at v5.1-rc1 34 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_KERNEL_H 3#define _LINUX_KERNEL_H 4 5 6#include <stdarg.h> 7#include <linux/limits.h> 8#include <linux/linkage.h> 9#include <linux/stddef.h> 10#include <linux/types.h> 11#include <linux/compiler.h> 12#include <linux/bitops.h> 13#include <linux/log2.h> 14#include <linux/typecheck.h> 15#include <linux/printk.h> 16#include <linux/build_bug.h> 17#include <asm/byteorder.h> 18#include <asm/div64.h> 19#include <uapi/linux/kernel.h> 20 21#define STACK_MAGIC 0xdeadbeef 22 23/** 24 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value 25 * @x: value to repeat 26 * 27 * NOTE: @x is not checked for > 0xff; larger values produce odd results. 28 */ 29#define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) 30 31/* @a is a power of 2 value */ 32#define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) 33#define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a)) 34#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) 35#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) 36#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) 37 38/* generic data direction definitions */ 39#define READ 0 40#define WRITE 1 41 42/** 43 * ARRAY_SIZE - get the number of elements in array @arr 44 * @arr: array to be sized 45 */ 46#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) 47 48#define u64_to_user_ptr(x) ( \ 49{ \ 50 typecheck(u64, x); \ 51 (void __user *)(uintptr_t)x; \ 52} \ 53) 54 55/* 56 * This looks more complex than it should be. But we need to 57 * get the type for the ~ right in round_down (it needs to be 58 * as wide as the result!), and we want to evaluate the macro 59 * arguments just once each. 60 */ 61#define __round_mask(x, y) ((__typeof__(x))((y)-1)) 62/** 63 * round_up - round up to next specified power of 2 64 * @x: the value to round 65 * @y: multiple to round up to (must be a power of 2) 66 * 67 * Rounds @x up to next multiple of @y (which must be a power of 2). 68 * To perform arbitrary rounding up, use roundup() below. 69 */ 70#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) 71/** 72 * round_down - round down to next specified power of 2 73 * @x: the value to round 74 * @y: multiple to round down to (must be a power of 2) 75 * 76 * Rounds @x down to next multiple of @y (which must be a power of 2). 77 * To perform arbitrary rounding down, use rounddown() below. 78 */ 79#define round_down(x, y) ((x) & ~__round_mask(x, y)) 80 81/** 82 * FIELD_SIZEOF - get the size of a struct's field 83 * @t: the target struct 84 * @f: the target struct's field 85 * Return: the size of @f in the struct definition without having a 86 * declared instance of @t. 87 */ 88#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) 89 90#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP 91 92#define DIV_ROUND_DOWN_ULL(ll, d) \ 93 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) 94 95#define DIV_ROUND_UP_ULL(ll, d) DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d)) 96 97#if BITS_PER_LONG == 32 98# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) 99#else 100# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) 101#endif 102 103/** 104 * roundup - round up to the next specified multiple 105 * @x: the value to up 106 * @y: multiple to round up to 107 * 108 * Rounds @x up to next multiple of @y. If @y will always be a power 109 * of 2, consider using the faster round_up(). 110 */ 111#define roundup(x, y) ( \ 112{ \ 113 typeof(y) __y = y; \ 114 (((x) + (__y - 1)) / __y) * __y; \ 115} \ 116) 117/** 118 * rounddown - round down to next specified multiple 119 * @x: the value to round 120 * @y: multiple to round down to 121 * 122 * Rounds @x down to next multiple of @y. If @y will always be a power 123 * of 2, consider using the faster round_down(). 124 */ 125#define rounddown(x, y) ( \ 126{ \ 127 typeof(x) __x = (x); \ 128 __x - (__x % (y)); \ 129} \ 130) 131 132/* 133 * Divide positive or negative dividend by positive or negative divisor 134 * and round to closest integer. Result is undefined for negative 135 * divisors if the dividend variable type is unsigned and for negative 136 * dividends if the divisor variable type is unsigned. 