hold the rtnl_mutex.
4762 */
4763void netdev_rx_handler_unregister(struct net_device *dev)
4764{
4765
4766 ASSERT_RTNL();
4767 RCU_INIT_POINTER(dev->rx_handler, NULL);
4768 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4769 * section has a guarantee to see a non NULL rx_handler_data
4770 * as well.
4771 */
4772 synchronize_net();
4773 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4774}
4775EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4776
4777/*
4778 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4779 * the special handling of PFMEMALLOC skbs.
4780 */
4781static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4782{
4783 switch (skb->protocol) {
4784 case htons(ETH_P_ARP):
4785 case htons(ETH_P_IP):
4786 case htons(ETH_P_IPV6):
4787 case htons(ETH_P_8021Q):
4788 case htons(ETH_P_8021AD):
4789 return true;
4790 default:
4791 return false;
4792 }
4793}
4794
4795static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4796 int *ret, struct net_device *orig_dev)
4797{
4798#ifdef CONFIG_NETFILTER_INGRESS
4799 if (nf_hook_ingress_active(skb)) {
4800 int ingress_retval;
4801
4802 if (*pt_prev) {
4803 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4804 *pt_prev = NULL;
4805 }
4806
4807 rcu_read_lock();
4808 ingress_retval = nf_hook_ingress(skb);
4809 rcu_read_unlock();
4810 return ingress_retval;
4811 }
4812#endif /* CONFIG_NETFILTER_INGRESS */
4813 return 0;
4814}
4815
4816static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4817 struct packet_type **ppt_prev)
4818{
4819 struct packet_type *ptype, *pt_prev;
4820 rx_handler_func_t *rx_handler;
4821 struct net_device *orig_dev;
4822 bool deliver_exact = false;
4823 int ret = NET_RX_DROP;
4824 __be16 type;
4825
4826 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4827
4828 trace_netif_receive_skb(skb);
4829
4830 orig_dev = skb->dev;
4831
4832 skb_reset_network_header(skb);
4833 if (!skb_transport_header_was_set(skb))
4834 skb_reset_transport_header(skb);
4835 skb_reset_mac_len(skb);
4836
4837 pt_prev = NULL;
4838
4839another_round:
4840 skb->skb_iif = skb->dev->ifindex;
4841
4842 __this_cpu_inc(softnet_data.processed);
4843
4844 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4845 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4846 skb = skb_vlan_untag(skb);
4847 if (unlikely(!skb))
4848 goto out;
4849 }
4850
4851 if (skb_skip_tc_classify(skb))
4852 goto skip_classify;
4853
4854 if (pfmemalloc)
4855 goto skip_taps;
4856
4857 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4858 if (pt_prev)
4859 ret = deliver_skb(skb, pt_prev, orig_dev);
4860 pt_prev = ptype;
4861 }
4862
4863 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4864 if (pt_prev)
4865 ret = deliver_skb(skb, pt_prev, orig_dev);
4866 pt_prev = ptype;
4867 }
4868
4869skip_taps:
4870#ifdef CONFIG_NET_INGRESS
4871 if (static_branch_unlikely(&ingress_needed_key)) {
4872 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4873 if (!skb)
4874 goto out;
4875
4876 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4877 goto out;
4878 }
4879#endif
4880 skb_reset_tc(skb);
4881skip_classify:
4882 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4883 goto drop;
4884
4885 if (skb_vlan_tag_present(skb)) {
4886 if (pt_prev) {
4887 ret = deliver_skb(skb, pt_prev, orig_dev);
4888 pt_prev = NULL;
4889 }
4890 if (vlan_do_receive(&skb))
4891 goto another_round;
4892 else if (unlikely(!skb))
4893 goto out;
4894 }
4895
4896 rx_handler = rcu_dereference(skb->dev->rx_handler);
4897 if (rx_handler) {
4898 if (pt_prev) {
4899 ret = deliver_skb(skb, pt_prev, orig_dev);
4900 pt_prev = NULL;
4901 }
4902 switch (rx_handler(&skb)) {
4903 case RX_HANDLER_CONSUMED:
4904 ret = NET_RX_SUCCESS;
4905 goto out;
4906 case RX_HANDLER_ANOTHER:
4907 goto another_round;
4908 case RX_HANDLER_EXACT:
4909 deliver_exact = true;
4910 case RX_HANDLER_PASS:
4911 break;
4912 default:
4913 BUG();
4914 }
4915 }
4916
4917 if (unlikely(skb_vlan_tag_present(skb))) {
4918 if (skb_vlan_tag_get_id(skb))
4919 skb->pkt_type = PACKET_OTHERHOST;
4920 /* Note: we might in the future use prio bits
4921 * and set skb->priority like in vlan_do_receive()
4922 * For the time being, just ignore Priority Code Point
4923 */
4924 __vlan_hwaccel_clear_tag(skb);
4925 }
4926
4927 type = skb->protocol;
4928
4929 /* deliver only exact match when indicated */
4930 if (likely(!deliver_exact)) {
4931 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4932 &ptype_base[ntohs(type) &
4933 PTYPE_HASH_MASK]);
4934 }
4935
4936 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4937 &orig_dev->ptype_specific);
4938
4939 if (unlikely(skb->dev != orig_dev)) {
4940 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4941 &skb->dev->ptype_specific);
4942 }
4943
4944 if (pt_prev) {
4945 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4946 goto drop;
4947 *ppt_prev = pt_prev;
4948 } else {
4949drop:
4950 if (!deliver_exact)
4951 atomic_long_inc(&skb->dev->rx_dropped);
4952 else
4953 atomic_long_inc(&skb->dev->rx_nohandler);
4954 kfree_skb(skb);
4955 /* Jamal, now you will not able to escape explaining
4956 * me how you were going to use this. :-)
4957 */
4958 ret = NET_RX_DROP;
4959 }
4960
4961out:
4962 return ret;
4963}
4964
4965static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4966{
4967 struct net_device *orig_dev = skb->dev;
4968 struct packet_type *pt_prev = NULL;
4969 int ret;
4970
4971 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4972 if (pt_prev)
4973 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4974 return ret;
4975}
4976
4977/**
4978 * netif_receive_skb_core - special purpose version of netif_receive_skb
4979 * @skb: buffer to process
4980 *
4981 * More direct receive version of netif_receive_skb(). It should
4982 * only be used by callers that have a need to skip RPS and Generic XDP.
4983 * Caller must also take care of handling if (page_is_)pfmemalloc.
4984 *
4985 * This function may only be called from softirq context and interrupts
4986 * should be enabled.
4987 *
4988 * Return values (usually ignored):
4989 * NET_RX_SUCCESS: no congestion
4990 * NET_RX_DROP: packet was dropped
4991 */
4992int netif_receive_skb_core(struct sk_buff *skb)
4993{
4994 int ret;
4995
4996 rcu_read_lock();
4997 ret = __netif_receive_skb_one_core(skb, false);
4998 rcu_read_unlock();
4999
5000 return ret;
5001}
5002EXPORT_SYMBOL(netif_receive_skb_core);
5003
5004static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5005 struct packet_type *pt_prev,
5006 struct net_device *orig_dev)
5007{
5008 struct sk_buff *skb, *next;
5009
5010 if (!pt_prev)
5011 return;
5012 if (list_empty(head))
5013 return;
5014 if (pt_prev->list_func != NULL)
5015 pt_prev->list_func(head, pt_prev, orig_dev);
5016 else
5017 list_for_each_entry_safe(skb, next, head, list) {
5018 skb_list_del_init(skb);
5019 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5020 }
5021}
5022
5023static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5024{
5025 /* Fast-path assumptions:
5026 * - There is no RX handler.
5027 * - Only one packet_type matches.
5028 * If either of these fails, we will end up doing some per-packet
5029 * processing in-line, then handling the 'last ptype' for the whole
5030 * sublist. This can't cause out-of-order delivery to any single ptype,
5031 * because the 'last ptype' must be constant across the sublist, and all
5032 * other ptypes are handled per-packet.
5033 */
5034 /* Current (common) ptype of sublist */
5035 struct packet_type *pt_curr = NULL;
5036 /* Current (common) orig_dev of sublist */
5037 struct net_device *od_curr = NULL;
5038 struct list_head sublist;
5039 struct sk_buff *skb, *next;
5040
5041 INIT_LIST_HEAD(&sublist);
5042 list_for_each_entry_safe(skb, next, head, list) {
5043 struct net_device *orig_dev = skb->dev;
5044 struct packet_type *pt_prev = NULL;
5045
5046 skb_list_del_init(skb);
5047 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5048 if (!pt_prev)
5049 continue;
5050 if (pt_curr != pt_prev || od_curr != orig_dev) {
5051 /* dispatch old sublist */
5052 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5053 /* start new sublist */
5054 INIT_LIST_HEAD(&sublist);
5055 pt_curr = pt_prev;
5056 od_curr = orig_dev;
5057 }
5058 list_add_tail(&skb->list, &sublist);
5059 }
5060
5061 /* dispatch final sublist */
5062 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5063}
5064
5065static int __netif_receive_skb(struct sk_buff *skb)
5066{
5067 int ret;
5068
5069 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5070 unsigned int noreclaim_flag;
5071
5072 /*
5073 * PFMEMALLOC skbs are special, they should
5074 * - be delivered to SOCK_MEMALLOC sockets only
5075 * - stay away from userspace
5076 * - have bounded memory usage
5077 *
5078 * Use PF_MEMALLOC as this saves us from propagating the allocation
5079 * context down to all allocation sites.
5080 */
5081 noreclaim_flag = memalloc_noreclaim_save();
5082 ret = __netif_receive_skb_one_core(skb, true);
5083 memalloc_noreclaim_restore(noreclaim_flag);
5084 } else
5085 ret = __netif_receive_skb_one_core(skb, false);
5086
5087 return ret;
5088}
5089
5090static void __netif_receive_skb_list(struct list_head *head)
5091{
5092 unsigned long noreclaim_flag = 0;
5093 struct sk_buff *skb, *next;
5094 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5095
5096 list_for_each_entry_safe(skb, next, head, list) {
5097 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5098 struct list_head sublist;
5099
5100 /* Handle the previous sublist */
5101 list_cut_before(&sublist, head, &skb->list);
5102 if (!list_empty(&sublist))
5103 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5104 pfmemalloc = !pfmemalloc;
5105 /* See comments in __netif_receive_skb */
5106 if (pfmemalloc)
5107 noreclaim_flag = memalloc_noreclaim_save();
5108 else
5109 memalloc_noreclaim_restore(noreclaim_flag);
5110 }
5111 }
5112 /* Handle the remaining sublist */
5113 if (!list_empty(head))
5114 __netif_receive_skb_list_core(head, pfmemalloc);
5115 /* Restore pflags */
5116 if (pfmemalloc)
5117 memalloc_noreclaim_restore(noreclaim_flag);
5118}
5119
5120static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5121{
5122 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5123 struct bpf_prog *new = xdp->prog;
5124 int ret = 0;
5125
5126 switch (xdp->command) {
5127 case XDP_SETUP_PROG:
5128 rcu_assign_pointer(dev->xdp_prog, new);
5129 if (old)
5130 bpf_prog_put(old);
5131
5132 if (old && !new) {
5133 static_branch_dec(&generic_xdp_needed_key);
5134 } else if (new && !old) {
5135 static_branch_inc(&generic_xdp_needed_key);
5136 dev_disable_lro(dev);
5137 dev_disable_gro_hw(dev);
5138 }
5139 break;
5140
5141 case XDP_QUERY_PROG:
5142 xdp->prog_id = old ? old->aux->id : 0;
5143 break;
5144
5145 default:
5146 ret = -EINVAL;
5147 break;
5148 }
5149
5150 return ret;
5151}
5152
5153static int netif_receive_skb_internal(struct sk_buff *skb)
5154{
5155 int ret;
5156
5157 net_timestamp_check(netdev_tstamp_prequeue, skb);
5158
5159 if (skb_defer_rx_timestamp(skb))
5160 return NET_RX_SUCCESS;
5161
5162 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5163 int ret;
5164
5165 preempt_disable();
5166 rcu_read_lock();
5167 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5168 rcu_read_unlock();
5169 preempt_enable();
5170
5171 if (ret != XDP_PASS)
5172 return NET_RX_DROP;
5173 }
5174
5175 rcu_read_lock();
5176#ifdef CONFIG_RPS
5177 if (static_key_false(&rps_needed)) {
5178 struct rps_dev_flow voidflow, *rflow = &voidflow;
5179 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5180
5181 if (cpu >= 0) {
5182 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5183 rcu_read_unlock();
5184 return ret;
5185 }
5186 }
5187#endif
5188 ret = __netif_receive_skb(skb);
5189 rcu_read_unlock();
5190 return ret;
5191}
5192
5193static void netif_receive_skb_list_internal(struct list_head *head)
5194{
5195 struct bpf_prog *xdp_prog = NULL;
5196 struct sk_buff *skb, *next;
5197 struct list_head sublist;
5198
5199 INIT_LIST_HEAD(&sublist);
5200 list_for_each_entry_safe(skb, next, head, list) {
5201 net_timestamp_check(netdev_tstamp_prequeue, skb);
5202 skb_list_del_init(skb);
5203 if (!skb_defer_rx_timestamp(skb))
5204 list_add_tail(&skb->list, &sublist);
5205 }
5206 list_splice_init(&sublist, head);
5207
5208 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5209 preempt_disable();
5210 rcu_read_lock();
5211 list_for_each_entry_safe(skb, next, head, list) {
5212 xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5213 skb_list_del_init(skb);
5214 if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5215 list_add_tail(&skb->list, &sublist);
5216 }
5217 rcu_read_unlock();
5218 preempt_enable();
5219 /* Put passed packets back on main list */
5220 list_splice_init(&sublist, head);
5221 }
5222
5223 rcu_read_lock();
5224#ifdef CONFIG_RPS
5225 if (static_key_false(&rps_needed)) {
5226 list_for_each_entry_safe(skb, next, head, list) {
5227 struct rps_dev_flow voidflow, *rflow = &voidflow;
5228 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5229
5230 if (cpu >= 0) {
5231 /* Will be handled, remove from list */
5232 skb_list_del_init(skb);
5233 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5234 }
5235 }
5236 }
5237#endif
5238 __netif_receive_skb_list(head);
5239 rcu_read_unlock();
5240}
5241
5242/**
5243 * netif_receive_skb - process receive buffer from network
5244 * @skb: buffer to process
5245 *
5246 * netif_receive_skb() is the main receive data processing function.
5247 * It always succeeds. The buffer may be dropped during processing
5248 * for congestion control or by the protocol layers.
5249 *
5250 * This function may only be called from softirq context and interrupts
5251 * should be enabled.
5252 *
5253 * Return values (usually ignored):
5254 * NET_RX_SUCCESS: no congestion
5255 * NET_RX_DROP: packet was dropped
5256 */
5257int netif_receive_skb(struct sk_buff *skb)
5258{
5259 int ret;
5260
5261 trace_netif_receive_skb_entry(skb);
5262
5263 ret = netif_receive_skb_internal(skb);
5264 trace_netif_receive_skb_exit(ret);
5265
5266 return ret;
5267}
5268EXPORT_SYMBOL(netif_receive_skb);
5269
5270/**
5271 * netif_receive_skb_list - process many receive buffers from network
5272 * @head: list of skbs to process.
5273 *
5274 * Since return value of netif_receive_skb() is normally ignored, and
5275 * wouldn't be meaningful for a list, this function returns void.
5276 *
5277 * This function may only be called from softirq context and interrupts
5278 * should be enabled.
5279 */
5280void netif_receive_skb_list(struct list_head *head)
5281{
5282 struct sk_buff *skb;
5283
5284 if (list_empty(head))
5285 return;
5286 if (trace_netif_receive_skb_list_entry_enabled()) {
5287 list_for_each_entry(skb, head, list)
5288 trace_netif_receive_skb_list_entry(skb);
5289 }
5290 netif_receive_skb_list_internal(head);
5291 trace_netif_receive_skb_list_exit(0);
5292}
5293EXPORT_SYMBOL(netif_receive_skb_list);
5294
5295DEFINE_PER_CPU(struct work_struct, flush_works);
5296
5297/* Network device is going away, flush any packets still pending */
5298static void flush_backlog(struct work_struct *work)
5299{
5300 struct sk_buff *skb, *tmp;
5301 struct softnet_data *sd;
5302
5303 local_bh_disable();
5304 sd = this_cpu_ptr(&softnet_data);
5305
5306 local_irq_disable();
5307 rps_lock(sd);
5308 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5309 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5310 __skb_unlink(skb, &sd->input_pkt_queue);
5311 kfree_skb(skb);
5312 input_queue_head_incr(sd);
5313 }
5314 }
5315 rps_unlock(sd);
5316 local_irq_enable();
5317
5318 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5319 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5320 __skb_unlink(skb, &sd->process_queue);
5321 kfree_skb(skb);
5322 input_queue_head_incr(sd);
5323 }
5324 }
5325 local_bh_enable();
5326}
5327
5328static void flush_all_backlogs(void)
5329{
5330 unsigned int cpu;
5331
5332 get_online_cpus();
5333
5334 for_each_online_cpu(cpu)
5335 queue_work_on(cpu, system_highpri_wq,
5336 per_cpu_ptr(&flush_works, cpu));
5337
5338 for_each_online_cpu(cpu)
5339 flush_work(per_cpu_ptr(&flush_works, cpu));
5340
5341 put_online_cpus();
5342}
5343
5344INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5345INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5346static int napi_gro_complete(struct sk_buff *skb)
5347{
5348 struct packet_offload *ptype;
5349 __be16 type = skb->protocol;
5350 struct list_head *head = &offload_base;
5351 int err = -ENOENT;
5352
5353 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5354
5355 if (NAPI_GRO_CB(skb)->count == 1) {
5356 skb_shinfo(skb)->gso_size = 0;
5357 goto out;
5358 }
5359
5360 rcu_read_lock();
5361 list_for_each_entry_rcu(ptype, head, list) {
5362 if (ptype->type != type || !ptype->callbacks.gro_complete)
5363 continue;
5364
5365 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5366 ipv6_gro_complete, inet_gro_complete,
5367 skb, 0);
5368 break;
5369 }
5370 rcu_read_unlock();
5371
5372 if (err) {
5373 WARN_ON(&ptype->list == head);
5374 kfree_skb(skb);
5375 return NET_RX_SUCCESS;
5376 }
5377
5378out:
5379 return netif_receive_skb_internal(skb);
5380}
5381
5382static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5383 bool flush_old)
5384{
5385 struct list_head *head = &napi->gro_hash[index].list;
5386 struct sk_buff *skb, *p;
5387
5388 list_for_each_entry_safe_reverse(skb, p, head, list) {
5389 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5390 return;
5391 skb_list_del_init(skb);
5392 napi_gro_complete(skb);
5393 napi->gro_hash[index].count--;
5394 }
5395
5396 if (!napi->gro_hash[index].count)
5397 __clear_bit(index, &napi->gro_bitmask);
5398}
5399
5400/* napi->gro_hash[].list contains packets ordered by age.
