at v5.0 87 kB view raw
1/* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61#include <linux/mm.h> 62#include <linux/socket.h> 63#include <linux/file.h> 64#include <linux/net.h> 65#include <linux/interrupt.h> 66#include <linux/thread_info.h> 67#include <linux/rcupdate.h> 68#include <linux/netdevice.h> 69#include <linux/proc_fs.h> 70#include <linux/seq_file.h> 71#include <linux/mutex.h> 72#include <linux/if_bridge.h> 73#include <linux/if_frad.h> 74#include <linux/if_vlan.h> 75#include <linux/ptp_classify.h> 76#include <linux/init.h> 77#include <linux/poll.h> 78#include <linux/cache.h> 79#include <linux/module.h> 80#include <linux/highmem.h> 81#include <linux/mount.h> 82#include <linux/security.h> 83#include <linux/syscalls.h> 84#include <linux/compat.h> 85#include <linux/kmod.h> 86#include <linux/audit.h> 87#include <linux/wireless.h> 88#include <linux/nsproxy.h> 89#include <linux/magic.h> 90#include <linux/slab.h> 91#include <linux/xattr.h> 92#include <linux/nospec.h> 93 94#include <linux/uaccess.h> 95#include <asm/unistd.h> 96 97#include <net/compat.h> 98#include <net/wext.h> 99#include <net/cls_cgroup.h> 100 101#include <net/sock.h> 102#include <linux/netfilter.h> 103 104#include <linux/if_tun.h> 105#include <linux/ipv6_route.h> 106#include <linux/route.h> 107#include <linux/sockios.h> 108#include <net/busy_poll.h> 109#include <linux/errqueue.h> 110 111#ifdef CONFIG_NET_RX_BUSY_POLL 112unsigned int sysctl_net_busy_read __read_mostly; 113unsigned int sysctl_net_busy_poll __read_mostly; 114#endif 115 116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120static int sock_close(struct inode *inode, struct file *file); 121static __poll_t sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124#ifdef CONFIG_COMPAT 125static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127#endif 128static int sock_fasync(int fd, struct file *filp, int on); 129static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135/* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147#ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149#endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156}; 157 158/* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162static DEFINE_SPINLOCK(net_family_lock); 163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165/* 166 * Support routines. 167 * Move socket addresses back and forth across the kernel/user 168 * divide and look after the messy bits. 169 */ 170 171/** 172 * move_addr_to_kernel - copy a socket address into kernel space 173 * @uaddr: Address in user space 174 * @kaddr: Address in kernel space 175 * @ulen: Length in user space 176 * 177 * The address is copied into kernel space. If the provided address is 178 * too long an error code of -EINVAL is returned. If the copy gives 179 * invalid addresses -EFAULT is returned. On a success 0 is returned. 180 */ 181 182int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 183{ 184 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 185 return -EINVAL; 186 if (ulen == 0) 187 return 0; 188 if (copy_from_user(kaddr, uaddr, ulen)) 189 return -EFAULT; 190 return audit_sockaddr(ulen, kaddr); 191} 192 193/** 194 * move_addr_to_user - copy an address to user space 195 * @kaddr: kernel space address 196 * @klen: length of address in kernel 197 * @uaddr: user space address 198 * @ulen: pointer to user length field 199 * 200 * The value pointed to by ulen on entry is the buffer length available. 201 * This is overwritten with the buffer space used. -EINVAL is returned 202 * if an overlong buffer is specified or a negative buffer size. -EFAULT 203 * is returned if either the buffer or the length field are not 204 * accessible. 205 * After copying the data up to the limit the user specifies, the true 206 * length of the data is written over the length limit the user 207 * specified. Zero is returned for a success. 208 */ 209 210static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 211 void __user *uaddr, int __user *ulen) 212{ 213 int err; 214 int len; 215 216 BUG_ON(klen > sizeof(struct sockaddr_storage)); 217 err = get_user(len, ulen); 218 if (err) 219 return err; 220 if (len > klen) 221 len = klen; 222 if (len < 0) 223 return -EINVAL; 224 if (len) { 225 if (audit_sockaddr(klen, kaddr)) 226 return -ENOMEM; 227 if (copy_to_user(uaddr, kaddr, len)) 228 return -EFAULT; 229 } 230 /* 231 * "fromlen shall refer to the value before truncation.." 