137 */ 138#define DIV_ROUND_CLOSEST(x, divisor)( \ 139{ \ 140 typeof(x) __x = x; \ 141 typeof(divisor) __d = divisor; \ 142 (((typeof(x))-1) > 0 || \ 143 ((typeof(divisor))-1) > 0 || \ 144 (((__x) > 0) == ((__d) > 0))) ? \ 145 (((__x) + ((__d) / 2)) / (__d)) : \ 146 (((__x) - ((__d) / 2)) / (__d)); \ 147} \ 148) 149/* 150 * Same as above but for u64 dividends. divisor must be a 32-bit 151 * number. 152 */ 153#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ 154{ \ 155 typeof(divisor) __d = divisor; \ 156 unsigned long long _tmp = (x) + (__d) / 2; \ 157 do_div(_tmp, __d); \ 158 _tmp; \ 159} \ 160) 161 162/* 163 * Multiplies an integer by a fraction, while avoiding unnecessary 164 * overflow or loss of precision. 165 */ 166#define mult_frac(x, numer, denom)( \ 167{ \ 168 typeof(x) quot = (x) / (denom); \ 169 typeof(x) rem = (x) % (denom); \ 170 (quot * (numer)) + ((rem * (numer)) / (denom)); \ 171} \ 172) 173 174 175#define _RET_IP_ (unsigned long)__builtin_return_address(0) 176#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) 177 178#ifdef CONFIG_LBDAF 179# define sector_div(a, b) do_div(a, b) 180#else 181# define sector_div(n, b)( \ 182{ \ 183 int _res; \ 184 _res = (n) % (b); \ 185 (n) /= (b); \ 186 _res; \ 187} \ 188) 189#endif 190 191/** 192 * upper_32_bits - return bits 32-63 of a number 193 * @n: the number we're accessing 194 * 195 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 196 * the "right shift count >= width of type" warning when that quantity is 197 * 32-bits. 198 */ 199#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) 200 201/** 202 * lower_32_bits - return bits 0-31 of a number 203 * @n: the number we're accessing 204 */ 205#define lower_32_bits(n) ((u32)(n)) 206 207struct completion; 208struct pt_regs; 209struct user; 210 211#ifdef CONFIG_PREEMPT_VOLUNTARY 212extern int _cond_resched(void); 213# define might_resched() _cond_resched() 214#else 215# define might_resched() do { } while (0) 216#endif 217 218#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 219extern void ___might_sleep(const char *file, int line, int preempt_offset); 220extern void __might_sleep(const char *file, int line, int preempt_offset); 221extern void __cant_sleep(const char *file, int line, int preempt_offset); 222 223/** 224 * might_sleep - annotation for functions that can sleep 225 * 226 * this macro will print a stack trace if it is executed in an atomic 227 * context (spinlock, irq-handler, ...). 228 * 229 * This is a useful debugging help to be able to catch problems early and not 230 * be bitten later when the calling function happens to sleep when it is not 231 * supposed to. 232 */ 233# define might_sleep() \ 234 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) 235/** 236 * cant_sleep - annotation for functions that cannot sleep 237 * 238 * this macro will print a stack trace if it is executed with preemption enabled 239 */ 240# define cant_sleep() \ 241 do { __cant_sleep(__FILE__, __LINE__, 0); } while (0) 242# define sched_annotate_sleep() (current->task_state_change = 0) 243#else 244 static inline void ___might_sleep(const char *file, int line, 245 int preempt_offset) { } 246 static inline void __might_sleep(const char *file, int line, 247 int preempt_offset) { } 248# define might_sleep() do { might_resched(); } while (0) 249# define cant_sleep() do { } while (0) 250# define sched_annotate_sleep() do { } while (0) 251#endif 252 253#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) 254 255/** 256 * abs - return absolute value of an argument 257 * @x: the value. If it is unsigned type, it is converted to signed type first. 258 * char is treated as if it was signed (regardless of whether it really is) 259 * but the macro's return type is preserved as char. 260 * 261 * Return: an absolute value of x. 262 */ 263#define abs(x) __abs_choose_expr(x, long long, \ 264 __abs_choose_expr(x, long, \ 265 __abs_choose_expr(x, int, \ 266 __abs_choose_expr(x, short, \ 267 __abs_choose_expr(x, char, \ 268 __builtin_choose_expr( \ 269 __builtin_types_compatible_p(typeof(x), char), \ 270 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ 271 ((void)0))))))) 272 273#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ 274 __builtin_types_compatible_p(typeof(x), signed type) || \ 275 __builtin_types_compatible_p(typeof(x), unsigned type), \ 276 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) 277 278/** 279 * reciprocal_scale - "scale" a value into range [0, ep_ro) 280 * @val: value 281 * @ep_ro: right open interval endpoint 282 * 283 * Perform a "reciprocal multiplication" in order to "scale" a value into 284 * range [0, @ep_ro), where the upper interval endpoint is right-open. 285 * This is useful, e.g. for accessing a index of an array containing 286 * @ep_ro elements, for example. Think of it as sort of modulus, only that 287 * the result isn't that of modulo. ;) Note that if initial input is a 288 * small value, then result will return 0. 