at v5.1-rc3 34 kB view raw
1/* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20#ifndef _LINUX_MEMCONTROL_H 21#define _LINUX_MEMCONTROL_H 22#include <linux/cgroup.h> 23#include <linux/vm_event_item.h> 24#include <linux/hardirq.h> 25#include <linux/jump_label.h> 26#include <linux/page_counter.h> 27#include <linux/vmpressure.h> 28#include <linux/eventfd.h> 29#include <linux/mm.h> 30#include <linux/vmstat.h> 31#include <linux/writeback.h> 32#include <linux/page-flags.h> 33 34struct mem_cgroup; 35struct page; 36struct mm_struct; 37struct kmem_cache; 38 39/* Cgroup-specific page state, on top of universal node page state */ 40enum memcg_stat_item { 41 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS, 42 MEMCG_RSS, 43 MEMCG_RSS_HUGE, 44 MEMCG_SWAP, 45 MEMCG_SOCK, 46 /* XXX: why are these zone and not node counters? */ 47 MEMCG_KERNEL_STACK_KB, 48 MEMCG_NR_STAT, 49}; 50 51enum memcg_memory_event { 52 MEMCG_LOW, 53 MEMCG_HIGH, 54 MEMCG_MAX, 55 MEMCG_OOM, 56 MEMCG_OOM_KILL, 57 MEMCG_SWAP_MAX, 58 MEMCG_SWAP_FAIL, 59 MEMCG_NR_MEMORY_EVENTS, 60}; 61 62enum mem_cgroup_protection { 63 MEMCG_PROT_NONE, 64 MEMCG_PROT_LOW, 65 MEMCG_PROT_MIN, 66}; 67 68struct mem_cgroup_reclaim_cookie { 69 pg_data_t *pgdat; 70 int priority; 71 unsigned int generation; 72}; 73 74#ifdef CONFIG_MEMCG 75 76#define MEM_CGROUP_ID_SHIFT 16 77#define MEM_CGROUP_ID_MAX USHRT_MAX 78 79struct mem_cgroup_id { 80 int id; 81 refcount_t ref; 82}; 83 84/* 85 * Per memcg event counter is incremented at every pagein/pageout. With THP, 86 * it will be incremated by the number of pages. This counter is used for 87 * for trigger some periodic events. This is straightforward and better 88 * than using jiffies etc. to handle periodic memcg event. 89 */ 90enum mem_cgroup_events_target { 91 MEM_CGROUP_TARGET_THRESH, 92 MEM_CGROUP_TARGET_SOFTLIMIT, 93 MEM_CGROUP_TARGET_NUMAINFO, 94 MEM_CGROUP_NTARGETS, 95}; 96 97struct mem_cgroup_stat_cpu { 98 long count[MEMCG_NR_STAT]; 99 unsigned long events[NR_VM_EVENT_ITEMS]; 100 unsigned long nr_page_events; 101 unsigned long targets[MEM_CGROUP_NTARGETS]; 102}; 103 104struct mem_cgroup_reclaim_iter { 105 struct mem_cgroup *position; 106 /* scan generation, increased every round-trip */ 107 unsigned int generation; 108}; 109 110struct lruvec_stat { 111 long count[NR_VM_NODE_STAT_ITEMS]; 112}; 113 114/* 115 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, 116 * which have elements charged to this memcg. 117 */ 118struct memcg_shrinker_map { 119 struct rcu_head rcu; 120 unsigned long map[0]; 121}; 122 123/* 124 * per-zone information in memory controller. 125 */ 126struct mem_cgroup_per_node { 127 struct lruvec lruvec; 128 129 struct lruvec_stat __percpu *lruvec_stat_cpu; 130 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 131 132 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 133 134 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1]; 135 136#ifdef CONFIG_MEMCG_KMEM 137 struct memcg_shrinker_map __rcu *shrinker_map; 138#endif 139 struct rb_node tree_node; /* RB tree node */ 140 unsigned long usage_in_excess;/* Set to the value by which */ 141 /* the soft limit is exceeded*/ 142 bool on_tree; 143 bool congested; /* memcg has many dirty pages */ 144 /* backed by a congested BDI */ 145 146 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 147 /* use container_of */ 148}; 149 150struct mem_cgroup_threshold { 151 struct eventfd_ctx *eventfd; 152 unsigned long threshold; 153}; 154 155/* For threshold */ 156struct mem_cgroup_threshold_ary { 157 /* An array index points to threshold just below or equal to usage. */ 158 int current_threshold; 159 /* Size of entries[] */ 160 unsigned int size; 161 /* Array of thresholds */ 162 struct mem_cgroup_threshold entries[0]; 163}; 164 165struct mem_cgroup_thresholds { 166 /* Primary thresholds array */ 167 struct mem_cgroup_threshold_ary *primary; 168 /* 169 * Spare threshold array. 170 * This is needed to make mem_cgroup_unregister_event() "never fail". 171 * It must be able to store at least primary->size - 1 entries. 