at v5.1-rc1 2222 lines 56 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/backing-dev.h> 18#include <linux/module.h> 19#include <linux/blkpg.h> 20#include <linux/magic.h> 21#include <linux/dax.h> 22#include <linux/buffer_head.h> 23#include <linux/swap.h> 24#include <linux/pagevec.h> 25#include <linux/writeback.h> 26#include <linux/mpage.h> 27#include <linux/mount.h> 28#include <linux/uio.h> 29#include <linux/namei.h> 30#include <linux/log2.h> 31#include <linux/cleancache.h> 32#include <linux/dax.h> 33#include <linux/badblocks.h> 34#include <linux/task_io_accounting_ops.h> 35#include <linux/falloc.h> 36#include <linux/uaccess.h> 37#include "internal.h" 38 39struct bdev_inode { 40 struct block_device bdev; 41 struct inode vfs_inode; 42}; 43 44static const struct address_space_operations def_blk_aops; 45 46static inline struct bdev_inode *BDEV_I(struct inode *inode) 47{ 48 return container_of(inode, struct bdev_inode, vfs_inode); 49} 50 51struct block_device *I_BDEV(struct inode *inode) 52{ 53 return &BDEV_I(inode)->bdev; 54} 55EXPORT_SYMBOL(I_BDEV); 56 57static void bdev_write_inode(struct block_device *bdev) 58{ 59 struct inode *inode = bdev->bd_inode; 60 int ret; 61 62 spin_lock(&inode->i_lock); 63 while (inode->i_state & I_DIRTY) { 64 spin_unlock(&inode->i_lock); 65 ret = write_inode_now(inode, true); 66 if (ret) { 67 char name[BDEVNAME_SIZE]; 68 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 69 "for block device %s (err=%d).\n", 70 bdevname(bdev, name), ret); 71 } 72 spin_lock(&inode->i_lock); 73 } 74 spin_unlock(&inode->i_lock); 75} 76 77/* Kill _all_ buffers and pagecache , dirty or not.. */ 78void kill_bdev(struct block_device *bdev) 79{ 80 struct address_space *mapping = bdev->bd_inode->i_mapping; 81 82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 83 return; 84 85 invalidate_bh_lrus(); 86 truncate_inode_pages(mapping, 0); 87} 88EXPORT_SYMBOL(kill_bdev); 89 90/* Invalidate clean unused buffers and pagecache. */ 91void invalidate_bdev(struct block_device *bdev) 92{ 93 struct address_space *mapping = bdev->bd_inode->i_mapping; 94 95 if (mapping->nrpages) { 96 invalidate_bh_lrus(); 97 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 98 invalidate_mapping_pages(mapping, 0, -1); 99 } 100 /* 99% of the time, we don't need to flush the cleancache on the bdev. 101 * But, for the strange corners, lets be cautious 102 */ 103 cleancache_invalidate_inode(mapping); 104} 105EXPORT_SYMBOL(invalidate_bdev); 106 107static void set_init_blocksize(struct block_device *bdev) 108{ 109 unsigned bsize = bdev_logical_block_size(bdev); 110 loff_t size = i_size_read(bdev->bd_inode); 111 112 while (bsize < PAGE_SIZE) { 113 if (size & bsize) 114 break; 115 bsize <<= 1; 116 } 117 bdev->bd_block_size = bsize; 118 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 119} 120 121int set_blocksize(struct block_device *bdev, int size) 122{ 123 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 124 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 125 return -EINVAL; 126 127 /* Size cannot be smaller than the size supported by the device */ 128 if (size < bdev_logical_block_size(bdev)) 129 return -EINVAL; 130 131 /* Don't change the size if it is same as current */ 132 if (bdev->bd_block_size != size) { 133 sync_blockdev(bdev); 134 bdev->bd_block_size = size; 135 bdev->bd_inode->i_blkbits = blksize_bits(size); 136 kill_bdev(bdev); 137 } 138 return 0; 139} 140 141EXPORT_SYMBOL(set_blocksize); 142 143int sb_set_blocksize(struct super_block *sb, int size) 144{ 145 if (set_blocksize(sb->s_bdev, size)) 146 return 0; 147 /* If we get here, we know size is power of two 148 * and it's value is between 512 and PAGE_SIZE */ 149 sb->s_blocksize = size; 150 sb->s_blocksize_bits = blksize_bits(size); 151 return sb->s_blocksize; 152} 153 154EXPORT_SYMBOL(sb_set_blocksize); 155 156int sb_min_blocksize(struct super_block *sb, int size) 157{ 158 int minsize = bdev_logical_block_size(sb->s_bdev); 159 if (size < minsize) 160 size = minsize; 161 return sb_set_blocksize(sb, size); 162} 163 164EXPORT_SYMBOL(sb_min_blocksize); 165 166static int 167blkdev_get_block(struct inode *inode, sector_t iblock, 168 struct buffer_head *bh, int create) 169{ 170 bh->b_bdev = I_BDEV(inode); 171 bh->b_blocknr = iblock; 172 set_buffer_mapped(bh); 173 return 0; 174} 175 176static struct inode *bdev_file_inode(struct file *file) 177{ 178 return file->f_mapping->host; 179} 180 181static unsigned int dio_bio_write_op(struct kiocb *iocb) 182{ 183 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 184 185 /* avoid the need for a I/O completion work item */ 186 if (iocb->ki_flags & IOCB_DSYNC) 187 op |= REQ_FUA; 188 return op; 189} 190 191#define DIO_INLINE_BIO_VECS 4 192 193static void blkdev_bio_end_io_simple(struct bio *bio) 194{ 195 struct task_struct *waiter = bio->bi_private; 196 197 WRITE_ONCE(bio->bi_private, NULL); 198 blk_wake_io_task(waiter); 199} 200 201static ssize_t 202__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter, 203 int nr_pages) 204{ 205 struct file *file = iocb->ki_filp; 206 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 207 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec; 208 loff_t pos = iocb->ki_pos; 209 bool should_dirty = false; 210 struct bio bio; 211 ssize_t ret; 212 blk_qc_t qc; 213 int i; 214 struct bvec_iter_all iter_all; 215 216 if ((pos | iov_iter_alignment(iter)) & 217 (bdev_logical_block_size(bdev) - 1)) 218 return -EINVAL; 219 220 if (nr_pages <= DIO_INLINE_BIO_VECS) 221 vecs = inline_vecs; 222 else { 223 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec), 224 GFP_KERNEL); 225 if (!vecs) 226 return -ENOMEM; 227 } 228 229 bio_init(&bio, vecs, nr_pages); 230 bio_set_dev(&bio, bdev); 231 bio.bi_iter.bi_sector = pos >> 9; 232 bio.bi_write_hint = iocb->ki_hint; 233 bio.bi_private = current; 234 bio.bi_end_io = blkdev_bio_end_io_simple; 235 bio.bi_ioprio = iocb->ki_ioprio; 236 237 ret = bio_iov_iter_get_pages(&bio, iter); 238 if (unlikely(ret)) 239 goto out; 240 ret = bio.bi_iter.bi_size; 241 242 if (iov_iter_rw(iter) == READ) { 243 bio.bi_opf = REQ_OP_READ; 244 if (iter_is_iovec(iter)) 245 should_dirty = true; 246 } else { 247 bio.bi_opf = dio_bio_write_op(iocb); 248 task_io_account_write(ret); 249 } 250 if (iocb->ki_flags & IOCB_HIPRI) 251 bio_set_polled(&bio, iocb); 252 253 qc = submit_bio(&bio); 254 for (;;) { 255 set_current_state(TASK_UNINTERRUPTIBLE); 256 if (!READ_ONCE(bio.bi_private)) 257 break; 258 if (!(iocb->ki_flags & IOCB_HIPRI) || 259 !blk_poll(bdev_get_queue(bdev), qc, true)) 260 io_schedule(); 261 } 262 __set_current_state(TASK_RUNNING); 263 264 bio_for_each_segment_all(bvec, &bio, i, iter_all) { 265 if (should_dirty && !PageCompound(bvec->bv_page)) 266 set_page_dirty_lock(bvec->bv_page); 267 put_page(bvec->bv_page); 268 } 269 270 if (unlikely(bio.bi_status)) 271 ret = blk_status_to_errno(bio.bi_status); 272 273out: 274 if (vecs != inline_vecs) 275 kfree(vecs); 276 277 bio_uninit(&bio); 278 279 return ret; 280} 281 282struct blkdev_dio { 283 union { 284 struct kiocb *iocb; 285 struct task_struct *waiter; 286 }; 287 size_t size; 288 atomic_t ref; 289 bool multi_bio : 1; 290 bool should_dirty : 1; 291 bool is_sync : 1; 292 struct bio bio; 293}; 294 295static struct bio_set blkdev_dio_pool; 296 297static int blkdev_iopoll(struct kiocb *kiocb, bool wait) 298{ 299 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host); 300 struct request_queue *q = bdev_get_queue(bdev); 301 302 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait); 303} 304 305static void blkdev_bio_end_io(struct bio *bio) 306{ 307 struct blkdev_dio *dio = bio->bi_private; 308 bool should_dirty = dio->should_dirty; 309 310 