289 * 290 * Return: a result based on @val in interval [0, @ep_ro). 291 */ 292static inline u32 reciprocal_scale(u32 val, u32 ep_ro) 293{ 294 return (u32)(((u64) val * ep_ro) >> 32); 295} 296 297#if defined(CONFIG_MMU) && \ 298 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)) 299#define might_fault() __might_fault(__FILE__, __LINE__) 300void __might_fault(const char *file, int line); 301#else 302static inline void might_fault(void) { } 303#endif 304 305extern struct atomic_notifier_head panic_notifier_list; 306extern long (*panic_blink)(int state); 307__printf(1, 2) 308void panic(const char *fmt, ...) __noreturn __cold; 309void nmi_panic(struct pt_regs *regs, const char *msg); 310extern void oops_enter(void); 311extern void oops_exit(void); 312void print_oops_end_marker(void); 313extern int oops_may_print(void); 314void do_exit(long error_code) __noreturn; 315void complete_and_exit(struct completion *, long) __noreturn; 316 317#ifdef CONFIG_ARCH_HAS_REFCOUNT 318void refcount_error_report(struct pt_regs *regs, const char *err); 319#else 320static inline void refcount_error_report(struct pt_regs *regs, const char *err) 321{ } 322#endif 323 324/* Internal, do not use. */ 325int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); 326int __must_check _kstrtol(const char *s, unsigned int base, long *res); 327 328int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); 329int __must_check kstrtoll(const char *s, unsigned int base, long long *res); 330 331/** 332 * kstrtoul - convert a string to an unsigned long 333 * @s: The start of the string. The string must be null-terminated, and may also 334 * include a single newline before its terminating null. The first character 335 * may also be a plus sign, but not a minus sign. 336 * @base: The number base to use. The maximum supported base is 16. If base is 337 * given as 0, then the base of the string is automatically detected with the 338 * conventional semantics - If it begins with 0x the number will be parsed as a 339 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 340 * parsed as an octal number. Otherwise it will be parsed as a decimal. 341 * @res: Where to write the result of the conversion on success. 342 * 343 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 344 * Used as a replacement for the obsolete simple_strtoull. Return code must 345 * be checked. 346*/ 347static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) 348{ 349 /* 350 * We want to shortcut function call, but 351 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. 352 */ 353 if (sizeof(unsigned long) == sizeof(unsigned long long) && 354 __alignof__(unsigned long) == __alignof__(unsigned long long)) 355 return kstrtoull(s, base, (unsigned long long *)res); 356 else 357 return _kstrtoul(s, base, res); 358} 359 360/** 361 * kstrtol - convert a string to a long 362 * @s: The start of the string. The string must be null-terminated, and may also 363 * include a single newline before its terminating null. The first character 364 * may also be a plus sign or a minus sign. 365 * @base: The number base to use. The maximum supported base is 16. If base is 366 * given as 0, then the base of the string is automatically detected with the 367 * conventional semantics - If it begins with 0x the number will be parsed as a 368 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 369 * parsed as an octal number. Otherwise it will be parsed as a decimal. 370 * @res: Where to write the result of the conversion on success. 371 * 372 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 373 * Used as a replacement for the obsolete simple_strtoull. Return code must 374 * be checked. 375 */ 376static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) 377{ 378 /* 379 * We want to shortcut function call, but 380 * __builtin_types_compatible_p(long, long long) = 0. 