172 */ 173 struct mem_cgroup_threshold_ary *spare; 174}; 175 176enum memcg_kmem_state { 177 KMEM_NONE, 178 KMEM_ALLOCATED, 179 KMEM_ONLINE, 180}; 181 182#if defined(CONFIG_SMP) 183struct memcg_padding { 184 char x[0]; 185} ____cacheline_internodealigned_in_smp; 186#define MEMCG_PADDING(name) struct memcg_padding name; 187#else 188#define MEMCG_PADDING(name) 189#endif 190 191/* 192 * The memory controller data structure. The memory controller controls both 193 * page cache and RSS per cgroup. We would eventually like to provide 194 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 195 * to help the administrator determine what knobs to tune. 196 */ 197struct mem_cgroup { 198 struct cgroup_subsys_state css; 199 200 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 201 struct mem_cgroup_id id; 202 203 /* Accounted resources */ 204 struct page_counter memory; 205 struct page_counter swap; 206 207 /* Legacy consumer-oriented counters */ 208 struct page_counter memsw; 209 struct page_counter kmem; 210 struct page_counter tcpmem; 211 212 /* Upper bound of normal memory consumption range */ 213 unsigned long high; 214 215 /* Range enforcement for interrupt charges */ 216 struct work_struct high_work; 217 218 unsigned long soft_limit; 219 220 /* vmpressure notifications */ 221 struct vmpressure vmpressure; 222 223 /* 224 * Should the accounting and control be hierarchical, per subtree? 225 */ 226 bool use_hierarchy; 227 228 /* 229 * Should the OOM killer kill all belonging tasks, had it kill one? 230 */ 231 bool oom_group; 232 233 /* protected by memcg_oom_lock */ 234 bool oom_lock; 235 int under_oom; 236 237 int swappiness; 238 /* OOM-Killer disable */ 239 int oom_kill_disable; 240 241 /* memory.events */ 242 struct cgroup_file events_file; 243 244 /* handle for "memory.swap.events" */ 245 struct cgroup_file swap_events_file; 246 247 /* protect arrays of thresholds */ 248 struct mutex thresholds_lock; 249 250 /* thresholds for memory usage. RCU-protected */ 251 struct mem_cgroup_thresholds thresholds; 252 253 /* thresholds for mem+swap usage. RCU-protected */ 254 struct mem_cgroup_thresholds memsw_thresholds; 255 256 /* For oom notifier event fd */ 257 struct list_head oom_notify; 258 259 /* 260 * Should we move charges of a task when a task is moved into this 261 * mem_cgroup ? And what type of charges should we move ? 262 */ 263 unsigned long move_charge_at_immigrate; 264 /* taken only while moving_account > 0 */ 265 spinlock_t move_lock; 266 unsigned long move_lock_flags; 267 268 MEMCG_PADDING(_pad1_); 269 270 /* 271 * set > 0 if pages under this cgroup are moving to other cgroup. 272 */ 273 atomic_t moving_account; 274 struct task_struct *move_lock_task; 275 276 /* memory.stat */ 277 struct mem_cgroup_stat_cpu __percpu *stat_cpu; 278 279 MEMCG_PADDING(_pad2_); 280 281 atomic_long_t stat[MEMCG_NR_STAT]; 282 atomic_long_t events[NR_VM_EVENT_ITEMS]; 283 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 284 285 unsigned long socket_pressure; 286 287 /* Legacy tcp memory accounting */ 288 bool tcpmem_active; 289 int tcpmem_pressure; 290 291#ifdef CONFIG_MEMCG_KMEM 292 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 293 int kmemcg_id; 294 enum memcg_kmem_state kmem_state; 295 struct list_head kmem_caches; 296#endif 297 298 int last_scanned_node; 299#if MAX_NUMNODES > 1 300 nodemask_t scan_nodes; 301 atomic_t numainfo_events; 302 atomic_t numainfo_updating; 303#endif 304 305#ifdef CONFIG_CGROUP_WRITEBACK 306 struct list_head cgwb_list; 307 struct wb_domain cgwb_domain; 308#endif 309 310 /* List of events which userspace want to receive */ 311 struct list_head event_list; 312 spinlock_t event_list_lock; 313 314 struct mem_cgroup_per_node *nodeinfo[0]; 315 /* WARNING: nodeinfo must be the last member here */ 316}; 317 318/* 319 * size of first charge trial. "32" comes from vmscan.c's magic value. 320 * TODO: maybe necessary to use big numbers in big irons. 321 */ 322#define MEMCG_CHARGE_BATCH 32U 323 324extern struct mem_cgroup *root_mem_cgroup; 325 326static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 327{ 328 return (memcg == root_mem_cgroup); 329} 330 331static inline bool mem_cgroup_disabled(void) 332{ 333 return !cgroup_subsys_enabled(memory_cgrp_subsys); 334} 335 336enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 337 struct mem_cgroup *memcg); 338 339int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 340 gfp_t gfp_mask, struct mem_cgroup **memcgp, 341 bool compound); 342int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 343 gfp_t gfp_mask, struct mem_cgroup **memcgp, 344 bool compound); 345void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 346 bool lrucare, bool compound); 347void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 348 bool compound); 349void mem_cgroup_uncharge(struct page *page); 350void mem_cgroup_uncharge_list(struct list_head *page_list); 351 352void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 353 354static struct mem_cgroup_per_node * 355mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 356{ 357 return memcg->nodeinfo[nid]; 358} 359 360/** 361 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone 362 * @node: node of the wanted lruvec 363 * @memcg: memcg of the wanted lruvec 364 * 365 * Returns the lru list vector holding pages for a given @node or a given 366 * @memcg and @zone. This can be the node lruvec, if the memory controller 367 * is disabled. 