Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8#include <linux/init.h>
9#include <linux/mm.h>
10#include <linux/fcntl.h>
11#include <linux/slab.h>
12#include <linux/kmod.h>
13#include <linux/major.h>
14#include <linux/device_cgroup.h>
15#include <linux/highmem.h>
16#include <linux/blkdev.h>
17#include <linux/backing-dev.h>
18#include <linux/module.h>
19#include <linux/blkpg.h>
20#include <linux/magic.h>
21#include <linux/dax.h>
22#include <linux/buffer_head.h>
23#include <linux/swap.h>
24#include <linux/pagevec.h>
25#include <linux/writeback.h>
26#include <linux/mpage.h>
27#include <linux/mount.h>
28#include <linux/uio.h>
29#include <linux/namei.h>
30#include <linux/log2.h>
31#include <linux/cleancache.h>
32#include <linux/dax.h>
33#include <linux/badblocks.h>
34#include <linux/task_io_accounting_ops.h>
35#include <linux/falloc.h>
36#include <linux/uaccess.h>
37#include "internal.h"
38
39struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
42};
43
44static const struct address_space_operations def_blk_aops;
45
46static inline struct bdev_inode *BDEV_I(struct inode *inode)
47{
48 return container_of(inode, struct bdev_inode, vfs_inode);
49}
50
51struct block_device *I_BDEV(struct inode *inode)
52{
53 return &BDEV_I(inode)->bdev;
54}
55EXPORT_SYMBOL(I_BDEV);
56
57static void bdev_write_inode(struct block_device *bdev)
58{
59 struct inode *inode = bdev->bd_inode;
60 int ret;
61
62 spin_lock(&inode->i_lock);
63 while (inode->i_state & I_DIRTY) {
64 spin_unlock(&inode->i_lock);
65 ret = write_inode_now(inode, true);
66 if (ret) {
67 char name[BDEVNAME_SIZE];
68 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 "for block device %s (err=%d).\n",
70 bdevname(bdev, name), ret);
71 }
72 spin_lock(&inode->i_lock);
73 }
74 spin_unlock(&inode->i_lock);
75}
76
77/* Kill _all_ buffers and pagecache , dirty or not.. */
78void kill_bdev(struct block_device *bdev)
79{
80 struct address_space *mapping = bdev->bd_inode->i_mapping;
81
82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 return;
84
85 invalidate_bh_lrus();
86 truncate_inode_pages(mapping, 0);
87}
88EXPORT_SYMBOL(kill_bdev);
89
90/* Invalidate clean unused buffers and pagecache. */
91void invalidate_bdev(struct block_device *bdev)
92{
93 struct address_space *mapping = bdev->bd_inode->i_mapping;
94
95 if (mapping->nrpages) {
96 invalidate_bh_lrus();
97 lru_add_drain_all(); /* make sure all lru add caches are flushed */
98 invalidate_mapping_pages(mapping, 0, -1);
99 }
100 /* 99% of the time, we don't need to flush the cleancache on the bdev.
101 * But, for the strange corners, lets be cautious
102 */
103 cleancache_invalidate_inode(mapping);
104}
105EXPORT_SYMBOL(invalidate_bdev);
106
107static void set_init_blocksize(struct block_device *bdev)
108{
109 unsigned bsize = bdev_logical_block_size(bdev);
110 loff_t size = i_size_read(bdev->bd_inode);
111
112 while (bsize < PAGE_SIZE) {
113 if (size & bsize)
114 break;
115 bsize <<= 1;
116 }
117 bdev->bd_block_size = bsize;
118 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
119}
120
121int set_blocksize(struct block_device *bdev, int size)
122{
123 /* Size must be a power of two, and between 512 and PAGE_SIZE */
124 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
125 return -EINVAL;
126
127 /* Size cannot be smaller than the size supported by the device */
128 if (size < bdev_logical_block_size(bdev))
129 return -EINVAL;
130
131 /* Don't change the size if it is same as current */
132 if (bdev->bd_block_size != size) {
133 sync_blockdev(bdev);
134 bdev->bd_block_size = size;
135 bdev->bd_inode->i_blkbits = blksize_bits(size);
136 kill_bdev(bdev);
137 }
138 return 0;
139}
140
141EXPORT_SYMBOL(set_blocksize);
142
143int sb_set_blocksize(struct super_block *sb, int size)
144{
145 if (set_blocksize(sb->s_bdev, size))
146 return 0;
147 /* If we get here, we know size is power of two
148 * and it's value is between 512 and PAGE_SIZE */
149 sb->s_blocksize = size;
150 sb->s_blocksize_bits = blksize_bits(size);
151 return sb->s_blocksize;
152}
153
154EXPORT_SYMBOL(sb_set_blocksize);
155
156int sb_min_blocksize(struct super_block *sb, int size)
157{
158 int minsize = bdev_logical_block_size(sb->s_bdev);
159 if (size < minsize)
160 size = minsize;
161 return sb_set_blocksize(sb, size);
162}
163
164EXPORT_SYMBOL(sb_min_blocksize);
165
166static int
167blkdev_get_block(struct inode *inode, sector_t iblock,
168 struct buffer_head *bh, int create)
169{
170 bh->b_bdev = I_BDEV(inode);
171 bh->b_blocknr = iblock;
172 set_buffer_mapped(bh);
173 return 0;
174}
175
176static struct inode *bdev_file_inode(struct file *file)
177{
178 return file->f_mapping->host;
179}
180
181static unsigned int dio_bio_write_op(struct kiocb *iocb)
182{
183 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
184
185 /* avoid the need for a I/O completion work item */
186 if (iocb->ki_flags & IOCB_DSYNC)
187 op |= REQ_FUA;
188 return op;
189}
190
191#define DIO_INLINE_BIO_VECS 4
192
193static void blkdev_bio_end_io_simple(struct bio *bio)
194{
195 struct task_struct *waiter = bio->bi_private;
196
197 WRITE_ONCE(bio->bi_private, NULL);
198 blk_wake_io_task(waiter);
199}
200
201static ssize_t
202__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
203 int nr_pages)
204{
205 struct file *file = iocb->ki_filp;
206 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
207 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
208 loff_t pos = iocb->ki_pos;
209 bool should_dirty = false;
210 struct bio bio;
211 ssize_t ret;
212 blk_qc_t qc;
213 int i;
214 struct bvec_iter_all iter_all;
215
216 if ((pos | iov_iter_alignment(iter)) &
217 (bdev_logical_block_size(bdev) - 1))
218 return -EINVAL;
219
220 if (nr_pages <= DIO_INLINE_BIO_VECS)
221 vecs = inline_vecs;
222 else {
223 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
224 GFP_KERNEL);
225 if (!vecs)
226 return -ENOMEM;
227 }
228
229 bio_init(&bio, vecs, nr_pages);
230 bio_set_dev(&bio, bdev);
231 bio.bi_iter.bi_sector = pos >> 9;
232 bio.bi_write_hint = iocb->ki_hint;
233 bio.bi_private = current;
234 bio.bi_end_io = blkdev_bio_end_io_simple;
235 bio.bi_ioprio = iocb->ki_ioprio;
236
237 ret = bio_iov_iter_get_pages(&bio, iter);
238 if (unlikely(ret))
239 goto out;
240 ret = bio.bi_iter.bi_size;
241
242 if (iov_iter_rw(iter) == READ) {
243 bio.bi_opf = REQ_OP_READ;
244 if (iter_is_iovec(iter))
245 should_dirty = true;
246 } else {
247 bio.bi_opf = dio_bio_write_op(iocb);
248 task_io_account_write(ret);
249 }
250 if (iocb->ki_flags & IOCB_HIPRI)
251 bio_set_polled(&bio, iocb);
252
253 qc = submit_bio(&bio);
254 for (;;) {
255 set_current_state(TASK_UNINTERRUPTIBLE);
256 if (!READ_ONCE(bio.bi_private))
257 break;
258 if (!(iocb->ki_flags & IOCB_HIPRI) ||
259 !blk_poll(bdev_get_queue(bdev), qc, true))
260 io_schedule();
261 }
262 __set_current_state(TASK_RUNNING);
263
264 bio_for_each_segment_all(bvec, &bio, i, iter_all) {
265 if (should_dirty && !PageCompound(bvec->bv_page))
266 set_page_dirty_lock(bvec->bv_page);
267 put_page(bvec->bv_page);
268 }
269
270 if (unlikely(bio.bi_status))
271 ret = blk_status_to_errno(bio.bi_status);
272
273out:
274 if (vecs != inline_vecs)
275 kfree(vecs);
276
277 bio_uninit(&bio);
278
279 return ret;
280}
281
282struct blkdev_dio {
283 union {
284 struct kiocb *iocb;
285 struct task_struct *waiter;
286 };
287 size_t size;
288 atomic_t ref;
289 bool multi_bio : 1;
290 bool should_dirty : 1;
291 bool is_sync : 1;
292 struct bio bio;
293};
294
295static struct bio_set blkdev_dio_pool;
296
297static int blkdev_iopoll(struct kiocb *kiocb, bool wait)
298{
299 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host);
300 struct request_queue *q = bdev_get_queue(bdev);
301
302 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait);
303}
304
305static void blkdev_bio_end_io(struct bio *bio)
306{
307 struct blkdev_dio *dio = bio->bi_private;
308 bool should_dirty = dio->should_dirty;
309
310 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) {
311 if (bio->bi_status && !dio->bio.bi_status)
312 dio->bio.bi_status = bio->bi_status;
313 } else {
314 if (!dio->is_sync) {
315 struct kiocb *iocb = dio->iocb;
316 ssize_t ret;
317
318 if (likely(!dio->bio.bi_status)) {
319 ret = dio->size;
320 iocb->ki_pos += ret;
321 } else {
322 ret = blk_status_to_errno(dio->bio.bi_status);
323 }
324
325 dio->iocb->ki_complete(iocb, ret, 0);
326 if (dio->multi_bio)
327 bio_put(&dio->bio);
328 } else {
329 struct task_struct *waiter = dio->waiter;
330
331 WRITE_ONCE(dio->waiter, NULL);
332 blk_wake_io_task(waiter);
333 }
334 }
335
336 if (should_dirty) {
337 bio_check_pages_dirty(bio);
338 } else {
339 struct bio_vec *bvec;
340 int i;
341 struct bvec_iter_all iter_all;
342
343 bio_for_each_segment_all(bvec, bio, i, iter_all)
344 put_page(bvec->bv_page);
345 bio_put(bio);
346 }
347}
348
349static ssize_t
350__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
351{
352 struct file *file = iocb->ki_filp;
353 struct inode *inode = bdev_file_inode(file);
354 struct block_device *bdev = I_BDEV(inode);
355 struct blk_plug plug;
356 struct blkdev_dio *dio;
357 struct bio *bio;
358 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
359 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
360 loff_t pos = iocb->ki_pos;
361 blk_qc_t qc = BLK_QC_T_NONE;
362 int ret = 0;
363
364 if ((pos | iov_iter_alignment(iter)) &
365 (bdev_logical_block_size(bdev) - 1))
366 return -EINVAL;
367
368 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
369
370 dio = container_of(bio, struct blkdev_dio, bio);
371 dio->is_sync = is_sync = is_sync_kiocb(iocb);
372 if (dio->is_sync) {
373 dio->waiter = current;
374 bio_get(bio);
375 } else {
376 dio->iocb = iocb;
377 }
378
379 dio->size = 0;
380 dio->multi_bio = false;
381 dio->should_dirty = is_read && iter_is_iovec(iter);
382
383 /*
384 * Don't plug for HIPRI/polled IO, as those should go straight
385 * to issue
386 */
387 if (!is_poll)
388 blk_start_plug(&plug);
389
390 for (;;) {
391 bio_set_dev(bio, bdev);
392 bio->bi_iter.bi_sector = pos >> 9;
393 bio->bi_write_hint = iocb->ki_hint;
394 bio->bi_private = dio;
395 bio->bi_end_io = blkdev_bio_end_io;
396 bio->bi_ioprio = iocb->ki_ioprio;
397
398 ret = bio_iov_iter_get_pages(bio, iter);
399 if (unlikely(ret)) {
400 bio->bi_status = BLK_STS_IOERR;
401 bio_endio(bio);
402 break;
403 }
404
405 if (is_read) {
406 bio->bi_opf = REQ_OP_READ;
407 if (dio->should_dirty)
408 bio_set_pages_dirty(bio);
409 } else {
410 bio->bi_opf = dio_bio_write_op(iocb);
411 task_io_account_write(bio->bi_iter.bi_size);
412 }
413
414 dio->size += bio->bi_iter.bi_size;
415 pos += bio->bi_iter.bi_size;
416
417 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
418 if (!nr_pages) {
419 bool polled = false;
420
421 if (iocb->ki_flags & IOCB_HIPRI) {
422 bio_set_polled(bio, iocb);
423 polled = true;
424 }
425
426 qc = submit_bio(bio);
427
428 if (polled)
429 WRITE_ONCE(iocb->ki_cookie, qc);
430 break;
431 }
432
433 if (!dio->multi_bio) {
434 /*
435 * AIO needs an extra reference to ensure the dio
436 * structure which is embedded into the first bio
437 * stays around.
438 */
439 if (!is_sync)
440 bio_get(bio);
441 dio->multi_bio = true;
442 atomic_set(&dio->ref, 2);
443 } else {
444 atomic_inc(&dio->ref);
445 }
446
447 submit_bio(bio);
448 bio = bio_alloc(GFP_KERNEL, nr_pages);
449 }
450
451 if (!is_poll)
452 blk_finish_plug(&plug);
453
454 if (!is_sync)
455 return -EIOCBQUEUED;
456
457 for (;;) {
458 set_current_state(TASK_UNINTERRUPTIBLE);
459 if (!READ_ONCE(dio->waiter))
460 break;
461
462 if (!(iocb->ki_flags & IOCB_HIPRI) ||
463 !blk_poll(bdev_get_queue(bdev), qc, true))
464 io_schedule();
465 }
466 __set_current_state(TASK_RUNNING);
467
468 if (!ret)
469 ret = blk_status_to_errno(dio->bio.bi_status);
470 if (likely(!ret))
471 ret = dio->size;
472
473 bio_put(&dio->bio);
474 return ret;
475}
476
477static ssize_t
478blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
479{
480 int nr_pages;
481
482 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
483 if (!nr_pages)
484 return 0;
485 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
486 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
487
488 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
489}
490
491static __init int blkdev_init(void)
492{
493 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
494}
495module_init(blkdev_init);
496
497int __sync_blockdev(struct block_device *bdev, int wait)
498{
499 if (!bdev)
500 return 0;
501 if (!wait)
502 return filemap_flush(bdev->bd_inode->i_mapping);
503 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
504}
505
506/*
507 * Write out and wait upon all the dirty data associated with a block
508 * device via its mapping. Does not take the superblock lock.
509 */
510int sync_blockdev(struct block_device *bdev)
511{
512 return __sync_blockdev(bdev, 1);
513}
514EXPORT_SYMBOL(sync_blockdev);
515
516/*
517 * Write out and wait upon all dirty data associated with this
518 * device. Filesystem data as well as the underlying block
519 * device. Takes the superblock lock.
520 */
521int fsync_bdev(struct block_device *bdev)
522{
523 struct super_block *sb = get_super(bdev);
524 if (sb) {
525 int res = sync_filesystem(sb);
526 drop_super(sb);
527 return res;
528 }
529 return sync_blockdev(bdev);
530}
531EXPORT_SYMBOL(fsync_bdev);
532
533/**
534 * freeze_bdev -- lock a filesystem and force it into a consistent state
535 * @bdev: blockdevice to lock
536 *
537 * If a superblock is found on this device, we take the s_umount semaphore
538 * on it to make sure nobody unmounts until the snapshot creation is done.
539 * The reference counter (bd_fsfreeze_count) guarantees that only the last
540 * unfreeze process can unfreeze the frozen filesystem actually when multiple
541 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
542 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
543 * actually.
544 */
545struct super_block *freeze_bdev(struct block_device *bdev)
546{
547 struct super_block *sb;
548 int error = 0;
549
550 mutex_lock(&bdev->bd_fsfreeze_mutex);
551 if (++bdev->bd_fsfreeze_count > 1) {
552 /*
553 * We don't even need to grab a reference - the first call
554 * to freeze_bdev grab an active reference and only the last
555 * thaw_bdev drops it.