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) { 311 if (bio->bi_status && !dio->bio.bi_status) 312 dio->bio.bi_status = bio->bi_status; 313 } else { 314 if (!dio->is_sync) { 315 struct kiocb *iocb = dio->iocb; 316 ssize_t ret; 317 318 if (likely(!dio->bio.bi_status)) { 319 ret = dio->size; 320 iocb->ki_pos += ret; 321 } else { 322 ret = blk_status_to_errno(dio->bio.bi_status); 323 } 324 325 dio->iocb->ki_complete(iocb, ret, 0); 326 if (dio->multi_bio) 327 bio_put(&dio->bio); 328 } else { 329 struct task_struct *waiter = dio->waiter; 330 331 WRITE_ONCE(dio->waiter, NULL); 332 blk_wake_io_task(waiter); 333 } 334 } 335 336 if (should_dirty) { 337 bio_check_pages_dirty(bio); 338 } else { 339 struct bio_vec *bvec; 340 int i; 341 struct bvec_iter_all iter_all; 342 343 bio_for_each_segment_all(bvec, bio, i, iter_all) 344 put_page(bvec->bv_page); 345 bio_put(bio); 346 } 347} 348 349static ssize_t 350__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages) 351{ 352 struct file *file = iocb->ki_filp; 353 struct inode *inode = bdev_file_inode(file); 354 struct block_device *bdev = I_BDEV(inode); 355 struct blk_plug plug; 356 struct blkdev_dio *dio; 357 struct bio *bio; 358 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0; 359 bool is_read = (iov_iter_rw(iter) == READ), is_sync; 360 loff_t pos = iocb->ki_pos; 361 blk_qc_t qc = BLK_QC_T_NONE; 362 int ret = 0; 363 364 if ((pos | iov_iter_alignment(iter)) & 365 (bdev_logical_block_size(bdev) - 1)) 366 return -EINVAL; 367 368 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool); 369 370 dio = container_of(bio, struct blkdev_dio, bio); 371 dio->is_sync = is_sync = is_sync_kiocb(iocb); 372 if (dio->is_sync) { 373 dio->waiter = current; 374 bio_get(bio); 375 } else { 376 dio->iocb = iocb; 377 } 378 379 dio->size = 0; 380 dio->multi_bio = false; 381 dio->should_dirty = is_read && iter_is_iovec(iter); 382 383 /* 384 * Don't plug for HIPRI/polled IO, as those should go straight 385 * to issue 386 */ 387 if (!is_poll) 388 blk_start_plug(&plug); 389 390 for (;;) { 391 bio_set_dev(bio, bdev); 392 bio->bi_iter.bi_sector = pos >> 9; 393 bio->bi_write_hint = iocb->ki_hint; 394 bio->bi_private = dio; 395 bio->bi_end_io = blkdev_bio_end_io; 396 bio->bi_ioprio = iocb->ki_ioprio; 397 398 ret = bio_iov_iter_get_pages(bio, iter); 399 if (unlikely(ret)) { 400 bio->bi_status = BLK_STS_IOERR; 401 bio_endio(bio); 402 break; 403 } 404 405 if (is_read) { 406 bio->bi_opf = REQ_OP_READ; 407 if (dio->should_dirty) 408 bio_set_pages_dirty(bio); 409 } else { 410 bio->bi_opf = dio_bio_write_op(iocb); 411 task_io_account_write(bio->bi_iter.bi_size); 412 } 413 414 dio->size += bio->bi_iter.bi_size; 415 pos += bio->bi_iter.bi_size; 416 417 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES); 418 if (!nr_pages) { 419 bool polled = false; 420 421 if (iocb->ki_flags & IOCB_HIPRI) { 422 bio_set_polled(bio, iocb); 423 polled = true; 424 } 425 426 qc = submit_bio(bio); 427 428 if (polled) 429 WRITE_ONCE(iocb->ki_cookie, qc); 430 break; 431 } 432 433 if (!dio->multi_bio) { 434 /* 435 * AIO needs an extra reference to ensure the dio 436 * structure which is embedded into the first bio 437 * stays around. 438 */ 439 if (!is_sync) 440 bio_get(bio); 441 dio->multi_bio = true; 442 atomic_set(&dio->ref, 2); 443 } else { 444 atomic_inc(&dio->ref); 445 } 446 447 submit_bio(bio); 448 bio = bio_alloc(GFP_KERNEL, nr_pages); 449 } 450 451 if (!is_poll) 452 blk_finish_plug(&plug); 453 454 if (!is_sync) 455 return -EIOCBQUEUED; 456 457 for (;;) { 458 set_current_state(TASK_UNINTERRUPTIBLE); 459 if (!READ_ONCE(dio->waiter)) 460 break; 461 462 if (!(iocb->ki_flags & IOCB_HIPRI) || 463 !blk_poll(bdev_get_queue(bdev), qc, true)) 464 io_schedule(); 465 } 466 __set_current_state(TASK_RUNNING); 467 468 if (!ret) 469 ret = blk_status_to_errno(dio->bio.bi_status); 470 if (likely(!ret)) 471 ret = dio->size; 472 473 bio_put(&dio->bio); 474 return ret; 475} 476 477static ssize_t 478blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 479{ 480 int nr_pages; 481 482 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1); 483 if (!nr_pages) 484 return 0; 485 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES) 486 return __blkdev_direct_IO_simple(iocb, iter, nr_pages); 487 488 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES)); 489} 490 491static __init int blkdev_init(void) 492{ 493 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS); 494} 495module_init(blkdev_init); 496 497int __sync_blockdev(struct block_device *bdev, int wait) 498{ 499 if (!bdev) 500 return 0; 501 if (!wait) 502 return filemap_flush(bdev->bd_inode->i_mapping); 503 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 504} 505 506/* 507 * Write out and wait upon all the dirty data associated with a block 508 * device via its mapping. Does not take the superblock lock. 509 */ 510int sync_blockdev(struct block_device *bdev) 511{ 512 return __sync_blockdev(bdev, 1); 513} 514EXPORT_SYMBOL(sync_blockdev); 515 516/* 517 * Write out and wait upon all dirty data associated with this 518 * device. Filesystem data as well as the underlying block 519 * device. Takes the superblock lock. 520 */ 521int fsync_bdev(struct block_device *bdev) 522{ 523 struct super_block *sb = get_super(bdev); 524 if (sb) { 525 int res = sync_filesystem(sb); 526 drop_super(sb); 527 return res; 528 } 529 return sync_blockdev(bdev); 530} 531EXPORT_SYMBOL(fsync_bdev); 532 533/** 534 * freeze_bdev -- lock a filesystem and force it into a consistent state 535 * @bdev: blockdevice to lock 536 * 537 * If a superblock is found on this device, we take the s_umount semaphore 538 * on it to make sure nobody unmounts until the snapshot creation is done. 539 * The reference counter (bd_fsfreeze_count) guarantees that only the last 540 * unfreeze process can unfreeze the frozen filesystem actually when multiple 541 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 542 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 543 * actually. 544 */ 545struct super_block *freeze_bdev(struct block_device *bdev) 546{ 547 struct super_block *sb; 548 int error = 0; 549 550 mutex_lock(&bdev->bd_fsfreeze_mutex); 551 if (++bdev->bd_fsfreeze_count > 1) { 552 /* 553 * We don't even need to grab a reference - the first call 554 * to freeze_bdev grab an active reference and only the last 555 * thaw_bdev drops it. 556 */ 557 sb = get_super(bdev); 558 if (sb) 559 drop_super(sb); 560 mutex_unlock(&bdev->bd_fsfreeze_mutex); 561 return sb; 562 } 563 564 sb = get_active_super(bdev); 565 if (!sb) 566 goto out; 567 if (sb->s_op->freeze_super) 568 error = sb->s_op->freeze_super(sb); 569 else 570 error = freeze_super(sb); 571 if (error) { 572 deactivate_super(sb); 573 bdev->bd_fsfreeze_count--; 574 mutex_unlock(&bdev->bd_fsfreeze_mutex); 575 return ERR_PTR(error); 576 } 577 deactivate_super(sb); 578 out: 579 sync_blockdev(bdev); 580 mutex_unlock(&bdev->bd_fsfreeze_mutex); 581 return sb; /* thaw_bdev releases s->s_umount */ 582} 583EXPORT_SYMBOL(freeze_bdev); 584 585/** 586 * thaw_bdev -- unlock filesystem 587 * @bdev: blockdevice to unlock 588 * @sb: associated superblock 589 * 590 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 591 */ 592int thaw_bdev(struct block_device *bdev, struct super_block *sb) 593{ 594 int error = -EINVAL; 595 596 mutex_lock(&bdev->bd_fsfreeze_mutex); 597 if (!bdev->bd_fsfreeze_count) 598 goto out; 599 600 error = 0; 601 if (--bdev->bd_fsfreeze_count > 0) 602 goto out; 603 604 if (!sb) 605 goto out; 606 607 if (sb->s_op->thaw_super) 608 error = sb->s_op->thaw_super(sb); 609 else 610 error = thaw_super(sb); 611 if (error) 612 bdev->bd_fsfreeze_count++; 613out: 614 mutex_unlock(&bdev->bd_fsfreeze_mutex); 615 return error; 616} 