381 */ 382 if (sizeof(long) == sizeof(long long) && 383 __alignof__(long) == __alignof__(long long)) 384 return kstrtoll(s, base, (long long *)res); 385 else 386 return _kstrtol(s, base, res); 387} 388 389int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); 390int __must_check kstrtoint(const char *s, unsigned int base, int *res); 391 392static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) 393{ 394 return kstrtoull(s, base, res); 395} 396 397static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) 398{ 399 return kstrtoll(s, base, res); 400} 401 402static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) 403{ 404 return kstrtouint(s, base, res); 405} 406 407static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) 408{ 409 return kstrtoint(s, base, res); 410} 411 412int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); 413int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); 414int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); 415int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); 416int __must_check kstrtobool(const char *s, bool *res); 417 418int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); 419int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); 420int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); 421int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); 422int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); 423int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); 424int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); 425int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); 426int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); 427int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); 428int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res); 429 430static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) 431{ 432 return kstrtoull_from_user(s, count, base, res); 433} 434 435static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) 436{ 437 return kstrtoll_from_user(s, count, base, res); 438} 439 440static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) 441{ 442 return kstrtouint_from_user(s, count, base, res); 443} 444 445static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) 446{ 447 return kstrtoint_from_user(s, count, base, res); 448} 449 450/* Obsolete, do not use. Use kstrto<foo> instead */ 451 452extern unsigned long simple_strtoul(const char *,char **,unsigned int); 453extern long simple_strtol(const char *,char **,unsigned int); 454extern unsigned long long simple_strtoull(const char *,char **,unsigned int); 455extern long long simple_strtoll(const char *,char **,unsigned int); 456 457extern int num_to_str(char *buf, int size, 458 unsigned long long num, unsigned int width); 459 460/* lib/printf utilities */ 461 462extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); 463extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); 464extern __printf(3, 4) 465int snprintf(char *buf, size_t size, const char *fmt, ...); 466extern __printf(3, 0) 467int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); 468extern __printf(3, 4) 469int scnprintf(char *buf, size_t size, const char *fmt, ...); 470extern __printf(3, 0) 471int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); 472extern __printf(2, 3) __malloc 473char *kasprintf(gfp_t gfp, const char *fmt, ...); 474extern __printf(2, 0) __malloc 475char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); 476extern __printf(2, 0) 477const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args); 478 479extern __scanf(2, 3) 480int sscanf(const char *, const char *, ...); 481extern __scanf(2, 0) 482int vsscanf(const char *, const char *, va_list); 483 484extern int get_option(char **str, int *pint); 485extern char *get_options(const char *str, int nints, int *ints); 486extern unsigned long long memparse(const char *ptr, char **retptr); 487extern bool parse_option_str(const char *str, const char *option); 488extern char *next_arg(char *args, char **param, char **val); 489 490extern int core_kernel_text(unsigned long addr); 491extern int init_kernel_text(unsigned long addr); 492extern int core_kernel_data(unsigned long addr); 493extern int __kernel_text_address(unsigned long addr); 494extern int kernel_text_address(unsigned long addr); 495extern int func_ptr_is_kernel_text(void *ptr); 496 497unsigned long int_sqrt(unsigned long); 498 499#if BITS_PER_LONG < 64 500u32 int_sqrt64(u64 x); 501#else 502static inline u32 int_sqrt64(u64 