368 */ 369static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 370 struct mem_cgroup *memcg) 371{ 372 struct mem_cgroup_per_node *mz; 373 struct lruvec *lruvec; 374 375 if (mem_cgroup_disabled()) { 376 lruvec = node_lruvec(pgdat); 377 goto out; 378 } 379 380 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 381 lruvec = &mz->lruvec; 382out: 383 /* 384 * Since a node can be onlined after the mem_cgroup was created, 385 * we have to be prepared to initialize lruvec->pgdat here; 386 * and if offlined then reonlined, we need to reinitialize it. 387 */ 388 if (unlikely(lruvec->pgdat != pgdat)) 389 lruvec->pgdat = pgdat; 390 return lruvec; 391} 392 393struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 394 395bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg); 396struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 397 398struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 399 400struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); 401 402static inline 403struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 404 return css ? container_of(css, struct mem_cgroup, css) : NULL; 405} 406 407static inline void mem_cgroup_put(struct mem_cgroup *memcg) 408{ 409 if (memcg) 410 css_put(&memcg->css); 411} 412 413#define mem_cgroup_from_counter(counter, member) \ 414 container_of(counter, struct mem_cgroup, member) 415 416struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 417 struct mem_cgroup *, 418 struct mem_cgroup_reclaim_cookie *); 419void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 420int mem_cgroup_scan_tasks(struct mem_cgroup *, 421 int (*)(struct task_struct *, void *), void *); 422 423static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 424{ 425 if (mem_cgroup_disabled()) 426 return 0; 427 428 return memcg->id.id; 429} 430struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 431 432static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 433{ 434 return mem_cgroup_from_css(seq_css(m)); 435} 436 437static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 438{ 439 struct mem_cgroup_per_node *mz; 440 441 if (mem_cgroup_disabled()) 442 return NULL; 443 444 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 445 return mz->memcg; 446} 447 448/** 449 * parent_mem_cgroup - find the accounting parent of a memcg 450 * @memcg: memcg whose parent to find 451 * 452 * Returns the parent memcg, or NULL if this is the root or the memory 453 * controller is in legacy no-hierarchy mode. 454 */ 455static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 456{ 457 if (!memcg->memory.parent) 458 return NULL; 459 return mem_cgroup_from_counter(memcg->memory.parent, memory); 460} 461 462static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 463 struct mem_cgroup *root) 464{ 465 if (root == memcg) 466 return true; 467 if (!root->use_hierarchy) 468 return false; 469 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 470} 471 472static inline bool mm_match_cgroup(struct mm_struct *mm, 473 struct mem_cgroup *memcg) 474{ 475 struct mem_cgroup *task_memcg; 476 bool match = false; 477 478 rcu_read_lock(); 479 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 480 if (task_memcg) 481 match = mem_cgroup_is_descendant(task_memcg, memcg); 482 rcu_read_unlock(); 483 return match; 484} 485 486struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 487ino_t page_cgroup_ino(struct page *page); 488 489static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 490{ 491 if (mem_cgroup_disabled()) 492 return true; 493 return !!(memcg->css.flags & CSS_ONLINE); 494} 495 496/* 497 * For memory reclaim. 