617EXPORT_SYMBOL(thaw_bdev); 618 619static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 620{ 621 return block_write_full_page(page, blkdev_get_block, wbc); 622} 623 624static int blkdev_readpage(struct file * file, struct page * page) 625{ 626 return block_read_full_page(page, blkdev_get_block); 627} 628 629static int blkdev_readpages(struct file *file, struct address_space *mapping, 630 struct list_head *pages, unsigned nr_pages) 631{ 632 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 633} 634 635static int blkdev_write_begin(struct file *file, struct address_space *mapping, 636 loff_t pos, unsigned len, unsigned flags, 637 struct page **pagep, void **fsdata) 638{ 639 return block_write_begin(mapping, pos, len, flags, pagep, 640 blkdev_get_block); 641} 642 643static int blkdev_write_end(struct file *file, struct address_space *mapping, 644 loff_t pos, unsigned len, unsigned copied, 645 struct page *page, void *fsdata) 646{ 647 int ret; 648 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 649 650 unlock_page(page); 651 put_page(page); 652 653 return ret; 654} 655 656/* 657 * private llseek: 658 * for a block special file file_inode(file)->i_size is zero 659 * so we compute the size by hand (just as in block_read/write above) 660 */ 661static loff_t block_llseek(struct file *file, loff_t offset, int whence) 662{ 663 struct inode *bd_inode = bdev_file_inode(file); 664 loff_t retval; 665 666 inode_lock(bd_inode); 667 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 668 inode_unlock(bd_inode); 669 return retval; 670} 671 672int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 673{ 674 struct inode *bd_inode = bdev_file_inode(filp); 675 struct block_device *bdev = I_BDEV(bd_inode); 676 int error; 677 678 error = file_write_and_wait_range(filp, start, end); 679 if (error) 680 return error; 681 682 /* 683 * There is no need to serialise calls to blkdev_issue_flush with 684 * i_mutex and doing so causes performance issues with concurrent 685 * O_SYNC writers to a block device. 686 */ 687 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 688 if (error == -EOPNOTSUPP) 689 error = 0; 690 691 return error; 692} 693EXPORT_SYMBOL(blkdev_fsync); 694 695/** 696 * bdev_read_page() - Start reading a page from a block device 697 * @bdev: The device to read the page from 698 * @sector: The offset on the device to read the page to (need not be aligned) 699 * @page: The page to read 700 * 701 * On entry, the page should be locked. It will be unlocked when the page 702 * has been read. If the block driver implements rw_page synchronously, 703 * that will be true on exit from this function, but it need not be. 704 * 705 * Errors returned by this function are usually "soft", eg out of memory, or 706 * queue full; callers should try a different route to read this page rather 707 * than propagate an error back up the stack. 708 * 709 * Return: negative errno if an error occurs, 0 if submission was successful. 710 */ 711int bdev_read_page(struct block_device *bdev, sector_t sector, 712 struct page *page) 713{ 714 const struct block_device_operations *ops = bdev->bd_disk->fops; 715 int result = -EOPNOTSUPP; 716 717 if (!ops->rw_page || bdev_get_integrity(bdev)) 718 return result; 719 720 result = blk_queue_enter(bdev->bd_queue, 0); 721 if (result) 722 return result; 723 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, 724 REQ_OP_READ); 725 blk_queue_exit(bdev->bd_queue); 726 return result; 727} 728EXPORT_SYMBOL_GPL(bdev_read_page); 729 730/** 731 * bdev_write_page() - Start writing a page to a block device 732 * @bdev: The device to write the page to 733 * @sector: The offset on the device to write the page to (need not be aligned) 734 * @page: The page to write 735 * @wbc: The writeback_control for the write 736 * 737 * On entry, the page should be locked and not currently under writeback. 738 * On exit, if the write started successfully, the page will be unlocked and 739 * under writeback. If the write failed already (eg the driver failed to 740 * queue the page to the device), the page will still be locked. If the 741 * caller is a ->writepage implementation, it will need to unlock the page. 742 * 743 * Errors returned by this function are usually "soft", eg out of memory, or 744 * queue full; callers should try a different route to write this page rather 745 * than propagate an error back up the stack. 746 * 747 * Return: negative errno if an error occurs, 0 if submission was successful. 748 */ 749int bdev_write_page(struct block_device *bdev, sector_t sector, 750 struct page *page, struct writeback_control *wbc) 751{ 752 int result; 753 const struct block_device_operations *ops = bdev->bd_disk->fops; 754 755 if (!ops->rw_page || bdev_get_integrity(bdev)) 756 return -EOPNOTSUPP; 757 result = blk_queue_enter(bdev->bd_queue, 0); 758 if (result) 759 return result; 760 761 set_page_writeback(page); 762 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, 763 REQ_OP_WRITE); 764 if (result) { 765 end_page_writeback(page); 766 } else { 767 clean_page_buffers(page); 768 unlock_page(page); 769 } 770 blk_queue_exit(bdev->bd_queue); 771 return result; 772} 773EXPORT_SYMBOL_GPL(bdev_write_page); 774 775/* 776 * pseudo-fs 777 */ 778 779static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 780static struct kmem_cache * bdev_cachep __read_mostly; 781 782static struct inode *bdev_alloc_inode(struct super_block *sb) 783{ 784 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 785 if (!ei) 786 return NULL; 787 return &ei->vfs_inode; 788} 789 790static void bdev_i_callback(struct rcu_head *head) 791{ 792 struct inode *inode = container_of(head, struct inode, i_rcu); 793 struct bdev_inode *bdi = BDEV_I(inode); 794 795 kmem_cache_free(bdev_cachep, bdi); 796} 797 798static void bdev_destroy_inode(struct inode *inode) 799{ 800 call_rcu(&inode->i_rcu, bdev_i_callback); 801} 802 803static void init_once(void *foo) 804{ 805 struct bdev_inode *ei = (struct bdev_inode *) foo; 806 struct block_device *bdev = &ei->bdev; 807 808 memset(bdev, 0, sizeof(*bdev)); 809 mutex_init(&bdev->bd_mutex); 810 INIT_LIST_HEAD(&bdev->bd_list); 811#ifdef CONFIG_SYSFS 812 INIT_LIST_HEAD(&bdev->bd_holder_disks); 813#endif 814 bdev->bd_bdi = &noop_backing_dev_info; 815 inode_init_once(&ei->vfs_inode); 816 /* Initialize mutex for freeze. */ 817 mutex_init(&bdev->bd_fsfreeze_mutex); 818} 819 820static void bdev_evict_inode(struct inode *inode) 821{ 822 struct block_device *bdev = &BDEV_I(inode)->bdev; 823 truncate_inode_pages_final(&inode->i_data); 824 invalidate_inode_buffers(inode); /* is it needed here? */ 825 clear_inode(inode); 826 spin_lock(&bdev_lock); 827 list_del_init(&bdev->bd_list); 828 spin_unlock(&bdev_lock); 829 /* Detach inode from wb early as bdi_put() may free bdi->wb */ 830 inode_detach_wb(inode); 831 if (bdev->bd_bdi != &noop_backing_dev_info) { 832 bdi_put(bdev->bd_bdi); 833 bdev->bd_bdi = &noop_backing_dev_info; 834 } 835} 836 837static const struct super_operations bdev_sops = { 838 .statfs = simple_statfs, 839 .alloc_inode = bdev_alloc_inode, 840 .destroy_inode = bdev_destroy_inode, 841 .drop_inode = generic_delete_inode, 842 .evict_inode = bdev_evict_inode, 843}; 844 845static struct dentry *bd_mount(struct file_system_type *fs_type, 846 int flags, const char *dev_name, void *data) 847{ 848 struct dentry *dent; 849 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 850 if (!IS_ERR(dent)) 851 dent->d_sb->s_iflags |= SB_I_CGROUPWB; 852 return dent; 853} 854 855static struct file_system_type bd_type = { 856 .name = "bdev", 857 .mount = bd_mount, 858 .kill_sb = kill_anon_super, 859}; 860 861struct super_block *blockdev_superblock __read_mostly; 862EXPORT_SYMBOL_GPL(blockdev_superblock); 