556 */
557 sb = get_super(bdev);
558 if (sb)
559 drop_super(sb);
560 mutex_unlock(&bdev->bd_fsfreeze_mutex);
561 return sb;
562 }
563
564 sb = get_active_super(bdev);
565 if (!sb)
566 goto out;
567 if (sb->s_op->freeze_super)
568 error = sb->s_op->freeze_super(sb);
569 else
570 error = freeze_super(sb);
571 if (error) {
572 deactivate_super(sb);
573 bdev->bd_fsfreeze_count--;
574 mutex_unlock(&bdev->bd_fsfreeze_mutex);
575 return ERR_PTR(error);
576 }
577 deactivate_super(sb);
578 out:
579 sync_blockdev(bdev);
580 mutex_unlock(&bdev->bd_fsfreeze_mutex);
581 return sb; /* thaw_bdev releases s->s_umount */
582}
583EXPORT_SYMBOL(freeze_bdev);
584
585/**
586 * thaw_bdev -- unlock filesystem
587 * @bdev: blockdevice to unlock
588 * @sb: associated superblock
589 *
590 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
591 */
592int thaw_bdev(struct block_device *bdev, struct super_block *sb)
593{
594 int error = -EINVAL;
595
596 mutex_lock(&bdev->bd_fsfreeze_mutex);
597 if (!bdev->bd_fsfreeze_count)
598 goto out;
599
600 error = 0;
601 if (--bdev->bd_fsfreeze_count > 0)
602 goto out;
603
604 if (!sb)
605 goto out;
606
607 if (sb->s_op->thaw_super)
608 error = sb->s_op->thaw_super(sb);
609 else
610 error = thaw_super(sb);
611 if (error)
612 bdev->bd_fsfreeze_count++;
613out:
614 mutex_unlock(&bdev->bd_fsfreeze_mutex);
615 return error;
616}
617EXPORT_SYMBOL(thaw_bdev);
618
619static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
620{
621 return block_write_full_page(page, blkdev_get_block, wbc);
622}
623
624static int blkdev_readpage(struct file * file, struct page * page)
625{
626 return block_read_full_page(page, blkdev_get_block);
627}
628
629static int blkdev_readpages(struct file *file, struct address_space *mapping,
630 struct list_head *pages, unsigned nr_pages)
631{
632 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
633}
634
635static int blkdev_write_begin(struct file *file, struct address_space *mapping,
636 loff_t pos, unsigned len, unsigned flags,
637 struct page **pagep, void **fsdata)
638{
639 return block_write_begin(mapping, pos, len, flags, pagep,
640 blkdev_get_block);
641}
642
643static int blkdev_write_end(struct file *file, struct address_space *mapping,
644 loff_t pos, unsigned len, unsigned copied,
645 struct page *page, void *fsdata)
646{
647 int ret;
648 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
649
650 unlock_page(page);
651 put_page(page);
652
653 return ret;
654}
655
656/*
657 * private llseek:
658 * for a block special file file_inode(file)->i_size is zero
659 * so we compute the size by hand (just as in block_read/write above)
660 */
661static loff_t block_llseek(struct file *file, loff_t offset, int whence)
662{
663 struct inode *bd_inode = bdev_file_inode(file);
664 loff_t retval;
665
666 inode_lock(bd_inode);
667 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
668 inode_unlock(bd_inode);
669 return retval;
670}
671
672int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
673{
674 struct inode *bd_inode = bdev_file_inode(filp);
675 struct block_device *bdev = I_BDEV(bd_inode);
676 int error;
677
678 error = file_write_and_wait_range(filp, start, end);
679 if (error)
680 return error;
681
682 /*
683 * There is no need to serialise calls to blkdev_issue_flush with
684 * i_mutex and doing so causes performance issues with concurrent
685 * O_SYNC writers to a block device.
686 */
687 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
688 if (error == -EOPNOTSUPP)
689 error = 0;
690
691 return error;
692}
693EXPORT_SYMBOL(blkdev_fsync);
694
695/**
696 * bdev_read_page() - Start reading a page from a block device
697 * @bdev: The device to read the page from
698 * @sector: The offset on the device to read the page to (need not be aligned)
699 * @page: The page to read
700 *
701 * On entry, the page should be locked. It will be unlocked when the page
702 * has been read. If the block driver implements rw_page synchronously,
703 * that will be true on exit from this function, but it need not be.
704 *
705 * Errors returned by this function are usually "soft", eg out of memory, or
706 * queue full; callers should try a different route to read this page rather
707 * than propagate an error back up the stack.
708 *
709 * Return: negative errno if an error occurs, 0 if submission was successful.
710 */
711int bdev_read_page(struct block_device *bdev, sector_t sector,
712 struct page *page)
713{
714 const struct block_device_operations *ops = bdev->bd_disk->fops;
715 int result = -EOPNOTSUPP;
716
717 if (!ops->rw_page || bdev_get_integrity(bdev))
718 return result;
719
720 result = blk_queue_enter(bdev->bd_queue, 0);
721 if (result)
722 return result;
723 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
724 REQ_OP_READ);
725 blk_queue_exit(bdev->bd_queue);
726 return result;
727}
728EXPORT_SYMBOL_GPL(bdev_read_page);
729
730/**
731 * bdev_write_page() - Start writing a page to a block device
732 * @bdev: The device to write the page to
733 * @sector: The offset on the device to write the page to (need not be aligned)
734 * @page: The page to write
735 * @wbc: The writeback_control for the write
736 *
737 * On entry, the page should be locked and not currently under writeback.
738 * On exit, if the write started successfully, the page will be unlocked and
739 * under writeback. If the write failed already (eg the driver failed to
740 * queue the page to the device), the page will still be locked. If the
741 * caller is a ->writepage implementation, it will need to unlock the page.
742 *
743 * Errors returned by this function are usually "soft", eg out of memory, or
744 * queue full; callers should try a different route to write this page rather
745 * than propagate an error back up the stack.
746 *
747 * Return: negative errno if an error occurs, 0 if submission was successful.
748 */
749int bdev_write_page(struct block_device *bdev, sector_t sector,
750 struct page *page, struct writeback_control *wbc)
751{
752 int result;
753 const struct block_device_operations *ops = bdev->bd_disk->fops;
754
755 if (!ops->rw_page || bdev_get_integrity(bdev))
756 return -EOPNOTSUPP;
757 result = blk_queue_enter(bdev->bd_queue, 0);
758 if (result)
759 return result;
760
761 set_page_writeback(page);
762 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
763 REQ_OP_WRITE);
764 if (result) {
765 end_page_writeback(page);
766 } else {
767 clean_page_buffers(page);
768 unlock_page(page);
769 }
770 blk_queue_exit(bdev->bd_queue);
771 return result;
772}
773EXPORT_SYMBOL_GPL(bdev_write_page);
774
775/*
776 * pseudo-fs
777 */
778
779static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
780static struct kmem_cache * bdev_cachep __read_mostly;
781
782static struct inode *bdev_alloc_inode(struct super_block *sb)
783{
784 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
785 if (!ei)
786 return NULL;
787 return &ei->vfs_inode;
788}
789
790static void bdev_i_callback(struct rcu_head *head)
791{
792 struct inode *inode = container_of(head, struct inode, i_rcu);
793 struct bdev_inode *bdi = BDEV_I(inode);
794
795 kmem_cache_free(bdev_cachep, bdi);
796}
797
798static void bdev_destroy_inode(struct inode *inode)
799{
800 call_rcu(&inode->i_rcu, bdev_i_callback);
801}
802
803static void init_once(void *foo)
804{
805 struct bdev_inode *ei = (struct bdev_inode *) foo;
806 struct block_device *bdev = &ei->bdev;
807
808 memset(bdev, 0, sizeof(*bdev));
809 mutex_init(&bdev->bd_mutex);
810 INIT_LIST_HEAD(&bdev->bd_list);
811#ifdef CONFIG_SYSFS
812 INIT_LIST_HEAD(&bdev->bd_holder_disks);
813#endif
814 bdev->bd_bdi = &noop_backing_dev_info;
815 inode_init_once(&ei->vfs_inode);
816 /* Initialize mutex for freeze. */
817 mutex_init(&bdev->bd_fsfreeze_mutex);
818}
819
820static void bdev_evict_inode(struct inode *inode)
821{
822 struct block_device *bdev = &BDEV_I(inode)->bdev;
823 truncate_inode_pages_final(&inode->i_data);
824 invalidate_inode_buffers(inode); /* is it needed here? */
825 clear_inode(inode);
826 spin_lock(&bdev_lock);
827 list_del_init(&bdev->bd_list);
828 spin_unlock(&bdev_lock);
829 /* Detach inode from wb early as bdi_put() may free bdi->wb */
830 inode_detach_wb(inode);
831 if (bdev->bd_bdi != &noop_backing_dev_info) {
832 bdi_put(bdev->bd_bdi);
833 bdev->bd_bdi = &noop_backing_dev_info;
834 }
835}
836
837static const struct super_operations bdev_sops = {
838 .statfs = simple_statfs,
839 .alloc_inode = bdev_alloc_inode,
840 .destroy_inode = bdev_destroy_inode,
841 .drop_inode = generic_delete_inode,
842 .evict_inode = bdev_evict_inode,
843};
844
845static struct dentry *bd_mount(struct file_system_type *fs_type,
846 int flags, const char *dev_name, void *data)
847{
848 struct dentry *dent;
849 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
850 if (!IS_ERR(dent))
851 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
852 return dent;
853}
854
855static struct file_system_type bd_type = {
856 .name = "bdev",
857 .mount = bd_mount,
858 .kill_sb = kill_anon_super,
859};
860
861struct super_block *blockdev_superblock __read_mostly;
862EXPORT_SYMBOL_GPL(blockdev_superblock);
863
864void __init bdev_cache_init(void)
865{
866 int err;
867 static struct vfsmount *bd_mnt;
868
869 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
870 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
871 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
872 init_once);
873 err = register_filesystem(&bd_type);
874 if (err)
875 panic("Cannot register bdev pseudo-fs");
876 bd_mnt = kern_mount(&bd_type);
877 if (IS_ERR(bd_mnt))
878 panic("Cannot create bdev pseudo-fs");
879 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
880}
881
882/*
883 * Most likely _very_ bad one - but then it's hardly critical for small
884 * /dev and can be fixed when somebody will need really large one.