498 */ 499int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 500 501void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 502 int zid, int nr_pages); 503 504unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 505 int nid, unsigned int lru_mask); 506 507static inline 508unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 509{ 510 struct mem_cgroup_per_node *mz; 511 unsigned long nr_pages = 0; 512 int zid; 513 514 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 515 for (zid = 0; zid < MAX_NR_ZONES; zid++) 516 nr_pages += mz->lru_zone_size[zid][lru]; 517 return nr_pages; 518} 519 520static inline 521unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 522 enum lru_list lru, int zone_idx) 523{ 524 struct mem_cgroup_per_node *mz; 525 526 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 527 return mz->lru_zone_size[zone_idx][lru]; 528} 529 530void mem_cgroup_handle_over_high(void); 531 532unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 533 534void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 535 struct task_struct *p); 536 537void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 538 539static inline void mem_cgroup_enter_user_fault(void) 540{ 541 WARN_ON(current->in_user_fault); 542 current->in_user_fault = 1; 543} 544 545static inline void mem_cgroup_exit_user_fault(void) 546{ 547 WARN_ON(!current->in_user_fault); 548 current->in_user_fault = 0; 549} 550 551static inline bool task_in_memcg_oom(struct task_struct *p) 552{ 553 return p->memcg_in_oom; 554} 555 556bool mem_cgroup_oom_synchronize(bool wait); 557struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 558 struct mem_cgroup *oom_domain); 559void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 560 561#ifdef CONFIG_MEMCG_SWAP 562extern int do_swap_account; 563#endif 564 565struct mem_cgroup *lock_page_memcg(struct page *page); 566void __unlock_page_memcg(struct mem_cgroup *memcg); 567void unlock_page_memcg(struct page *page); 568 569/* idx can be of type enum memcg_stat_item or node_stat_item */ 570static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, 571 int idx) 572{ 573 long x = atomic_long_read(&memcg->stat[idx]); 574#ifdef CONFIG_SMP 575 if (x < 0) 576 x = 0; 577#endif 578 return x; 579} 580 581/* idx can be of type enum memcg_stat_item or node_stat_item */ 582static inline void __mod_memcg_state(struct mem_cgroup *memcg, 583 int idx, int val) 584{ 585 long x; 586 587 if (mem_cgroup_disabled()) 588 return; 589 590 x = val + __this_cpu_read(memcg->stat_cpu->count[idx]); 591 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 592 atomic_long_add(x, &memcg->stat[idx]); 593 x = 0; 594 } 595 __this_cpu_write(memcg->stat_cpu->count[idx], x); 596} 597 598/* idx can be of type enum memcg_stat_item or node_stat_item */ 599static inline void mod_memcg_state(struct mem_cgroup *memcg, 600 int idx, int val) 601{ 602 unsigned long flags; 603 604 local_irq_save(flags); 605 __mod_memcg_state(memcg, idx, val); 606 local_irq_restore(flags); 607} 608 609/** 610 * mod_memcg_page_state - update page state statistics 611 * @page: the page 612 * @idx: page state item to account 613 * @val: number of pages (positive or negative) 614 * 615 * The @page must be locked or the caller must use lock_page_memcg() 616 * to prevent double accounting when the page is concurrently being 617 * moved to another memcg: 618 * 619 * lock_page(page) or lock_page_memcg(page) 620 * if (TestClearPageState(page)) 621 * mod_memcg_page_state(page, state, -1); 622 * unlock_page(page) or unlock_page_memcg(page) 623 * 624 * Kernel pages are an exception to this, since they'll never move. 625 */ 626static inline void __mod_memcg_page_state(struct page *page, 627 int idx, int val) 628{ 629 if (page->mem_cgroup) 630 __mod_memcg_state(page->mem_cgroup, idx, val); 631} 632 633static inline void mod_memcg_page_state(struct page *page, 634 int idx, int val) 635{ 636 if (page->mem_cgroup) 637 mod_memcg_state(page->mem_cgroup, idx, val); 638} 639 640static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 641 enum node_stat_item idx) 642{ 643 struct mem_cgroup_per_node *pn; 644 long x; 645 646 if (mem_cgroup_disabled()) 647 return node_page_state(lruvec_pgdat(lruvec), idx); 648 649 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 650 x = atomic_long_read(&pn->lruvec_stat[idx]); 651#ifdef CONFIG_SMP 652 if (x < 0) 653 x = 0; 654#endif 655 return x; 656} 657 658static inline void __mod_lruvec_state(struct lruvec *lruvec, 659 enum node_stat_item idx, int val) 660{ 661 struct mem_cgroup_per_node *pn; 662 long x; 663 664 /* Update node */ 665 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 666 667 if (mem_cgroup_disabled()) 668 return; 669 670 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 671 672 /* Update memcg */ 673 __mod_memcg_state(pn->memcg, idx, val); 