x) 503{ 504 return (u32)int_sqrt(x); 505} 506#endif 507 508extern void bust_spinlocks(int yes); 509extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ 510extern int panic_timeout; 511extern unsigned long panic_print; 512extern int panic_on_oops; 513extern int panic_on_unrecovered_nmi; 514extern int panic_on_io_nmi; 515extern int panic_on_warn; 516extern int sysctl_panic_on_rcu_stall; 517extern int sysctl_panic_on_stackoverflow; 518 519extern bool crash_kexec_post_notifiers; 520 521/* 522 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It 523 * holds a CPU number which is executing panic() currently. A value of 524 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec(). 525 */ 526extern atomic_t panic_cpu; 527#define PANIC_CPU_INVALID -1 528 529/* 530 * Only to be used by arch init code. If the user over-wrote the default 531 * CONFIG_PANIC_TIMEOUT, honor it. 532 */ 533static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout) 534{ 535 if (panic_timeout == arch_default_timeout) 536 panic_timeout = timeout; 537} 538extern const char *print_tainted(void); 539enum lockdep_ok { 540 LOCKDEP_STILL_OK, 541 LOCKDEP_NOW_UNRELIABLE 542}; 543extern void add_taint(unsigned flag, enum lockdep_ok); 544extern int test_taint(unsigned flag); 545extern unsigned long get_taint(void); 546extern int root_mountflags; 547 548extern bool early_boot_irqs_disabled; 549 550/* 551 * Values used for system_state. Ordering of the states must not be changed 552 * as code checks for <, <=, >, >= STATE. 553 */ 554extern enum system_states { 555 SYSTEM_BOOTING, 556 SYSTEM_SCHEDULING, 557 SYSTEM_RUNNING, 558 SYSTEM_HALT, 559 SYSTEM_POWER_OFF, 560 SYSTEM_RESTART, 561 SYSTEM_SUSPEND, 562} system_state; 563 564/* This cannot be an enum because some may be used in assembly source. */ 565#define TAINT_PROPRIETARY_MODULE 0 566#define TAINT_FORCED_MODULE 1 567#define TAINT_CPU_OUT_OF_SPEC 2 568#define TAINT_FORCED_RMMOD 3 569#define TAINT_MACHINE_CHECK 4 570#define TAINT_BAD_PAGE 5 571#define TAINT_USER 6 572#define TAINT_DIE 7 573#define TAINT_OVERRIDDEN_ACPI_TABLE 8 574#define TAINT_WARN 9 575#define TAINT_CRAP 10 576#define TAINT_FIRMWARE_WORKAROUND 11 577#define TAINT_OOT_MODULE 12 578#define TAINT_UNSIGNED_MODULE 13 579#define TAINT_SOFTLOCKUP 14 580#define TAINT_LIVEPATCH 15 581#define TAINT_AUX 16 582#define TAINT_RANDSTRUCT 17 583#define TAINT_FLAGS_COUNT 18 584 585struct taint_flag { 586 char c_true; /* character printed when tainted */ 587 char c_false; /* character printed when not tainted */ 588 bool module; /* also show as a per-module taint flag */ 589}; 590 591extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT]; 592 593extern const char hex_asc[]; 594#define hex_asc_lo(x) hex_asc[((x) & 0x0f)] 595#define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] 596 597static inline char *hex_byte_pack(char *buf, u8 byte) 598{ 599 *buf++ = hex_asc_hi(byte); 600 *buf++ = hex_asc_lo(byte); 601 return buf; 602} 603 604extern const char hex_asc_upper[]; 605#define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] 606#define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] 607 608static inline char *hex_byte_pack_upper(char *buf, u8 byte) 609{ 610 *buf++ = hex_asc_upper_hi(byte); 611 *buf++ = hex_asc_upper_lo(byte); 612 return buf; 613} 614 615extern int hex_to_bin(char ch); 616extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); 617extern char *bin2hex(char *dst, const void *src, size_t count); 618 619bool mac_pton(const char *s, u8 *mac); 620 621/* 622 * General tracing related utility functions - trace_printk(), 623 * tracing_on/tracing_off and tracing_start()/tracing_stop 624 * 625 * Use tracing_on/tracing_off when you want to quickly turn on or off 626 * tracing. It simply enables or disables the recording of the trace events. 627 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on 628 * file, which gives a means for the kernel and userspace to interact. 629 * Place a tracing_off() in the kernel where you want tracing to end. 630 * From user space, examine the trace, and then echo 1 > tracing_on 631 * to continue tracing. 632 * 633 * tracing_stop/tracing_start has slightly more overhead. It is used 634 * by things like suspend to ram where disabling the recording of the 635 * trace is not enough, but tracing must actually stop because things 636 * like calling smp_processor_id() may crash the system. 