5401 * youngest packets at the head of it.
5402 * Complete skbs in reverse order to reduce latencies.
5403 */
5404void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5405{
5406 unsigned long bitmask = napi->gro_bitmask;
5407 unsigned int i, base = ~0U;
5408
5409 while ((i = ffs(bitmask)) != 0) {
5410 bitmask >>= i;
5411 base += i;
5412 __napi_gro_flush_chain(napi, base, flush_old);
5413 }
5414}
5415EXPORT_SYMBOL(napi_gro_flush);
5416
5417static struct list_head *gro_list_prepare(struct napi_struct *napi,
5418 struct sk_buff *skb)
5419{
5420 unsigned int maclen = skb->dev->hard_header_len;
5421 u32 hash = skb_get_hash_raw(skb);
5422 struct list_head *head;
5423 struct sk_buff *p;
5424
5425 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5426 list_for_each_entry(p, head, list) {
5427 unsigned long diffs;
5428
5429 NAPI_GRO_CB(p)->flush = 0;
5430
5431 if (hash != skb_get_hash_raw(p)) {
5432 NAPI_GRO_CB(p)->same_flow = 0;
5433 continue;
5434 }
5435
5436 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5437 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5438 if (skb_vlan_tag_present(p))
5439 diffs |= p->vlan_tci ^ skb->vlan_tci;
5440 diffs |= skb_metadata_dst_cmp(p, skb);
5441 diffs |= skb_metadata_differs(p, skb);
5442 if (maclen == ETH_HLEN)
5443 diffs |= compare_ether_header(skb_mac_header(p),
5444 skb_mac_header(skb));
5445 else if (!diffs)
5446 diffs = memcmp(skb_mac_header(p),
5447 skb_mac_header(skb),
5448 maclen);
5449 NAPI_GRO_CB(p)->same_flow = !diffs;
5450 }
5451
5452 return head;
5453}
5454
5455static void skb_gro_reset_offset(struct sk_buff *skb)
5456{
5457 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5458 const skb_frag_t *frag0 = &pinfo->frags[0];
5459
5460 NAPI_GRO_CB(skb)->data_offset = 0;
5461 NAPI_GRO_CB(skb)->frag0 = NULL;
5462 NAPI_GRO_CB(skb)->frag0_len = 0;
5463
5464 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5465 pinfo->nr_frags &&
5466 !PageHighMem(skb_frag_page(frag0))) {
5467 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5468 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5469 skb_frag_size(frag0),
5470 skb->end - skb->tail);
5471 }
5472}
5473
5474static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5475{
5476 struct skb_shared_info *pinfo = skb_shinfo(skb);
5477
5478 BUG_ON(skb->end - skb->tail < grow);
5479
5480 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5481
5482 skb->data_len -= grow;
5483 skb->tail += grow;
5484
5485 pinfo->frags[0].page_offset += grow;
5486 skb_frag_size_sub(&pinfo->frags[0], grow);
5487
5488 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5489 skb_frag_unref(skb, 0);
5490 memmove(pinfo->frags, pinfo->frags + 1,
5491 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5492 }
5493}
5494
5495static void gro_flush_oldest(struct list_head *head)
5496{
5497 struct sk_buff *oldest;
5498
5499 oldest = list_last_entry(head, struct sk_buff, list);
5500
5501 /* We are called with head length >= MAX_GRO_SKBS, so this is
5502 * impossible.
5503 */
5504 if (WARN_ON_ONCE(!oldest))
5505 return;
5506
5507 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5508 * SKB to the chain.
5509 */
5510 skb_list_del_init(oldest);
5511 napi_gro_complete(oldest);
5512}
5513
5514INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5515 struct sk_buff *));
5516INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5517 struct sk_buff *));
5518static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5519{
5520 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5521 struct list_head *head = &offload_base;
5522 struct packet_offload *ptype;
5523 __be16 type = skb->protocol;
5524 struct list_head *gro_head;
5525 struct sk_buff *pp = NULL;
5526 enum gro_result ret;
5527 int same_flow;
5528 int grow;
5529
5530 if (netif_elide_gro(skb->dev))
5531 goto normal;
5532
5533 gro_head = gro_list_prepare(napi, skb);
5534
5535 rcu_read_lock();
5536 list_for_each_entry_rcu(ptype, head, list) {
5537 if (ptype->type != type || !ptype->callbacks.gro_receive)
5538 continue;
5539
5540 skb_set_network_header(skb, skb_gro_offset(skb));
5541 skb_reset_mac_len(skb);
5542 NAPI_GRO_CB(skb)->same_flow = 0;
5543 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5544 NAPI_GRO_CB(skb)->free = 0;
5545 NAPI_GRO_CB(skb)->encap_mark = 0;
5546 NAPI_GRO_CB(skb)->recursion_counter = 0;
5547 NAPI_GRO_CB(skb)->is_fou = 0;
5548 NAPI_GRO_CB(skb)->is_atomic = 1;
5549 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5550
5551 /* Setup for GRO checksum validation */
5552 switch (skb->ip_summed) {
5553 case CHECKSUM_COMPLETE:
5554 NAPI_GRO_CB(skb)->csum = skb->csum;
5555 NAPI_GRO_CB(skb)->csum_valid = 1;
5556 NAPI_GRO_CB(skb)->csum_cnt = 0;
5557 break;
5558 case CHECKSUM_UNNECESSARY:
5559 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5560 NAPI_GRO_CB(skb)->csum_valid = 0;
5561 break;
5562 default:
5563 NAPI_GRO_CB(skb)->csum_cnt = 0;
5564 NAPI_GRO_CB(skb)->csum_valid = 0;
5565 }
5566
5567 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5568 ipv6_gro_receive, inet_gro_receive,
5569 gro_head, skb);
5570 break;
5571 }
5572 rcu_read_unlock();
5573
5574 if (&ptype->list == head)
5575 goto normal;
5576
5577 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5578 ret = GRO_CONSUMED;
5579 goto ok;
5580 }
5581
5582 same_flow = NAPI_GRO_CB(skb)->same_flow;
5583 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5584
5585 if (pp) {
5586 skb_list_del_init(pp);
5587 napi_gro_complete(pp);
5588 napi->gro_hash[hash].count--;
5589 }
5590
5591 if (same_flow)
5592 goto ok;
5593
5594 if (NAPI_GRO_CB(skb)->flush)
5595 goto normal;
5596
5597 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5598 gro_flush_oldest(gro_head);
5599 } else {
5600 napi->gro_hash[hash].count++;
5601 }
5602 NAPI_GRO_CB(skb)->count = 1;
5603 NAPI_GRO_CB(skb)->age = jiffies;
5604 NAPI_GRO_CB(skb)->last = skb;
5605 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5606 list_add(&skb->list, gro_head);
5607 ret = GRO_HELD;
5608
5609pull:
5610 grow = skb_gro_offset(skb) - skb_headlen(skb);
5611 if (grow > 0)
5612 gro_pull_from_frag0(skb, grow);
5613ok:
5614 if (napi->gro_hash[hash].count) {
5615 if (!test_bit(hash, &napi->gro_bitmask))
5616 __set_bit(hash, &napi->gro_bitmask);
5617 } else if (test_bit(hash, &napi->gro_bitmask)) {
5618 __clear_bit(hash, &napi->gro_bitmask);
5619 }
5620
5621 return ret;
5622
5623normal:
5624 ret = GRO_NORMAL;
5625 goto pull;
5626}
5627
5628struct packet_offload *gro_find_receive_by_type(__be16 type)
5629{
5630 struct list_head *offload_head = &offload_base;
5631 struct packet_offload *ptype;
5632
5633 list_for_each_entry_rcu(ptype, offload_head, list) {
5634 if (ptype->type != type || !ptype->callbacks.gro_receive)
5635 continue;
5636 return ptype;
5637 }
5638 return NULL;
5639}
5640EXPORT_SYMBOL(gro_find_receive_by_type);
5641
5642struct packet_offload *gro_find_complete_by_type(__be16 type)
5643{
5644 struct list_head *offload_head = &offload_base;
5645 struct packet_offload *ptype;
5646
5647 list_for_each_entry_rcu(ptype, offload_head, list) {
5648 if (ptype->type != type || !ptype->callbacks.gro_complete)
5649 continue;
5650 return ptype;
5651 }
5652 return NULL;
5653}
5654EXPORT_SYMBOL(gro_find_complete_by_type);
5655
5656static void napi_skb_free_stolen_head(struct sk_buff *skb)
5657{
5658 skb_dst_drop(skb);
5659 secpath_reset(skb);
5660 kmem_cache_free(skbuff_head_cache, skb);
5661}
5662
5663static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5664{
5665 switch (ret) {
5666 case GRO_NORMAL:
5667 if (netif_receive_skb_internal(skb))
5668 ret = GRO_DROP;
5669 break;
5670
5671 case GRO_DROP:
5672 kfree_skb(skb);
5673 break;
5674
5675 case GRO_MERGED_FREE:
5676 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5677 napi_skb_free_stolen_head(skb);
5678 else
5679 __kfree_skb(skb);
5680 break;
5681
5682 case GRO_HELD:
5683 case GRO_MERGED:
5684 case GRO_CONSUMED:
5685 break;
5686 }
5687
5688 return ret;
5689}
5690
5691gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5692{
5693 gro_result_t ret;
5694
5695 skb_mark_napi_id(skb, napi);
5696 trace_napi_gro_receive_entry(skb);
5697
5698 skb_gro_reset_offset(skb);
5699
5700 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5701 trace_napi_gro_receive_exit(ret);
5702
5703 return ret;
5704}
5705EXPORT_SYMBOL(napi_gro_receive);
5706
5707static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5708{
5709 if (unlikely(skb->pfmemalloc)) {
5710 consume_skb(skb);
5711 return;
5712 }
5713 __skb_pull(skb, skb_headlen(skb));
5714 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5715 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5716 __vlan_hwaccel_clear_tag(skb);
5717 skb->dev = napi->dev;
5718 skb->skb_iif = 0;
5719
5720 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5721 skb->pkt_type = PACKET_HOST;
5722
5723 skb->encapsulation = 0;
5724 skb_shinfo(skb)->gso_type = 0;
5725 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5726 secpath_reset(skb);
5727
5728 napi->skb = skb;
5729}
5730
5731struct sk_buff *napi_get_frags(struct napi_struct *napi)
5732{
5733 struct sk_buff *skb = napi->skb;
5734
5735 if (!skb) {
5736 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5737 if (skb) {
5738 napi->skb = skb;
5739 skb_mark_napi_id(skb, napi);
5740 }
5741 }
5742 return skb;
5743}
5744EXPORT_SYMBOL(napi_get_frags);
5745
5746static gro_result_t napi_frags_finish(struct napi_struct *napi,
5747 struct sk_buff *skb,
5748 gro_result_t ret)
5749{
5750 switch (ret) {
5751 case GRO_NORMAL:
5752 case GRO_HELD:
5753 __skb_push(skb, ETH_HLEN);
5754 skb->protocol = eth_type_trans(skb, skb->dev);
5755 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5756 ret = GRO_DROP;
5757 break;
5758
5759 case GRO_DROP:
5760 napi_reuse_skb(napi, skb);
5761 break;
5762
5763 case GRO_MERGED_FREE:
5764 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5765 napi_skb_free_stolen_head(skb);
5766 else
5767 napi_reuse_skb(napi, skb);
5768 break;
5769
5770 case GRO_MERGED:
5771 case GRO_CONSUMED:
5772 break;
5773 }
5774
5775 return ret;
5776}
5777
5778/* Upper GRO stack assumes network header starts at gro_offset=0
5779 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5780 * We copy ethernet header into skb->data to have a common layout.
5781 */
5782static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5783{
5784 struct sk_buff *skb = napi->skb;
5785 const struct ethhdr *eth;
5786 unsigned int hlen = sizeof(*eth);
5787
5788 napi->skb = NULL;
5789
5790 skb_reset_mac_header(skb);
5791 skb_gro_reset_offset(skb);
5792
5793 eth = skb_gro_header_fast(skb, 0);
5794 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5795 eth = skb_gro_header_slow(skb, hlen, 0);
5796 if (unlikely(!eth)) {
5797 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5798 __func__, napi->dev->name);
5799 napi_reuse_skb(napi, skb);
5800 return NULL;
5801 }
5802 } else {
5803 gro_pull_from_frag0(skb, hlen);
5804 NAPI_GRO_CB(skb)->frag0 += hlen;
5805 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5806 }
5807 __skb_pull(skb, hlen);
5808
5809 /*
5810 * This works because the only protocols we care about don't require
5811 * special handling.
5812 * We'll fix it up properly in napi_frags_finish()
5813 */
5814 skb->protocol = eth->h_proto;
5815
5816 return skb;
5817}
5818
5819gro_result_t napi_gro_frags(struct napi_struct *napi)
5820{
5821 gro_result_t ret;
5822 struct sk_buff *skb = napi_frags_skb(napi);
5823
5824 if (!skb)
5825 return GRO_DROP;
5826
5827 trace_napi_gro_frags_entry(skb);
5828
5829 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5830 trace_napi_gro_frags_exit(ret);
5831
5832 return ret;
5833}
5834EXPORT_SYMBOL(napi_gro_frags);
5835
5836/* Compute the checksum from gro_offset and return the folded value
5837 * after adding in any pseudo checksum.
5838 */
5839__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5840{
5841 __wsum wsum;
5842 __sum16 sum;
5843
5844 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5845
5846 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5847 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5848 /* See comments in __skb_checksum_complete(). */
5849 if (likely(!sum)) {
5850 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5851 !skb->csum_complete_sw)
5852 netdev_rx_csum_fault(skb->dev, skb);
5853 }
5854
5855 NAPI_GRO_CB(skb)->csum = wsum;
5856 NAPI_GRO_CB(skb)->csum_valid = 1;
5857
5858 return sum;
5859}
5860EXPORT_SYMBOL(__skb_gro_checksum_complete);
5861
5862static void net_rps_send_ipi(struct softnet_data *remsd)
5863{
5864#ifdef CONFIG_RPS
5865 while (remsd) {
5866 struct softnet_data *next = remsd->rps_ipi_next;
5867
5868 if (cpu_online(remsd->cpu))
5869 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5870 remsd = next;
5871 }
5872#endif
5873}
5874
5875/*
5876 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5877 * Note: called with local irq disabled, but exits with local irq enabled.
5878 */
5879static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5880{
5881#ifdef CONFIG_RPS
5882 struct softnet_data *remsd = sd->rps_ipi_list;
5883
5884 if (remsd) {
5885 sd->rps_ipi_list = NULL;
5886
5887 local_irq_enable();
5888
5889 /* Send pending IPI's to kick RPS processing on remote cpus. */
5890 net_rps_send_ipi(remsd);
5891 } else
5892#endif
5893 local_irq_enable();
5894}
5895
5896static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5897{
5898#ifdef CONFIG_RPS
5899 return sd->rps_ipi_list != NULL;
5900#else
5901 return false;
5902#endif
5903}
5904
5905static int process_backlog(struct napi_struct *napi, int quota)
5906{
5907 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5908 bool again = true;
5909 int work = 0;
5910
5911 /* Check if we have pending ipi, its better to send them now,
5912 * not waiting net_rx_action() end.
5913 */
5914 if (sd_has_rps_ipi_waiting(sd)) {
5915 local_irq_disable();
5916 net_rps_action_and_irq_enable(sd);
5917 }
5918
5919 napi->weight = dev_rx_weight;
5920 while (again) {
5921 struct sk_buff *skb;
5922
5923 while ((skb = __skb_dequeue(&sd->process_queue))) {
5924 rcu_read_lock();
5925 __netif_receive_skb(skb);
5926 rcu_read_unlock();
5927 input_queue_head_incr(sd);
5928 if (++work >= quota)
5929 return work;
5930
5931 }
5932
5933 local_irq_disable();
5934 rps_lock(sd);
5935 if (skb_queue_empty(&sd->input_pkt_queue)) {
5936 /*
5937 * Inline a custom version of __napi_complete().
5938 * only current cpu owns and manipulates this napi,
5939 * and NAPI_STATE_SCHED is the only possible flag set
5940 * on backlog.
5941 * We can use a plain write instead of clear_bit(),
5942 * and we dont need an smp_mb() memory barrier.
5943 */
5944 napi->state = 0;
5945 again = false;
5946 } else {
5947 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5948 &sd->process_queue);
5949 }
5950 rps_unlock(sd);
5951 local_irq_enable();
5952 }
5953
5954 return work;
5955}
5956
5957/**
5958 * __napi_schedule - schedule for receive
5959 * @n: entry to schedule
5960 *
5961 * The entry's receive function will be scheduled to run.
5962 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5963 */
5964void __napi_schedule(struct napi_struct *n)
5965{
5966 unsigned long flags;
5967
5968 local_irq_save(flags);
5969 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5970 local_irq_restore(flags);
5971}
5972EXPORT_SYMBOL(__napi_schedule);
5973
5974/**
5975 * napi_schedule_prep - check if napi can be scheduled
5976 * @n: napi context
5977 *
5978 * Test if NAPI routine is already running, and if not mark
5979 * it as running. This is used as a condition variable
5980 * insure only one NAPI poll instance runs. We also make
5981 * sure there is no pending NAPI disable.
5982 */
5983bool napi_schedule_prep(struct napi_struct *n)
5984{
5985 unsigned long val, new;
5986
5987 do {
5988 val = READ_ONCE(n->state);
5989 if (unlikely(val & NAPIF_STATE_DISABLE))
5990 return false;
5991 new = val | NAPIF_STATE_SCHED;
5992
5993 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5994 * This was suggested by Alexander Duyck, as compiler
5995 * emits better code than :
5996 * if (val & NAPIF_STATE_SCHED)
5997 * new |= NAPIF_STATE_MISSED;
5998 */
5999 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6000 NAPIF_STATE_MISSED;
6001 } while (cmpxchg(&n->state, val, new) != val);
6002
6003 return !(val & NAPIF_STATE_SCHED);
6004}
6005EXPORT_SYMBOL(napi_schedule_prep);
6006
6007/**
6008 * __napi_schedule_irqoff - schedule for receive
6009 * @n: entry to schedule
6010 *
6011 * Variant of __napi_schedule() assuming hard irqs are masked
6012 */
6013void __napi_schedule_irqoff(struct napi_struct *n)
6014{
6015 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6016}
6017EXPORT_SYMBOL(__napi_schedule_irqoff);
6018
6019bool napi_complete_done(struct napi_struct *n, int work_done)
6020{
6021 unsigned long flags, val, new;
6022
6023 /*
6024 * 1) Don't let napi dequeue from the cpu poll list
6025 * just in case its running on a different cpu.