863 864void __init bdev_cache_init(void) 865{ 866 int err; 867 static struct vfsmount *bd_mnt; 868 869 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 870 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 871 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 872 init_once); 873 err = register_filesystem(&bd_type); 874 if (err) 875 panic("Cannot register bdev pseudo-fs"); 876 bd_mnt = kern_mount(&bd_type); 877 if (IS_ERR(bd_mnt)) 878 panic("Cannot create bdev pseudo-fs"); 879 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 880} 881 882/* 883 * Most likely _very_ bad one - but then it's hardly critical for small 884 * /dev and can be fixed when somebody will need really large one. 885 * Keep in mind that it will be fed through icache hash function too. 886 */ 887static inline unsigned long hash(dev_t dev) 888{ 889 return MAJOR(dev)+MINOR(dev); 890} 891 892static int bdev_test(struct inode *inode, void *data) 893{ 894 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 895} 896 897static int bdev_set(struct inode *inode, void *data) 898{ 899 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 900 return 0; 901} 902 903static LIST_HEAD(all_bdevs); 904 905/* 906 * If there is a bdev inode for this device, unhash it so that it gets evicted 907 * as soon as last inode reference is dropped. 908 */ 909void bdev_unhash_inode(dev_t dev) 910{ 911 struct inode *inode; 912 913 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev); 914 if (inode) { 915 remove_inode_hash(inode); 916 iput(inode); 917 } 918} 919 920struct block_device *bdget(dev_t dev) 921{ 922 struct block_device *bdev; 923 struct inode *inode; 924 925 inode = iget5_locked(blockdev_superblock, hash(dev), 926 bdev_test, bdev_set, &dev); 927 928 if (!inode) 929 return NULL; 930 931 bdev = &BDEV_I(inode)->bdev; 932 933 if (inode->i_state & I_NEW) { 934 bdev->bd_contains = NULL; 935 bdev->bd_super = NULL; 936 bdev->bd_inode = inode; 937 bdev->bd_block_size = i_blocksize(inode); 938 bdev->bd_part_count = 0; 939 bdev->bd_invalidated = 0; 940 inode->i_mode = S_IFBLK; 941 inode->i_rdev = dev; 942 inode->i_bdev = bdev; 943 inode->i_data.a_ops = &def_blk_aops; 944 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 945 spin_lock(&bdev_lock); 946 list_add(&bdev->bd_list, &all_bdevs); 947 spin_unlock(&bdev_lock); 948 unlock_new_inode(inode); 949 } 950 return bdev; 951} 952 953EXPORT_SYMBOL(bdget); 954 955/** 956 * bdgrab -- Grab a reference to an already referenced block device 957 * @bdev: Block device to grab a reference to. 958 */ 959struct block_device *bdgrab(struct block_device *bdev) 960{ 961 ihold(bdev->bd_inode); 962 return bdev; 963} 964EXPORT_SYMBOL(bdgrab); 965 966long nr_blockdev_pages(void) 967{ 968 struct block_device *bdev; 969 long ret = 0; 970 spin_lock(&bdev_lock); 971 list_for_each_entry(bdev, &all_bdevs, bd_list) { 972 ret += bdev->bd_inode->i_mapping->nrpages; 973 } 974 spin_unlock(&bdev_lock); 975 return ret; 976} 977 978void bdput(struct block_device *bdev) 979{ 980 iput(bdev->bd_inode); 981} 982 983EXPORT_SYMBOL(bdput); 984 985static struct block_device *bd_acquire(struct inode *inode) 986{ 987 struct block_device *bdev; 988 989 spin_lock(&bdev_lock); 990 bdev = inode->i_bdev; 991 if (bdev && !inode_unhashed(bdev->bd_inode)) { 992 bdgrab(bdev); 993 spin_unlock(&bdev_lock); 994 return bdev; 995 } 996 spin_unlock(&bdev_lock); 997 998 /* 999 * i_bdev references block device inode that was already shut down 1000 * (corresponding device got removed). Remove the reference and look 1001 * up block device inode again just in case new device got 1002 * reestablished under the same device number. 1003 */ 1004 if (bdev) 1005 bd_forget(inode); 1006 1007 bdev = bdget(inode->i_rdev); 1008 if (bdev) { 1009 spin_lock(&bdev_lock); 1010 if (!inode->i_bdev) { 1011 /* 1012 * We take an additional reference to bd_inode, 1013 * and it's released in clear_inode() of inode. 1014 * So, we can access it via ->i_mapping always 1015 * without igrab(). 1016 */ 1017 bdgrab(bdev); 1018 inode->i_bdev = bdev; 1019 inode->i_mapping = bdev->bd_inode->i_mapping; 1020 } 1021 spin_unlock(&bdev_lock); 1022 } 1023 return bdev; 1024} 1025 1026/* Call when you free inode */ 1027 1028void bd_forget(struct inode *inode) 1029{ 1030 struct block_device *bdev = NULL; 1031 1032 spin_lock(&bdev_lock); 1033 if (!sb_is_blkdev_sb(inode->i_sb)) 1034 bdev = inode->i_bdev; 1035 inode->i_bdev = NULL; 1036 inode->i_mapping = &inode->i_data; 1037 spin_unlock(&bdev_lock); 1038 1039 if (bdev) 1040 bdput(bdev); 1041} 1042 1043/** 1044 * bd_may_claim - test whether a block device can be claimed 1045 * @bdev: block device of interest 1046 * @whole: whole block device containing @bdev, may equal @bdev 1047 * @holder: holder trying to claim @bdev 1048 * 1049 * Test whether @bdev can be claimed by @holder. 1050 * 1051 * CONTEXT: 1052 * spin_lock(&bdev_lock). 1053 * 1054 * RETURNS: 1055 * %true if @bdev can be claimed, %false otherwise. 1056 */ 1057static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 1058 void *holder) 1059{ 1060 if (bdev->bd_holder == holder) 1061 return true; /* already a holder */ 1062 else if (bdev->bd_holder != NULL) 1063 return false; /* held by someone else */ 1064 else if (whole == bdev) 1065 return true; /* is a whole device which isn't held */ 1066 1067 else if (whole->bd_holder == bd_may_claim) 1068 return true; /* is a partition of a device that is being partitioned */ 1069 else if (whole->bd_holder != NULL) 1070 return false; /* is a partition of a held device */ 1071 else 1072 return true; /* is a partition of an un-held device */ 1073} 1074 1075/** 1076 * bd_prepare_to_claim - prepare to claim a block device 1077 * @bdev: block device of interest 1078 * @whole: the whole device containing @bdev, may equal @bdev 1079 * @holder: holder trying to claim @bdev 1080 * 1081 * Prepare to claim @bdev. This function fails if @bdev is already 1082 * claimed by another holder and waits if another claiming is in 1083 * progress. This function doesn't actually claim. On successful 1084 * return, the caller has ownership of bd_claiming and bd_holder[s]. 1085 * 1086 * CONTEXT: 1087 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 1088 * it multiple times. 1089 * 1090 * RETURNS: 1091 * 0 if @bdev can be claimed, -EBUSY otherwise. 1092 */ 1093static int bd_prepare_to_claim(struct block_device *bdev, 1094 struct block_device *whole, void *holder) 1095{ 1096retry: 1097 /* if someone else claimed, fail */ 1098 if (!bd_may_claim(bdev, whole, holder)) 1099 return -EBUSY; 1100 1101 /* if claiming is already in progress, wait for it to finish */ 1102 if (whole->bd_claiming) { 1103 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 1104 DEFINE_WAIT(wait); 1105 1106 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 1107 spin_unlock(&bdev_lock); 1108 schedule(); 1109 finish_wait(wq, &wait); 1110 spin_lock(&bdev_lock); 1111 goto retry; 1112 } 1113 1114 /* yay, all mine */ 1115 return 0; 1116} 1117 1118static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno) 1119{ 1120 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno); 1121 1122 if (!disk) 1123 return NULL; 1124 /* 1125 * Now that we hold gendisk reference we make sure bdev we looked up is 1126 * not stale. If it is, it means device got removed and created before 1127 * we looked up gendisk and we fail open in such case. Associating 1128 * unhashed bdev with newly created gendisk could lead to two bdevs 1129 * (and thus two independent caches) being associated with one device 1130 * which is bad. 1131 */ 1132 if (inode_unhashed(bdev->bd_inode)) { 1133 put_disk_and_module(disk); 1134 return NULL; 1135 } 1136 return disk; 1137} 1138 1139/** 1140 * bd_start_claiming - start claiming a block device 1141 * @bdev: block device of interest 1142 * @holder: holder trying to claim @bdev 1143 * 1144 * @bdev is about to be opened exclusively. Check @bdev can be opened 1145 * exclusively and mark that an exclusive open is in progress. Each 1146 * successful call to this function must be matched with a call to 1147 * either bd_finish_claiming() or bd_abort_claiming() (which do not 1148 * fail). 