637 * 638 * Most likely, you want to use tracing_on/tracing_off. 639 */ 640 641enum ftrace_dump_mode { 642 DUMP_NONE, 643 DUMP_ALL, 644 DUMP_ORIG, 645}; 646 647#ifdef CONFIG_TRACING 648void tracing_on(void); 649void tracing_off(void); 650int tracing_is_on(void); 651void tracing_snapshot(void); 652void tracing_snapshot_alloc(void); 653 654extern void tracing_start(void); 655extern void tracing_stop(void); 656 657static inline __printf(1, 2) 658void ____trace_printk_check_format(const char *fmt, ...) 659{ 660} 661#define __trace_printk_check_format(fmt, args...) \ 662do { \ 663 if (0) \ 664 ____trace_printk_check_format(fmt, ##args); \ 665} while (0) 666 667/** 668 * trace_printk - printf formatting in the ftrace buffer 669 * @fmt: the printf format for printing 670 * 671 * Note: __trace_printk is an internal function for trace_printk() and 672 * the @ip is passed in via the trace_printk() macro. 673 * 674 * This function allows a kernel developer to debug fast path sections 675 * that printk is not appropriate for. By scattering in various 676 * printk like tracing in the code, a developer can quickly see 677 * where problems are occurring. 678 * 679 * This is intended as a debugging tool for the developer only. 680 * Please refrain from leaving trace_printks scattered around in 681 * your code. (Extra memory is used for special buffers that are 682 * allocated when trace_printk() is used.) 683 * 684 * A little optimization trick is done here. If there's only one 685 * argument, there's no need to scan the string for printf formats. 686 * The trace_puts() will suffice. But how can we take advantage of 687 * using trace_puts() when trace_printk() has only one argument? 688 * By stringifying the args and checking the size we can tell 689 * whether or not there are args. __stringify((__VA_ARGS__)) will 690 * turn into "()\0" with a size of 3 when there are no args, anything 691 * else will be bigger. All we need to do is define a string to this, 692 * and then take its size and compare to 3. If it's bigger, use 693 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just 694 * let gcc optimize the rest. 695 */ 696 697#define trace_printk(fmt, ...) \ 698do { \ 699 char _______STR[] = __stringify((__VA_ARGS__)); \ 700 if (sizeof(_______STR) > 3) \ 701 do_trace_printk(fmt, ##__VA_ARGS__); \ 702 else \ 703 trace_puts(fmt); \ 704} while (0) 705 706#define do_trace_printk(fmt, args...) \ 707do { \ 708 static const char *trace_printk_fmt __used \ 709 __attribute__((section("__trace_printk_fmt"))) = \ 710 __builtin_constant_p(fmt) ? fmt : NULL; \ 711 \ 712 __trace_printk_check_format(fmt, ##args); \ 713 \ 714 if (__builtin_constant_p(fmt)) \ 715 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ 716 else \ 717 __trace_printk(_THIS_IP_, fmt, ##args); \ 718} while (0) 719 720extern __printf(2, 3) 721int __trace_bprintk(unsigned long ip, const char *fmt, ...); 722 723extern __printf(2, 3) 724int __trace_printk(unsigned long ip, const char *fmt, ...); 725 726/** 727 * trace_puts - write a string into the ftrace buffer 728 * @str: the string to record 729 * 730 * Note: __trace_bputs is an internal function for trace_puts and 731 * the @ip is passed in via the trace_puts macro. 732 * 733 * This is similar to trace_printk() but is made for those really fast 734 * paths that a developer wants the least amount of "Heisenbug" effects, 735 * where the processing of the print format is still too much. 736 * 737 * This function allows a kernel developer to debug fast path sections 738 * that printk is not appropriate for. By scattering in various 739 * printk like tracing in the code, a developer can quickly see 740 * where problems are occurring. 741 * 742 * This is intended as a debugging tool for the developer only. 743 * Please refrain from leaving trace_puts scattered around in 744 * your code. (Extra memory is used for special buffers that are 745 * allocated when trace_puts() is used.) 746 * 747 * Returns: 0 if nothing was written, positive # if string was. 748 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) 749 */ 750 751#define trace_puts(str) ({ \ 752 static const char *trace_printk_fmt __used \ 753 __attribute__((section("__trace_printk_fmt"))) = \ 754 __builtin_constant_p(str) ? str : NULL; \ 755 \ 756 if (__builtin_constant_p(str)) \ 757 __trace_bputs(_THIS_IP_, trace_printk_fmt); \ 758 else \ 759 __trace_puts(_THIS_IP_, str, strlen(str)); \ 760}) 761extern int __trace_bputs(unsigned long ip, const char *str); 762extern int __trace_puts(unsigned long ip, const char *str, int size); 763 764extern void trace_dump_stack(int skip); 765 766/* 767 * The double __builtin_constant_p is because gcc will give us an error 768 * if we try to allocate the static variable to fmt if it is not a 769 * constant. Even with the outer if statement. 