6026 * 2) If we are busy polling, do nothing here, we have
6027 * the guarantee we will be called later.
6028 */
6029 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6030 NAPIF_STATE_IN_BUSY_POLL)))
6031 return false;
6032
6033 if (n->gro_bitmask) {
6034 unsigned long timeout = 0;
6035
6036 if (work_done)
6037 timeout = n->dev->gro_flush_timeout;
6038
6039 /* When the NAPI instance uses a timeout and keeps postponing
6040 * it, we need to bound somehow the time packets are kept in
6041 * the GRO layer
6042 */
6043 napi_gro_flush(n, !!timeout);
6044 if (timeout)
6045 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6046 HRTIMER_MODE_REL_PINNED);
6047 }
6048 if (unlikely(!list_empty(&n->poll_list))) {
6049 /* If n->poll_list is not empty, we need to mask irqs */
6050 local_irq_save(flags);
6051 list_del_init(&n->poll_list);
6052 local_irq_restore(flags);
6053 }
6054
6055 do {
6056 val = READ_ONCE(n->state);
6057
6058 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6059
6060 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6061
6062 /* If STATE_MISSED was set, leave STATE_SCHED set,
6063 * because we will call napi->poll() one more time.
6064 * This C code was suggested by Alexander Duyck to help gcc.
6065 */
6066 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6067 NAPIF_STATE_SCHED;
6068 } while (cmpxchg(&n->state, val, new) != val);
6069
6070 if (unlikely(val & NAPIF_STATE_MISSED)) {
6071 __napi_schedule(n);
6072 return false;
6073 }
6074
6075 return true;
6076}
6077EXPORT_SYMBOL(napi_complete_done);
6078
6079/* must be called under rcu_read_lock(), as we dont take a reference */
6080static struct napi_struct *napi_by_id(unsigned int napi_id)
6081{
6082 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6083 struct napi_struct *napi;
6084
6085 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6086 if (napi->napi_id == napi_id)
6087 return napi;
6088
6089 return NULL;
6090}
6091
6092#if defined(CONFIG_NET_RX_BUSY_POLL)
6093
6094#define BUSY_POLL_BUDGET 8
6095
6096static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6097{
6098 int rc;
6099
6100 /* Busy polling means there is a high chance device driver hard irq
6101 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6102 * set in napi_schedule_prep().
6103 * Since we are about to call napi->poll() once more, we can safely
6104 * clear NAPI_STATE_MISSED.
6105 *
6106 * Note: x86 could use a single "lock and ..." instruction
6107 * to perform these two clear_bit()
6108 */
6109 clear_bit(NAPI_STATE_MISSED, &napi->state);
6110 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6111
6112 local_bh_disable();
6113
6114 /* All we really want here is to re-enable device interrupts.
6115 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6116 */
6117 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6118 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6119 netpoll_poll_unlock(have_poll_lock);
6120 if (rc == BUSY_POLL_BUDGET)
6121 __napi_schedule(napi);
6122 local_bh_enable();
6123}
6124
6125void napi_busy_loop(unsigned int napi_id,
6126 bool (*loop_end)(void *, unsigned long),
6127 void *loop_end_arg)
6128{
6129 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6130 int (*napi_poll)(struct napi_struct *napi, int budget);
6131 void *have_poll_lock = NULL;
6132 struct napi_struct *napi;
6133
6134restart:
6135 napi_poll = NULL;
6136
6137 rcu_read_lock();
6138
6139 napi = napi_by_id(napi_id);
6140 if (!napi)
6141 goto out;
6142
6143 preempt_disable();
6144 for (;;) {
6145 int work = 0;
6146
6147 local_bh_disable();
6148 if (!napi_poll) {
6149 unsigned long val = READ_ONCE(napi->state);
6150
6151 /* If multiple threads are competing for this napi,
6152 * we avoid dirtying napi->state as much as we can.
6153 */
6154 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6155 NAPIF_STATE_IN_BUSY_POLL))
6156 goto count;
6157 if (cmpxchg(&napi->state, val,
6158 val | NAPIF_STATE_IN_BUSY_POLL |
6159 NAPIF_STATE_SCHED) != val)
6160 goto count;
6161 have_poll_lock = netpoll_poll_lock(napi);
6162 napi_poll = napi->poll;
6163 }
6164 work = napi_poll(napi, BUSY_POLL_BUDGET);
6165 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6166count:
6167 if (work > 0)
6168 __NET_ADD_STATS(dev_net(napi->dev),
6169 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6170 local_bh_enable();
6171
6172 if (!loop_end || loop_end(loop_end_arg, start_time))
6173 break;
6174
6175 if (unlikely(need_resched())) {
6176 if (napi_poll)
6177 busy_poll_stop(napi, have_poll_lock);
6178 preempt_enable();
6179 rcu_read_unlock();
6180 cond_resched();
6181 if (loop_end(loop_end_arg, start_time))
6182 return;
6183 goto restart;
6184 }
6185 cpu_relax();
6186 }
6187 if (napi_poll)
6188 busy_poll_stop(napi, have_poll_lock);
6189 preempt_enable();
6190out:
6191 rcu_read_unlock();
6192}
6193EXPORT_SYMBOL(napi_busy_loop);
6194
6195#endif /* CONFIG_NET_RX_BUSY_POLL */
6196
6197static void napi_hash_add(struct napi_struct *napi)
6198{
6199 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6200 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6201 return;
6202
6203 spin_lock(&napi_hash_lock);
6204
6205 /* 0..NR_CPUS range is reserved for sender_cpu use */
6206 do {
6207 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6208 napi_gen_id = MIN_NAPI_ID;
6209 } while (napi_by_id(napi_gen_id));
6210 napi->napi_id = napi_gen_id;
6211
6212 hlist_add_head_rcu(&napi->napi_hash_node,
6213 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6214
6215 spin_unlock(&napi_hash_lock);
6216}
6217
6218/* Warning : caller is responsible to make sure rcu grace period
6219 * is respected before freeing memory containing @napi
6220 */
6221bool napi_hash_del(struct napi_struct *napi)
6222{
6223 bool rcu_sync_needed = false;
6224
6225 spin_lock(&napi_hash_lock);
6226
6227 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6228 rcu_sync_needed = true;
6229 hlist_del_rcu(&napi->napi_hash_node);
6230 }
6231 spin_unlock(&napi_hash_lock);
6232 return rcu_sync_needed;
6233}
6234EXPORT_SYMBOL_GPL(napi_hash_del);
6235
6236static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6237{
6238 struct napi_struct *napi;
6239
6240 napi = container_of(timer, struct napi_struct, timer);
6241
6242 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6243 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6244 */
6245 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6246 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6247 __napi_schedule_irqoff(napi);
6248
6249 return HRTIMER_NORESTART;
6250}
6251
6252static void init_gro_hash(struct napi_struct *napi)
6253{
6254 int i;
6255
6256 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6257 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6258 napi->gro_hash[i].count = 0;
6259 }
6260 napi->gro_bitmask = 0;
6261}
6262
6263void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6264 int (*poll)(struct napi_struct *, int), int weight)
6265{
6266 INIT_LIST_HEAD(&napi->poll_list);
6267 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6268 napi->timer.function = napi_watchdog;
6269 init_gro_hash(napi);
6270 napi->skb = NULL;
6271 napi->poll = poll;
6272 if (weight > NAPI_POLL_WEIGHT)
6273 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6274 weight);
6275 napi->weight = weight;
6276 list_add(&napi->dev_list, &dev->napi_list);
6277 napi->dev = dev;
6278#ifdef CONFIG_NETPOLL
6279 napi->poll_owner = -1;
6280#endif
6281 set_bit(NAPI_STATE_SCHED, &napi->state);
6282 napi_hash_add(napi);
6283}
6284EXPORT_SYMBOL(netif_napi_add);
6285
6286void napi_disable(struct napi_struct *n)
6287{
6288 might_sleep();
6289 set_bit(NAPI_STATE_DISABLE, &n->state);
6290
6291 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6292 msleep(1);
6293 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6294 msleep(1);
6295
6296 hrtimer_cancel(&n->timer);
6297
6298 clear_bit(NAPI_STATE_DISABLE, &n->state);
6299}
6300EXPORT_SYMBOL(napi_disable);
6301
6302static void flush_gro_hash(struct napi_struct *napi)
6303{
6304 int i;
6305
6306 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6307 struct sk_buff *skb, *n;
6308
6309 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6310 kfree_skb(skb);
6311 napi->gro_hash[i].count = 0;
6312 }
6313}
6314
6315/* Must be called in process context */
6316void netif_napi_del(struct napi_struct *napi)
6317{
6318 might_sleep();
6319 if (napi_hash_del(napi))
6320 synchronize_net();
6321 list_del_init(&napi->dev_list);
6322 napi_free_frags(napi);
6323
6324 flush_gro_hash(napi);
6325 napi->gro_bitmask = 0;
6326}
6327EXPORT_SYMBOL(netif_napi_del);
6328
6329static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6330{
6331 void *have;
6332 int work, weight;
6333
6334 list_del_init(&n->poll_list);
6335
6336 have = netpoll_poll_lock(n);
6337
6338 weight = n->weight;
6339
6340 /* This NAPI_STATE_SCHED test is for avoiding a race
6341 * with netpoll's poll_napi(). Only the entity which
6342 * obtains the lock and sees NAPI_STATE_SCHED set will
6343 * actually make the ->poll() call. Therefore we avoid
6344 * accidentally calling ->poll() when NAPI is not scheduled.
6345 */
6346 work = 0;
6347 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6348 work = n->poll(n, weight);
6349 trace_napi_poll(n, work, weight);
6350 }
6351
6352 WARN_ON_ONCE(work > weight);
6353
6354 if (likely(work < weight))
6355 goto out_unlock;
6356
6357 /* Drivers must not modify the NAPI state if they
6358 * consume the entire weight. In such cases this code
6359 * still "owns" the NAPI instance and therefore can
6360 * move the instance around on the list at-will.
6361 */
6362 if (unlikely(napi_disable_pending(n))) {
6363 napi_complete(n);
6364 goto out_unlock;
6365 }
6366
6367 if (n->gro_bitmask) {
6368 /* flush too old packets
6369 * If HZ < 1000, flush all packets.
6370 */
6371 napi_gro_flush(n, HZ >= 1000);
6372 }
6373
6374 /* Some drivers may have called napi_schedule
6375 * prior to exhausting their budget.
6376 */
6377 if (unlikely(!list_empty(&n->poll_list))) {
6378 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6379 n->dev ? n->dev->name : "backlog");
6380 goto out_unlock;
6381 }
6382
6383 list_add_tail(&n->poll_list, repoll);
6384
6385out_unlock:
6386 netpoll_poll_unlock(have);
6387
6388 return work;
6389}
6390
6391static __latent_entropy void net_rx_action(struct softirq_action *h)
6392{
6393 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6394 unsigned long time_limit = jiffies +
6395 usecs_to_jiffies(netdev_budget_usecs);
6396 int budget = netdev_budget;
6397 LIST_HEAD(list);
6398 LIST_HEAD(repoll);
6399
6400 local_irq_disable();
6401 list_splice_init(&sd->poll_list, &list);
6402 local_irq_enable();
6403
6404 for (;;) {
6405 struct napi_struct *n;
6406
6407 if (list_empty(&list)) {
6408 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6409 goto out;
6410 break;
6411 }
6412
6413 n = list_first_entry(&list, struct napi_struct, poll_list);
6414 budget -= napi_poll(n, &repoll);
6415
6416 /* If softirq window is exhausted then punt.
6417 * Allow this to run for 2 jiffies since which will allow
6418 * an average latency of 1.5/HZ.
6419 */
6420 if (unlikely(budget <= 0 ||
6421 time_after_eq(jiffies, time_limit))) {
6422 sd->time_squeeze++;
6423 break;
6424 }
6425 }
6426
6427 local_irq_disable();
6428
6429 list_splice_tail_init(&sd->poll_list, &list);
6430 list_splice_tail(&repoll, &list);
6431 list_splice(&list, &sd->poll_list);
6432 if (!list_empty(&sd->poll_list))
6433 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6434
6435 net_rps_action_and_irq_enable(sd);
6436out:
6437 __kfree_skb_flush();
6438}
6439
6440struct netdev_adjacent {
6441 struct net_device *dev;
6442
6443 /* upper master flag, there can only be one master device per list */
6444 bool master;
6445
6446 /* counter for the number of times this device was added to us */
6447 u16 ref_nr;
6448
6449 /* private field for the users */
6450 void *private;
6451
6452 struct list_head list;
6453 struct rcu_head rcu;
6454};
6455
6456static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6457 struct list_head *adj_list)
6458{
6459 struct netdev_adjacent *adj;
6460
6461 list_for_each_entry(adj, adj_list, list) {
6462 if (adj->dev == adj_dev)
6463 return adj;
6464 }
6465 return NULL;
6466}
6467
6468static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6469{
6470 struct net_device *dev = data;
6471
6472 return upper_dev == dev;
6473}
6474
6475/**
6476 * netdev_has_upper_dev - Check if device is linked to an upper device
6477 * @dev: device
6478 * @upper_dev: upper device to check
6479 *
6480 * Find out if a device is linked to specified upper device and return true
6481 * in case it is. Note that this checks only immediate upper device,
6482 * not through a complete stack of devices. The caller must hold the RTNL lock.
6483 */
6484bool netdev_has_upper_dev(struct net_device *dev,
6485 struct net_device *upper_dev)
6486{
6487 ASSERT_RTNL();
6488
6489 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6490 upper_dev);
6491}
6492EXPORT_SYMBOL(netdev_has_upper_dev);
6493
6494/**
6495 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6496 * @dev: device
6497 * @upper_dev: upper device to check
6498 *
6499 * Find out if a device is linked to specified upper device and return true
6500 * in case it is. Note that this checks the entire upper device chain.
6501 * The caller must hold rcu lock.
6502 */
6503
6504bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6505 struct net_device *upper_dev)
6506{
6507 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6508 upper_dev);
6509}
6510EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6511
6512/**
6513 * netdev_has_any_upper_dev - Check if device is linked to some device
6514 * @dev: device
6515 *
6516 * Find out if a device is linked to an upper device and return true in case
6517 * it is. The caller must hold the RTNL lock.
6518 */
6519bool netdev_has_any_upper_dev(struct net_device *dev)
6520{
6521 ASSERT_RTNL();
6522
6523 return !list_empty(&dev->adj_list.upper);
6524}
6525EXPORT_SYMBOL(netdev_has_any_upper_dev);
6526
6527/**
6528 * netdev_master_upper_dev_get - Get master upper device
6529 * @dev: device
6530 *
6531 * Find a master upper device and return pointer to it or NULL in case
6532 * it's not there. The caller must hold the RTNL lock.
6533 */
6534struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6535{
6536 struct netdev_adjacent *upper;
6537
6538 ASSERT_RTNL();
6539
6540 if (list_empty(&dev->adj_list.upper))
6541 return NULL;
6542
6543 upper = list_first_entry(&dev->adj_list.upper,
6544 struct netdev_adjacent, list);
6545 if (likely(upper->master))
6546 return upper->dev;
6547 return NULL;
6548}
6549EXPORT_SYMBOL(netdev_master_upper_dev_get);
6550
6551/**
6552 * netdev_has_any_lower_dev - Check if device is linked to some device
6553 * @dev: device
6554 *
6555 * Find out if a device is linked to a lower device and return true in case
6556 * it is. The caller must hold the RTNL lock.
6557 */
6558static bool netdev_has_any_lower_dev(struct net_device *dev)
6559{
6560 ASSERT_RTNL();
6561
6562 return !list_empty(&dev->adj_list.lower);
6563}
6564
6565void *netdev_adjacent_get_private(struct list_head *adj_list)
6566{
6567 struct netdev_adjacent *adj;
6568
6569 adj = list_entry(adj_list, struct netdev_adjacent, list);
6570
6571 return adj->private;
6572}
6573EXPORT_SYMBOL(netdev_adjacent_get_private);
6574
6575/**
6576 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6577 * @dev: device
6578 * @iter: list_head ** of the current position
6579 *
6580 * Gets the next device from the dev's upper list, starting from iter
6581 * position. The caller must hold RCU read lock.
6582 */
6583struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6584 struct list_head **iter)
6585{
6586 struct netdev_adjacent *upper;
6587
6588 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6589
6590 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6591
6592 if (&upper->list == &dev->adj_list.upper)
6593 return NULL;
6594
6595 *iter = &upper->list;
6596
6597 return upper->dev;
6598}
6599EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6600
6601static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6602 struct list_head **iter)
6603{
6604 struct netdev_adjacent *upper;
6605
6606 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6607
6608 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6609
6610 if (&upper->list == &dev->adj_list.upper)
6611 return NULL;
6612
6613 *iter = &upper->list;
6614
6615 return upper->dev;
6616}
6617
6618int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6619 int (*fn)(struct net_device *dev,
6620 void *data),
6621 void *data)
6622{
6623 struct net_device *udev;
6624 struct list_head *iter;
6625 int ret;
6626
6627 for (iter = &dev->adj_list.upper,
6628 udev = netdev_next_upper_dev_rcu(dev, &iter);
6629 udev;
6630 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6631 /* first is the upper device itself */
6632 ret = fn(udev, data);
6633 if (ret)
6634 return ret;
6635
6636 /* then look at all of its upper devices */
6637 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6638 if (ret)
6639 return ret;
6640 }
6641
6642 return 0;
6643}
6644EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6645
6646/**
6647 * netdev_lower_get_next_private - Get the next ->private from the
6648 * lower neighbour list
6649 * @dev: device
6650 * @iter: list_head ** of the current position
6651 *
6652 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6653 * list, starting from iter position. The caller must hold either hold the
6654 * RTNL lock or its own locking that guarantees that the neighbour lower
6655 * list will remain unchanged.
6656 */
6657void *netdev_lower_get_next_private(struct net_device *dev,
6658 struct list_head **iter)
6659{
6660 struct netdev_adjacent *lower;
6661
6662 lower = list_entry(*iter, struct netdev_adjacent, list);
6663
6664 if (&lower->list == &dev->adj_list.lower)
6665 return NULL;
6666
6667 *iter = lower->list.next;
6668
6669 return lower->private;
6670}
6671EXPORT_SYMBOL(netdev_lower_get_next_private);
6672
6673/**
6674 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6675 * lower neighbour list, RCU
6676 * variant
6677 * @dev: device
6678 * @iter: list_head ** of the current position
6679 *
6680 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6681 * list, starting from iter position. The caller must hold RCU read lock.