885 * Keep in mind that it will be fed through icache hash function too.
886 */
887static inline unsigned long hash(dev_t dev)
888{
889 return MAJOR(dev)+MINOR(dev);
890}
891
892static int bdev_test(struct inode *inode, void *data)
893{
894 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
895}
896
897static int bdev_set(struct inode *inode, void *data)
898{
899 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
900 return 0;
901}
902
903static LIST_HEAD(all_bdevs);
904
905/*
906 * If there is a bdev inode for this device, unhash it so that it gets evicted
907 * as soon as last inode reference is dropped.
908 */
909void bdev_unhash_inode(dev_t dev)
910{
911 struct inode *inode;
912
913 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
914 if (inode) {
915 remove_inode_hash(inode);
916 iput(inode);
917 }
918}
919
920struct block_device *bdget(dev_t dev)
921{
922 struct block_device *bdev;
923 struct inode *inode;
924
925 inode = iget5_locked(blockdev_superblock, hash(dev),
926 bdev_test, bdev_set, &dev);
927
928 if (!inode)
929 return NULL;
930
931 bdev = &BDEV_I(inode)->bdev;
932
933 if (inode->i_state & I_NEW) {
934 bdev->bd_contains = NULL;
935 bdev->bd_super = NULL;
936 bdev->bd_inode = inode;
937 bdev->bd_block_size = i_blocksize(inode);
938 bdev->bd_part_count = 0;
939 bdev->bd_invalidated = 0;
940 inode->i_mode = S_IFBLK;
941 inode->i_rdev = dev;
942 inode->i_bdev = bdev;
943 inode->i_data.a_ops = &def_blk_aops;
944 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
945 spin_lock(&bdev_lock);
946 list_add(&bdev->bd_list, &all_bdevs);
947 spin_unlock(&bdev_lock);
948 unlock_new_inode(inode);
949 }
950 return bdev;
951}
952
953EXPORT_SYMBOL(bdget);
954
955/**
956 * bdgrab -- Grab a reference to an already referenced block device
957 * @bdev: Block device to grab a reference to.
958 */
959struct block_device *bdgrab(struct block_device *bdev)
960{
961 ihold(bdev->bd_inode);
962 return bdev;
963}
964EXPORT_SYMBOL(bdgrab);
965
966long nr_blockdev_pages(void)
967{
968 struct block_device *bdev;
969 long ret = 0;
970 spin_lock(&bdev_lock);
971 list_for_each_entry(bdev, &all_bdevs, bd_list) {
972 ret += bdev->bd_inode->i_mapping->nrpages;
973 }
974 spin_unlock(&bdev_lock);
975 return ret;
976}
977
978void bdput(struct block_device *bdev)
979{
980 iput(bdev->bd_inode);
981}
982
983EXPORT_SYMBOL(bdput);
984
985static struct block_device *bd_acquire(struct inode *inode)
986{
987 struct block_device *bdev;
988
989 spin_lock(&bdev_lock);
990 bdev = inode->i_bdev;
991 if (bdev && !inode_unhashed(bdev->bd_inode)) {
992 bdgrab(bdev);
993 spin_unlock(&bdev_lock);
994 return bdev;
995 }
996 spin_unlock(&bdev_lock);
997
998 /*
999 * i_bdev references block device inode that was already shut down
1000 * (corresponding device got removed). Remove the reference and look
1001 * up block device inode again just in case new device got
1002 * reestablished under the same device number.
1003 */
1004 if (bdev)
1005 bd_forget(inode);
1006
1007 bdev = bdget(inode->i_rdev);
1008 if (bdev) {
1009 spin_lock(&bdev_lock);
1010 if (!inode->i_bdev) {
1011 /*
1012 * We take an additional reference to bd_inode,
1013 * and it's released in clear_inode() of inode.
1014 * So, we can access it via ->i_mapping always
1015 * without igrab().
1016 */
1017 bdgrab(bdev);
1018 inode->i_bdev = bdev;
1019 inode->i_mapping = bdev->bd_inode->i_mapping;
1020 }
1021 spin_unlock(&bdev_lock);
1022 }
1023 return bdev;
1024}
1025
1026/* Call when you free inode */
1027
1028void bd_forget(struct inode *inode)
1029{
1030 struct block_device *bdev = NULL;
1031
1032 spin_lock(&bdev_lock);
1033 if (!sb_is_blkdev_sb(inode->i_sb))
1034 bdev = inode->i_bdev;
1035 inode->i_bdev = NULL;
1036 inode->i_mapping = &inode->i_data;
1037 spin_unlock(&bdev_lock);
1038
1039 if (bdev)
1040 bdput(bdev);
1041}
1042
1043/**
1044 * bd_may_claim - test whether a block device can be claimed
1045 * @bdev: block device of interest
1046 * @whole: whole block device containing @bdev, may equal @bdev
1047 * @holder: holder trying to claim @bdev
1048 *
1049 * Test whether @bdev can be claimed by @holder.
1050 *
1051 * CONTEXT:
1052 * spin_lock(&bdev_lock).
1053 *
1054 * RETURNS:
1055 * %true if @bdev can be claimed, %false otherwise.
1056 */
1057static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1058 void *holder)
1059{
1060 if (bdev->bd_holder == holder)
1061 return true; /* already a holder */
1062 else if (bdev->bd_holder != NULL)
1063 return false; /* held by someone else */
1064 else if (whole == bdev)
1065 return true; /* is a whole device which isn't held */
1066
1067 else if (whole->bd_holder == bd_may_claim)
1068 return true; /* is a partition of a device that is being partitioned */
1069 else if (whole->bd_holder != NULL)
1070 return false; /* is a partition of a held device */
1071 else
1072 return true; /* is a partition of an un-held device */
1073}
1074
1075/**
1076 * bd_prepare_to_claim - prepare to claim a block device
1077 * @bdev: block device of interest
1078 * @whole: the whole device containing @bdev, may equal @bdev
1079 * @holder: holder trying to claim @bdev
1080 *
1081 * Prepare to claim @bdev. This function fails if @bdev is already
1082 * claimed by another holder and waits if another claiming is in
1083 * progress. This function doesn't actually claim. On successful
1084 * return, the caller has ownership of bd_claiming and bd_holder[s].
1085 *
1086 * CONTEXT:
1087 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1088 * it multiple times.
1089 *
1090 * RETURNS:
1091 * 0 if @bdev can be claimed, -EBUSY otherwise.
1092 */
1093static int bd_prepare_to_claim(struct block_device *bdev,
1094 struct block_device *whole, void *holder)
1095{
1096retry:
1097 /* if someone else claimed, fail */
1098 if (!bd_may_claim(bdev, whole, holder))
1099 return -EBUSY;
1100
1101 /* if claiming is already in progress, wait for it to finish */
1102 if (whole->bd_claiming) {
1103 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1104 DEFINE_WAIT(wait);
1105
1106 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1107 spin_unlock(&bdev_lock);
1108 schedule();
1109 finish_wait(wq, &wait);
1110 spin_lock(&bdev_lock);
1111 goto retry;
1112 }
1113
1114 /* yay, all mine */
1115 return 0;
1116}
1117
1118static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1119{
1120 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1121
1122 if (!disk)
1123 return NULL;
1124 /*
1125 * Now that we hold gendisk reference we make sure bdev we looked up is
1126 * not stale. If it is, it means device got removed and created before
1127 * we looked up gendisk and we fail open in such case. Associating
1128 * unhashed bdev with newly created gendisk could lead to two bdevs
1129 * (and thus two independent caches) being associated with one device
1130 * which is bad.