1149 * 1150 * This function is used to gain exclusive access to the block device 1151 * without actually causing other exclusive open attempts to fail. It 1152 * should be used when the open sequence itself requires exclusive 1153 * access but may subsequently fail. 1154 * 1155 * CONTEXT: 1156 * Might sleep. 1157 * 1158 * RETURNS: 1159 * Pointer to the block device containing @bdev on success, ERR_PTR() 1160 * value on failure. 1161 */ 1162static struct block_device *bd_start_claiming(struct block_device *bdev, 1163 void *holder) 1164{ 1165 struct gendisk *disk; 1166 struct block_device *whole; 1167 int partno, err; 1168 1169 might_sleep(); 1170 1171 /* 1172 * @bdev might not have been initialized properly yet, look up 1173 * and grab the outer block device the hard way. 1174 */ 1175 disk = bdev_get_gendisk(bdev, &partno); 1176 if (!disk) 1177 return ERR_PTR(-ENXIO); 1178 1179 /* 1180 * Normally, @bdev should equal what's returned from bdget_disk() 1181 * if partno is 0; however, some drivers (floppy) use multiple 1182 * bdev's for the same physical device and @bdev may be one of the 1183 * aliases. Keep @bdev if partno is 0. This means claimer 1184 * tracking is broken for those devices but it has always been that 1185 * way. 1186 */ 1187 if (partno) 1188 whole = bdget_disk(disk, 0); 1189 else 1190 whole = bdgrab(bdev); 1191 1192 put_disk_and_module(disk); 1193 if (!whole) 1194 return ERR_PTR(-ENOMEM); 1195 1196 /* prepare to claim, if successful, mark claiming in progress */ 1197 spin_lock(&bdev_lock); 1198 1199 err = bd_prepare_to_claim(bdev, whole, holder); 1200 if (err == 0) { 1201 whole->bd_claiming = holder; 1202 spin_unlock(&bdev_lock); 1203 return whole; 1204 } else { 1205 spin_unlock(&bdev_lock); 1206 bdput(whole); 1207 return ERR_PTR(err); 1208 } 1209} 1210 1211#ifdef CONFIG_SYSFS 1212struct bd_holder_disk { 1213 struct list_head list; 1214 struct gendisk *disk; 1215 int refcnt; 1216}; 1217 1218static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 1219 struct gendisk *disk) 1220{ 1221 struct bd_holder_disk *holder; 1222 1223 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 1224 if (holder->disk == disk) 1225 return holder; 1226 return NULL; 1227} 1228 1229static int add_symlink(struct kobject *from, struct kobject *to) 1230{ 1231 return sysfs_create_link(from, to, kobject_name(to)); 1232} 1233 1234static void del_symlink(struct kobject *from, struct kobject *to) 1235{ 1236 sysfs_remove_link(from, kobject_name(to)); 1237} 1238 1239/** 1240 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 1241 * @bdev: the claimed slave bdev 1242 * @disk: the holding disk 1243 * 1244 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1245 * 1246 * This functions creates the following sysfs symlinks. 1247 * 1248 * - from "slaves" directory of the holder @disk to the claimed @bdev 1249 * - from "holders" directory of the @bdev to the holder @disk 1250 * 1251 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 1252 * passed to bd_link_disk_holder(), then: 1253 * 1254 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 1255 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 1256 * 1257 * The caller must have claimed @bdev before calling this function and 1258 * ensure that both @bdev and @disk are valid during the creation and 1259 * lifetime of these symlinks. 1260 * 1261 * CONTEXT: 1262 * Might sleep. 1263 * 1264 * RETURNS: 1265 * 0 on success, -errno on failure. 1266 */ 1267int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 1268{ 1269 struct bd_holder_disk *holder; 1270 int ret = 0; 1271 1272 mutex_lock(&bdev->bd_mutex); 1273 1274 WARN_ON_ONCE(!bdev->bd_holder); 1275 1276 /* FIXME: remove the following once add_disk() handles errors */ 1277 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 1278 goto out_unlock; 1279 1280 holder = bd_find_holder_disk(bdev, disk); 1281 if (holder) { 1282 holder->refcnt++; 1283 goto out_unlock; 1284 } 1285 1286 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 1287 if (!holder) { 1288 ret = -ENOMEM; 1289 goto out_unlock; 1290 } 1291 1292 INIT_LIST_HEAD(&holder->list); 1293 holder->disk = disk; 1294 holder->refcnt = 1; 1295 1296 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1297 if (ret) 1298 goto out_free; 1299 1300 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 1301 if (ret) 1302 goto out_del; 1303 /* 1304 * bdev could be deleted beneath us which would implicitly destroy 1305 * the holder directory. Hold on to it. 1306 */ 1307 kobject_get(bdev->bd_part->holder_dir); 1308 1309 list_add(&holder->list, &bdev->bd_holder_disks); 1310 goto out_unlock; 1311 1312out_del: 1313 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1314out_free: 1315 kfree(holder); 1316out_unlock: 1317 mutex_unlock(&bdev->bd_mutex); 1318 return ret; 1319} 1320EXPORT_SYMBOL_GPL(bd_link_disk_holder); 1321 1322/** 1323 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 1324 * @bdev: the calimed slave bdev 1325 * @disk: the holding disk 1326 * 1327 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1328 * 1329 * CONTEXT: 1330 * Might sleep. 1331 */ 1332void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 1333{ 1334 struct bd_holder_disk *holder; 1335 1336 mutex_lock(&bdev->bd_mutex); 1337 1338 holder = bd_find_holder_disk(bdev, disk); 1339 1340 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 1341 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1342 del_symlink(bdev->bd_part->holder_dir, 1343 &disk_to_dev(disk)->kobj); 1344 kobject_put(bdev->bd_part->holder_dir); 1345 list_del_init(&holder->list); 1346 kfree(holder); 1347 } 1348 1349 mutex_unlock(&bdev->bd_mutex); 1350} 1351EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1352#endif 1353 1354/** 1355 * flush_disk - invalidates all buffer-cache entries on a disk 1356 * 1357 * @bdev: struct block device to be flushed 1358 * @kill_dirty: flag to guide handling of dirty inodes 1359 * 1360 * Invalidates all buffer-cache entries on a disk. It should be called 1361 * when a disk has been changed -- either by a media change or online 1362 * resize. 1363 */ 1364static void flush_disk(struct block_device *bdev, bool kill_dirty) 1365{ 1366 if (__invalidate_device(bdev, kill_dirty)) { 1367 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1368 "resized disk %s\n", 1369 bdev->bd_disk ? bdev->bd_disk->disk_name : ""); 1370 } 1371 1372 if (!bdev->bd_disk) 1373 return; 1374 if (disk_part_scan_enabled(bdev->bd_disk)) 1375 bdev->bd_invalidated = 1; 1376} 1377 1378/** 1379 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1380 * @disk: struct gendisk to check 1381 * @bdev: struct bdev to adjust. 1382 * @verbose: if %true log a message about a size change if there is any 1383 * 1384 * This routine checks to see if the bdev size does not match the disk size 1385 * and adjusts it if it differs. When shrinking the bdev size, its all caches 1386 * are freed. 