6682 */
6683void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6684 struct list_head **iter)
6685{
6686 struct netdev_adjacent *lower;
6687
6688 WARN_ON_ONCE(!rcu_read_lock_held());
6689
6690 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6691
6692 if (&lower->list == &dev->adj_list.lower)
6693 return NULL;
6694
6695 *iter = &lower->list;
6696
6697 return lower->private;
6698}
6699EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6700
6701/**
6702 * netdev_lower_get_next - Get the next device from the lower neighbour
6703 * list
6704 * @dev: device
6705 * @iter: list_head ** of the current position
6706 *
6707 * Gets the next netdev_adjacent from the dev's lower neighbour
6708 * list, starting from iter position. The caller must hold RTNL lock or
6709 * its own locking that guarantees that the neighbour lower
6710 * list will remain unchanged.
6711 */
6712void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6713{
6714 struct netdev_adjacent *lower;
6715
6716 lower = list_entry(*iter, struct netdev_adjacent, list);
6717
6718 if (&lower->list == &dev->adj_list.lower)
6719 return NULL;
6720
6721 *iter = lower->list.next;
6722
6723 return lower->dev;
6724}
6725EXPORT_SYMBOL(netdev_lower_get_next);
6726
6727static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6728 struct list_head **iter)
6729{
6730 struct netdev_adjacent *lower;
6731
6732 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6733
6734 if (&lower->list == &dev->adj_list.lower)
6735 return NULL;
6736
6737 *iter = &lower->list;
6738
6739 return lower->dev;
6740}
6741
6742int netdev_walk_all_lower_dev(struct net_device *dev,
6743 int (*fn)(struct net_device *dev,
6744 void *data),
6745 void *data)
6746{
6747 struct net_device *ldev;
6748 struct list_head *iter;
6749 int ret;
6750
6751 for (iter = &dev->adj_list.lower,
6752 ldev = netdev_next_lower_dev(dev, &iter);
6753 ldev;
6754 ldev = netdev_next_lower_dev(dev, &iter)) {
6755 /* first is the lower device itself */
6756 ret = fn(ldev, data);
6757 if (ret)
6758 return ret;
6759
6760 /* then look at all of its lower devices */
6761 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6762 if (ret)
6763 return ret;
6764 }
6765
6766 return 0;
6767}
6768EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6769
6770static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6771 struct list_head **iter)
6772{
6773 struct netdev_adjacent *lower;
6774
6775 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6776 if (&lower->list == &dev->adj_list.lower)
6777 return NULL;
6778
6779 *iter = &lower->list;
6780
6781 return lower->dev;
6782}
6783
6784int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6785 int (*fn)(struct net_device *dev,
6786 void *data),
6787 void *data)
6788{
6789 struct net_device *ldev;
6790 struct list_head *iter;
6791 int ret;
6792
6793 for (iter = &dev->adj_list.lower,
6794 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6795 ldev;
6796 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6797 /* first is the lower device itself */
6798 ret = fn(ldev, data);
6799 if (ret)
6800 return ret;
6801
6802 /* then look at all of its lower devices */
6803 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6804 if (ret)
6805 return ret;
6806 }
6807
6808 return 0;
6809}
6810EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6811
6812/**
6813 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6814 * lower neighbour list, RCU
6815 * variant
6816 * @dev: device
6817 *
6818 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6819 * list. The caller must hold RCU read lock.
6820 */
6821void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6822{
6823 struct netdev_adjacent *lower;
6824
6825 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6826 struct netdev_adjacent, list);
6827 if (lower)
6828 return lower->private;
6829 return NULL;
6830}
6831EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6832
6833/**
6834 * netdev_master_upper_dev_get_rcu - Get master upper device
6835 * @dev: device
6836 *
6837 * Find a master upper device and return pointer to it or NULL in case
6838 * it's not there. The caller must hold the RCU read lock.
6839 */
6840struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6841{
6842 struct netdev_adjacent *upper;
6843
6844 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6845 struct netdev_adjacent, list);
6846 if (upper && likely(upper->master))
6847 return upper->dev;
6848 return NULL;
6849}
6850EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6851
6852static int netdev_adjacent_sysfs_add(struct net_device *dev,
6853 struct net_device *adj_dev,
6854 struct list_head *dev_list)
6855{
6856 char linkname[IFNAMSIZ+7];
6857
6858 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6859 "upper_%s" : "lower_%s", adj_dev->name);
6860 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6861 linkname);
6862}
6863static void netdev_adjacent_sysfs_del(struct net_device *dev,
6864 char *name,
6865 struct list_head *dev_list)
6866{
6867 char linkname[IFNAMSIZ+7];
6868
6869 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6870 "upper_%s" : "lower_%s", name);
6871 sysfs_remove_link(&(dev->dev.kobj), linkname);
6872}
6873
6874static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6875 struct net_device *adj_dev,
6876 struct list_head *dev_list)
6877{
6878 return (dev_list == &dev->adj_list.upper ||
6879 dev_list == &dev->adj_list.lower) &&
6880 net_eq(dev_net(dev), dev_net(adj_dev));
6881}
6882
6883static int __netdev_adjacent_dev_insert(struct net_device *dev,
6884 struct net_device *adj_dev,
6885 struct list_head *dev_list,
6886 void *private, bool master)
6887{
6888 struct netdev_adjacent *adj;
6889 int ret;
6890
6891 adj = __netdev_find_adj(adj_dev, dev_list);
6892
6893 if (adj) {
6894 adj->ref_nr += 1;
6895 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6896 dev->name, adj_dev->name, adj->ref_nr);
6897
6898 return 0;
6899 }
6900
6901 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6902 if (!adj)
6903 return -ENOMEM;
6904
6905 adj->dev = adj_dev;
6906 adj->master = master;
6907 adj->ref_nr = 1;
6908 adj->private = private;
6909 dev_hold(adj_dev);
6910
6911 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6912 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6913
6914 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6915 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6916 if (ret)
6917 goto free_adj;
6918 }
6919
6920 /* Ensure that master link is always the first item in list. */
6921 if (master) {
6922 ret = sysfs_create_link(&(dev->dev.kobj),
6923 &(adj_dev->dev.kobj), "master");
6924 if (ret)
6925 goto remove_symlinks;
6926
6927 list_add_rcu(&adj->list, dev_list);
6928 } else {
6929 list_add_tail_rcu(&adj->list, dev_list);
6930 }
6931
6932 return 0;
6933
6934remove_symlinks:
6935 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6936 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6937free_adj:
6938 kfree(adj);
6939 dev_put(adj_dev);
6940
6941 return ret;
6942}
6943
6944static void __netdev_adjacent_dev_remove(struct net_device *dev,
6945 struct net_device *adj_dev,
6946 u16 ref_nr,
6947 struct list_head *dev_list)
6948{
6949 struct netdev_adjacent *adj;
6950
6951 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6952 dev->name, adj_dev->name, ref_nr);
6953
6954 adj = __netdev_find_adj(adj_dev, dev_list);
6955
6956 if (!adj) {
6957 pr_err("Adjacency does not exist for device %s from %s\n",
6958 dev->name, adj_dev->name);
6959 WARN_ON(1);
6960 return;
6961 }
6962
6963 if (adj->ref_nr > ref_nr) {
6964 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6965 dev->name, adj_dev->name, ref_nr,
6966 adj->ref_nr - ref_nr);
6967 adj->ref_nr -= ref_nr;
6968 return;
6969 }
6970
6971 if (adj->master)
6972 sysfs_remove_link(&(dev->dev.kobj), "master");
6973
6974 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6975 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6976
6977 list_del_rcu(&adj->list);
6978 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6979 adj_dev->name, dev->name, adj_dev->name);
6980 dev_put(adj_dev);
6981 kfree_rcu(adj, rcu);
6982}
6983
6984static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6985 struct net_device *upper_dev,
6986 struct list_head *up_list,
6987 struct list_head *down_list,
6988 void *private, bool master)
6989{
6990 int ret;
6991
6992 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6993 private, master);
6994 if (ret)
6995 return ret;
6996
6997 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6998 private, false);
6999 if (ret) {
7000 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7001 return ret;
7002 }
7003
7004 return 0;
7005}
7006
7007static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7008 struct net_device *upper_dev,
7009 u16 ref_nr,
7010 struct list_head *up_list,
7011 struct list_head *down_list)
7012{
7013 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7014 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7015}
7016
7017static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7018 struct net_device *upper_dev,
7019 void *private, bool master)
7020{
7021 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7022 &dev->adj_list.upper,
7023 &upper_dev->adj_list.lower,
7024 private, master);
7025}
7026
7027static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7028 struct net_device *upper_dev)
7029{
7030 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7031 &dev->adj_list.upper,
7032 &upper_dev->adj_list.lower);
7033}
7034
7035static int __netdev_upper_dev_link(struct net_device *dev,
7036 struct net_device *upper_dev, bool master,
7037 void *upper_priv, void *upper_info,
7038 struct netlink_ext_ack *extack)
7039{
7040 struct netdev_notifier_changeupper_info changeupper_info = {
7041 .info = {
7042 .dev = dev,
7043 .extack = extack,
7044 },
7045 .upper_dev = upper_dev,
7046 .master = master,
7047 .linking = true,
7048 .upper_info = upper_info,
7049 };
7050 struct net_device *master_dev;
7051 int ret = 0;
7052
7053 ASSERT_RTNL();
7054
7055 if (dev == upper_dev)
7056 return -EBUSY;
7057
7058 /* To prevent loops, check if dev is not upper device to upper_dev. */
7059 if (netdev_has_upper_dev(upper_dev, dev))
7060 return -EBUSY;
7061
7062 if (!master) {
7063 if (netdev_has_upper_dev(dev, upper_dev))
7064 return -EEXIST;
7065 } else {
7066 master_dev = netdev_master_upper_dev_get(dev);
7067 if (master_dev)
7068 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7069 }
7070
7071 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7072 &changeupper_info.info);
7073 ret = notifier_to_errno(ret);
7074 if (ret)
7075 return ret;
7076
7077 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7078 master);
7079 if (ret)
7080 return ret;
7081
7082 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7083 &changeupper_info.info);
7084 ret = notifier_to_errno(ret);
7085 if (ret)
7086 goto rollback;
7087
7088 return 0;
7089
7090rollback:
7091 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7092
7093 return ret;
7094}
7095
7096/**
7097 * netdev_upper_dev_link - Add a link to the upper device
7098 * @dev: device
7099 * @upper_dev: new upper device
7100 * @extack: netlink extended ack
7101 *
7102 * Adds a link to device which is upper to this one. The caller must hold
7103 * the RTNL lock. On a failure a negative errno code is returned.
7104 * On success the reference counts are adjusted and the function
7105 * returns zero.
7106 */
7107int netdev_upper_dev_link(struct net_device *dev,
7108 struct net_device *upper_dev,
7109 struct netlink_ext_ack *extack)
7110{
7111 return __netdev_upper_dev_link(dev, upper_dev, false,
7112 NULL, NULL, extack);
7113}
7114EXPORT_SYMBOL(netdev_upper_dev_link);
7115
7116/**
7117 * netdev_master_upper_dev_link - Add a master link to the upper device
7118 * @dev: device
7119 * @upper_dev: new upper device
7120 * @upper_priv: upper device private
7121 * @upper_info: upper info to be passed down via notifier
7122 * @extack: netlink extended ack
7123 *
7124 * Adds a link to device which is upper to this one. In this case, only
7125 * one master upper device can be linked, although other non-master devices
7126 * might be linked as well. The caller must hold the RTNL lock.
7127 * On a failure a negative errno code is returned. On success the reference
7128 * counts are adjusted and the function returns zero.
7129 */
7130int netdev_master_upper_dev_link(struct net_device *dev,
7131 struct net_device *upper_dev,
7132 void *upper_priv, void *upper_info,
7133 struct netlink_ext_ack *extack)
7134{
7135 return __netdev_upper_dev_link(dev, upper_dev, true,
7136 upper_priv, upper_info, extack);
7137}
7138EXPORT_SYMBOL(netdev_master_upper_dev_link);
7139
7140/**
7141 * netdev_upper_dev_unlink - Removes a link to upper device
7142 * @dev: device
7143 * @upper_dev: new upper device
7144 *
7145 * Removes a link to device which is upper to this one. The caller must hold
7146 * the RTNL lock.
7147 */
7148void netdev_upper_dev_unlink(struct net_device *dev,
7149 struct net_device *upper_dev)
7150{
7151 struct netdev_notifier_changeupper_info changeupper_info = {
7152 .info = {
7153 .dev = dev,
7154 },
7155 .upper_dev = upper_dev,
7156 .linking = false,
7157 };
7158
7159 ASSERT_RTNL();
7160
7161 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7162
7163 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7164 &changeupper_info.info);
7165
7166 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7167
7168 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7169 &changeupper_info.info);
7170}
7171EXPORT_SYMBOL(netdev_upper_dev_unlink);
7172
7173/**
7174 * netdev_bonding_info_change - Dispatch event about slave change
7175 * @dev: device
7176 * @bonding_info: info to dispatch
7177 *
7178 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7179 * The caller must hold the RTNL lock.
7180 */
7181void netdev_bonding_info_change(struct net_device *dev,
7182 struct netdev_bonding_info *bonding_info)
7183{
7184 struct netdev_notifier_bonding_info info = {
7185 .info.dev = dev,
7186 };
7187
7188 memcpy(&info.bonding_info, bonding_info,
7189 sizeof(struct netdev_bonding_info));
7190 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7191 &info.info);
7192}
7193EXPORT_SYMBOL(netdev_bonding_info_change);
7194
7195static void netdev_adjacent_add_links(struct net_device *dev)
7196{
7197 struct netdev_adjacent *iter;
7198
7199 struct net *net = dev_net(dev);
7200
7201 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7202 if (!net_eq(net, dev_net(iter->dev)))
7203 continue;
7204 netdev_adjacent_sysfs_add(iter->dev, dev,
7205 &iter->dev->adj_list.lower);
7206 netdev_adjacent_sysfs_add(dev, iter->dev,
7207 &dev->adj_list.upper);
7208 }
7209
7210 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7211 if (!net_eq(net, dev_net(iter->dev)))
7212 continue;
7213 netdev_adjacent_sysfs_add(iter->dev, dev,
7214 &iter->dev->adj_list.upper);
7215 netdev_adjacent_sysfs_add(dev, iter->dev,
7216 &dev->adj_list.lower);
7217 }
7218}
7219
7220static void netdev_adjacent_del_links(struct net_device *dev)
7221{
7222 struct netdev_adjacent *iter;
7223
7224 struct net *net = dev_net(dev);
7225
7226 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7227 if (!net_eq(net, dev_net(iter->dev)))
7228 continue;
7229 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7230 &iter->dev->adj_list.lower);
7231 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7232 &dev->adj_list.upper);
7233 }
7234
7235 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7236 if (!net_eq(net, dev_net(iter->dev)))
7237 continue;
7238 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7239 &iter->dev->adj_list.upper);
7240 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7241 &dev->adj_list.lower);
7242 }
7243}
7244
7245void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7246{
7247 struct netdev_adjacent *iter;
7248
7249 struct net *net = dev_net(dev);
7250
7251 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7252 if (!net_eq(net, dev_net(iter->dev)))
7253 continue;
7254 netdev_adjacent_sysfs_del(iter->dev, oldname,
7255 &iter->dev->adj_list.lower);
7256 netdev_adjacent_sysfs_add(iter->dev, dev,
7257 &iter->dev->adj_list.lower);
7258 }
7259
7260 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7261 if (!net_eq(net, dev_net(iter->dev)))
7262 continue;
7263 netdev_adjacent_sysfs_del(iter->dev, oldname,
7264 &iter->dev->adj_list.upper);
7265 netdev_adjacent_sysfs_add(iter->dev, dev,
7266 &iter->dev->adj_list.upper);
7267 }
7268}
7269
7270void *netdev_lower_dev_get_private(struct net_device *dev,
7271 struct net_device *lower_dev)
7272{
7273 struct netdev_adjacent *lower;
7274
7275 if (!lower_dev)
7276 return NULL;
7277 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7278 if (!lower)
7279 return NULL;
7280
7281 return lower->private;
7282}
7283EXPORT_SYMBOL(netdev_lower_dev_get_private);
7284
7285
7286int dev_get_nest_level(struct net_device *dev)
7287{
7288 struct net_device *lower = NULL;
7289 struct list_head *iter;
7290 int max_nest = -1;
7291 int nest;
7292
7293 ASSERT_RTNL();
7294
7295 netdev_for_each_lower_dev(dev, lower, iter) {
7296 nest = dev_get_nest_level(lower);
7297 if (max_nest < nest)
7298 max_nest = nest;
7299 }
7300
7301 return max_nest + 1;
7302}
7303EXPORT_SYMBOL(dev_get_nest_level);
7304
7305/**
7306 * netdev_lower_change - Dispatch event about lower device state change
7307 * @lower_dev: device
7308 * @lower_state_info: state to dispatch
7309 *
7310 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7311 * The caller must hold the RTNL lock.
7312 */
7313void netdev_lower_state_changed(struct net_device *lower_dev,
7314 void *lower_state_info)
7315{
7316 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7317 .info.dev = lower_dev,
7318 };
7319
7320 ASSERT_RTNL();
7321 changelowerstate_info.lower_state_info = lower_state_info;
7322 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7323 &changelowerstate_info.info);
7324}
7325EXPORT_SYMBOL(netdev_lower_state_changed);
7326
7327static void dev_change_rx_flags(struct net_device *dev, int flags)
7328{
7329 const struct net_device_ops *ops = dev->netdev_ops;
7330
7331 if (ops->ndo_change_rx_flags)
7332 ops->ndo_change_rx_flags(dev, flags);
7333}
7334
7335static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7336{
7337 unsigned int old_flags = dev->flags;
7338 kuid_t uid;
7339 kgid_t gid;
7340
7341 ASSERT_RTNL();
7342
7343 dev->flags |= IFF_PROMISC;
7344 dev->promiscuity += inc;
7345 if (dev->promiscuity == 0) {
7346 /*
7347 * Avoid overflow.
7348 * If inc causes overflow, untouch promisc and return error.
7349 */
7350 if (inc < 0)
7351 dev->flags &= ~IFF_PROMISC;
7352 else {
7353 dev->promiscuity -= inc;
7354 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7355 dev->name);
7356 return -EOVERFLOW;
7357 }
7358 }
7359 if (dev->flags != old_flags) {
7360 pr_info("device %s %s promiscuous mode\n",
7361 dev->name,
7362 dev->flags & IFF_PROMISC ? "entered" : "left");
7363 if (audit_enabled) {
7364 current_uid_gid(&uid, &gid);
7365 audit_log(audit_context(), GFP_ATOMIC,
7366 AUDIT_ANOM_PROMISCUOUS,
7367 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7368 dev->name, (dev->flags & IFF_PROMISC),
7369 (old_flags & IFF_PROMISC),
7370 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7371 from_kuid(&init_user_ns, uid),
7372 from_kgid(&init_user_ns, gid),
7373 audit_get_sessionid(current));
7374 }
7375
7376 dev_change_rx_flags(dev, IFF_PROMISC);
7377 }
7378 if (notify)
7379 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7380 return 0;
7381}
7382
7383/**
7384 * dev_set_promiscuity - update promiscuity count on a device
7385 * @dev: device
7386 * @inc: modifier
7387 *
7388 * Add or remove promiscuity from a device. While the count in the device
7389 * remains above zero the interface remains promiscuous. Once it hits zero
7390 * the device reverts back to normal filtering operation. A negative inc
7391 * value is used to drop promiscuity on the device.