1131 */
1132 if (inode_unhashed(bdev->bd_inode)) {
1133 put_disk_and_module(disk);
1134 return NULL;
1135 }
1136 return disk;
1137}
1138
1139/**
1140 * bd_start_claiming - start claiming a block device
1141 * @bdev: block device of interest
1142 * @holder: holder trying to claim @bdev
1143 *
1144 * @bdev is about to be opened exclusively. Check @bdev can be opened
1145 * exclusively and mark that an exclusive open is in progress. Each
1146 * successful call to this function must be matched with a call to
1147 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1148 * fail).
1149 *
1150 * This function is used to gain exclusive access to the block device
1151 * without actually causing other exclusive open attempts to fail. It
1152 * should be used when the open sequence itself requires exclusive
1153 * access but may subsequently fail.
1154 *
1155 * CONTEXT:
1156 * Might sleep.
1157 *
1158 * RETURNS:
1159 * Pointer to the block device containing @bdev on success, ERR_PTR()
1160 * value on failure.
1161 */
1162static struct block_device *bd_start_claiming(struct block_device *bdev,
1163 void *holder)
1164{
1165 struct gendisk *disk;
1166 struct block_device *whole;
1167 int partno, err;
1168
1169 might_sleep();
1170
1171 /*
1172 * @bdev might not have been initialized properly yet, look up
1173 * and grab the outer block device the hard way.
1174 */
1175 disk = bdev_get_gendisk(bdev, &partno);
1176 if (!disk)
1177 return ERR_PTR(-ENXIO);
1178
1179 /*
1180 * Normally, @bdev should equal what's returned from bdget_disk()
1181 * if partno is 0; however, some drivers (floppy) use multiple
1182 * bdev's for the same physical device and @bdev may be one of the
1183 * aliases. Keep @bdev if partno is 0. This means claimer
1184 * tracking is broken for those devices but it has always been that
1185 * way.
1186 */
1187 if (partno)
1188 whole = bdget_disk(disk, 0);
1189 else
1190 whole = bdgrab(bdev);
1191
1192 put_disk_and_module(disk);
1193 if (!whole)
1194 return ERR_PTR(-ENOMEM);
1195
1196 /* prepare to claim, if successful, mark claiming in progress */
1197 spin_lock(&bdev_lock);
1198
1199 err = bd_prepare_to_claim(bdev, whole, holder);
1200 if (err == 0) {
1201 whole->bd_claiming = holder;
1202 spin_unlock(&bdev_lock);
1203 return whole;
1204 } else {
1205 spin_unlock(&bdev_lock);
1206 bdput(whole);
1207 return ERR_PTR(err);
1208 }
1209}
1210
1211#ifdef CONFIG_SYSFS
1212struct bd_holder_disk {
1213 struct list_head list;
1214 struct gendisk *disk;
1215 int refcnt;
1216};
1217
1218static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1219 struct gendisk *disk)
1220{
1221 struct bd_holder_disk *holder;
1222
1223 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1224 if (holder->disk == disk)
1225 return holder;
1226 return NULL;
1227}
1228
1229static int add_symlink(struct kobject *from, struct kobject *to)
1230{
1231 return sysfs_create_link(from, to, kobject_name(to));
1232}
1233
1234static void del_symlink(struct kobject *from, struct kobject *to)
1235{
1236 sysfs_remove_link(from, kobject_name(to));
1237}
1238
1239/**
1240 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1241 * @bdev: the claimed slave bdev
1242 * @disk: the holding disk
1243 *
1244 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1245 *
1246 * This functions creates the following sysfs symlinks.
1247 *
1248 * - from "slaves" directory of the holder @disk to the claimed @bdev
1249 * - from "holders" directory of the @bdev to the holder @disk
1250 *
1251 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1252 * passed to bd_link_disk_holder(), then:
1253 *
1254 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1255 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1256 *
1257 * The caller must have claimed @bdev before calling this function and
1258 * ensure that both @bdev and @disk are valid during the creation and
1259 * lifetime of these symlinks.
1260 *
1261 * CONTEXT:
1262 * Might sleep.
1263 *
1264 * RETURNS:
1265 * 0 on success, -errno on failure.
1266 */
1267int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1268{
1269 struct bd_holder_disk *holder;
1270 int ret = 0;
1271
1272 mutex_lock(&bdev->bd_mutex);
1273
1274 WARN_ON_ONCE(!bdev->bd_holder);
1275
1276 /* FIXME: remove the following once add_disk() handles errors */
1277 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1278 goto out_unlock;
1279
1280 holder = bd_find_holder_disk(bdev, disk);
1281 if (holder) {
1282 holder->refcnt++;
1283 goto out_unlock;
1284 }
1285
1286 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1287 if (!holder) {
1288 ret = -ENOMEM;
1289 goto out_unlock;
1290 }
1291
1292 INIT_LIST_HEAD(&holder->list);
1293 holder->disk = disk;
1294 holder->refcnt = 1;
1295
1296 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1297 if (ret)
1298 goto out_free;
1299
1300 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1301 if (ret)
1302 goto out_del;
1303 /*
1304 * bdev could be deleted beneath us which would implicitly destroy
1305 * the holder directory. Hold on to it.
1306 */
1307 kobject_get(bdev->bd_part->holder_dir);
1308
1309 list_add(&holder->list, &bdev->bd_holder_disks);
1310 goto out_unlock;
1311
1312out_del:
1313 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1314out_free:
1315 kfree(holder);
1316out_unlock:
1317 mutex_unlock(&bdev->bd_mutex);
1318 return ret;
1319}
1320EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1321
1322/**
1323 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1324 * @bdev: the calimed slave bdev
1325 * @disk: the holding disk
1326 *
1327 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1328 *
1329 * CONTEXT:
1330 * Might sleep.
1331 */
1332void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1333{
1334 struct bd_holder_disk *holder;
1335
1336 mutex_lock(&bdev->bd_mutex);
1337
1338 holder = bd_find_holder_disk(bdev, disk);
1339
1340 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1341 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1342 del_symlink(bdev->bd_part->holder_dir,
1343 &disk_to_dev(disk)->kobj);
1344 kobject_put(bdev->bd_part->holder_dir);
1345 list_del_init(&holder->list);
1346 kfree(holder);
1347 }
1348
1349 mutex_unlock(&bdev->bd_mutex);
1350}
1351EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1352#endif
1353
1354/**
1355 * flush_disk - invalidates all buffer-cache entries on a disk
1356 *
1357 * @bdev: struct block device to be flushed
1358 * @kill_dirty: flag to guide handling of dirty inodes
1359 *
1360 * Invalidates all buffer-cache entries on a disk. It should be called
1361 * when a disk has been changed -- either by a media change or online
1362 * resize.
1363 */
1364static void flush_disk(struct block_device *bdev, bool kill_dirty)
1365{
1366 if (__invalidate_device(bdev, kill_dirty)) {
1367 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1368 "resized disk %s\n",
1369 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1370 }
1371
1372 if (!bdev->bd_disk)
1373 return;
1374 if (disk_part_scan_enabled(bdev->bd_disk))
1375 bdev->bd_invalidated = 1;
1376}
1377
1378/**
1379 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1380 * @disk: struct gendisk to check
1381 * @bdev: struct bdev to adjust.
1382 * @verbose: if %true log a message about a size change if there is any
1383 *
1384 * This routine checks to see if the bdev size does not match the disk size
1385 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1386 * are freed.
1387 */
1388void check_disk_size_change(struct gendisk *disk, struct block_device *bdev,
1389 bool verbose)
1390{
1391 loff_t disk_size, bdev_size;
1392
1393 disk_size = (loff_t)get_capacity(disk) << 9;
1394 bdev_size = i_size_read(bdev->bd_inode);
1395 if (disk_size != bdev_size) {
1396 if (verbose) {
1397 printk(KERN_INFO
1398 "%s: detected capacity change from %lld to %lld\n",
1399 disk->disk_name, bdev_size, disk_size);
1400 }
1401 i_size_write(bdev->bd_inode, disk_size);
1402 if (bdev_size > disk_size)
1403 flush_disk(bdev, false);
1404 }
1405}
1406
1407/**
1408 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1409 * @disk: struct gendisk to be revalidated
1410 *
1411 * This routine is a wrapper for lower-level driver's revalidate_disk
1412 * call-backs. It is used to do common pre and post operations needed
1413 * for all revalidate_disk operations.