674 675 /* Update lruvec */ 676 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 677 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 678 atomic_long_add(x, &pn->lruvec_stat[idx]); 679 x = 0; 680 } 681 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 682} 683 684static inline void mod_lruvec_state(struct lruvec *lruvec, 685 enum node_stat_item idx, int val) 686{ 687 unsigned long flags; 688 689 local_irq_save(flags); 690 __mod_lruvec_state(lruvec, idx, val); 691 local_irq_restore(flags); 692} 693 694static inline void __mod_lruvec_page_state(struct page *page, 695 enum node_stat_item idx, int val) 696{ 697 pg_data_t *pgdat = page_pgdat(page); 698 struct lruvec *lruvec; 699 700 /* Untracked pages have no memcg, no lruvec. Update only the node */ 701 if (!page->mem_cgroup) { 702 __mod_node_page_state(pgdat, idx, val); 703 return; 704 } 705 706 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup); 707 __mod_lruvec_state(lruvec, idx, val); 708} 709 710static inline void mod_lruvec_page_state(struct page *page, 711 enum node_stat_item idx, int val) 712{ 713 unsigned long flags; 714 715 local_irq_save(flags); 716 __mod_lruvec_page_state(page, idx, val); 717 local_irq_restore(flags); 718} 719 720unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 721 gfp_t gfp_mask, 722 unsigned long *total_scanned); 723 724static inline void __count_memcg_events(struct mem_cgroup *memcg, 725 enum vm_event_item idx, 726 unsigned long count) 727{ 728 unsigned long x; 729 730 if (mem_cgroup_disabled()) 731 return; 732 733 x = count + __this_cpu_read(memcg->stat_cpu->events[idx]); 734 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 735 atomic_long_add(x, &memcg->events[idx]); 736 x = 0; 737 } 738 __this_cpu_write(memcg->stat_cpu->events[idx], x); 739} 740 741static inline void count_memcg_events(struct mem_cgroup *memcg, 742 enum vm_event_item idx, 743 unsigned long count) 744{ 745 unsigned long flags; 746 747 local_irq_save(flags); 748 __count_memcg_events(memcg, idx, count); 749 local_irq_restore(flags); 750} 751 752static inline void count_memcg_page_event(struct page *page, 753 enum vm_event_item idx) 754{ 755 if (page->mem_cgroup) 756 count_memcg_events(page->mem_cgroup, idx, 1); 757} 758 759static inline void count_memcg_event_mm(struct mm_struct *mm, 760 enum vm_event_item idx) 761{ 762 struct mem_cgroup *memcg; 763 764 if (mem_cgroup_disabled()) 765 return; 766 767 rcu_read_lock(); 768 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 769 if (likely(memcg)) 770 count_memcg_events(memcg, idx, 1); 771 rcu_read_unlock(); 772} 773 774static inline void memcg_memory_event(struct mem_cgroup *memcg, 775 enum memcg_memory_event event) 776{ 777 atomic_long_inc(&memcg->memory_events[event]); 778 cgroup_file_notify(&memcg->events_file); 779} 780 781static inline void memcg_memory_event_mm(struct mm_struct *mm, 782 enum memcg_memory_event event) 783{ 784 struct mem_cgroup *memcg; 785 786 if (mem_cgroup_disabled()) 787 return; 788 789 rcu_read_lock(); 790 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 791 if (likely(memcg)) 792 memcg_memory_event(memcg, event); 793 rcu_read_unlock(); 794} 795 796#ifdef CONFIG_TRANSPARENT_HUGEPAGE 797void mem_cgroup_split_huge_fixup(struct page *head); 798#endif 799 800#else /* CONFIG_MEMCG */ 801 802#define MEM_CGROUP_ID_SHIFT 0 803#define MEM_CGROUP_ID_MAX 0 804 805struct mem_cgroup; 806 807static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 808{ 809 return true; 810} 811 812static inline bool mem_cgroup_disabled(void) 813{ 814 return true; 815} 816 817static inline void memcg_memory_event(struct mem_cgroup *memcg, 818 enum memcg_memory_event event) 819{ 820} 821 822static inline void memcg_memory_event_mm(struct mm_struct *mm, 823 enum memcg_memory_event event) 824{ 825} 826 827static inline enum mem_cgroup_protection mem_cgroup_protected( 828 struct mem_cgroup *root, struct mem_cgroup *memcg) 829{ 830 return MEMCG_PROT_NONE; 831} 832 833static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 834 gfp_t gfp_mask, 835 struct mem_cgroup **memcgp, 836 bool compound) 837{ 838 *memcgp = NULL; 839 return 0; 840} 841 842static inline int mem_cgroup_try_charge_delay(struct page *page, 843 struct mm_struct *mm, 844 gfp_t gfp_mask, 845 struct mem_cgroup **memcgp, 846 bool compound) 847{ 848 *memcgp = NULL; 849 return 0; 850} 851 852static inline void mem_cgroup_commit_charge(struct page *page, 853 struct mem_cgroup *memcg, 854 bool