7392 * Return 0 if successful or a negative errno code on error.
7393 */
7394int dev_set_promiscuity(struct net_device *dev, int inc)
7395{
7396 unsigned int old_flags = dev->flags;
7397 int err;
7398
7399 err = __dev_set_promiscuity(dev, inc, true);
7400 if (err < 0)
7401 return err;
7402 if (dev->flags != old_flags)
7403 dev_set_rx_mode(dev);
7404 return err;
7405}
7406EXPORT_SYMBOL(dev_set_promiscuity);
7407
7408static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7409{
7410 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7411
7412 ASSERT_RTNL();
7413
7414 dev->flags |= IFF_ALLMULTI;
7415 dev->allmulti += inc;
7416 if (dev->allmulti == 0) {
7417 /*
7418 * Avoid overflow.
7419 * If inc causes overflow, untouch allmulti and return error.
7420 */
7421 if (inc < 0)
7422 dev->flags &= ~IFF_ALLMULTI;
7423 else {
7424 dev->allmulti -= inc;
7425 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7426 dev->name);
7427 return -EOVERFLOW;
7428 }
7429 }
7430 if (dev->flags ^ old_flags) {
7431 dev_change_rx_flags(dev, IFF_ALLMULTI);
7432 dev_set_rx_mode(dev);
7433 if (notify)
7434 __dev_notify_flags(dev, old_flags,
7435 dev->gflags ^ old_gflags);
7436 }
7437 return 0;
7438}
7439
7440/**
7441 * dev_set_allmulti - update allmulti count on a device
7442 * @dev: device
7443 * @inc: modifier
7444 *
7445 * Add or remove reception of all multicast frames to a device. While the
7446 * count in the device remains above zero the interface remains listening
7447 * to all interfaces. Once it hits zero the device reverts back to normal
7448 * filtering operation. A negative @inc value is used to drop the counter
7449 * when releasing a resource needing all multicasts.
7450 * Return 0 if successful or a negative errno code on error.
7451 */
7452
7453int dev_set_allmulti(struct net_device *dev, int inc)
7454{
7455 return __dev_set_allmulti(dev, inc, true);
7456}
7457EXPORT_SYMBOL(dev_set_allmulti);
7458
7459/*
7460 * Upload unicast and multicast address lists to device and
7461 * configure RX filtering. When the device doesn't support unicast
7462 * filtering it is put in promiscuous mode while unicast addresses
7463 * are present.
7464 */
7465void __dev_set_rx_mode(struct net_device *dev)
7466{
7467 const struct net_device_ops *ops = dev->netdev_ops;
7468
7469 /* dev_open will call this function so the list will stay sane. */
7470 if (!(dev->flags&IFF_UP))
7471 return;
7472
7473 if (!netif_device_present(dev))
7474 return;
7475
7476 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7477 /* Unicast addresses changes may only happen under the rtnl,
7478 * therefore calling __dev_set_promiscuity here is safe.
7479 */
7480 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7481 __dev_set_promiscuity(dev, 1, false);
7482 dev->uc_promisc = true;
7483 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7484 __dev_set_promiscuity(dev, -1, false);
7485 dev->uc_promisc = false;
7486 }
7487 }
7488
7489 if (ops->ndo_set_rx_mode)
7490 ops->ndo_set_rx_mode(dev);
7491}
7492
7493void dev_set_rx_mode(struct net_device *dev)
7494{
7495 netif_addr_lock_bh(dev);
7496 __dev_set_rx_mode(dev);
7497 netif_addr_unlock_bh(dev);
7498}
7499
7500/**
7501 * dev_get_flags - get flags reported to userspace
7502 * @dev: device
7503 *
7504 * Get the combination of flag bits exported through APIs to userspace.
7505 */
7506unsigned int dev_get_flags(const struct net_device *dev)
7507{
7508 unsigned int flags;
7509
7510 flags = (dev->flags & ~(IFF_PROMISC |
7511 IFF_ALLMULTI |
7512 IFF_RUNNING |
7513 IFF_LOWER_UP |
7514 IFF_DORMANT)) |
7515 (dev->gflags & (IFF_PROMISC |
7516 IFF_ALLMULTI));
7517
7518 if (netif_running(dev)) {
7519 if (netif_oper_up(dev))
7520 flags |= IFF_RUNNING;
7521 if (netif_carrier_ok(dev))
7522 flags |= IFF_LOWER_UP;
7523 if (netif_dormant(dev))
7524 flags |= IFF_DORMANT;
7525 }
7526
7527 return flags;
7528}
7529EXPORT_SYMBOL(dev_get_flags);
7530
7531int __dev_change_flags(struct net_device *dev, unsigned int flags,
7532 struct netlink_ext_ack *extack)
7533{
7534 unsigned int old_flags = dev->flags;
7535 int ret;
7536
7537 ASSERT_RTNL();
7538
7539 /*
7540 * Set the flags on our device.
7541 */
7542
7543 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7544 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7545 IFF_AUTOMEDIA)) |
7546 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7547 IFF_ALLMULTI));
7548
7549 /*
7550 * Load in the correct multicast list now the flags have changed.
7551 */
7552
7553 if ((old_flags ^ flags) & IFF_MULTICAST)
7554 dev_change_rx_flags(dev, IFF_MULTICAST);
7555
7556 dev_set_rx_mode(dev);
7557
7558 /*
7559 * Have we downed the interface. We handle IFF_UP ourselves
7560 * according to user attempts to set it, rather than blindly
7561 * setting it.
7562 */
7563
7564 ret = 0;
7565 if ((old_flags ^ flags) & IFF_UP) {
7566 if (old_flags & IFF_UP)
7567 __dev_close(dev);
7568 else
7569 ret = __dev_open(dev, extack);
7570 }
7571
7572 if ((flags ^ dev->gflags) & IFF_PROMISC) {
7573 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7574 unsigned int old_flags = dev->flags;
7575
7576 dev->gflags ^= IFF_PROMISC;
7577
7578 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7579 if (dev->flags != old_flags)
7580 dev_set_rx_mode(dev);
7581 }
7582
7583 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7584 * is important. Some (broken) drivers set IFF_PROMISC, when
7585 * IFF_ALLMULTI is requested not asking us and not reporting.
7586 */
7587 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7588 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7589
7590 dev->gflags ^= IFF_ALLMULTI;
7591 __dev_set_allmulti(dev, inc, false);
7592 }
7593
7594 return ret;
7595}
7596
7597void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7598 unsigned int gchanges)
7599{
7600 unsigned int changes = dev->flags ^ old_flags;
7601
7602 if (gchanges)
7603 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7604
7605 if (changes & IFF_UP) {
7606 if (dev->flags & IFF_UP)
7607 call_netdevice_notifiers(NETDEV_UP, dev);
7608 else
7609 call_netdevice_notifiers(NETDEV_DOWN, dev);
7610 }
7611
7612 if (dev->flags & IFF_UP &&
7613 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7614 struct netdev_notifier_change_info change_info = {
7615 .info = {
7616 .dev = dev,
7617 },
7618 .flags_changed = changes,
7619 };
7620
7621 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7622 }
7623}
7624
7625/**
7626 * dev_change_flags - change device settings
7627 * @dev: device
7628 * @flags: device state flags
7629 * @extack: netlink extended ack
7630 *
7631 * Change settings on device based state flags. The flags are
7632 * in the userspace exported format.
7633 */
7634int dev_change_flags(struct net_device *dev, unsigned int flags,
7635 struct netlink_ext_ack *extack)
7636{
7637 int ret;
7638 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7639
7640 ret = __dev_change_flags(dev, flags, extack);
7641 if (ret < 0)
7642 return ret;
7643
7644 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7645 __dev_notify_flags(dev, old_flags, changes);
7646 return ret;
7647}
7648EXPORT_SYMBOL(dev_change_flags);
7649
7650int __dev_set_mtu(struct net_device *dev, int new_mtu)
7651{
7652 const struct net_device_ops *ops = dev->netdev_ops;
7653
7654 if (ops->ndo_change_mtu)
7655 return ops->ndo_change_mtu(dev, new_mtu);
7656
7657 dev->mtu = new_mtu;
7658 return 0;
7659}
7660EXPORT_SYMBOL(__dev_set_mtu);
7661
7662/**
7663 * dev_set_mtu_ext - Change maximum transfer unit
7664 * @dev: device
7665 * @new_mtu: new transfer unit
7666 * @extack: netlink extended ack
7667 *
7668 * Change the maximum transfer size of the network device.
7669 */
7670int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7671 struct netlink_ext_ack *extack)
7672{
7673 int err, orig_mtu;
7674
7675 if (new_mtu == dev->mtu)
7676 return 0;
7677
7678 /* MTU must be positive, and in range */
7679 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7680 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7681 return -EINVAL;
7682 }
7683
7684 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7685 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7686 return -EINVAL;
7687 }
7688
7689 if (!netif_device_present(dev))
7690 return -ENODEV;
7691
7692 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7693 err = notifier_to_errno(err);
7694 if (err)
7695 return err;
7696
7697 orig_mtu = dev->mtu;
7698 err = __dev_set_mtu(dev, new_mtu);
7699
7700 if (!err) {
7701 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7702 orig_mtu);
7703 err = notifier_to_errno(err);
7704 if (err) {
7705 /* setting mtu back and notifying everyone again,
7706 * so that they have a chance to revert changes.
7707 */
7708 __dev_set_mtu(dev, orig_mtu);
7709 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7710 new_mtu);
7711 }
7712 }
7713 return err;
7714}
7715
7716int dev_set_mtu(struct net_device *dev, int new_mtu)
7717{
7718 struct netlink_ext_ack extack;
7719 int err;
7720
7721 memset(&extack, 0, sizeof(extack));
7722 err = dev_set_mtu_ext(dev, new_mtu, &extack);
7723 if (err && extack._msg)
7724 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7725 return err;
7726}
7727EXPORT_SYMBOL(dev_set_mtu);
7728
7729/**
7730 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7731 * @dev: device
7732 * @new_len: new tx queue length
7733 */
7734int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7735{
7736 unsigned int orig_len = dev->tx_queue_len;
7737 int res;
7738
7739 if (new_len != (unsigned int)new_len)
7740 return -ERANGE;
7741
7742 if (new_len != orig_len) {
7743 dev->tx_queue_len = new_len;
7744 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7745 res = notifier_to_errno(res);
7746 if (res)
7747 goto err_rollback;
7748 res = dev_qdisc_change_tx_queue_len(dev);
7749 if (res)
7750 goto err_rollback;
7751 }
7752
7753 return 0;
7754
7755err_rollback:
7756 netdev_err(dev, "refused to change device tx_queue_len\n");
7757 dev->tx_queue_len = orig_len;
7758 return res;
7759}
7760
7761/**
7762 * dev_set_group - Change group this device belongs to
7763 * @dev: device
7764 * @new_group: group this device should belong to
7765 */
7766void dev_set_group(struct net_device *dev, int new_group)
7767{
7768 dev->group = new_group;
7769}
7770EXPORT_SYMBOL(dev_set_group);
7771
7772/**
7773 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7774 * @dev: device
7775 * @addr: new address
7776 * @extack: netlink extended ack
7777 */
7778int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7779 struct netlink_ext_ack *extack)
7780{
7781 struct netdev_notifier_pre_changeaddr_info info = {
7782 .info.dev = dev,
7783 .info.extack = extack,
7784 .dev_addr = addr,
7785 };
7786 int rc;
7787
7788 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7789 return notifier_to_errno(rc);
7790}
7791EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7792
7793/**
7794 * dev_set_mac_address - Change Media Access Control Address
7795 * @dev: device
7796 * @sa: new address
7797 * @extack: netlink extended ack
7798 *
7799 * Change the hardware (MAC) address of the device
7800 */
7801int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7802 struct netlink_ext_ack *extack)
7803{
7804 const struct net_device_ops *ops = dev->netdev_ops;
7805 int err;
7806
7807 if (!ops->ndo_set_mac_address)
7808 return -EOPNOTSUPP;
7809 if (sa->sa_family != dev->type)
7810 return -EINVAL;
7811 if (!netif_device_present(dev))
7812 return -ENODEV;
7813 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7814 if (err)
7815 return err;
7816 err = ops->ndo_set_mac_address(dev, sa);
7817 if (err)
7818 return err;
7819 dev->addr_assign_type = NET_ADDR_SET;
7820 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7821 add_device_randomness(dev->dev_addr, dev->addr_len);
7822 return 0;
7823}
7824EXPORT_SYMBOL(dev_set_mac_address);
7825
7826/**
7827 * dev_change_carrier - Change device carrier
7828 * @dev: device
7829 * @new_carrier: new value
7830 *
7831 * Change device carrier
7832 */
7833int dev_change_carrier(struct net_device *dev, bool new_carrier)
7834{
7835 const struct net_device_ops *ops = dev->netdev_ops;
7836
7837 if (!ops->ndo_change_carrier)
7838 return -EOPNOTSUPP;
7839 if (!netif_device_present(dev))
7840 return -ENODEV;
7841 return ops->ndo_change_carrier(dev, new_carrier);
7842}
7843EXPORT_SYMBOL(dev_change_carrier);
7844
7845/**
7846 * dev_get_phys_port_id - Get device physical port ID
7847 * @dev: device
7848 * @ppid: port ID
7849 *
7850 * Get device physical port ID
7851 */
7852int dev_get_phys_port_id(struct net_device *dev,
7853 struct netdev_phys_item_id *ppid)
7854{
7855 const struct net_device_ops *ops = dev->netdev_ops;
7856
7857 if (!ops->ndo_get_phys_port_id)
7858 return -EOPNOTSUPP;
7859 return ops->ndo_get_phys_port_id(dev, ppid);
7860}
7861EXPORT_SYMBOL(dev_get_phys_port_id);
7862
7863/**
7864 * dev_get_phys_port_name - Get device physical port name
7865 * @dev: device
7866 * @name: port name
7867 * @len: limit of bytes to copy to name
7868 *
7869 * Get device physical port name
7870 */
7871int dev_get_phys_port_name(struct net_device *dev,
7872 char *name, size_t len)
7873{
7874 const struct net_device_ops *ops = dev->netdev_ops;
7875
7876 if (!ops->ndo_get_phys_port_name)
7877 return -EOPNOTSUPP;
7878 return ops->ndo_get_phys_port_name(dev, name, len);
7879}
7880EXPORT_SYMBOL(dev_get_phys_port_name);
7881
7882/**
7883 * dev_get_port_parent_id - Get the device's port parent identifier
7884 * @dev: network device
7885 * @ppid: pointer to a storage for the port's parent identifier
7886 * @recurse: allow/disallow recursion to lower devices
7887 *
7888 * Get the devices's port parent identifier
7889 */
7890int dev_get_port_parent_id(struct net_device *dev,
7891 struct netdev_phys_item_id *ppid,
7892 bool recurse)
7893{
7894 const struct net_device_ops *ops = dev->netdev_ops;
7895 struct netdev_phys_item_id first = { };
7896 struct net_device *lower_dev;
7897 struct list_head *iter;
7898 int err = -EOPNOTSUPP;
7899
7900 if (ops->ndo_get_port_parent_id)
7901 return ops->ndo_get_port_parent_id(dev, ppid);
7902
7903 if (!recurse)
7904 return err;
7905
7906 netdev_for_each_lower_dev(dev, lower_dev, iter) {
7907 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7908 if (err)
7909 break;
7910 if (!first.id_len)
7911 first = *ppid;
7912 else if (memcmp(&first, ppid, sizeof(*ppid)))
7913 return -ENODATA;
7914 }
7915
7916 return err;
7917}
7918EXPORT_SYMBOL(dev_get_port_parent_id);
7919
7920/**
7921 * netdev_port_same_parent_id - Indicate if two network devices have
7922 * the same port parent identifier
7923 * @a: first network device
7924 * @b: second network device
7925 */
7926bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7927{
7928 struct netdev_phys_item_id a_id = { };
7929 struct netdev_phys_item_id b_id = { };
7930
7931 if (dev_get_port_parent_id(a, &a_id, true) ||
7932 dev_get_port_parent_id(b, &b_id, true))
7933 return false;
7934
7935 return netdev_phys_item_id_same(&a_id, &b_id);
7936}
7937EXPORT_SYMBOL(netdev_port_same_parent_id);
7938
7939/**
7940 * dev_change_proto_down - update protocol port state information
7941 * @dev: device
7942 * @proto_down: new value
7943 *
7944 * This info can be used by switch drivers to set the phys state of the
7945 * port.
7946 */
7947int dev_change_proto_down(struct net_device *dev, bool proto_down)
7948{
7949 const struct net_device_ops *ops = dev->netdev_ops;
7950
7951 if (!ops->ndo_change_proto_down)
7952 return -EOPNOTSUPP;
7953 if (!netif_device_present(dev))
7954 return -ENODEV;
7955 return ops->ndo_change_proto_down(dev, proto_down);
7956}
7957EXPORT_SYMBOL(dev_change_proto_down);
7958
7959/**
7960 * dev_change_proto_down_generic - generic implementation for
7961 * ndo_change_proto_down that sets carrier according to
7962 * proto_down.