1387 */ 1388void check_disk_size_change(struct gendisk *disk, struct block_device *bdev, 1389 bool verbose) 1390{ 1391 loff_t disk_size, bdev_size; 1392 1393 disk_size = (loff_t)get_capacity(disk) << 9; 1394 bdev_size = i_size_read(bdev->bd_inode); 1395 if (disk_size != bdev_size) { 1396 if (verbose) { 1397 printk(KERN_INFO 1398 "%s: detected capacity change from %lld to %lld\n", 1399 disk->disk_name, bdev_size, disk_size); 1400 } 1401 i_size_write(bdev->bd_inode, disk_size); 1402 if (bdev_size > disk_size) 1403 flush_disk(bdev, false); 1404 } 1405} 1406 1407/** 1408 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1409 * @disk: struct gendisk to be revalidated 1410 * 1411 * This routine is a wrapper for lower-level driver's revalidate_disk 1412 * call-backs. It is used to do common pre and post operations needed 1413 * for all revalidate_disk operations. 1414 */ 1415int revalidate_disk(struct gendisk *disk) 1416{ 1417 struct block_device *bdev; 1418 int ret = 0; 1419 1420 if (disk->fops->revalidate_disk) 1421 ret = disk->fops->revalidate_disk(disk); 1422 bdev = bdget_disk(disk, 0); 1423 if (!bdev) 1424 return ret; 1425 1426 mutex_lock(&bdev->bd_mutex); 1427 check_disk_size_change(disk, bdev, ret == 0); 1428 bdev->bd_invalidated = 0; 1429 mutex_unlock(&bdev->bd_mutex); 1430 bdput(bdev); 1431 return ret; 1432} 1433EXPORT_SYMBOL(revalidate_disk); 1434 1435/* 1436 * This routine checks whether a removable media has been changed, 1437 * and invalidates all buffer-cache-entries in that case. This 1438 * is a relatively slow routine, so we have to try to minimize using 1439 * it. Thus it is called only upon a 'mount' or 'open'. This 1440 * is the best way of combining speed and utility, I think. 1441 * People changing diskettes in the middle of an operation deserve 1442 * to lose :-) 1443 */ 1444int check_disk_change(struct block_device *bdev) 1445{ 1446 struct gendisk *disk = bdev->bd_disk; 1447 const struct block_device_operations *bdops = disk->fops; 1448 unsigned int events; 1449 1450 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1451 DISK_EVENT_EJECT_REQUEST); 1452 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1453 return 0; 1454 1455 flush_disk(bdev, true); 1456 if (bdops->revalidate_disk) 1457 bdops->revalidate_disk(bdev->bd_disk); 1458 return 1; 1459} 1460 1461EXPORT_SYMBOL(check_disk_change); 1462 1463void bd_set_size(struct block_device *bdev, loff_t size) 1464{ 1465 inode_lock(bdev->bd_inode); 1466 i_size_write(bdev->bd_inode, size); 1467 inode_unlock(bdev->bd_inode); 1468} 1469EXPORT_SYMBOL(bd_set_size); 1470 1471static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1472 1473/* 1474 * bd_mutex locking: 1475 * 1476 * mutex_lock(part->bd_mutex) 1477 * mutex_lock_nested(whole->bd_mutex, 1) 1478 */ 1479 1480static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1481{ 1482 struct gendisk *disk; 1483 int ret; 1484 int partno; 1485 int perm = 0; 1486 bool first_open = false; 1487 1488 if (mode & FMODE_READ) 1489 perm |= MAY_READ; 1490 if (mode & FMODE_WRITE) 1491 perm |= MAY_WRITE; 1492 /* 1493 * hooks: /n/, see "layering violations". 1494 */ 1495 if (!for_part) { 1496 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1497 if (ret != 0) { 1498 bdput(bdev); 1499 return ret; 1500 } 1501 } 1502 1503 restart: 1504 1505 ret = -ENXIO; 1506 disk = bdev_get_gendisk(bdev, &partno); 1507 if (!disk) 1508 goto out; 1509 1510 disk_block_events(disk); 1511 mutex_lock_nested(&bdev->bd_mutex, for_part); 1512 if (!bdev->bd_openers) { 1513 first_open = true; 1514 bdev->bd_disk = disk; 1515 bdev->bd_queue = disk->queue; 1516 bdev->bd_contains = bdev; 1517 bdev->bd_partno = partno; 1518 1519 if (!partno) { 1520 ret = -ENXIO; 1521 bdev->bd_part = disk_get_part(disk, partno); 1522 if (!bdev->bd_part) 1523 goto out_clear; 1524 1525 ret = 0; 1526 if (disk->fops->open) { 1527 ret = disk->fops->open(bdev, mode); 1528 if (ret == -ERESTARTSYS) { 1529 /* Lost a race with 'disk' being 1530 * deleted, try again. 1531 * See md.c 1532 */ 1533 disk_put_part(bdev->bd_part); 1534 bdev->bd_part = NULL; 1535 bdev->bd_disk = NULL; 1536 bdev->bd_queue = NULL; 1537 mutex_unlock(&bdev->bd_mutex); 1538 disk_unblock_events(disk); 1539 put_disk_and_module(disk); 1540 goto restart; 1541 } 1542 } 1543 1544 if (!ret) { 1545 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1546 set_init_blocksize(bdev); 1547 } 1548 1549 /* 1550 * If the device is invalidated, rescan partition 1551 * if open succeeded or failed with -ENOMEDIUM. 1552 * The latter is necessary to prevent ghost 1553 * partitions on a removed medium. 1554 */ 1555 if (bdev->bd_invalidated) { 1556 if (!ret) 1557 rescan_partitions(disk, bdev); 1558 else if (ret == -ENOMEDIUM) 1559 invalidate_partitions(disk, bdev); 1560 } 1561 1562 if (ret) 1563 goto out_clear; 1564 } else { 1565 struct block_device *whole; 1566 whole = bdget_disk(disk, 0); 1567 ret = -ENOMEM; 1568 if (!whole) 1569 goto out_clear; 1570 BUG_ON(for_part); 1571 ret = __blkdev_get(whole, mode, 1); 1572 if (ret) 1573 goto out_clear; 1574 bdev->bd_contains = whole; 1575 bdev->bd_part = disk_get_part(disk, partno); 1576 if (!(disk->flags & GENHD_FL_UP) || 1577 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1578 ret = -ENXIO; 1579 goto out_clear; 1580 } 1581 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1582 set_init_blocksize(bdev); 1583 } 1584 1585 if (bdev->bd_bdi == &noop_backing_dev_info) 1586 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info); 1587 } else { 1588 if (bdev->bd_contains == bdev) { 1589 ret = 0; 1590 if (bdev->bd_disk->fops->open) 1591 ret = bdev->bd_disk->fops->open(bdev, mode); 1592 /* the same as first opener case, read comment there */ 1593 if (bdev->bd_invalidated) { 1594 if (!ret) 1595 rescan_partitions(bdev->bd_disk, bdev); 1596 else if (ret == -ENOMEDIUM) 1597 invalidate_partitions(bdev->bd_disk, bdev); 1598 } 1599 if (ret) 1600 goto out_unlock_bdev; 1601 } 1602 } 1603 bdev->bd_openers++; 1604 if (for_part) 1605 bdev->bd_part_count++; 1606 mutex_unlock(&bdev->bd_mutex); 1607 disk_unblock_events(disk); 1608 /* only one opener holds refs to the module and disk */ 1609 if (!first_open) 1610 put_disk_and_module(disk); 1611 return 0; 1612 1613 out_clear: 1614 disk_put_part(bdev->bd_part); 1615 bdev->bd_disk = NULL; 1616 bdev->bd_part = NULL; 1617 bdev->bd_queue = NULL; 1618 if (bdev != bdev->bd_contains) 1619 __blkdev_put(bdev->bd_contains, mode, 1); 1620 bdev->bd_contains = NULL; 1621 out_unlock_bdev: 1622 mutex_unlock(&bdev->bd_mutex); 1623 disk_unblock_events(disk); 1624 put_disk_and_module(disk); 1625 out: 1626 bdput(bdev); 1627 1628 return ret; 1629} 1630 1631/** 1632 * blkdev_get - open a block device 1633 * @bdev: block_device to open 1634 * @mode: FMODE_* mask 1635 * @holder: exclusive holder identifier 1636 * 1637 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1638 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1639 * @holder is invalid. Exclusive opens may nest for the same @holder. 1640 * 1641 * On success, the reference count of @bdev is unchanged. On failure, 1642 * @bdev is put. 1643 * 1644 * CONTEXT: 1645 * Might sleep. 1646 * 1647 * RETURNS: 1648 * 0 on success, -errno on failure. 1649 */ 1650int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1651{ 1652 struct block_device *whole = NULL; 1653 int res; 1654 1655 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1656 1657 if ((mode & FMODE_EXCL) && holder) { 1658 whole = bd_start_claiming(bdev, holder); 1659 if (IS_ERR(whole)) { 1660 bdput(bdev); 1661 return PTR_ERR(whole); 1662 } 1663 } 1664 1665 res = __blkdev_get(bdev, mode, 0); 1666 1667 if (whole) { 1668 struct gendisk *disk = whole->bd_disk; 1669 1670 /* finish claiming */ 1671 mutex_lock(&bdev->bd_mutex); 1672 spin_lock(&bdev_lock); 1673 1674 if (!res) { 1675 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1676 /* 1677 * Note that for a whole device bd_holders 1678 * will be incremented twice, and bd_holder 1679 * will be set to bd_may_claim before being 1680 * set to holder 1681 */ 1682 whole->bd_holders++; 1683 whole->bd_holder = bd_may_claim; 1684 bdev->bd_holders++; 1685 bdev->bd_holder = holder; 1686 } 1687 1688 /* tell others that we're done */ 1689 BUG_ON(whole->bd_claiming != holder); 1690 whole->bd_claiming = NULL; 1691 wake_up_bit(&whole->bd_claiming, 0); 1692 1693 spin_unlock(&bdev_lock); 1694 1695 /* 1696 * Block event polling for write claims if requested. Any 1697 * write holder makes the write_holder state stick until 1698 * all are released. This is good enough and tracking 1699 * individual writeable reference is too fragile given the 1700 * way @mode is used in blkdev_get/put(). 