lrucare, bool compound) 855{ 856} 857 858static inline void mem_cgroup_cancel_charge(struct page *page, 859 struct mem_cgroup *memcg, 860 bool compound) 861{ 862} 863 864static inline void mem_cgroup_uncharge(struct page *page) 865{ 866} 867 868static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 869{ 870} 871 872static inline void mem_cgroup_migrate(struct page *old, struct page *new) 873{ 874} 875 876static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 877 struct mem_cgroup *memcg) 878{ 879 return node_lruvec(pgdat); 880} 881 882static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 883 struct pglist_data *pgdat) 884{ 885 return &pgdat->lruvec; 886} 887 888static inline bool mm_match_cgroup(struct mm_struct *mm, 889 struct mem_cgroup *memcg) 890{ 891 return true; 892} 893 894static inline bool task_in_mem_cgroup(struct task_struct *task, 895 const struct mem_cgroup *memcg) 896{ 897 return true; 898} 899 900static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 901{ 902 return NULL; 903} 904 905static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 906{ 907 return NULL; 908} 909 910static inline void mem_cgroup_put(struct mem_cgroup *memcg) 911{ 912} 913 914static inline struct mem_cgroup * 915mem_cgroup_iter(struct mem_cgroup *root, 916 struct mem_cgroup *prev, 917 struct mem_cgroup_reclaim_cookie *reclaim) 918{ 919 return NULL; 920} 921 922static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 923 struct mem_cgroup *prev) 924{ 925} 926 927static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 928 int (*fn)(struct task_struct *, void *), void *arg) 929{ 930 return 0; 931} 932 933static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 934{ 935 return 0; 936} 937 938static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 939{ 940 WARN_ON_ONCE(id); 941 /* XXX: This should always return root_mem_cgroup */ 942 return NULL; 943} 944 945static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 946{ 947 return NULL; 948} 949 950static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 951{ 952 return NULL; 953} 954 955static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 956{ 957 return true; 958} 959 960static inline unsigned long 961mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 962{ 963 return 0; 964} 965static inline 966unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 967 enum lru_list lru, int zone_idx) 968{ 969 return 0; 970} 971 972static inline unsigned long 973mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 974 int nid, unsigned int lru_mask) 975{ 976 return 0; 977} 978 979static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 980{ 981 return 0; 982} 983 984static inline void 985mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 986{ 987} 988 989static inline void 990mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 991{ 992} 993 994static inline struct mem_cgroup *lock_page_memcg(struct page *page) 995{ 996 return NULL; 997} 998 999static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 1000{ 1001} 1002 1003static inline void unlock_page_memcg(struct page *page) 1004{ 1005} 1006 1007static inline void mem_cgroup_handle_over_high(void) 1008{ 1009} 1010 1011static inline void mem_cgroup_enter_user_fault(void) 1012{ 1013} 1014 1015static inline void mem_cgroup_exit_user_fault(void) 1016{ 1017} 1018 1019static inline bool task_in_memcg_oom(struct task_struct *p) 1020{ 1021 return false; 1022} 1023 1024static inline bool mem_cgroup_oom_synchronize(bool wait) 1025{ 1026 return false; 1027} 1028 1029static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1030 struct task_struct *victim, struct mem_cgroup *oom_domain) 1031{ 1032 return NULL; 1033} 1034 1035static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1036{ 1037} 1038 1039static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, 1040 int idx) 1041{ 1042 return 0; 1043} 1044 1045static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1046 int idx, 1047 int nr) 1048{ 1049} 1050 1051static inline void mod_memcg_state(struct mem_cgroup *memcg, 1052 int idx, 1053 int nr) 1054{ 1055} 1056 1057static inline void __mod_memcg_page_state(struct page *page, 1058 int idx, 1059 int nr) 1060{ 1061} 1062 1063static inline void mod_memcg_page_state(struct page *page, 1064 int idx, 1065 int nr) 1066{ 1067} 1068 1069static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1070 enum node_stat_item idx) 1071{ 1072 return node_page_state(lruvec_pgdat(lruvec), idx); 