7963 *
7964 * @dev: device
7965 * @proto_down: new value
7966 */
7967int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
7968{
7969 if (proto_down)
7970 netif_carrier_off(dev);
7971 else
7972 netif_carrier_on(dev);
7973 dev->proto_down = proto_down;
7974 return 0;
7975}
7976EXPORT_SYMBOL(dev_change_proto_down_generic);
7977
7978u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7979 enum bpf_netdev_command cmd)
7980{
7981 struct netdev_bpf xdp;
7982
7983 if (!bpf_op)
7984 return 0;
7985
7986 memset(&xdp, 0, sizeof(xdp));
7987 xdp.command = cmd;
7988
7989 /* Query must always succeed. */
7990 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7991
7992 return xdp.prog_id;
7993}
7994
7995static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7996 struct netlink_ext_ack *extack, u32 flags,
7997 struct bpf_prog *prog)
7998{
7999 struct netdev_bpf xdp;
8000
8001 memset(&xdp, 0, sizeof(xdp));
8002 if (flags & XDP_FLAGS_HW_MODE)
8003 xdp.command = XDP_SETUP_PROG_HW;
8004 else
8005 xdp.command = XDP_SETUP_PROG;
8006 xdp.extack = extack;
8007 xdp.flags = flags;
8008 xdp.prog = prog;
8009
8010 return bpf_op(dev, &xdp);
8011}
8012
8013static void dev_xdp_uninstall(struct net_device *dev)
8014{
8015 struct netdev_bpf xdp;
8016 bpf_op_t ndo_bpf;
8017
8018 /* Remove generic XDP */
8019 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8020
8021 /* Remove from the driver */
8022 ndo_bpf = dev->netdev_ops->ndo_bpf;
8023 if (!ndo_bpf)
8024 return;
8025
8026 memset(&xdp, 0, sizeof(xdp));
8027 xdp.command = XDP_QUERY_PROG;
8028 WARN_ON(ndo_bpf(dev, &xdp));
8029 if (xdp.prog_id)
8030 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8031 NULL));
8032
8033 /* Remove HW offload */
8034 memset(&xdp, 0, sizeof(xdp));
8035 xdp.command = XDP_QUERY_PROG_HW;
8036 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8037 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8038 NULL));
8039}
8040
8041/**
8042 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8043 * @dev: device
8044 * @extack: netlink extended ack
8045 * @fd: new program fd or negative value to clear
8046 * @flags: xdp-related flags
8047 *
8048 * Set or clear a bpf program for a device
8049 */
8050int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8051 int fd, u32 flags)
8052{
8053 const struct net_device_ops *ops = dev->netdev_ops;
8054 enum bpf_netdev_command query;
8055 struct bpf_prog *prog = NULL;
8056 bpf_op_t bpf_op, bpf_chk;
8057 bool offload;
8058 int err;
8059
8060 ASSERT_RTNL();
8061
8062 offload = flags & XDP_FLAGS_HW_MODE;
8063 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8064
8065 bpf_op = bpf_chk = ops->ndo_bpf;
8066 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8067 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8068 return -EOPNOTSUPP;
8069 }
8070 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8071 bpf_op = generic_xdp_install;
8072 if (bpf_op == bpf_chk)
8073 bpf_chk = generic_xdp_install;
8074
8075 if (fd >= 0) {
8076 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8077 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8078 return -EEXIST;
8079 }
8080 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8081 __dev_xdp_query(dev, bpf_op, query)) {
8082 NL_SET_ERR_MSG(extack, "XDP program already attached");
8083 return -EBUSY;
8084 }
8085
8086 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8087 bpf_op == ops->ndo_bpf);
8088 if (IS_ERR(prog))
8089 return PTR_ERR(prog);
8090
8091 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8092 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8093 bpf_prog_put(prog);
8094 return -EINVAL;
8095 }
8096 }
8097
8098 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8099 if (err < 0 && prog)
8100 bpf_prog_put(prog);
8101
8102 return err;
8103}
8104
8105/**
8106 * dev_new_index - allocate an ifindex
8107 * @net: the applicable net namespace
8108 *
8109 * Returns a suitable unique value for a new device interface
8110 * number. The caller must hold the rtnl semaphore or the
8111 * dev_base_lock to be sure it remains unique.
8112 */
8113static int dev_new_index(struct net *net)
8114{
8115 int ifindex = net->ifindex;
8116
8117 for (;;) {
8118 if (++ifindex <= 0)
8119 ifindex = 1;
8120 if (!__dev_get_by_index(net, ifindex))
8121 return net->ifindex = ifindex;
8122 }
8123}
8124
8125/* Delayed registration/unregisteration */
8126static LIST_HEAD(net_todo_list);
8127DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8128
8129static void net_set_todo(struct net_device *dev)
8130{
8131 list_add_tail(&dev->todo_list, &net_todo_list);
8132 dev_net(dev)->dev_unreg_count++;
8133}
8134
8135static void rollback_registered_many(struct list_head *head)
8136{
8137 struct net_device *dev, *tmp;
8138 LIST_HEAD(close_head);
8139
8140 BUG_ON(dev_boot_phase);
8141 ASSERT_RTNL();
8142
8143 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8144 /* Some devices call without registering
8145 * for initialization unwind. Remove those
8146 * devices and proceed with the remaining.
8147 */
8148 if (dev->reg_state == NETREG_UNINITIALIZED) {
8149 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8150 dev->name, dev);
8151
8152 WARN_ON(1);
8153 list_del(&dev->unreg_list);
8154 continue;
8155 }
8156 dev->dismantle = true;
8157 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8158 }
8159
8160 /* If device is running, close it first. */
8161 list_for_each_entry(dev, head, unreg_list)
8162 list_add_tail(&dev->close_list, &close_head);
8163 dev_close_many(&close_head, true);
8164
8165 list_for_each_entry(dev, head, unreg_list) {
8166 /* And unlink it from device chain. */
8167 unlist_netdevice(dev);
8168
8169 dev->reg_state = NETREG_UNREGISTERING;
8170 }
8171 flush_all_backlogs();
8172
8173 synchronize_net();
8174
8175 list_for_each_entry(dev, head, unreg_list) {
8176 struct sk_buff *skb = NULL;
8177
8178 /* Shutdown queueing discipline. */
8179 dev_shutdown(dev);
8180
8181 dev_xdp_uninstall(dev);
8182
8183 /* Notify protocols, that we are about to destroy
8184 * this device. They should clean all the things.
8185 */
8186 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8187
8188 if (!dev->rtnl_link_ops ||
8189 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8190 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8191 GFP_KERNEL, NULL, 0);
8192
8193 /*
8194 * Flush the unicast and multicast chains
8195 */
8196 dev_uc_flush(dev);
8197 dev_mc_flush(dev);
8198
8199 if (dev->netdev_ops->ndo_uninit)
8200 dev->netdev_ops->ndo_uninit(dev);
8201
8202 if (skb)
8203 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8204
8205 /* Notifier chain MUST detach us all upper devices. */
8206 WARN_ON(netdev_has_any_upper_dev(dev));
8207 WARN_ON(netdev_has_any_lower_dev(dev));
8208
8209 /* Remove entries from kobject tree */
8210 netdev_unregister_kobject(dev);
8211#ifdef CONFIG_XPS
8212 /* Remove XPS queueing entries */
8213 netif_reset_xps_queues_gt(dev, 0);
8214#endif
8215 }
8216
8217 synchronize_net();
8218
8219 list_for_each_entry(dev, head, unreg_list)
8220 dev_put(dev);
8221}
8222
8223static void rollback_registered(struct net_device *dev)
8224{
8225 LIST_HEAD(single);
8226
8227 list_add(&dev->unreg_list, &single);
8228 rollback_registered_many(&single);
8229 list_del(&single);
8230}
8231
8232static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8233 struct net_device *upper, netdev_features_t features)
8234{
8235 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8236 netdev_features_t feature;
8237 int feature_bit;
8238
8239 for_each_netdev_feature(upper_disables, feature_bit) {
8240 feature = __NETIF_F_BIT(feature_bit);
8241 if (!(upper->wanted_features & feature)
8242 && (features & feature)) {
8243 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8244 &feature, upper->name);
8245 features &= ~feature;
8246 }
8247 }
8248
8249 return features;
8250}
8251
8252static void netdev_sync_lower_features(struct net_device *upper,
8253 struct net_device *lower, netdev_features_t features)
8254{
8255 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8256 netdev_features_t feature;
8257 int feature_bit;
8258
8259 for_each_netdev_feature(upper_disables, feature_bit) {
8260 feature = __NETIF_F_BIT(feature_bit);
8261 if (!(features & feature) && (lower->features & feature)) {
8262 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8263 &feature, lower->name);
8264 lower->wanted_features &= ~feature;
8265 netdev_update_features(lower);
8266
8267 if (unlikely(lower->features & feature))
8268 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8269 &feature, lower->name);
8270 }
8271 }
8272}
8273
8274static netdev_features_t netdev_fix_features(struct net_device *dev,
8275 netdev_features_t features)
8276{
8277 /* Fix illegal checksum combinations */
8278 if ((features & NETIF_F_HW_CSUM) &&
8279 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8280 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8281 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8282 }
8283
8284 /* TSO requires that SG is present as well. */
8285 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8286 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8287 features &= ~NETIF_F_ALL_TSO;
8288 }
8289
8290 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8291 !(features & NETIF_F_IP_CSUM)) {
8292 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8293 features &= ~NETIF_F_TSO;
8294 features &= ~NETIF_F_TSO_ECN;
8295 }
8296
8297 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8298 !(features & NETIF_F_IPV6_CSUM)) {
8299 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8300 features &= ~NETIF_F_TSO6;
8301 }
8302
8303 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8304 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8305 features &= ~NETIF_F_TSO_MANGLEID;
8306
8307 /* TSO ECN requires that TSO is present as well. */
8308 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8309 features &= ~NETIF_F_TSO_ECN;
8310
8311 /* Software GSO depends on SG. */
8312 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8313 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8314 features &= ~NETIF_F_GSO;
8315 }
8316
8317 /* GSO partial features require GSO partial be set */
8318 if ((features & dev->gso_partial_features) &&
8319 !(features & NETIF_F_GSO_PARTIAL)) {
8320 netdev_dbg(dev,
8321 "Dropping partially supported GSO features since no GSO partial.\n");
8322 features &= ~dev->gso_partial_features;
8323 }
8324
8325 if (!(features & NETIF_F_RXCSUM)) {
8326 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8327 * successfully merged by hardware must also have the
8328 * checksum verified by hardware. If the user does not
8329 * want to enable RXCSUM, logically, we should disable GRO_HW.
8330 */
8331 if (features & NETIF_F_GRO_HW) {
8332 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8333 features &= ~NETIF_F_GRO_HW;
8334 }
8335 }
8336
8337 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8338 if (features & NETIF_F_RXFCS) {
8339 if (features & NETIF_F_LRO) {
8340 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8341 features &= ~NETIF_F_LRO;
8342 }
8343
8344 if (features & NETIF_F_GRO_HW) {
8345 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8346 features &= ~NETIF_F_GRO_HW;
8347 }
8348 }
8349
8350 return features;
8351}
8352
8353int __netdev_update_features(struct net_device *dev)
8354{
8355 struct net_device *upper, *lower;
8356 netdev_features_t features;
8357 struct list_head *iter;
8358 int err = -1;
8359
8360 ASSERT_RTNL();
8361
8362 features = netdev_get_wanted_features(dev);
8363
8364 if (dev->netdev_ops->ndo_fix_features)
8365 features = dev->netdev_ops->ndo_fix_features(dev, features);
8366
8367 /* driver might be less strict about feature dependencies */
8368 features = netdev_fix_features(dev, features);
8369
8370 /* some features can't be enabled if they're off an an upper device */
8371 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8372 features = netdev_sync_upper_features(dev, upper, features);
8373
8374 if (dev->features == features)
8375 goto sync_lower;
8376
8377 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8378 &dev->features, &features);
8379
8380 if (dev->netdev_ops->ndo_set_features)
8381 err = dev->netdev_ops->ndo_set_features(dev, features);
8382 else
8383 err = 0;
8384
8385 if (unlikely(err < 0)) {
8386 netdev_err(dev,
8387 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8388 err, &features, &dev->features);
8389 /* return non-0 since some features might have changed and
8390 * it's better to fire a spurious notification than miss it
8391 */
8392 return -1;
8393 }
8394
8395sync_lower:
8396 /* some features must be disabled on lower devices when disabled
8397 * on an upper device (think: bonding master or bridge)
8398 */
8399 netdev_for_each_lower_dev(dev, lower, iter)
8400 netdev_sync_lower_features(dev, lower, features);
8401
8402 if (!err) {
8403 netdev_features_t diff = features ^ dev->features;
8404
8405 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8406 /* udp_tunnel_{get,drop}_rx_info both need
8407 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8408 * device, or they won't do anything.
8409 * Thus we need to update dev->features
8410 * *before* calling udp_tunnel_get_rx_info,
8411 * but *after* calling udp_tunnel_drop_rx_info.
8412 */
8413 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8414 dev->features = features;
8415 udp_tunnel_get_rx_info(dev);
8416 } else {
8417 udp_tunnel_drop_rx_info(dev);
8418 }
8419 }
8420
8421 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8422 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8423 dev->features = features;
8424 err |= vlan_get_rx_ctag_filter_info(dev);
8425 } else {
8426 vlan_drop_rx_ctag_filter_info(dev);
8427 }
8428 }
8429
8430 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8431 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8432 dev->features = features;
8433 err |= vlan_get_rx_stag_filter_info(dev);
8434 } else {
8435 vlan_drop_rx_stag_filter_info(dev);
8436 }
8437 }
8438
8439 dev->features = features;
8440 }
8441
8442 return err < 0 ? 0 : 1;
8443}
8444
8445/**
8446 * netdev_update_features - recalculate device features
8447 * @dev: the device to check
8448 *
8449 * Recalculate dev->features set and send notifications if it
8450 * has changed. Should be called after driver or hardware dependent
8451 * conditions might have changed that influence the features.
8452 */
8453void netdev_update_features(struct net_device *dev)
8454{
8455 if (__netdev_update_features(dev))
8456 netdev_features_change(dev);
8457}
8458EXPORT_SYMBOL(netdev_update_features);
8459
8460/**
8461 * netdev_change_features - recalculate device features
8462 * @dev: the device to check
8463 *
8464 * Recalculate dev->features set and send notifications even
8465 * if they have not changed. Should be called instead of
8466 * netdev_update_features() if also dev->vlan_features might
8467 * have changed to allow the changes to be propagated to stacked
8468 * VLAN devices.
8469 */
8470void netdev_change_features(struct net_device *dev)
8471{
8472 __netdev_update_features(dev);
8473 netdev_features_change(dev);
8474}
8475EXPORT_SYMBOL(netdev_change_features);
8476
8477/**
8478 * netif_stacked_transfer_operstate - transfer operstate
8479 * @rootdev: the root or lower level device to transfer state from
8480 * @dev: the device to transfer operstate to
8481 *
8482 * Transfer operational state from root to device. This is normally
8483 * called when a stacking relationship exists between the root
8484 * device and the device(a leaf device).
8485 */
8486void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8487 struct net_device *dev)
8488{
8489 if (rootdev->operstate == IF_OPER_DORMANT)
8490 netif_dormant_on(dev);
8491 else
8492 netif_dormant_off(dev);
8493
8494 if (netif_carrier_ok(rootdev))
8495 netif_carrier_on(dev);
8496 else
8497 netif_carrier_off(dev);
8498}
8499EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8500
8501static int netif_alloc_rx_queues(struct net_device *dev)
8502{
8503 unsigned int i, count = dev->num_rx_queues;
8504 struct netdev_rx_queue *rx;
8505 size_t sz = count * sizeof(*rx);
8506 int err = 0;
8507
8508 BUG_ON(count < 1);
8509
8510 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8511 if (!rx)
8512 return -ENOMEM;
8513
8514 dev->_rx = rx;
8515
8516 for (i = 0; i < count; i++) {
8517 rx[i].dev = dev;
8518
8519 /* XDP RX-queue setup */
8520 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8521 if (err < 0)
8522 goto err_rxq_info;
8523 }
8524 return 0;
8525
8526err_rxq_info:
8527 /* Rollback successful reg's and free other resources */
8528 while (i--)
8529 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8530 kvfree(dev->_rx);
8531 dev->_rx = NULL;
8532 return err;
8533}
8534
8535static void netif_free_rx_queues(struct net_device *dev)
8536{
8537 unsigned int i, count = dev->num_rx_queues;
8538
8539 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8540 if (!dev->_rx)
8541 return;
8542
8543 for (i = 0; i < count; i++)
8544 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8545
8546 kvfree(dev->_rx);
8547}
8548
8549static void netdev_init_one_queue(struct net_device *dev,
8550 struct netdev_queue *queue, void *_unused)
8551{
8552 /* Initialize queue lock */
8553 spin_lock_init(&queue->_xmit_lock);
8554 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8555 queue->xmit_lock_owner = -1;
8556 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8557 queue->dev = dev;
8558#ifdef CONFIG_BQL
8559 dql_init(&queue->dql, HZ);
8560#endif
8561}
8562
8563static void netif_free_tx_queues(struct net_device *dev)
8564{
8565 kvfree(dev->_tx);
8566}
8567
8568static int netif_alloc_netdev_queues(struct net_device *dev)
8569{
8570 unsigned int count = dev->num_tx_queues;
8571 struct netdev_queue *tx;
8572 size_t sz = count * sizeof(*tx);
8573
8574 if (count < 1 || count > 0xffff)
8575 return -EINVAL;
8576
8577 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8578 if (!tx)
8579 return -ENOMEM;
8580
8581 dev->_tx = tx;
8582
8583 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8584 spin_lock_init(&dev->tx_global_lock);
8585
8586 return 0;
8587}
8588
8589void netif_tx_stop_all_queues(struct net_device *dev)
8590{
8591 unsigned int i;
8592
8593 for (i = 0; i < dev->num_tx_queues; i++) {
8594 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8595
8596 netif_tx_stop_queue(txq);
8597 }
8598}
8599EXPORT_SYMBOL(netif_tx_stop_all_queues);
8600
8601/**
8602 * register_netdevice - register a network device
8603 * @dev: device to register
8604 *
8605 * Take a completed network device structure and add it to the kernel
8606 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8607 * chain. 0 is returned on success. A negative errno code is returned
8608 * on a failure to set up the device, or if the name is a duplicate.
8609 *
8610 * Callers must hold the rtnl semaphore. You may want
8611 * register_netdev() instead of this.
8612 *
8613 * BUGS:
8614 * The locking appears insufficient to guarantee two parallel registers
8615 * will not get the same name.
8616 */
8617
8618int register_netdevice(struct net_device *dev)
8619{
8620 int ret;
8621 struct net *net = dev_net(dev);
8622
8623 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8624 NETDEV_FEATURE_COUNT);
8625 BUG_ON(dev_boot_phase);
8626 ASSERT_RTNL();
8627
8628 might_sleep();
8629
8630 /* When net_device's are persistent, this will be fatal. */
8631 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8632 BUG_ON(!net);
8633
8634 spin_lock_init(&dev->addr_list_lock);
8635 netdev_set_addr_lockdep_class(dev);
8636
8637 ret = dev_get_valid_name(net, dev, dev->name);
8638 if (ret < 0)
8639 goto out;
8640
8641 /* Init, if this function is available */
8642 if (dev->netdev_ops->ndo_init) {
8643 ret = dev->netdev_ops->ndo_init(dev);
8644 if (ret) {
8645 if (ret > 0)
8646 ret = -EIO;
8647 goto out;
8648 }
8649 }
8650
8651 if (((dev->hw_features | dev->features) &
8652 NETIF_F_HW_VLAN_CTAG_FILTER) &&
8653 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8654 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8655 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8656 ret = -EINVAL;
8657 goto err_uninit;
8658 }
8659
8660 ret = -EBUSY;
8661 if (!dev->ifindex)
8662 dev->ifindex = dev_new_index(net);
8663 else if (__dev_get_by_index(net, dev->ifindex))
8664 goto err_uninit;
8665
8666 /* Transfer changeable features to wanted_features and enable
8667 * software offloads (GSO and GRO).