1414 */
1415int revalidate_disk(struct gendisk *disk)
1416{
1417 struct block_device *bdev;
1418 int ret = 0;
1419
1420 if (disk->fops->revalidate_disk)
1421 ret = disk->fops->revalidate_disk(disk);
1422 bdev = bdget_disk(disk, 0);
1423 if (!bdev)
1424 return ret;
1425
1426 mutex_lock(&bdev->bd_mutex);
1427 check_disk_size_change(disk, bdev, ret == 0);
1428 bdev->bd_invalidated = 0;
1429 mutex_unlock(&bdev->bd_mutex);
1430 bdput(bdev);
1431 return ret;
1432}
1433EXPORT_SYMBOL(revalidate_disk);
1434
1435/*
1436 * This routine checks whether a removable media has been changed,
1437 * and invalidates all buffer-cache-entries in that case. This
1438 * is a relatively slow routine, so we have to try to minimize using
1439 * it. Thus it is called only upon a 'mount' or 'open'. This
1440 * is the best way of combining speed and utility, I think.
1441 * People changing diskettes in the middle of an operation deserve
1442 * to lose :-)
1443 */
1444int check_disk_change(struct block_device *bdev)
1445{
1446 struct gendisk *disk = bdev->bd_disk;
1447 const struct block_device_operations *bdops = disk->fops;
1448 unsigned int events;
1449
1450 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1451 DISK_EVENT_EJECT_REQUEST);
1452 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1453 return 0;
1454
1455 flush_disk(bdev, true);
1456 if (bdops->revalidate_disk)
1457 bdops->revalidate_disk(bdev->bd_disk);
1458 return 1;
1459}
1460
1461EXPORT_SYMBOL(check_disk_change);
1462
1463void bd_set_size(struct block_device *bdev, loff_t size)
1464{
1465 inode_lock(bdev->bd_inode);
1466 i_size_write(bdev->bd_inode, size);
1467 inode_unlock(bdev->bd_inode);
1468}
1469EXPORT_SYMBOL(bd_set_size);
1470
1471static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1472
1473/*
1474 * bd_mutex locking:
1475 *
1476 * mutex_lock(part->bd_mutex)
1477 * mutex_lock_nested(whole->bd_mutex, 1)
1478 */
1479
1480static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1481{
1482 struct gendisk *disk;
1483 int ret;
1484 int partno;
1485 int perm = 0;
1486 bool first_open = false;
1487
1488 if (mode & FMODE_READ)
1489 perm |= MAY_READ;
1490 if (mode & FMODE_WRITE)
1491 perm |= MAY_WRITE;
1492 /*
1493 * hooks: /n/, see "layering violations".
1494 */
1495 if (!for_part) {
1496 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1497 if (ret != 0) {
1498 bdput(bdev);
1499 return ret;
1500 }
1501 }
1502
1503 restart:
1504
1505 ret = -ENXIO;
1506 disk = bdev_get_gendisk(bdev, &partno);
1507 if (!disk)
1508 goto out;
1509
1510 disk_block_events(disk);
1511 mutex_lock_nested(&bdev->bd_mutex, for_part);
1512 if (!bdev->bd_openers) {
1513 first_open = true;
1514 bdev->bd_disk = disk;
1515 bdev->bd_queue = disk->queue;
1516 bdev->bd_contains = bdev;
1517 bdev->bd_partno = partno;
1518
1519 if (!partno) {
1520 ret = -ENXIO;
1521 bdev->bd_part = disk_get_part(disk, partno);
1522 if (!bdev->bd_part)
1523 goto out_clear;
1524
1525 ret = 0;
1526 if (disk->fops->open) {
1527 ret = disk->fops->open(bdev, mode);
1528 if (ret == -ERESTARTSYS) {
1529 /* Lost a race with 'disk' being
1530 * deleted, try again.
1531 * See md.c
1532 */
1533 disk_put_part(bdev->bd_part);
1534 bdev->bd_part = NULL;
1535 bdev->bd_disk = NULL;
1536 bdev->bd_queue = NULL;
1537 mutex_unlock(&bdev->bd_mutex);
1538 disk_unblock_events(disk);
1539 put_disk_and_module(disk);
1540 goto restart;
1541 }
1542 }
1543
1544 if (!ret) {
1545 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1546 set_init_blocksize(bdev);
1547 }
1548
1549 /*
1550 * If the device is invalidated, rescan partition
1551 * if open succeeded or failed with -ENOMEDIUM.
1552 * The latter is necessary to prevent ghost
1553 * partitions on a removed medium.
1554 */
1555 if (bdev->bd_invalidated) {
1556 if (!ret)
1557 rescan_partitions(disk, bdev);
1558 else if (ret == -ENOMEDIUM)
1559 invalidate_partitions(disk, bdev);
1560 }
1561
1562 if (ret)
1563 goto out_clear;
1564 } else {
1565 struct block_device *whole;
1566 whole = bdget_disk(disk, 0);
1567 ret = -ENOMEM;
1568 if (!whole)
1569 goto out_clear;
1570 BUG_ON(for_part);
1571 ret = __blkdev_get(whole, mode, 1);
1572 if (ret)
1573 goto out_clear;
1574 bdev->bd_contains = whole;
1575 bdev->bd_part = disk_get_part(disk, partno);
1576 if (!(disk->flags & GENHD_FL_UP) ||
1577 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1578 ret = -ENXIO;
1579 goto out_clear;
1580 }
1581 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1582 set_init_blocksize(bdev);
1583 }
1584
1585 if (bdev->bd_bdi == &noop_backing_dev_info)
1586 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1587 } else {
1588 if (bdev->bd_contains == bdev) {
1589 ret = 0;
1590 if (bdev->bd_disk->fops->open)
1591 ret = bdev->bd_disk->fops->open(bdev, mode);
1592 /* the same as first opener case, read comment there */
1593 if (bdev->bd_invalidated) {
1594 if (!ret)
1595 rescan_partitions(bdev->bd_disk, bdev);
1596 else if (ret == -ENOMEDIUM)
1597 invalidate_partitions(bdev->bd_disk, bdev);
1598 }
1599 if (ret)
1600 goto out_unlock_bdev;
1601 }
1602 }
1603 bdev->bd_openers++;
1604 if (for_part)
1605 bdev->bd_part_count++;
1606 mutex_unlock(&bdev->bd_mutex);
1607 disk_unblock_events(disk);
1608 /* only one opener holds refs to the module and disk */
1609 if (!first_open)
1610 put_disk_and_module(disk);
1611 return 0;
1612
1613 out_clear:
1614 disk_put_part(bdev->bd_part);
1615 bdev->bd_disk = NULL;
1616 bdev->bd_part = NULL;
1617 bdev->bd_queue = NULL;
1618 if (bdev != bdev->bd_contains)
1619 __blkdev_put(bdev->bd_contains, mode, 1);
1620 bdev->bd_contains = NULL;
1621 out_unlock_bdev:
1622 mutex_unlock(&bdev->bd_mutex);
1623 disk_unblock_events(disk);
1624 put_disk_and_module(disk);
1625 out:
1626 bdput(bdev);
1627
1628 return ret;
1629}
1630
1631/**
1632 * blkdev_get - open a block device
1633 * @bdev: block_device to open
1634 * @mode: FMODE_* mask
1635 * @holder: exclusive holder identifier
1636 *
1637 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1638 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1639 * @holder is invalid. Exclusive opens may nest for the same @holder.
1640 *
1641 * On success, the reference count of @bdev is unchanged. On failure,
1642 * @bdev is put.
1643 *
1644 * CONTEXT:
1645 * Might sleep.
1646 *
1647 * RETURNS:
1648 * 0 on success, -errno on failure.