232 * 1003.1g 233 */ 234 return __put_user(klen, ulen); 235} 236 237static struct kmem_cache *sock_inode_cachep __ro_after_init; 238 239static struct inode *sock_alloc_inode(struct super_block *sb) 240{ 241 struct socket_alloc *ei; 242 struct socket_wq *wq; 243 244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 245 if (!ei) 246 return NULL; 247 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 248 if (!wq) { 249 kmem_cache_free(sock_inode_cachep, ei); 250 return NULL; 251 } 252 init_waitqueue_head(&wq->wait); 253 wq->fasync_list = NULL; 254 wq->flags = 0; 255 ei->socket.wq = wq; 256 257 ei->socket.state = SS_UNCONNECTED; 258 ei->socket.flags = 0; 259 ei->socket.ops = NULL; 260 ei->socket.sk = NULL; 261 ei->socket.file = NULL; 262 263 return &ei->vfs_inode; 264} 265 266static void sock_destroy_inode(struct inode *inode) 267{ 268 struct socket_alloc *ei; 269 270 ei = container_of(inode, struct socket_alloc, vfs_inode); 271 kfree_rcu(ei->socket.wq, rcu); 272 kmem_cache_free(sock_inode_cachep, ei); 273} 274 275static void init_once(void *foo) 276{ 277 struct socket_alloc *ei = (struct socket_alloc *)foo; 278 279 inode_init_once(&ei->vfs_inode); 280} 281 282static void init_inodecache(void) 283{ 284 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 285 sizeof(struct socket_alloc), 286 0, 287 (SLAB_HWCACHE_ALIGN | 288 SLAB_RECLAIM_ACCOUNT | 289 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 290 init_once); 291 BUG_ON(sock_inode_cachep == NULL); 292} 293 294static const struct super_operations sockfs_ops = { 295 .alloc_inode = sock_alloc_inode, 296 .destroy_inode = sock_destroy_inode, 297 .statfs = simple_statfs, 298}; 299 300/* 301 * sockfs_dname() is called from d_path(). 302 */ 303static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 304{ 305 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 306 d_inode(dentry)->i_ino); 307} 308 309static const struct dentry_operations sockfs_dentry_operations = { 310 .d_dname = sockfs_dname, 311}; 312 313static int sockfs_xattr_get(const struct xattr_handler *handler, 314 struct dentry *dentry, struct inode *inode, 315 const char *suffix, void *value, size_t size) 316{ 317 if (value) { 318 if (dentry->d_name.len + 1 > size) 319 return -ERANGE; 320 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 321 } 322 return dentry->d_name.len + 1; 323} 324 325#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 326#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 327#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 328 329static const struct xattr_handler sockfs_xattr_handler = { 330 .name = XATTR_NAME_SOCKPROTONAME, 331 .get = sockfs_xattr_get, 332}; 333 334static int sockfs_security_xattr_set(const struct xattr_handler *handler, 335 struct dentry *dentry, struct inode *inode, 336 const char *suffix, const void *value, 337 size_t size, int flags) 338{ 339 /* Handled by LSM. */ 340 return -EAGAIN; 341} 342 343static const struct xattr_handler sockfs_security_xattr_handler = { 344 .prefix = XATTR_SECURITY_PREFIX, 345 .set = sockfs_security_xattr_set, 346}; 347 348static const struct xattr_handler *sockfs_xattr_handlers[] = { 349 &sockfs_xattr_handler, 350 &sockfs_security_xattr_handler, 351 NULL 352}; 353 354static struct dentry *sockfs_mount(struct file_system_type *fs_type, 355 int flags, const char *dev_name, void *data) 356{ 357 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 358 sockfs_xattr_handlers, 359 &sockfs_dentry_operations, SOCKFS_MAGIC); 360} 361 362static struct vfsmount *sock_mnt __read_mostly; 363 364static struct file_system_type sock_fs_type = { 365 .name = "sockfs", 366 .mount = sockfs_mount, 367 .kill_sb = kill_anon_super, 368}; 369 370/* 371 * Obtains the first available file descriptor and sets it up for use. 372 * 373 * These functions create file structures and maps them to fd space 374 * of the current process. On success it returns file descriptor 375 * and file struct implicitly stored in sock->file. 376 * Note that another thread may close file descriptor before we return 377 * from this function. We use the fact that now we do not refer 378 * to socket after mapping. If one day we will need it, this 379 * function will increment ref. count on file by 1. 380 * 381 * In any case returned fd MAY BE not valid! 