8668 */
8669 dev->hw_features |= NETIF_F_SOFT_FEATURES;
8670 dev->features |= NETIF_F_SOFT_FEATURES;
8671
8672 if (dev->netdev_ops->ndo_udp_tunnel_add) {
8673 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8674 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8675 }
8676
8677 dev->wanted_features = dev->features & dev->hw_features;
8678
8679 if (!(dev->flags & IFF_LOOPBACK))
8680 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8681
8682 /* If IPv4 TCP segmentation offload is supported we should also
8683 * allow the device to enable segmenting the frame with the option
8684 * of ignoring a static IP ID value. This doesn't enable the
8685 * feature itself but allows the user to enable it later.
8686 */
8687 if (dev->hw_features & NETIF_F_TSO)
8688 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8689 if (dev->vlan_features & NETIF_F_TSO)
8690 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8691 if (dev->mpls_features & NETIF_F_TSO)
8692 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8693 if (dev->hw_enc_features & NETIF_F_TSO)
8694 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8695
8696 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8697 */
8698 dev->vlan_features |= NETIF_F_HIGHDMA;
8699
8700 /* Make NETIF_F_SG inheritable to tunnel devices.
8701 */
8702 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8703
8704 /* Make NETIF_F_SG inheritable to MPLS.
8705 */
8706 dev->mpls_features |= NETIF_F_SG;
8707
8708 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8709 ret = notifier_to_errno(ret);
8710 if (ret)
8711 goto err_uninit;
8712
8713 ret = netdev_register_kobject(dev);
8714 if (ret)
8715 goto err_uninit;
8716 dev->reg_state = NETREG_REGISTERED;
8717
8718 __netdev_update_features(dev);
8719
8720 /*
8721 * Default initial state at registry is that the
8722 * device is present.
8723 */
8724
8725 set_bit(__LINK_STATE_PRESENT, &dev->state);
8726
8727 linkwatch_init_dev(dev);
8728
8729 dev_init_scheduler(dev);
8730 dev_hold(dev);
8731 list_netdevice(dev);
8732 add_device_randomness(dev->dev_addr, dev->addr_len);
8733
8734 /* If the device has permanent device address, driver should
8735 * set dev_addr and also addr_assign_type should be set to
8736 * NET_ADDR_PERM (default value).
8737 */
8738 if (dev->addr_assign_type == NET_ADDR_PERM)
8739 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8740
8741 /* Notify protocols, that a new device appeared. */
8742 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8743 ret = notifier_to_errno(ret);
8744 if (ret) {
8745 rollback_registered(dev);
8746 dev->reg_state = NETREG_UNREGISTERED;
8747 }
8748 /*
8749 * Prevent userspace races by waiting until the network
8750 * device is fully setup before sending notifications.
8751 */
8752 if (!dev->rtnl_link_ops ||
8753 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8754 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8755
8756out:
8757 return ret;
8758
8759err_uninit:
8760 if (dev->netdev_ops->ndo_uninit)
8761 dev->netdev_ops->ndo_uninit(dev);
8762 if (dev->priv_destructor)
8763 dev->priv_destructor(dev);
8764 goto out;
8765}
8766EXPORT_SYMBOL(register_netdevice);
8767
8768/**
8769 * init_dummy_netdev - init a dummy network device for NAPI
8770 * @dev: device to init
8771 *
8772 * This takes a network device structure and initialize the minimum
8773 * amount of fields so it can be used to schedule NAPI polls without
8774 * registering a full blown interface. This is to be used by drivers
8775 * that need to tie several hardware interfaces to a single NAPI
8776 * poll scheduler due to HW limitations.
8777 */
8778int init_dummy_netdev(struct net_device *dev)
8779{
8780 /* Clear everything. Note we don't initialize spinlocks
8781 * are they aren't supposed to be taken by any of the
8782 * NAPI code and this dummy netdev is supposed to be
8783 * only ever used for NAPI polls
8784 */
8785 memset(dev, 0, sizeof(struct net_device));
8786
8787 /* make sure we BUG if trying to hit standard
8788 * register/unregister code path
8789 */
8790 dev->reg_state = NETREG_DUMMY;
8791
8792 /* NAPI wants this */
8793 INIT_LIST_HEAD(&dev->napi_list);
8794
8795 /* a dummy interface is started by default */
8796 set_bit(__LINK_STATE_PRESENT, &dev->state);
8797 set_bit(__LINK_STATE_START, &dev->state);
8798
8799 /* napi_busy_loop stats accounting wants this */
8800 dev_net_set(dev, &init_net);
8801
8802 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8803 * because users of this 'device' dont need to change
8804 * its refcount.
8805 */
8806
8807 return 0;
8808}
8809EXPORT_SYMBOL_GPL(init_dummy_netdev);
8810
8811
8812/**
8813 * register_netdev - register a network device
8814 * @dev: device to register
8815 *
8816 * Take a completed network device structure and add it to the kernel
8817 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8818 * chain. 0 is returned on success. A negative errno code is returned
8819 * on a failure to set up the device, or if the name is a duplicate.
8820 *
8821 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8822 * and expands the device name if you passed a format string to
8823 * alloc_netdev.
8824 */
8825int register_netdev(struct net_device *dev)
8826{
8827 int err;
8828
8829 if (rtnl_lock_killable())
8830 return -EINTR;
8831 err = register_netdevice(dev);
8832 rtnl_unlock();
8833 return err;
8834}
8835EXPORT_SYMBOL(register_netdev);
8836
8837int netdev_refcnt_read(const struct net_device *dev)
8838{
8839 int i, refcnt = 0;
8840
8841 for_each_possible_cpu(i)
8842 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8843 return refcnt;
8844}
8845EXPORT_SYMBOL(netdev_refcnt_read);
8846
8847/**
8848 * netdev_wait_allrefs - wait until all references are gone.
8849 * @dev: target net_device
8850 *
8851 * This is called when unregistering network devices.
8852 *
8853 * Any protocol or device that holds a reference should register
8854 * for netdevice notification, and cleanup and put back the
8855 * reference if they receive an UNREGISTER event.
8856 * We can get stuck here if buggy protocols don't correctly
8857 * call dev_put.
8858 */
8859static void netdev_wait_allrefs(struct net_device *dev)
8860{
8861 unsigned long rebroadcast_time, warning_time;
8862 int refcnt;
8863
8864 linkwatch_forget_dev(dev);
8865
8866 rebroadcast_time = warning_time = jiffies;
8867 refcnt = netdev_refcnt_read(dev);
8868
8869 while (refcnt != 0) {
8870 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8871 rtnl_lock();
8872
8873 /* Rebroadcast unregister notification */
8874 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8875
8876 __rtnl_unlock();
8877 rcu_barrier();
8878 rtnl_lock();
8879
8880 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8881 &dev->state)) {
8882 /* We must not have linkwatch events
8883 * pending on unregister. If this
8884 * happens, we simply run the queue
8885 * unscheduled, resulting in a noop
8886 * for this device.
8887 */
8888 linkwatch_run_queue();
8889 }
8890
8891 __rtnl_unlock();
8892
8893 rebroadcast_time = jiffies;
8894 }
8895
8896 msleep(250);
8897
8898 refcnt = netdev_refcnt_read(dev);
8899
8900 if (time_after(jiffies, warning_time + 10 * HZ)) {
8901 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8902 dev->name, refcnt);
8903 warning_time = jiffies;
8904 }
8905 }
8906}
8907
8908/* The sequence is:
8909 *
8910 * rtnl_lock();
8911 * ...
8912 * register_netdevice(x1);
8913 * register_netdevice(x2);
8914 * ...
8915 * unregister_netdevice(y1);
8916 * unregister_netdevice(y2);
8917 * ...
8918 * rtnl_unlock();
8919 * free_netdev(y1);
8920 * free_netdev(y2);
8921 *
8922 * We are invoked by rtnl_unlock().
8923 * This allows us to deal with problems:
8924 * 1) We can delete sysfs objects which invoke hotplug
8925 * without deadlocking with linkwatch via keventd.
8926 * 2) Since we run with the RTNL semaphore not held, we can sleep
8927 * safely in order to wait for the netdev refcnt to drop to zero.
8928 *
8929 * We must not return until all unregister events added during
8930 * the interval the lock was held have been completed.
8931 */
8932void netdev_run_todo(void)
8933{
8934 struct list_head list;
8935
8936 /* Snapshot list, allow later requests */
8937 list_replace_init(&net_todo_list, &list);
8938
8939 __rtnl_unlock();
8940
8941
8942 /* Wait for rcu callbacks to finish before next phase */
8943 if (!list_empty(&list))
8944 rcu_barrier();
8945
8946 while (!list_empty(&list)) {
8947 struct net_device *dev
8948 = list_first_entry(&list, struct net_device, todo_list);
8949 list_del(&dev->todo_list);
8950
8951 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8952 pr_err("network todo '%s' but state %d\n",
8953 dev->name, dev->reg_state);
8954 dump_stack();
8955 continue;
8956 }
8957
8958 dev->reg_state = NETREG_UNREGISTERED;
8959
8960 netdev_wait_allrefs(dev);
8961
8962 /* paranoia */
8963 BUG_ON(netdev_refcnt_read(dev));
8964 BUG_ON(!list_empty(&dev->ptype_all));
8965 BUG_ON(!list_empty(&dev->ptype_specific));
8966 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8967 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8968#if IS_ENABLED(CONFIG_DECNET)
8969 WARN_ON(dev->dn_ptr);
8970#endif
8971 if (dev->priv_destructor)
8972 dev->priv_destructor(dev);
8973 if (dev->needs_free_netdev)
8974 free_netdev(dev);
8975
8976 /* Report a network device has been unregistered */
8977 rtnl_lock();
8978 dev_net(dev)->dev_unreg_count--;
8979 __rtnl_unlock();
8980 wake_up(&netdev_unregistering_wq);
8981
8982 /* Free network device */
8983 kobject_put(&dev->dev.kobj);
8984 }
8985}
8986
8987/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8988 * all the same fields in the same order as net_device_stats, with only
8989 * the type differing, but rtnl_link_stats64 may have additional fields
8990 * at the end for newer counters.
8991 */
8992void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8993 const struct net_device_stats *netdev_stats)
8994{
8995#if BITS_PER_LONG == 64
8996 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8997 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8998 /* zero out counters that only exist in rtnl_link_stats64 */
8999 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9000 sizeof(*stats64) - sizeof(*netdev_stats));
9001#else
9002 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9003 const unsigned long *src = (const unsigned long *)netdev_stats;
9004 u64 *dst = (u64 *)stats64;
9005
9006 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9007 for (i = 0; i < n; i++)
9008 dst[i] = src[i];
9009 /* zero out counters that only exist in rtnl_link_stats64 */
9010 memset((char *)stats64 + n * sizeof(u64), 0,
9011 sizeof(*stats64) - n * sizeof(u64));
9012#endif
9013}
9014EXPORT_SYMBOL(netdev_stats_to_stats64);
9015
9016/**
9017 * dev_get_stats - get network device statistics
9018 * @dev: device to get statistics from
9019 * @storage: place to store stats
9020 *
9021 * Get network statistics from device. Return @storage.
9022 * The device driver may provide its own method by setting
9023 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9024 * otherwise the internal statistics structure is used.
9025 */
9026struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9027 struct rtnl_link_stats64 *storage)
9028{
9029 const struct net_device_ops *ops = dev->netdev_ops;
9030
9031 if (ops->ndo_get_stats64) {
9032 memset(storage, 0, sizeof(*storage));
9033 ops->ndo_get_stats64(dev, storage);
9034 } else if (ops->ndo_get_stats) {
9035 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9036 } else {
9037 netdev_stats_to_stats64(storage, &dev->stats);
9038 }
9039 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9040 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9041 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9042 return storage;
9043}
9044EXPORT_SYMBOL(dev_get_stats);
9045
9046struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9047{
9048 struct netdev_queue *queue = dev_ingress_queue(dev);
9049
9050#ifdef CONFIG_NET_CLS_ACT
9051 if (queue)
9052 return queue;
9053 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9054 if (!queue)
9055 return NULL;
9056 netdev_init_one_queue(dev, queue, NULL);
9057 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9058 queue->qdisc_sleeping = &noop_qdisc;
9059 rcu_assign_pointer(dev->ingress_queue, queue);
9060#endif
9061 return queue;
9062}
9063
9064static const struct ethtool_ops default_ethtool_ops;
9065
9066void netdev_set_default_ethtool_ops(struct net_device *dev,
9067 const struct ethtool_ops *ops)
9068{
9069 if (dev->ethtool_ops == &default_ethtool_ops)
9070 dev->ethtool_ops = ops;
9071}
9072EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9073
9074void netdev_freemem(struct net_device *dev)
9075{
9076 char *addr = (char *)dev - dev->padded;
9077
9078 kvfree(addr);
9079}
9080
9081/**
9082 * alloc_netdev_mqs - allocate network device
9083 * @sizeof_priv: size of private data to allocate space for
9084 * @name: device name format string
9085 * @name_assign_type: origin of device name
9086 * @setup: callback to initialize device
9087 * @txqs: the number of TX subqueues to allocate
9088 * @rxqs: the number of RX subqueues to allocate
9089 *
9090 * Allocates a struct net_device with private data area for driver use
9091 * and performs basic initialization. Also allocates subqueue structs
9092 * for each queue on the device.
9093 */
9094struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9095 unsigned char name_assign_type,
9096 void (*setup)(struct net_device *),
9097 unsigned int txqs, unsigned int rxqs)
9098{
9099 struct net_device *dev;
9100 unsigned int alloc_size;
9101 struct net_device *p;
9102
9103 BUG_ON(strlen(name) >= sizeof(dev->name));
9104
9105 if (txqs < 1) {
9106 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9107 return NULL;
9108 }
9109
9110 if (rxqs < 1) {
9111 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9112 return NULL;
9113 }
9114
9115 alloc_size = sizeof(struct net_device);
9116 if (sizeof_priv) {
9117 /* ensure 32-byte alignment of private area */
9118 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9119 alloc_size += sizeof_priv;
9120 }
9121 /* ensure 32-byte alignment of whole construct */
9122 alloc_size += NETDEV_ALIGN - 1;
9123
9124 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9125 if (!p)
9126 return NULL;
9127
9128 dev = PTR_ALIGN(p, NETDEV_ALIGN);
9129 dev->padded = (char *)dev - (char *)p;
9130
9131 dev->pcpu_refcnt = alloc_percpu(int);
9132 if (!dev->pcpu_refcnt)
9133 goto free_dev;
9134
9135 if (dev_addr_init(dev))
9136 goto free_pcpu;
9137
9138 dev_mc_init(dev);
9139 dev_uc_init(dev);
9140
9141 dev_net_set(dev, &init_net);
9142
9143 dev->gso_max_size = GSO_MAX_SIZE;
9144 dev->gso_max_segs = GSO_MAX_SEGS;
9145
9146 INIT_LIST_HEAD(&dev->napi_list);
9147 INIT_LIST_HEAD(&dev->unreg_list);
9148 INIT_LIST_HEAD(&dev->close_list);
9149 INIT_LIST_HEAD(&dev->link_watch_list);
9150 INIT_LIST_HEAD(&dev->adj_list.upper);
9151 INIT_LIST_HEAD(&dev->adj_list.lower);
9152 INIT_LIST_HEAD(&dev->ptype_all);
9153 INIT_LIST_HEAD(&dev->ptype_specific);
9154#ifdef CONFIG_NET_SCHED
9155 hash_init(dev->qdisc_hash);
9156#endif
9157 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9158 setup(dev);
9159
9160 if (!dev->tx_queue_len) {
9161 dev->priv_flags |= IFF_NO_QUEUE;
9162 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9163 }
9164
9165 dev->num_tx_queues = txqs;
9166 dev->real_num_tx_queues = txqs;
9167 if (netif_alloc_netdev_queues(dev))
9168 goto free_all;
9169
9170 dev->num_rx_queues = rxqs;
9171 dev->real_num_rx_queues = rxqs;
9172 if (netif_alloc_rx_queues(dev))
9173 goto free_all;
9174
9175 strcpy(dev->name, name);
9176 dev->name_assign_type = name_assign_type;
9177 dev->group = INIT_NETDEV_GROUP;
9178 if (!dev->ethtool_ops)
9179 dev->ethtool_ops = &default_ethtool_ops;
9180
9181 nf_hook_ingress_init(dev);
9182
9183 return dev;
9184
9185free_all:
9186 free_netdev(dev);
9187 return NULL;
9188
9189free_pcpu:
9190 free_percpu(dev->pcpu_refcnt);
9191free_dev:
9192 netdev_freemem(dev);
9193 return NULL;
9194}
9195EXPORT_SYMBOL(alloc_netdev_mqs);
9196
9197/**
9198 * free_netdev - free network device
9199 * @dev: device
9200 *
9201 * This function does the last stage of destroying an allocated device
9202 * interface. The reference to the device object is released. If this
9203 * is the last reference then it will be freed.Must be called in process
9204 * context.
9205 */
9206void free_netdev(struct net_device *dev)
9207{
9208 struct napi_struct *p, *n;
9209
9210 might_sleep();
9211 netif_free_tx_queues(dev);
9212 netif_free_rx_queues(dev);
9213
9214 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9215
9216 /* Flush device addresses */
9217 dev_addr_flush(dev);
9218
9219 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9220 netif_napi_del(p);
9221
9222 free_percpu(dev->pcpu_refcnt);
9223 dev->pcpu_refcnt = NULL;
9224
9225 /* Compatibility with error handling in drivers */
9226 if (dev->reg_state == NETREG_UNINITIALIZED) {
9227 netdev_freemem(dev);
9228 return;
9229 }
9230
9231 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9232 dev->reg_state = NETREG_RELEASED;
9233
9234 /* will free via device release */
9235 put_device(&dev->dev);
9236}
9237EXPORT_SYMBOL(free_netdev);
9238
9239/**
9240 * synchronize_net - Synchronize with packet receive processing
9241 *
9242 * Wait for packets currently being received to be done.
9243 * Does not block later packets from starting.
9244 */
9245void synchronize_net(void)
9246{
9247 might_sleep();
9248 if (rtnl_is_locked())
9249 synchronize_rcu_expedited();
9250 else
9251 synchronize_rcu();
9252}
9253EXPORT_SYMBOL(synchronize_net);
9254
9255/**
9256 * unregister_netdevice_queue - remove device from the kernel
9257 * @dev: device
9258 * @head: list
9259 *
9260 * This function shuts down a device interface and removes it
9261 * from the kernel tables.