1649 */
1650int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1651{
1652 struct block_device *whole = NULL;
1653 int res;
1654
1655 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1656
1657 if ((mode & FMODE_EXCL) && holder) {
1658 whole = bd_start_claiming(bdev, holder);
1659 if (IS_ERR(whole)) {
1660 bdput(bdev);
1661 return PTR_ERR(whole);
1662 }
1663 }
1664
1665 res = __blkdev_get(bdev, mode, 0);
1666
1667 if (whole) {
1668 struct gendisk *disk = whole->bd_disk;
1669
1670 /* finish claiming */
1671 mutex_lock(&bdev->bd_mutex);
1672 spin_lock(&bdev_lock);
1673
1674 if (!res) {
1675 BUG_ON(!bd_may_claim(bdev, whole, holder));
1676 /*
1677 * Note that for a whole device bd_holders
1678 * will be incremented twice, and bd_holder
1679 * will be set to bd_may_claim before being
1680 * set to holder
1681 */
1682 whole->bd_holders++;
1683 whole->bd_holder = bd_may_claim;
1684 bdev->bd_holders++;
1685 bdev->bd_holder = holder;
1686 }
1687
1688 /* tell others that we're done */
1689 BUG_ON(whole->bd_claiming != holder);
1690 whole->bd_claiming = NULL;
1691 wake_up_bit(&whole->bd_claiming, 0);
1692
1693 spin_unlock(&bdev_lock);
1694
1695 /*
1696 * Block event polling for write claims if requested. Any
1697 * write holder makes the write_holder state stick until
1698 * all are released. This is good enough and tracking
1699 * individual writeable reference is too fragile given the
1700 * way @mode is used in blkdev_get/put().
1701 */
1702 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1703 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1704 bdev->bd_write_holder = true;
1705 disk_block_events(disk);
1706 }
1707
1708 mutex_unlock(&bdev->bd_mutex);
1709 bdput(whole);
1710 }
1711
1712 return res;
1713}
1714EXPORT_SYMBOL(blkdev_get);
1715
1716/**
1717 * blkdev_get_by_path - open a block device by name
1718 * @path: path to the block device to open
1719 * @mode: FMODE_* mask
1720 * @holder: exclusive holder identifier
1721 *
1722 * Open the blockdevice described by the device file at @path. @mode
1723 * and @holder are identical to blkdev_get().
1724 *
1725 * On success, the returned block_device has reference count of one.
1726 *
1727 * CONTEXT:
1728 * Might sleep.
1729 *
1730 * RETURNS:
1731 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1732 */
1733struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1734 void *holder)
1735{
1736 struct block_device *bdev;
1737 int err;
1738
1739 bdev = lookup_bdev(path);
1740 if (IS_ERR(bdev))
1741 return bdev;
1742
1743 err = blkdev_get(bdev, mode, holder);
1744 if (err)
1745 return ERR_PTR(err);
1746
1747 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1748 blkdev_put(bdev, mode);
1749 return ERR_PTR(-EACCES);
1750 }
1751
1752 return bdev;
1753}
1754EXPORT_SYMBOL(blkdev_get_by_path);
1755
1756/**
1757 * blkdev_get_by_dev - open a block device by device number
1758 * @dev: device number of block device to open
1759 * @mode: FMODE_* mask
1760 * @holder: exclusive holder identifier
1761 *
1762 * Open the blockdevice described by device number @dev. @mode and
1763 * @holder are identical to blkdev_get().
1764 *
1765 * Use it ONLY if you really do not have anything better - i.e. when
1766 * you are behind a truly sucky interface and all you are given is a
1767 * device number. _Never_ to be used for internal purposes. If you
1768 * ever need it - reconsider your API.
1769 *
1770 * On success, the returned block_device has reference count of one.
1771 *
1772 * CONTEXT:
1773 * Might sleep.
1774 *
1775 * RETURNS:
1776 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1777 */
1778struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1779{
1780 struct block_device *bdev;
1781 int err;
1782
1783 bdev = bdget(dev);
1784 if (!bdev)
1785 return ERR_PTR(-ENOMEM);
1786
1787 err = blkdev_get(bdev, mode, holder);
1788 if (err)
1789 return ERR_PTR(err);
1790
1791 return bdev;
1792}
1793EXPORT_SYMBOL(blkdev_get_by_dev);
1794
1795static int blkdev_open(struct inode * inode, struct file * filp)
1796{
1797 struct block_device *bdev;
1798
1799 /*
1800 * Preserve backwards compatibility and allow large file access
1801 * even if userspace doesn't ask for it explicitly. Some mkfs
1802 * binary needs it. We might want to drop this workaround
1803 * during an unstable branch.
1804 */
1805 filp->f_flags |= O_LARGEFILE;
1806
1807 filp->f_mode |= FMODE_NOWAIT;
1808
1809 if (filp->f_flags & O_NDELAY)
1810 filp->f_mode |= FMODE_NDELAY;
1811 if (filp->f_flags & O_EXCL)
1812 filp->f_mode |= FMODE_EXCL;
1813 if ((filp->f_flags & O_ACCMODE) == 3)
1814 filp->f_mode |= FMODE_WRITE_IOCTL;
1815
1816 bdev = bd_acquire(inode);
1817 if (bdev == NULL)
1818 return -ENOMEM;
1819
1820 filp->f_mapping = bdev->bd_inode->i_mapping;
1821 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1822
1823 return blkdev_get(bdev, filp->f_mode, filp);
1824}
1825
1826static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1827{
1828 struct gendisk *disk = bdev->bd_disk;
1829 struct block_device *victim = NULL;
1830
1831 mutex_lock_nested(&bdev->bd_mutex, for_part);
1832 if (for_part)
1833 bdev->bd_part_count--;
1834
1835 if (!--bdev->bd_openers) {
1836 WARN_ON_ONCE(bdev->bd_holders);
1837 sync_blockdev(bdev);
1838 kill_bdev(bdev);
1839
1840 bdev_write_inode(bdev);
1841 }
1842 if (bdev->bd_contains == bdev) {
1843 if (disk->fops->release)
1844 disk->fops->release(disk, mode);
1845 }
1846 if (!bdev->bd_openers) {
1847 disk_put_part(bdev->bd_part);
1848 bdev->bd_part = NULL;
1849 bdev->bd_disk = NULL;
1850 if (bdev != bdev->bd_contains)
1851 victim = bdev->bd_contains;
1852 bdev->bd_contains = NULL;
1853
1854 put_disk_and_module(disk);
1855 }
1856 mutex_unlock(&bdev->bd_mutex);
1857 bdput(bdev);
1858 if (victim)
1859 __blkdev_put(victim, mode, 1);
1860}
1861
1862void blkdev_put(struct block_device *bdev, fmode_t mode)
1863{
1864 mutex_lock(&bdev->bd_mutex);
1865
1866 if (mode & FMODE_EXCL) {
1867 bool bdev_free;
1868
1869 /*
1870 * Release a claim on the device. The holder fields
1871 * are protected with bdev_lock. bd_mutex is to
1872 * synchronize disk_holder unlinking.
1873 */
1874 spin_lock(&bdev_lock);
1875
1876 WARN_ON_ONCE(--bdev->bd_holders < 0);
1877 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1878
1879 /* bd_contains might point to self, check in a separate step */
1880 if ((bdev_free = !bdev->bd_holders))
1881 bdev->bd_holder = NULL;
1882 if (!bdev->bd_contains->bd_holders)
1883 bdev->bd_contains->bd_holder = NULL;
1884
1885 spin_unlock(&bdev_lock);
1886
1887 /*
1888 * If this was the last claim, remove holder link and
1889 * unblock evpoll if it was a write holder.
1890 */
1891 if (bdev_free && bdev->bd_write_holder) {
1892 disk_unblock_events(bdev->bd_disk);
1893 bdev->bd_write_holder = false;
1894 }
1895 }
1896
1897 /*
1898 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1899 * event. This is to ensure detection of media removal commanded
1900 * from userland - e.g. eject(1).
1901 */
1902 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1903
1904 mutex_unlock(&bdev->bd_mutex);
1905
1906 __blkdev_put(bdev, mode, 0);
1907}
1908EXPORT_SYMBOL(blkdev_put);
1909
1910static int blkdev_close(struct inode * inode, struct file * filp)
1911{
1912 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1913 blkdev_put(bdev, filp->f_mode);
1914 return 0;
1915}
1916
1917static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1918{
1919 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1920 fmode_t mode = file->f_mode;
1921
1922 /*
1923 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1924 * to updated it before every ioctl.
1925 */
1926 if (file->f_flags & O_NDELAY)
1927 mode |= FMODE_NDELAY;
1928 else
1929 mode &= ~FMODE_NDELAY;
1930
1931 return blkdev_ioctl(bdev, mode, cmd, arg);
1932}
1933
1934/*
1935 * Write data to the block device. Only intended for the block device itself
1936 * and the raw driver which basically is a fake block device.
1937 *
1938 * Does not take i_mutex for the write and thus is not for general purpose
1939 * use.