382 * This race condition is unavoidable 383 * with shared fd spaces, we cannot solve it inside kernel, 384 * but we take care of internal coherence yet. 385 */ 386 387struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 388{ 389 struct file *file; 390 391 if (!dname) 392 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 393 394 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 395 O_RDWR | (flags & O_NONBLOCK), 396 &socket_file_ops); 397 if (IS_ERR(file)) { 398 sock_release(sock); 399 return file; 400 } 401 402 sock->file = file; 403 file->private_data = sock; 404 return file; 405} 406EXPORT_SYMBOL(sock_alloc_file); 407 408static int sock_map_fd(struct socket *sock, int flags) 409{ 410 struct file *newfile; 411 int fd = get_unused_fd_flags(flags); 412 if (unlikely(fd < 0)) { 413 sock_release(sock); 414 return fd; 415 } 416 417 newfile = sock_alloc_file(sock, flags, NULL); 418 if (likely(!IS_ERR(newfile))) { 419 fd_install(fd, newfile); 420 return fd; 421 } 422 423 put_unused_fd(fd); 424 return PTR_ERR(newfile); 425} 426 427struct socket *sock_from_file(struct file *file, int *err) 428{ 429 if (file->f_op == &socket_file_ops) 430 return file->private_data; /* set in sock_map_fd */ 431 432 *err = -ENOTSOCK; 433 return NULL; 434} 435EXPORT_SYMBOL(sock_from_file); 436 437/** 438 * sockfd_lookup - Go from a file number to its socket slot 439 * @fd: file handle 440 * @err: pointer to an error code return 441 * 442 * The file handle passed in is locked and the socket it is bound 443 * to is returned. If an error occurs the err pointer is overwritten 444 * with a negative errno code and NULL is returned. The function checks 445 * for both invalid handles and passing a handle which is not a socket. 446 * 447 * On a success the socket object pointer is returned. 448 */ 449 450struct socket *sockfd_lookup(int fd, int *err) 451{ 452 struct file *file; 453 struct socket *sock; 454 455 file = fget(fd); 456 if (!file) { 457 *err = -EBADF; 458 return NULL; 459 } 460 461 sock = sock_from_file(file, err); 462 if (!sock) 463 fput(file); 464 return sock; 465} 466EXPORT_SYMBOL(sockfd_lookup); 467 468static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 469{ 470 struct fd f = fdget(fd); 471 struct socket *sock; 472 473 *err = -EBADF; 474 if (f.file) { 475 sock = sock_from_file(f.file, err); 476 if (likely(sock)) { 477 *fput_needed = f.flags; 478 return sock; 479 } 480 fdput(f); 481 } 482 return NULL; 483} 484 485static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 486 size_t size) 487{ 488 ssize_t len; 489 ssize_t used = 0; 490 491 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 492 if (len < 0) 493 return len; 494 used += len; 495 if (buffer) { 496 if (size < used) 497 return -ERANGE; 498 buffer += len; 499 } 500 501 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 502 used += len; 503 if (buffer) { 504 if (size < used) 505 return -ERANGE; 506 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 507 buffer += len; 508 } 509 510 return used; 511} 512 513static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 514{ 515 int err = simple_setattr(dentry, iattr); 516 517 if (!err && (iattr->ia_valid & ATTR_UID)) { 518 struct socket *sock = SOCKET_I(d_inode(dentry)); 519 520 if (sock->sk) 521 sock->sk->sk_uid = iattr->ia_uid; 522 else 523 err = -ENOENT; 524 } 525 526 return err; 527} 528 529static const struct inode_operations sockfs_inode_ops = { 530 .listxattr = sockfs_listxattr, 531 .setattr = sockfs_setattr, 532}; 533 534/** 535 * sock_alloc - allocate a socket 536 * 537 * Allocate a new inode and socket object. The two are bound together 538 * and initialised. The socket is then returned. If we are out of inodes 539 * NULL is returned. 540 */ 541 542struct socket *sock_alloc(void) 543{ 544 struct inode *inode; 545 struct socket *sock; 546 547 inode = new_inode_pseudo(sock_mnt->mnt_sb); 548 if (!inode) 549 return NULL; 550 551 sock = SOCKET_I(inode); 552 553 inode->i_ino = get_next_ino(); 554 inode->i_mode = S_IFSOCK | S_IRWXUGO; 555 inode->i_uid = current_fsuid(); 556 inode->i_gid = current_fsgid(); 557 inode->i_op = &sockfs_inode_ops; 558 559 return sock; 560} 561EXPORT_SYMBOL(sock_alloc); 562 563/** 564 * sock_release - close a socket 565 * @sock: socket to close 566 * 567 * The socket is released from the protocol stack if it has a release 568 * callback, and the inode is then released if the socket is bound to 569 * an inode not a file. 570 */ 571 572static void __sock_release(struct socket *sock, struct inode *inode) 573{ 574 if (sock->ops) { 575 struct module *owner = sock->ops->owner; 576 577 if (inode) 578 inode_lock(inode); 579 sock->ops->release(sock); 580 sock->sk = NULL; 581 if (inode) 582 inode_unlock(inode); 583 sock->ops = NULL; 584 module_put(owner); 585 } 586 587 if (sock->wq->fasync_list) 588 pr_err("%s: fasync list not empty!