1701 */ 1702 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1703 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1704 bdev->bd_write_holder = true; 1705 disk_block_events(disk); 1706 } 1707 1708 mutex_unlock(&bdev->bd_mutex); 1709 bdput(whole); 1710 } 1711 1712 return res; 1713} 1714EXPORT_SYMBOL(blkdev_get); 1715 1716/** 1717 * blkdev_get_by_path - open a block device by name 1718 * @path: path to the block device to open 1719 * @mode: FMODE_* mask 1720 * @holder: exclusive holder identifier 1721 * 1722 * Open the blockdevice described by the device file at @path. @mode 1723 * and @holder are identical to blkdev_get(). 1724 * 1725 * On success, the returned block_device has reference count of one. 1726 * 1727 * CONTEXT: 1728 * Might sleep. 1729 * 1730 * RETURNS: 1731 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1732 */ 1733struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1734 void *holder) 1735{ 1736 struct block_device *bdev; 1737 int err; 1738 1739 bdev = lookup_bdev(path); 1740 if (IS_ERR(bdev)) 1741 return bdev; 1742 1743 err = blkdev_get(bdev, mode, holder); 1744 if (err) 1745 return ERR_PTR(err); 1746 1747 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1748 blkdev_put(bdev, mode); 1749 return ERR_PTR(-EACCES); 1750 } 1751 1752 return bdev; 1753} 1754EXPORT_SYMBOL(blkdev_get_by_path); 1755 1756/** 1757 * blkdev_get_by_dev - open a block device by device number 1758 * @dev: device number of block device to open 1759 * @mode: FMODE_* mask 1760 * @holder: exclusive holder identifier 1761 * 1762 * Open the blockdevice described by device number @dev. @mode and 1763 * @holder are identical to blkdev_get(). 1764 * 1765 * Use it ONLY if you really do not have anything better - i.e. when 1766 * you are behind a truly sucky interface and all you are given is a 1767 * device number. _Never_ to be used for internal purposes. If you 1768 * ever need it - reconsider your API. 1769 * 1770 * On success, the returned block_device has reference count of one. 1771 * 1772 * CONTEXT: 1773 * Might sleep. 1774 * 1775 * RETURNS: 1776 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1777 */ 1778struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1779{ 1780 struct block_device *bdev; 1781 int err; 1782 1783 bdev = bdget(dev); 1784 if (!bdev) 1785 return ERR_PTR(-ENOMEM); 1786 1787 err = blkdev_get(bdev, mode, holder); 1788 if (err) 1789 return ERR_PTR(err); 1790 1791 return bdev; 1792} 1793EXPORT_SYMBOL(blkdev_get_by_dev); 1794 1795static int blkdev_open(struct inode * inode, struct file * filp) 1796{ 1797 struct block_device *bdev; 1798 1799 /* 1800 * Preserve backwards compatibility and allow large file access 1801 * even if userspace doesn't ask for it explicitly. Some mkfs 1802 * binary needs it. We might want to drop this workaround 1803 * during an unstable branch. 1804 */ 1805 filp->f_flags |= O_LARGEFILE; 1806 1807 filp->f_mode |= FMODE_NOWAIT; 1808 1809 if (filp->f_flags & O_NDELAY) 1810 filp->f_mode |= FMODE_NDELAY; 1811 if (filp->f_flags & O_EXCL) 1812 filp->f_mode |= FMODE_EXCL; 1813 if ((filp->f_flags & O_ACCMODE) == 3) 1814 filp->f_mode |= FMODE_WRITE_IOCTL; 1815 1816 bdev = bd_acquire(inode); 1817 if (bdev == NULL) 1818 return -ENOMEM; 1819 1820 filp->f_mapping = bdev->bd_inode->i_mapping; 1821 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping); 1822 1823 return blkdev_get(bdev, filp->f_mode, filp); 1824} 1825 1826static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1827{ 1828 struct gendisk *disk = bdev->bd_disk; 1829 struct block_device *victim = NULL; 1830 1831 mutex_lock_nested(&bdev->bd_mutex, for_part); 1832 if (for_part) 1833 bdev->bd_part_count--; 1834 1835 if (!--bdev->bd_openers) { 1836 WARN_ON_ONCE(bdev->bd_holders); 1837 sync_blockdev(bdev); 1838 kill_bdev(bdev); 1839 1840 bdev_write_inode(bdev); 1841 } 1842 if (bdev->bd_contains == bdev) { 1843 if (disk->fops->release) 1844 disk->fops->release(disk, mode); 1845 } 1846 if (!bdev->bd_openers) { 1847 disk_put_part(bdev->bd_part); 1848 bdev->bd_part = NULL; 1849 bdev->bd_disk = NULL; 1850 if (bdev != bdev->bd_contains) 1851 victim = bdev->bd_contains; 1852 bdev->bd_contains = NULL; 1853 1854 put_disk_and_module(disk); 1855 } 1856 mutex_unlock(&bdev->bd_mutex); 1857 bdput(bdev); 1858 if (victim) 1859 __blkdev_put(victim, mode, 1); 1860} 1861 1862void blkdev_put(struct block_device *bdev, fmode_t mode) 1863{ 1864 mutex_lock(&bdev->bd_mutex); 1865 1866 if (mode & FMODE_EXCL) { 1867 bool bdev_free; 1868 1869 /* 1870 * Release a claim on the device. The holder fields 1871 * are protected with bdev_lock. bd_mutex is to 1872 * synchronize disk_holder unlinking. 1873 */ 1874 spin_lock(&bdev_lock); 1875 1876 WARN_ON_ONCE(--bdev->bd_holders < 0); 1877 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1878 1879 /* bd_contains might point to self, check in a separate step */ 1880 if ((bdev_free = !bdev->bd_holders)) 1881 bdev->bd_holder = NULL; 1882 if (!bdev->bd_contains->bd_holders) 1883 bdev->bd_contains->bd_holder = NULL; 1884 1885 spin_unlock(&bdev_lock); 1886 1887 /* 1888 * If this was the last claim, remove holder link and 1889 * unblock evpoll if it was a write holder. 1890 */ 1891 if (bdev_free && bdev->bd_write_holder) { 1892 disk_unblock_events(bdev->bd_disk); 1893 bdev->bd_write_holder = false; 1894 } 1895 } 1896 1897 /* 1898 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1899 * event. This is to ensure detection of media removal commanded 1900 * from userland - e.g. eject(1). 1901 */ 1902 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1903 1904 mutex_unlock(&bdev->bd_mutex); 1905 1906 __blkdev_put(bdev, mode, 0); 1907} 1908EXPORT_SYMBOL(blkdev_put); 1909 1910static int blkdev_close(struct inode * inode, struct file * filp) 1911{ 1912 struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); 1913 blkdev_put(bdev, filp->f_mode); 1914 return 0; 1915} 1916 1917static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1918{ 1919 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1920 fmode_t mode = file->f_mode; 1921 1922 /* 1923 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1924 * to updated it before every ioctl. 1925 */ 1926 if (file->f_flags & O_NDELAY) 1927 mode |= FMODE_NDELAY; 1928 else 1929 mode &= ~FMODE_NDELAY; 1930 1931 return blkdev_ioctl(bdev, mode, cmd, arg); 1932} 1933 1934/* 1935 * Write data to the block device. Only intended for the block device itself 1936 * and the raw driver which basically is a fake block device. 