1940 */
1941ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1942{
1943 struct file *file = iocb->ki_filp;
1944 struct inode *bd_inode = bdev_file_inode(file);
1945 loff_t size = i_size_read(bd_inode);
1946 struct blk_plug plug;
1947 ssize_t ret;
1948
1949 if (bdev_read_only(I_BDEV(bd_inode)))
1950 return -EPERM;
1951
1952 if (!iov_iter_count(from))
1953 return 0;
1954
1955 if (iocb->ki_pos >= size)
1956 return -ENOSPC;
1957
1958 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1959 return -EOPNOTSUPP;
1960
1961 iov_iter_truncate(from, size - iocb->ki_pos);
1962
1963 blk_start_plug(&plug);
1964 ret = __generic_file_write_iter(iocb, from);
1965 if (ret > 0)
1966 ret = generic_write_sync(iocb, ret);
1967 blk_finish_plug(&plug);
1968 return ret;
1969}
1970EXPORT_SYMBOL_GPL(blkdev_write_iter);
1971
1972ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1973{
1974 struct file *file = iocb->ki_filp;
1975 struct inode *bd_inode = bdev_file_inode(file);
1976 loff_t size = i_size_read(bd_inode);
1977 loff_t pos = iocb->ki_pos;
1978
1979 if (pos >= size)
1980 return 0;
1981
1982 size -= pos;
1983 iov_iter_truncate(to, size);
1984 return generic_file_read_iter(iocb, to);
1985}
1986EXPORT_SYMBOL_GPL(blkdev_read_iter);
1987
1988/*
1989 * Try to release a page associated with block device when the system
1990 * is under memory pressure.
1991 */
1992static int blkdev_releasepage(struct page *page, gfp_t wait)
1993{
1994 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1995
1996 if (super && super->s_op->bdev_try_to_free_page)
1997 return super->s_op->bdev_try_to_free_page(super, page, wait);
1998
1999 return try_to_free_buffers(page);
2000}
2001
2002static int blkdev_writepages(struct address_space *mapping,
2003 struct writeback_control *wbc)
2004{
2005 return generic_writepages(mapping, wbc);
2006}
2007
2008static const struct address_space_operations def_blk_aops = {
2009 .readpage = blkdev_readpage,
2010 .readpages = blkdev_readpages,
2011 .writepage = blkdev_writepage,
2012 .write_begin = blkdev_write_begin,
2013 .write_end = blkdev_write_end,
2014 .writepages = blkdev_writepages,
2015 .releasepage = blkdev_releasepage,
2016 .direct_IO = blkdev_direct_IO,
2017 .migratepage = buffer_migrate_page_norefs,
2018 .is_dirty_writeback = buffer_check_dirty_writeback,
2019};
2020
2021#define BLKDEV_FALLOC_FL_SUPPORTED \
2022 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
2023 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2024
2025static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2026 loff_t len)
2027{
2028 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2029 struct address_space *mapping;
2030 loff_t end = start + len - 1;
2031 loff_t isize;
2032 int error;
2033
2034 /* Fail if we don't recognize the flags. */
2035 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2036 return -EOPNOTSUPP;
2037
2038 /* Don't go off the end of the device. */
2039 isize = i_size_read(bdev->bd_inode);
2040 if (start >= isize)
2041 return -EINVAL;
2042 if (end >= isize) {
2043 if (mode & FALLOC_FL_KEEP_SIZE) {
2044 len = isize - start;
2045 end = start + len - 1;
2046 } else
2047 return -EINVAL;
2048 }
2049
2050 /*
2051 * Don't allow IO that isn't aligned to logical block size.
2052 */
2053 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2054 return -EINVAL;
2055
2056 /* Invalidate the page cache, including dirty pages. */
2057 mapping = bdev->bd_inode->i_mapping;
2058 truncate_inode_pages_range(mapping, start, end);
2059
2060 switch (mode) {
2061 case FALLOC_FL_ZERO_RANGE:
2062 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2063 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2064 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2065 break;
2066 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2067 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2068 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2069 break;
2070 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2071 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2072 GFP_KERNEL, 0);
2073 break;
2074 default:
2075 return -EOPNOTSUPP;
2076 }
2077 if (error)
2078 return error;
2079
2080 /*
2081 * Invalidate again; if someone wandered in and dirtied a page,
2082 * the caller will be given -EBUSY. The third argument is
2083 * inclusive, so the rounding here is safe.
2084 */
2085 return invalidate_inode_pages2_range(mapping,
2086 start >> PAGE_SHIFT,
2087 end >> PAGE_SHIFT);
2088}
2089
2090const struct file_operations def_blk_fops = {
2091 .open = blkdev_open,
2092 .release = blkdev_close,
2093 .llseek = block_llseek,
2094 .read_iter = blkdev_read_iter,
2095 .write_iter = blkdev_write_iter,
2096 .iopoll = blkdev_iopoll,
2097 .mmap = generic_file_mmap,
2098 .fsync = blkdev_fsync,
2099 .unlocked_ioctl = block_ioctl,
2100#ifdef CONFIG_COMPAT
2101 .compat_ioctl = compat_blkdev_ioctl,
2102#endif
2103 .splice_read = generic_file_splice_read,
2104 .splice_write = iter_file_splice_write,
2105 .fallocate = blkdev_fallocate,
2106};
2107
2108int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2109{
2110 int res;
2111 mm_segment_t old_fs = get_fs();
2112 set_fs(KERNEL_DS);
2113 res = blkdev_ioctl(bdev, 0, cmd, arg);
2114 set_fs(old_fs);
2115 return res;
2116}
2117
2118EXPORT_SYMBOL(ioctl_by_bdev);
2119
2120/**
2121 * lookup_bdev - lookup a struct block_device by name
2122 * @pathname: special file representing the block device
2123 *
2124 * Get a reference to the blockdevice at @pathname in the current
2125 * namespace if possible and return it. Return ERR_PTR(error)
2126 * otherwise.
2127 */
2128struct block_device *lookup_bdev(const char *pathname)
2129{
2130 struct block_device *bdev;
2131 struct inode *inode;
2132 struct path path;
2133 int error;
2134
2135 if (!pathname || !*pathname)
2136 return ERR_PTR(-EINVAL);
2137
2138 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2139 if (error)
2140 return ERR_PTR(error);
2141
2142 inode = d_backing_inode(path.dentry);
2143 error = -ENOTBLK;
2144 if (!S_ISBLK(inode->i_mode))
2145 goto fail;
2146 error = -EACCES;
2147 if (!may_open_dev(&path))
2148 goto fail;
2149 error = -ENOMEM;
2150 bdev = bd_acquire(inode);
2151 if (!bdev)
2152 goto fail;
2153out:
2154 path_put(&path);
2155 return bdev;
2156fail:
2157 bdev = ERR_PTR(error);
2158 goto out;
2159}
2160EXPORT_SYMBOL(lookup_bdev);
2161
2162int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2163{
2164 struct super_block *sb = get_super(bdev);
2165 int res = 0;
2166
2167 if (sb) {
2168 /*
2169 * no need to lock the super, get_super holds the
2170 * read mutex so the filesystem cannot go away
2171 * under us (->put_super runs with the write lock
2172 * hold).
2173 */
2174 shrink_dcache_sb(sb);
2175 res = invalidate_inodes(sb, kill_dirty);
2176 drop_super(sb);
2177 }
2178 invalidate_bdev(bdev);
2179 return res;
2180}
2181EXPORT_SYMBOL(__invalidate_device);
2182
2183void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2184{
2185 struct inode *inode, *old_inode = NULL;
2186
2187 spin_lock(&blockdev_superblock->s_inode_list_lock);
2188 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2189 struct address_space *mapping = inode->i_mapping;
2190 struct block_device *bdev;
2191
2192 spin_lock(&inode->i_lock);
2193 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2194 mapping->nrpages == 0) {
2195 spin_unlock(&inode->i_lock);
2196 continue;
2197 }
2198 __iget(inode);
2199 spin_unlock(&inode->i_lock);
2200 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2201 /*
2202 * We hold a reference to 'inode' so it couldn't have been
2203 * removed from s_inodes list while we dropped the
2204 * s_inode_list_lock We cannot iput the inode now as we can
2205 * be holding the last reference and we cannot iput it under
2206 * s_inode_list_lock. So we keep the reference and iput it
2207 * later.
2208 */
2209 iput(old_inode);
2210 old_inode = inode;
2211 bdev = I_BDEV(inode);
2212
2213 mutex_lock(&bdev->bd_mutex);
2214 if (bdev->bd_openers)
2215 func(bdev, arg);
2216 mutex_unlock(&bdev->bd_mutex);
2217
2218 spin_lock(&blockdev_superblock->s_inode_list_lock);
2219 }
2220 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2221 iput(old_inode);
2222}