1073} 1074 1075static inline void __mod_lruvec_state(struct lruvec *lruvec, 1076 enum node_stat_item idx, int val) 1077{ 1078 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1079} 1080 1081static inline void mod_lruvec_state(struct lruvec *lruvec, 1082 enum node_stat_item idx, int val) 1083{ 1084 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1085} 1086 1087static inline void __mod_lruvec_page_state(struct page *page, 1088 enum node_stat_item idx, int val) 1089{ 1090 __mod_node_page_state(page_pgdat(page), idx, val); 1091} 1092 1093static inline void mod_lruvec_page_state(struct page *page, 1094 enum node_stat_item idx, int val) 1095{ 1096 mod_node_page_state(page_pgdat(page), idx, val); 1097} 1098 1099static inline 1100unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1101 gfp_t gfp_mask, 1102 unsigned long *total_scanned) 1103{ 1104 return 0; 1105} 1106 1107static inline void mem_cgroup_split_huge_fixup(struct page *head) 1108{ 1109} 1110 1111static inline void count_memcg_events(struct mem_cgroup *memcg, 1112 enum vm_event_item idx, 1113 unsigned long count) 1114{ 1115} 1116 1117static inline void count_memcg_page_event(struct page *page, 1118 int idx) 1119{ 1120} 1121 1122static inline 1123void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1124{ 1125} 1126#endif /* CONFIG_MEMCG */ 1127 1128/* idx can be of type enum memcg_stat_item or node_stat_item */ 1129static inline void __inc_memcg_state(struct mem_cgroup *memcg, 1130 int idx) 1131{ 1132 __mod_memcg_state(memcg, idx, 1); 1133} 1134 1135/* idx can be of type enum memcg_stat_item or node_stat_item */ 1136static inline void __dec_memcg_state(struct mem_cgroup *memcg, 1137 int idx) 1138{ 1139 __mod_memcg_state(memcg, idx, -1); 1140} 1141 1142/* idx can be of type enum memcg_stat_item or node_stat_item */ 1143static inline void __inc_memcg_page_state(struct page *page, 1144 int idx) 1145{ 1146 __mod_memcg_page_state(page, idx, 1); 1147} 1148 1149/* idx can be of type enum memcg_stat_item or node_stat_item */ 1150static inline void __dec_memcg_page_state(struct page *page, 1151 int idx) 1152{ 1153 __mod_memcg_page_state(page, idx, -1); 1154} 1155 1156static inline void __inc_lruvec_state(struct lruvec *lruvec, 1157 enum node_stat_item idx) 1158{ 1159 __mod_lruvec_state(lruvec, idx, 1); 1160} 1161 1162static inline void __dec_lruvec_state(struct lruvec *lruvec, 1163 enum node_stat_item idx) 1164{ 1165 __mod_lruvec_state(lruvec, idx, -1); 1166} 1167 1168static inline void __inc_lruvec_page_state(struct page *page, 1169 enum node_stat_item idx) 1170{ 1171 __mod_lruvec_page_state(page, idx, 1); 1172} 1173 1174static inline void __dec_lruvec_page_state(struct page *page, 1175 enum node_stat_item idx) 1176{ 1177 __mod_lruvec_page_state(page, idx, -1); 1178} 1179 1180/* idx can be of type enum memcg_stat_item or node_stat_item */ 1181static inline void inc_memcg_state(struct mem_cgroup *memcg, 1182 int idx) 1183{ 1184 mod_memcg_state(memcg, idx, 1); 1185} 1186 1187/* idx can be of type enum memcg_stat_item or node_stat_item */ 1188static inline void dec_memcg_state(struct mem_cgroup *memcg, 1189 int idx) 1190{ 1191 mod_memcg_state(memcg, idx, -1); 1192} 1193 1194/* idx can be of type enum memcg_stat_item or node_stat_item */ 1195static inline void inc_memcg_page_state(struct page *page, 1196 int idx) 1197{ 1198 mod_memcg_page_state(page, idx, 1); 1199} 1200 1201/* idx can be of type enum memcg_stat_item or node_stat_item */ 1202static inline void dec_memcg_page_state(struct page *page, 1203 int idx) 1204{ 1205 mod_memcg_page_state(page, idx, -1); 1206} 1207 1208static inline void inc_lruvec_state(struct lruvec *lruvec, 1209 enum node_stat_item idx) 1210{ 1211 mod_lruvec_state(lruvec, idx, 1); 1212} 1213 1214static inline void dec_lruvec_state(struct lruvec *lruvec, 1215 enum node_stat_item idx) 1216{ 1217 mod_lruvec_state(lruvec, idx, -1); 1218} 1219 1220static inline void inc_lruvec_page_state(struct page *page, 1221 enum node_stat_item idx) 1222{ 1223 mod_lruvec_page_state(page, idx, 1); 1224} 1225 1226static inline void dec_lruvec_page_state(struct page *page, 1227 enum node_stat_item idx) 1228{ 1229 mod_lruvec_page_state(page, idx, -1); 1230} 1231 1232#ifdef CONFIG_CGROUP_WRITEBACK 1233 1234struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1235void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1236 unsigned long *pheadroom, unsigned long *pdirty, 1237 unsigned long *pwriteback); 1238 1239#else /* CONFIG_CGROUP_WRITEBACK */ 1240 1241static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1242{ 1243 return NULL; 1244} 1245 1246static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1247 unsigned long *pfilepages, 1248 unsigned long *pheadroom, 1249 unsigned long *pdirty, 1250 unsigned long *pwriteback) 1251{ 1252} 1253 1254#endif /* CONFIG_CGROUP_WRITEBACK */ 1255 1256struct sock; 1257bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1258void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1259#ifdef CONFIG_MEMCG 1260extern struct static_key_false memcg_sockets_enabled_key; 1261#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1262void mem_cgroup_sk_alloc(struct sock *sk); 1263void mem_cgroup_sk_free(struct sock *sk); 1264static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1265{ 1266 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1267 return true; 1268 do { 1269 if (time_before(jiffies, memcg->socket_pressure)) 1270 return true; 1271 } while ((memcg = parent_mem_cgroup(memcg))); 1272 return false; 1273} 1274#else 1275#define mem_cgroup_sockets_enabled 0 1276static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1277static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1278static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1279{ 1280 return false; 1281} 1282#endif 1283 1284struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep); 1285void memcg_kmem_put_cache(struct kmem_cache *cachep); 1286 1287#ifdef CONFIG_MEMCG_KMEM 1288int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order); 1289void __memcg_kmem_uncharge(struct page *page, int order); 1290int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 1291 struct mem_cgroup *memcg); 1292 1293extern struct static_key_false memcg_kmem_enabled_key; 1294extern struct workqueue_struct *memcg_kmem_cache_wq; 1295 1296extern int memcg_nr_cache_ids; 1297void memcg_get_cache_ids(void); 1298void memcg_put_cache_ids(void); 1299 1300/* 1301 * Helper macro to loop through all memcg-specific caches. Callers must still 1302 * check if the cache is valid (it is either valid or NULL). 1303 * the slab_mutex must be held when looping through those caches 1304 */ 1305#define for_each_memcg_cache_index(_idx) \ 1306 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1307 1308static inline bool memcg_kmem_enabled(void) 1309{ 1310 return static_branch_unlikely(&memcg_kmem_enabled_key); 1311} 1312 1313static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1314{ 1315 if (memcg_kmem_enabled()) 1316 return __memcg_kmem_charge(page, gfp, order); 1317 return 0; 1318} 1319 1320static inline void memcg_kmem_uncharge(struct page *page, int order) 1321{ 1322 if (memcg_kmem_enabled()) 1323 __memcg_kmem_uncharge(page, order); 1324} 1325 1326static inline int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, 1327 int order, struct mem_cgroup *memcg) 1328{ 1329 if (memcg_kmem_enabled()) 1330 return __memcg_kmem_charge_memcg(page, gfp, order, memcg); 1331 return 0; 1332} 1333/* 1334 * helper for accessing a memcg's index. It will be used as an index in the 1335 * child cache array in kmem_cache, and also to derive its name. This function 1336 * will return -1 when this is not a kmem-limited memcg. 1337 */ 1338static inline int memcg_cache_id(struct mem_cgroup *memcg) 1339{ 1340 return memcg ? memcg->kmemcg_id : -1; 1341} 1342 1343extern int memcg_expand_shrinker_maps(int new_id); 1344 1345extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1346 int nid, int shrinker_id); 1347#else 1348 1349static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1350{ 1351 return 0; 1352} 1353 1354static inline void memcg_kmem_uncharge(struct page *page, int order) 1355{ 1356} 1357 1358static inline int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1359{ 1360 return 0; 1361} 1362 1363static inline void __memcg_kmem_uncharge(struct page *page, int order) 1364{ 1365} 1366 1367#define for_each_memcg_cache_index(_idx) \ 1368 for (; NULL; ) 1369 1370static inline bool memcg_kmem_enabled(void) 1371{ 1372 return false; 1373} 1374 1375static inline int memcg_cache_id(struct mem_cgroup *memcg) 1376{ 1377 return -1; 1378} 1379 1380static inline void memcg_get_cache_ids(void) 1381{ 1382} 1383 1384static inline void memcg_put_cache_ids(void) 1385{ 1386} 1387 1388static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1389 int nid, int shrinker_id) { } 1390#endif /* CONFIG_MEMCG_KMEM */ 1391 1392#endif /* _LINUX_MEMCONTROL_H */