1937 * 1938 * Does not take i_mutex for the write and thus is not for general purpose 1939 * use. 1940 */ 1941ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1942{ 1943 struct file *file = iocb->ki_filp; 1944 struct inode *bd_inode = bdev_file_inode(file); 1945 loff_t size = i_size_read(bd_inode); 1946 struct blk_plug plug; 1947 ssize_t ret; 1948 1949 if (bdev_read_only(I_BDEV(bd_inode))) 1950 return -EPERM; 1951 1952 if (!iov_iter_count(from)) 1953 return 0; 1954 1955 if (iocb->ki_pos >= size) 1956 return -ENOSPC; 1957 1958 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT) 1959 return -EOPNOTSUPP; 1960 1961 iov_iter_truncate(from, size - iocb->ki_pos); 1962 1963 blk_start_plug(&plug); 1964 ret = __generic_file_write_iter(iocb, from); 1965 if (ret > 0) 1966 ret = generic_write_sync(iocb, ret); 1967 blk_finish_plug(&plug); 1968 return ret; 1969} 1970EXPORT_SYMBOL_GPL(blkdev_write_iter); 1971 1972ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1973{ 1974 struct file *file = iocb->ki_filp; 1975 struct inode *bd_inode = bdev_file_inode(file); 1976 loff_t size = i_size_read(bd_inode); 1977 loff_t pos = iocb->ki_pos; 1978 1979 if (pos >= size) 1980 return 0; 1981 1982 size -= pos; 1983 iov_iter_truncate(to, size); 1984 return generic_file_read_iter(iocb, to); 1985} 1986EXPORT_SYMBOL_GPL(blkdev_read_iter); 1987 1988/* 1989 * Try to release a page associated with block device when the system 1990 * is under memory pressure. 1991 */ 1992static int blkdev_releasepage(struct page *page, gfp_t wait) 1993{ 1994 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1995 1996 if (super && super->s_op->bdev_try_to_free_page) 1997 return super->s_op->bdev_try_to_free_page(super, page, wait); 1998 1999 return try_to_free_buffers(page); 2000} 2001 2002static int blkdev_writepages(struct address_space *mapping, 2003 struct writeback_control *wbc) 2004{ 2005 return generic_writepages(mapping, wbc); 2006} 2007 2008static const struct address_space_operations def_blk_aops = { 2009 .readpage = blkdev_readpage, 2010 .readpages = blkdev_readpages, 2011 .writepage = blkdev_writepage, 2012 .write_begin = blkdev_write_begin, 2013 .write_end = blkdev_write_end, 2014 .writepages = blkdev_writepages, 2015 .releasepage = blkdev_releasepage, 2016 .direct_IO = blkdev_direct_IO, 2017 .migratepage = buffer_migrate_page_norefs, 2018 .is_dirty_writeback = buffer_check_dirty_writeback, 2019}; 2020 2021#define BLKDEV_FALLOC_FL_SUPPORTED \ 2022 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 2023 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE) 2024 2025static long blkdev_fallocate(struct file *file, int mode, loff_t start, 2026 loff_t len) 2027{ 2028 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 2029 struct address_space *mapping; 2030 loff_t end = start + len - 1; 2031 loff_t isize; 2032 int error; 2033 2034 /* Fail if we don't recognize the flags. */ 2035 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED) 2036 return -EOPNOTSUPP; 2037 2038 /* Don't go off the end of the device. */ 2039 isize = i_size_read(bdev->bd_inode); 2040 if (start >= isize) 2041 return -EINVAL; 2042 if (end >= isize) { 2043 if (mode & FALLOC_FL_KEEP_SIZE) { 2044 len = isize - start; 2045 end = start + len - 1; 2046 } else 2047 return -EINVAL; 2048 } 2049 2050 /* 2051 * Don't allow IO that isn't aligned to logical block size. 2052 */ 2053 if ((start | len) & (bdev_logical_block_size(bdev) - 1)) 2054 return -EINVAL; 2055 2056 /* Invalidate the page cache, including dirty pages. */ 2057 mapping = bdev->bd_inode->i_mapping; 2058 truncate_inode_pages_range(mapping, start, end); 2059 2060 switch (mode) { 2061 case FALLOC_FL_ZERO_RANGE: 2062 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE: 2063 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2064 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP); 2065 break; 2066 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE: 2067 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2068 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK); 2069 break; 2070 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE: 2071 error = blkdev_issue_discard(bdev, start >> 9, len >> 9, 2072 GFP_KERNEL, 0); 2073 break; 2074 default: 2075 return -EOPNOTSUPP; 2076 } 2077 if (error) 2078 return error; 2079 2080 /* 2081 * Invalidate again; if someone wandered in and dirtied a page, 2082 * the caller will be given -EBUSY. The third argument is 2083 * inclusive, so the rounding here is safe. 2084 */ 2085 return invalidate_inode_pages2_range(mapping, 2086 start >> PAGE_SHIFT, 2087 end >> PAGE_SHIFT); 2088} 2089 2090const struct file_operations def_blk_fops = { 2091 .open = blkdev_open, 2092 .release = blkdev_close, 2093 .llseek = block_llseek, 2094 .read_iter = blkdev_read_iter, 2095 .write_iter = blkdev_write_iter, 2096 .iopoll = blkdev_iopoll, 2097 .mmap = generic_file_mmap, 2098 .fsync = blkdev_fsync, 2099 .unlocked_ioctl = block_ioctl, 2100#ifdef CONFIG_COMPAT 2101 .compat_ioctl = compat_blkdev_ioctl, 2102#endif 2103 .splice_read = generic_file_splice_read, 2104 .splice_write = iter_file_splice_write, 2105 .fallocate = blkdev_fallocate, 2106}; 2107 2108int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 2109{ 2110 int res; 2111 mm_segment_t old_fs = get_fs(); 2112 set_fs(KERNEL_DS); 2113 res = blkdev_ioctl(bdev, 0, cmd, arg); 2114 set_fs(old_fs); 2115 return res; 2116} 2117 2118EXPORT_SYMBOL(ioctl_by_bdev); 2119 2120/** 2121 * lookup_bdev - lookup a struct block_device by name 2122 * @pathname: special file representing the block device 2123 * 2124 * Get a reference to the blockdevice at @pathname in the current 2125 * namespace if possible and return it. Return ERR_PTR(error) 2126 * otherwise. 2127 */ 2128struct block_device *lookup_bdev(const char *pathname) 2129{ 2130 struct block_device *bdev; 2131 struct inode *inode; 2132 struct path path; 2133 int error; 2134 2135 if (!pathname || !*pathname) 2136 return ERR_PTR(-EINVAL); 2137 2138 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 2139 if (error) 2140 return ERR_PTR(error); 2141 2142 inode = d_backing_inode(path.dentry); 2143 error = -ENOTBLK; 2144 if (!S_ISBLK(inode->i_mode)) 2145 goto fail; 2146 error = -EACCES; 2147 if (!may_open_dev(&path)) 2148 goto fail; 2149 error = -ENOMEM; 2150 bdev = bd_acquire(inode); 2151 if (!bdev) 2152 goto fail; 2153out: 2154 path_put(&path); 2155 return bdev; 2156fail: 2157 bdev = ERR_PTR(error); 2158 goto out; 2159} 2160EXPORT_SYMBOL(lookup_bdev); 2161 2162int __invalidate_device(struct block_device *bdev, bool kill_dirty) 2163{ 2164 struct super_block *sb = get_super(bdev); 2165 int res = 0; 2166 2167 if (sb) { 2168 /* 2169 * no need to lock the super, get_super holds the 2170 * read mutex so the filesystem cannot go away 2171 * under us (->put_super runs with the write lock 2172 * hold). 2173 */ 2174 shrink_dcache_sb(sb); 2175 res = invalidate_inodes(sb, kill_dirty); 2176 drop_super(sb); 2177 } 2178 invalidate_bdev(bdev); 2179 return res; 2180} 2181EXPORT_SYMBOL(__invalidate_device); 2182 2183void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 2184{ 2185 struct inode *inode, *old_inode = NULL; 2186 2187 spin_lock(&blockdev_superblock->s_inode_list_lock); 2188 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 2189 struct address_space *mapping = inode->i_mapping; 2190 struct block_device *bdev; 2191 2192 spin_lock(&inode->i_lock); 2193 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 2194 mapping->nrpages == 0) { 2195 spin_unlock(&inode->i_lock); 2196 continue; 2197 } 2198 __iget(inode); 2199 spin_unlock(&inode->i_lock); 2200 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2201 /* 2202 * We hold a reference to 'inode' so it couldn't have been 2203 * removed from s_inodes list while we dropped the 2204 * s_inode_list_lock We cannot iput the inode now as we can 2205 * be holding the last reference and we cannot iput it under 2206 * s_inode_list_lock. So we keep the reference and iput it 2207 * later. 2208 */ 2209 iput(old_inode); 2210 old_inode = inode; 2211 bdev = I_BDEV(inode); 2212 2213 mutex_lock(&bdev->bd_mutex); 2214 if (bdev->bd_openers) 2215 func(bdev, arg); 2216 mutex_unlock(&bdev->bd_mutex); 2217 2218 spin_lock(&blockdev_superblock->s_inode_list_lock); 2219 } 2220 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2221 iput(old_inode); 2222}