9262 * If head not NULL, device is queued to be unregistered later.
9263 *
9264 * Callers must hold the rtnl semaphore. You may want
9265 * unregister_netdev() instead of this.
9266 */
9267
9268void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9269{
9270 ASSERT_RTNL();
9271
9272 if (head) {
9273 list_move_tail(&dev->unreg_list, head);
9274 } else {
9275 rollback_registered(dev);
9276 /* Finish processing unregister after unlock */
9277 net_set_todo(dev);
9278 }
9279}
9280EXPORT_SYMBOL(unregister_netdevice_queue);
9281
9282/**
9283 * unregister_netdevice_many - unregister many devices
9284 * @head: list of devices
9285 *
9286 * Note: As most callers use a stack allocated list_head,
9287 * we force a list_del() to make sure stack wont be corrupted later.
9288 */
9289void unregister_netdevice_many(struct list_head *head)
9290{
9291 struct net_device *dev;
9292
9293 if (!list_empty(head)) {
9294 rollback_registered_many(head);
9295 list_for_each_entry(dev, head, unreg_list)
9296 net_set_todo(dev);
9297 list_del(head);
9298 }
9299}
9300EXPORT_SYMBOL(unregister_netdevice_many);
9301
9302/**
9303 * unregister_netdev - remove device from the kernel
9304 * @dev: device
9305 *
9306 * This function shuts down a device interface and removes it
9307 * from the kernel tables.
9308 *
9309 * This is just a wrapper for unregister_netdevice that takes
9310 * the rtnl semaphore. In general you want to use this and not
9311 * unregister_netdevice.
9312 */
9313void unregister_netdev(struct net_device *dev)
9314{
9315 rtnl_lock();
9316 unregister_netdevice(dev);
9317 rtnl_unlock();
9318}
9319EXPORT_SYMBOL(unregister_netdev);
9320
9321/**
9322 * dev_change_net_namespace - move device to different nethost namespace
9323 * @dev: device
9324 * @net: network namespace
9325 * @pat: If not NULL name pattern to try if the current device name
9326 * is already taken in the destination network namespace.
9327 *
9328 * This function shuts down a device interface and moves it
9329 * to a new network namespace. On success 0 is returned, on
9330 * a failure a netagive errno code is returned.
9331 *
9332 * Callers must hold the rtnl semaphore.
9333 */
9334
9335int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9336{
9337 int err, new_nsid, new_ifindex;
9338
9339 ASSERT_RTNL();
9340
9341 /* Don't allow namespace local devices to be moved. */
9342 err = -EINVAL;
9343 if (dev->features & NETIF_F_NETNS_LOCAL)
9344 goto out;
9345
9346 /* Ensure the device has been registrered */
9347 if (dev->reg_state != NETREG_REGISTERED)
9348 goto out;
9349
9350 /* Get out if there is nothing todo */
9351 err = 0;
9352 if (net_eq(dev_net(dev), net))
9353 goto out;
9354
9355 /* Pick the destination device name, and ensure
9356 * we can use it in the destination network namespace.
9357 */
9358 err = -EEXIST;
9359 if (__dev_get_by_name(net, dev->name)) {
9360 /* We get here if we can't use the current device name */
9361 if (!pat)
9362 goto out;
9363 err = dev_get_valid_name(net, dev, pat);
9364 if (err < 0)
9365 goto out;
9366 }
9367
9368 /*
9369 * And now a mini version of register_netdevice unregister_netdevice.
9370 */
9371
9372 /* If device is running close it first. */
9373 dev_close(dev);
9374
9375 /* And unlink it from device chain */
9376 unlist_netdevice(dev);
9377
9378 synchronize_net();
9379
9380 /* Shutdown queueing discipline. */
9381 dev_shutdown(dev);
9382
9383 /* Notify protocols, that we are about to destroy
9384 * this device. They should clean all the things.
9385 *
9386 * Note that dev->reg_state stays at NETREG_REGISTERED.
9387 * This is wanted because this way 8021q and macvlan know
9388 * the device is just moving and can keep their slaves up.
9389 */
9390 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9391 rcu_barrier();
9392
9393 new_nsid = peernet2id_alloc(dev_net(dev), net);
9394 /* If there is an ifindex conflict assign a new one */
9395 if (__dev_get_by_index(net, dev->ifindex))
9396 new_ifindex = dev_new_index(net);
9397 else
9398 new_ifindex = dev->ifindex;
9399
9400 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9401 new_ifindex);
9402
9403 /*
9404 * Flush the unicast and multicast chains
9405 */
9406 dev_uc_flush(dev);
9407 dev_mc_flush(dev);
9408
9409 /* Send a netdev-removed uevent to the old namespace */
9410 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9411 netdev_adjacent_del_links(dev);
9412
9413 /* Actually switch the network namespace */
9414 dev_net_set(dev, net);
9415 dev->ifindex = new_ifindex;
9416
9417 /* Send a netdev-add uevent to the new namespace */
9418 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9419 netdev_adjacent_add_links(dev);
9420
9421 /* Fixup kobjects */
9422 err = device_rename(&dev->dev, dev->name);
9423 WARN_ON(err);
9424
9425 /* Add the device back in the hashes */
9426 list_netdevice(dev);
9427
9428 /* Notify protocols, that a new device appeared. */
9429 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9430
9431 /*
9432 * Prevent userspace races by waiting until the network
9433 * device is fully setup before sending notifications.
9434 */
9435 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9436
9437 synchronize_net();
9438 err = 0;
9439out:
9440 return err;
9441}
9442EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9443
9444static int dev_cpu_dead(unsigned int oldcpu)
9445{
9446 struct sk_buff **list_skb;
9447 struct sk_buff *skb;
9448 unsigned int cpu;
9449 struct softnet_data *sd, *oldsd, *remsd = NULL;
9450
9451 local_irq_disable();
9452 cpu = smp_processor_id();
9453 sd = &per_cpu(softnet_data, cpu);
9454 oldsd = &per_cpu(softnet_data, oldcpu);
9455
9456 /* Find end of our completion_queue. */
9457 list_skb = &sd->completion_queue;
9458 while (*list_skb)
9459 list_skb = &(*list_skb)->next;
9460 /* Append completion queue from offline CPU. */
9461 *list_skb = oldsd->completion_queue;
9462 oldsd->completion_queue = NULL;
9463
9464 /* Append output queue from offline CPU. */
9465 if (oldsd->output_queue) {
9466 *sd->output_queue_tailp = oldsd->output_queue;
9467 sd->output_queue_tailp = oldsd->output_queue_tailp;
9468 oldsd->output_queue = NULL;
9469 oldsd->output_queue_tailp = &oldsd->output_queue;
9470 }
9471 /* Append NAPI poll list from offline CPU, with one exception :
9472 * process_backlog() must be called by cpu owning percpu backlog.
9473 * We properly handle process_queue & input_pkt_queue later.
9474 */
9475 while (!list_empty(&oldsd->poll_list)) {
9476 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9477 struct napi_struct,
9478 poll_list);
9479
9480 list_del_init(&napi->poll_list);
9481 if (napi->poll == process_backlog)
9482 napi->state = 0;
9483 else
9484 ____napi_schedule(sd, napi);
9485 }
9486
9487 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9488 local_irq_enable();
9489
9490#ifdef CONFIG_RPS
9491 remsd = oldsd->rps_ipi_list;
9492 oldsd->rps_ipi_list = NULL;
9493#endif
9494 /* send out pending IPI's on offline CPU */
9495 net_rps_send_ipi(remsd);
9496
9497 /* Process offline CPU's input_pkt_queue */
9498 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9499 netif_rx_ni(skb);
9500 input_queue_head_incr(oldsd);
9501 }
9502 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9503 netif_rx_ni(skb);
9504 input_queue_head_incr(oldsd);
9505 }
9506
9507 return 0;
9508}
9509
9510/**
9511 * netdev_increment_features - increment feature set by one
9512 * @all: current feature set
9513 * @one: new feature set
9514 * @mask: mask feature set
9515 *
9516 * Computes a new feature set after adding a device with feature set
9517 * @one to the master device with current feature set @all. Will not
9518 * enable anything that is off in @mask. Returns the new feature set.
9519 */
9520netdev_features_t netdev_increment_features(netdev_features_t all,
9521 netdev_features_t one, netdev_features_t mask)
9522{
9523 if (mask & NETIF_F_HW_CSUM)
9524 mask |= NETIF_F_CSUM_MASK;
9525 mask |= NETIF_F_VLAN_CHALLENGED;
9526
9527 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9528 all &= one | ~NETIF_F_ALL_FOR_ALL;
9529
9530 /* If one device supports hw checksumming, set for all. */
9531 if (all & NETIF_F_HW_CSUM)
9532 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9533
9534 return all;
9535}
9536EXPORT_SYMBOL(netdev_increment_features);
9537
9538static struct hlist_head * __net_init netdev_create_hash(void)
9539{
9540 int i;
9541 struct hlist_head *hash;
9542
9543 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9544 if (hash != NULL)
9545 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9546 INIT_HLIST_HEAD(&hash[i]);
9547
9548 return hash;
9549}
9550
9551/* Initialize per network namespace state */
9552static int __net_init netdev_init(struct net *net)
9553{
9554 BUILD_BUG_ON(GRO_HASH_BUCKETS >
9555 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9556
9557 if (net != &init_net)
9558 INIT_LIST_HEAD(&net->dev_base_head);
9559
9560 net->dev_name_head = netdev_create_hash();
9561 if (net->dev_name_head == NULL)
9562 goto err_name;
9563
9564 net->dev_index_head = netdev_create_hash();
9565 if (net->dev_index_head == NULL)
9566 goto err_idx;
9567
9568 return 0;
9569
9570err_idx:
9571 kfree(net->dev_name_head);
9572err_name:
9573 return -ENOMEM;
9574}
9575
9576/**
9577 * netdev_drivername - network driver for the device
9578 * @dev: network device
9579 *
9580 * Determine network driver for device.
9581 */
9582const char *netdev_drivername(const struct net_device *dev)
9583{
9584 const struct device_driver *driver;
9585 const struct device *parent;
9586 const char *empty = "";
9587
9588 parent = dev->dev.parent;
9589 if (!parent)
9590 return empty;
9591
9592 driver = parent->driver;
9593 if (driver && driver->name)
9594 return driver->name;
9595 return empty;
9596}
9597
9598static void __netdev_printk(const char *level, const struct net_device *dev,
9599 struct va_format *vaf)
9600{
9601 if (dev && dev->dev.parent) {
9602 dev_printk_emit(level[1] - '0',
9603 dev->dev.parent,
9604 "%s %s %s%s: %pV",
9605 dev_driver_string(dev->dev.parent),
9606 dev_name(dev->dev.parent),
9607 netdev_name(dev), netdev_reg_state(dev),
9608 vaf);
9609 } else if (dev) {
9610 printk("%s%s%s: %pV",
9611 level, netdev_name(dev), netdev_reg_state(dev), vaf);
9612 } else {
9613 printk("%s(NULL net_device): %pV", level, vaf);
9614 }
9615}
9616
9617void netdev_printk(const char *level, const struct net_device *dev,
9618 const char *format, ...)
9619{
9620 struct va_format vaf;
9621 va_list args;
9622
9623 va_start(args, format);
9624
9625 vaf.fmt = format;
9626 vaf.va = &args;
9627
9628 __netdev_printk(level, dev, &vaf);
9629
9630 va_end(args);
9631}
9632EXPORT_SYMBOL(netdev_printk);
9633
9634#define define_netdev_printk_level(func, level) \
9635void func(const struct net_device *dev, const char *fmt, ...) \
9636{ \
9637 struct va_format vaf; \
9638 va_list args; \
9639 \
9640 va_start(args, fmt); \
9641 \
9642 vaf.fmt = fmt; \
9643 vaf.va = &args; \
9644 \
9645 __netdev_printk(level, dev, &vaf); \
9646 \
9647 va_end(args); \
9648} \
9649EXPORT_SYMBOL(func);
9650
9651define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9652define_netdev_printk_level(netdev_alert, KERN_ALERT);
9653define_netdev_printk_level(netdev_crit, KERN_CRIT);
9654define_netdev_printk_level(netdev_err, KERN_ERR);
9655define_netdev_printk_level(netdev_warn, KERN_WARNING);
9656define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9657define_netdev_printk_level(netdev_info, KERN_INFO);
9658
9659static void __net_exit netdev_exit(struct net *net)
9660{
9661 kfree(net->dev_name_head);
9662 kfree(net->dev_index_head);
9663 if (net != &init_net)
9664 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9665}
9666
9667static struct pernet_operations __net_initdata netdev_net_ops = {
9668 .init = netdev_init,
9669 .exit = netdev_exit,
9670};
9671
9672static void __net_exit default_device_exit(struct net *net)
9673{
9674 struct net_device *dev, *aux;
9675 /*
9676 * Push all migratable network devices back to the
9677 * initial network namespace
9678 */
9679 rtnl_lock();
9680 for_each_netdev_safe(net, dev, aux) {
9681 int err;
9682 char fb_name[IFNAMSIZ];
9683
9684 /* Ignore unmoveable devices (i.e. loopback) */
9685 if (dev->features & NETIF_F_NETNS_LOCAL)
9686 continue;
9687
9688 /* Leave virtual devices for the generic cleanup */
9689 if (dev->rtnl_link_ops)
9690 continue;
9691
9692 /* Push remaining network devices to init_net */
9693 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9694 err = dev_change_net_namespace(dev, &init_net, fb_name);
9695 if (err) {
9696 pr_emerg("%s: failed to move %s to init_net: %d\n",
9697 __func__, dev->name, err);
9698 BUG();
9699 }
9700 }
9701 rtnl_unlock();
9702}
9703
9704static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9705{
9706 /* Return with the rtnl_lock held when there are no network
9707 * devices unregistering in any network namespace in net_list.
9708 */
9709 struct net *net;
9710 bool unregistering;
9711 DEFINE_WAIT_FUNC(wait, woken_wake_function);
9712
9713 add_wait_queue(&netdev_unregistering_wq, &wait);
9714 for (;;) {
9715 unregistering = false;
9716 rtnl_lock();
9717 list_for_each_entry(net, net_list, exit_list) {
9718 if (net->dev_unreg_count > 0) {
9719 unregistering = true;
9720 break;
9721 }
9722 }
9723 if (!unregistering)
9724 break;
9725 __rtnl_unlock();
9726
9727 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9728 }
9729 remove_wait_queue(&netdev_unregistering_wq, &wait);
9730}
9731
9732static void __net_exit default_device_exit_batch(struct list_head *net_list)
9733{
9734 /* At exit all network devices most be removed from a network
9735 * namespace. Do this in the reverse order of registration.
9736 * Do this across as many network namespaces as possible to
9737 * improve batching efficiency.
9738 */
9739 struct net_device *dev;
9740 struct net *net;
9741 LIST_HEAD(dev_kill_list);
9742
9743 /* To prevent network device cleanup code from dereferencing
9744 * loopback devices or network devices that have been freed
9745 * wait here for all pending unregistrations to complete,
9746 * before unregistring the loopback device and allowing the
9747 * network namespace be freed.
9748 *
9749 * The netdev todo list containing all network devices
9750 * unregistrations that happen in default_device_exit_batch
9751 * will run in the rtnl_unlock() at the end of
9752 * default_device_exit_batch.
9753 */
9754 rtnl_lock_unregistering(net_list);
9755 list_for_each_entry(net, net_list, exit_list) {
9756 for_each_netdev_reverse(net, dev) {
9757 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9758 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9759 else
9760 unregister_netdevice_queue(dev, &dev_kill_list);
9761 }
9762 }
9763 unregister_netdevice_many(&dev_kill_list);
9764 rtnl_unlock();
9765}
9766
9767static struct pernet_operations __net_initdata default_device_ops = {
9768 .exit = default_device_exit,
9769 .exit_batch = default_device_exit_batch,
9770};
9771
9772/*
9773 * Initialize the DEV module. At boot time this walks the device list and
9774 * unhooks any devices that fail to initialise (normally hardware not
9775 * present) and leaves us with a valid list of present and active devices.
9776 *
9777 */
9778
9779/*
9780 * This is called single threaded during boot, so no need
9781 * to take the rtnl semaphore.
9782 */
9783static int __init net_dev_init(void)
9784{
9785 int i, rc = -ENOMEM;
9786
9787 BUG_ON(!dev_boot_phase);
9788
9789 if (dev_proc_init())
9790 goto out;
9791
9792 if (netdev_kobject_init())
9793 goto out;
9794
9795 INIT_LIST_HEAD(&ptype_all);
9796 for (i = 0; i < PTYPE_HASH_SIZE; i++)
9797 INIT_LIST_HEAD(&ptype_base[i]);
9798
9799 INIT_LIST_HEAD(&offload_base);
9800
9801 if (register_pernet_subsys(&netdev_net_ops))
9802 goto out;
9803
9804 /*
9805 * Initialise the packet receive queues.
9806 */
9807
9808 for_each_possible_cpu(i) {
9809 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9810 struct softnet_data *sd = &per_cpu(softnet_data, i);
9811
9812 INIT_WORK(flush, flush_backlog);
9813
9814 skb_queue_head_init(&sd->input_pkt_queue);
9815 skb_queue_head_init(&sd->process_queue);
9816#ifdef CONFIG_XFRM_OFFLOAD
9817 skb_queue_head_init(&sd->xfrm_backlog);
9818#endif
9819 INIT_LIST_HEAD(&sd->poll_list);
9820 sd->output_queue_tailp = &sd->output_queue;
9821#ifdef CONFIG_RPS
9822 sd->csd.func = rps_trigger_softirq;
9823 sd->csd.info = sd;
9824 sd->cpu = i;
9825#endif
9826
9827 init_gro_hash(&sd->backlog);
9828 sd->backlog.poll = process_backlog;
9829 sd->backlog.weight = weight_p;
9830 }
9831
9832 dev_boot_phase = 0;
9833
9834 /* The loopback device is special if any other network devices
9835 * is present in a network namespace the loopback device must
9836 * be present. Since we now dynamically allocate and free the
9837 * loopback device ensure this invariant is maintained by
9838 * keeping the loopback device as the first device on the
9839 * list of network devices. Ensuring the loopback devices
9840 * is the first device that appears and the last network device
9841 * that disappears.
9842 */
9843 if (register_pernet_device(&loopback_net_ops))
9844 goto out;
9845
9846 if (register_pernet_device(&default_device_ops))
9847 goto out;
9848
9849 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9850 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9851
9852 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9853 NULL, dev_cpu_dead);
9854 WARN_ON(rc < 0);
9855 rc = 0;
9856out:
9857 return rc;
9858}
9859
9860subsys_initcall(net_dev_init);