770 */ 771#define ftrace_vprintk(fmt, vargs) \ 772do { \ 773 if (__builtin_constant_p(fmt)) { \ 774 static const char *trace_printk_fmt __used \ 775 __attribute__((section("__trace_printk_fmt"))) = \ 776 __builtin_constant_p(fmt) ? fmt : NULL; \ 777 \ 778 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ 779 } else \ 780 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ 781} while (0) 782 783extern __printf(2, 0) int 784__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); 785 786extern __printf(2, 0) int 787__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); 788 789extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); 790#else 791static inline void tracing_start(void) { } 792static inline void tracing_stop(void) { } 793static inline void trace_dump_stack(int skip) { } 794 795static inline void tracing_on(void) { } 796static inline void tracing_off(void) { } 797static inline int tracing_is_on(void) { return 0; } 798static inline void tracing_snapshot(void) { } 799static inline void tracing_snapshot_alloc(void) { } 800 801static inline __printf(1, 2) 802int trace_printk(const char *fmt, ...) 803{ 804 return 0; 805} 806static __printf(1, 0) inline int 807ftrace_vprintk(const char *fmt, va_list ap) 808{ 809 return 0; 810} 811static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } 812#endif /* CONFIG_TRACING */ 813 814/* 815 * min()/max()/clamp() macros must accomplish three things: 816 * 817 * - avoid multiple evaluations of the arguments (so side-effects like 818 * "x++" happen only once) when non-constant. 819 * - perform strict type-checking (to generate warnings instead of 820 * nasty runtime surprises). See the "unnecessary" pointer comparison 821 * in __typecheck(). 822 * - retain result as a constant expressions when called with only 823 * constant expressions (to avoid tripping VLA warnings in stack 824 * allocation usage). 825 */ 826#define __typecheck(x, y) \ 827 (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1))) 828 829/* 830 * This returns a constant expression while determining if an argument is 831 * a constant expression, most importantly without evaluating the argument. 832 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de> 833 */ 834#define __is_constexpr(x) \ 835 (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8))) 836 837#define __no_side_effects(x, y) \ 838 (__is_constexpr(x) && __is_constexpr(y)) 839 840#define __safe_cmp(x, y) \ 841 (__typecheck(x, y) && __no_side_effects(x, y)) 842 843#define __cmp(x, y, op) ((x) op (y) ? (x) : (y)) 844 845#define __cmp_once(x, y, unique_x, unique_y, op) ({ \ 846 typeof(x) unique_x = (x); \ 847 typeof(y) unique_y = (y); \ 848 __cmp(unique_x, unique_y, op); }) 849 850#define __careful_cmp(x, y, op) \ 851 __builtin_choose_expr(__safe_cmp(x, y), \ 852 __cmp(x, y, op), \ 853 __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op)) 854 855/** 856 * min - return minimum of two values of the same or compatible types 857 * @x: first value 858 * @y: second value 859 */ 860#define min(x, y) __careful_cmp(x, y, <) 861 862/** 863 * max - return maximum of two values of the same or compatible types 864 * @x: first value 865 * @y: second value 866 */ 867#define max(x, y) __careful_cmp(x, y, >) 868 869/** 870 * min3 - return minimum of three values 871 * @x: first value 872 * @y: second value 873 * @z: third value 874 */ 875#define min3(x, y, z) min((typeof(x))min(x, y), z) 876 877/** 878 * max3 - return maximum of three values 879 * @x: first value 880 * @y: second value 881 * @z: third value 882 */ 883#define max3(x, y, z) max((typeof(x))max(x, y), z) 884 885/** 886 * min_not_zero - return the minimum that is _not_ zero, unless both are zero 887 * @x: value1 888 * @y: value2 889 */ 890#define min_not_zero(x, y) ({ \ 891 typeof(x) __x = (x); \ 892 typeof(y) __y = (y); \ 893 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) 894 895/** 896 * clamp - return a value clamped to a given range with strict typechecking 897 * @val: current value 898 * @lo: lowest allowable value 899 * @hi: highest allowable value 900 * 901 * This macro does strict typechecking of @lo/@hi to make sure they are of the 902 * same type as @val. See the unnecessary pointer comparisons. 903 */ 904#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi) 905 906/* 907 * ..and if you can't take the strict 908 * types, you can specify one yourself. 909 * 910 * Or not use min/max/clamp at all, of course. 911 */ 912 913/** 914 * min_t - return minimum of two values, using the specified type 915 * @type: data type to use 916 * @x: first value 917 * @y: second value 918 */ 919#define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <) 920 921/** 922 * max_t - return maximum of two values, using the specified type 923 * @type: data type to use 924 * @x: first value 925 * @y: second value 926 */ 927#define max_t(type, x, y) __careful_cmp((type)(x), (type)(y), >) 928 929/** 930 * clamp_t - return a value clamped to a given range using a given type 931 * @type: the type of variable to use 932 * @val: current value 933 * @lo: minimum allowable value 934 * @hi: maximum allowable value 935 * 936 * This macro does no typechecking and uses temporary variables of type 937 * @type to make all the comparisons. 938 */ 939#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi) 940 941/** 942 * clamp_val - return a value clamped to a given range using val's type 943 * @val: current value 944 * @lo: minimum allowable value 945 * @hi: maximum allowable value 946 * 947 * This macro does no typechecking and uses temporary variables of whatever 948 * type the input argument @val is. This is useful when @val is an unsigned 949 * type and @lo and @hi are literals that will otherwise be assigned a signed 950 * integer type. 951 */ 952#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) 953 954 955/** 956 * swap - swap values of @a and @b 957 * @a: first value 958 * @b: second value 959 */ 960#define swap(a, b) \ 961 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) 962 963/* This counts to 12. Any more, it will return 13th argument. */ 964#define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n 965#define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 966 967#define __CONCAT(a, b) a ## b 968#define CONCATENATE(a, b) __CONCAT(a, b) 969 970/** 971 * container_of - cast a member of a structure out to the containing structure 972 * @ptr: the pointer to the member. 973 * @type: the type of the container struct this is embedded in. 974 * @member: the name of the member within the struct. 975 * 976 */ 977#define container_of(ptr, type, member) ({ \ 978 void *__mptr = (void *)(ptr); \ 979 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 980 !__same_type(*(ptr), void), \ 981 "pointer type mismatch in container_of()"); \ 982 ((type *)(__mptr - offsetof(type, member))); }) 983 984/** 985 * container_of_safe - cast a member of a structure out to the containing structure 986 * @ptr: the pointer to the member. 987 * @type: the type of the container struct this is embedded in. 988 * @member: the name of the member within the struct. 989 * 990 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged. 991 */ 992#define container_of_safe(ptr, type, member) ({ \ 993 void *__mptr = (void *)(ptr); \ 994 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 995 !__same_type(*(ptr), void), \ 996 "pointer type mismatch in container_of()"); \ 997 IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) : \ 998 ((type *)(__mptr - offsetof(type, member))); }) 999 1000/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ 1001#ifdef CONFIG_FTRACE_MCOUNT_RECORD 1002# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD 1003#endif 1004 1005/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */ 1006#define VERIFY_OCTAL_PERMISSIONS(perms) \ 1007 (BUILD_BUG_ON_ZERO((perms) < 0) + \ 1008 BUILD_BUG_ON_ZERO((perms) > 0777) + \ 1009 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \ 1010 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \ 1011 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \ 1012 /* USER_WRITABLE >= GROUP_WRITABLE */ \ 1013 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \ 1014 /* OTHER_WRITABLE? Generally considered a bad idea. */ \ 1015 BUILD_BUG_ON_ZERO((perms) & 2) + \ 1016 (perms)) 1017#endif