\n", __func__); 589 590 if (!sock->file) { 591 iput(SOCK_INODE(sock)); 592 return; 593 } 594 sock->file = NULL; 595} 596 597void sock_release(struct socket *sock) 598{ 599 __sock_release(sock, NULL); 600} 601EXPORT_SYMBOL(sock_release); 602 603void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 604{ 605 u8 flags = *tx_flags; 606 607 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 608 flags |= SKBTX_HW_TSTAMP; 609 610 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 611 flags |= SKBTX_SW_TSTAMP; 612 613 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 614 flags |= SKBTX_SCHED_TSTAMP; 615 616 *tx_flags = flags; 617} 618EXPORT_SYMBOL(__sock_tx_timestamp); 619 620static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 621{ 622 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 623 BUG_ON(ret == -EIOCBQUEUED); 624 return ret; 625} 626 627int sock_sendmsg(struct socket *sock, struct msghdr *msg) 628{ 629 int err = security_socket_sendmsg(sock, msg, 630 msg_data_left(msg)); 631 632 return err ?: sock_sendmsg_nosec(sock, msg); 633} 634EXPORT_SYMBOL(sock_sendmsg); 635 636int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 637 struct kvec *vec, size_t num, size_t size) 638{ 639 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 640 return sock_sendmsg(sock, msg); 641} 642EXPORT_SYMBOL(kernel_sendmsg); 643 644int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 645 struct kvec *vec, size_t num, size_t size) 646{ 647 struct socket *sock = sk->sk_socket; 648 649 if (!sock->ops->sendmsg_locked) 650 return sock_no_sendmsg_locked(sk, msg, size); 651 652 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 653 654 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 655} 656EXPORT_SYMBOL(kernel_sendmsg_locked); 657 658static bool skb_is_err_queue(const struct sk_buff *skb) 659{ 660 /* pkt_type of skbs enqueued on the error queue are set to 661 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 662 * in recvmsg, since skbs received on a local socket will never 663 * have a pkt_type of PACKET_OUTGOING. 664 */ 665 return skb->pkt_type == PACKET_OUTGOING; 666} 667 668/* On transmit, software and hardware timestamps are returned independently. 669 * As the two skb clones share the hardware timestamp, which may be updated 670 * before the software timestamp is received, a hardware TX timestamp may be 671 * returned only if there is no software TX timestamp. Ignore false software 672 * timestamps, which may be made in the __sock_recv_timestamp() call when the 673 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a 674 * hardware timestamp. 675 */ 676static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 677{ 678 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 679} 680 681static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 682{ 683 struct scm_ts_pktinfo ts_pktinfo; 684 struct net_device *orig_dev; 685 686 if (!skb_mac_header_was_set(skb)) 687 return; 688 689 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 690 691 rcu_read_lock(); 692 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 693 if (orig_dev) 694 ts_pktinfo.if_index = orig_dev->ifindex; 695 rcu_read_unlock(); 696 697 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 698 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 699 sizeof(ts_pktinfo), &ts_pktinfo); 700} 701 702/* 703 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 704 */ 705void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 706 struct sk_buff *skb) 707{ 708 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 709 struct scm_timestamping tss; 710 int empty = 1, false_tstamp = 0; 711 struct skb_shared_hwtstamps *shhwtstamps = 712 skb_hwtstamps(skb); 713 714 /* Race occurred between timestamp enabling and packet 715 receiving. Fill in the current time for now. */ 716 if (need_software_tstamp && skb->tstamp == 0) { 717 __net_timestamp(skb); 718 false_tstamp = 1; 719 } 720 721 if (need_software_tstamp) { 722 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 723 struct timeval tv; 724 skb_get_timestamp(skb, &tv); 725 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 726 sizeof(tv), &tv); 727 } else { 728 struct timespec ts; 729 skb_get_timestampns(skb, &ts); 730 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 731 sizeof(ts), &ts); 732 } 733 } 734 735 memset(&tss, 0, sizeof(tss)); 736 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 737 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 738 empty = 0; 739 if (shhwtstamps && 740 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 741 !skb_is_swtx_tstamp(skb, false_tstamp) && 742 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 743 empty = 0; 744 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 745 !skb_is_err_queue(skb)) 746 put_ts_pktinfo(msg, skb); 747 } 748 if (!empty) { 749 put_cmsg(msg, SOL_SOCKET, 750 SCM_TIMESTAMPING, sizeof(tss), &tss); 751 752 if (skb_is_err_queue(skb) && skb->len && 753 SKB_EXT_ERR(skb)->opt_stats) 754 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 755 skb->len, skb->data); 756 } 757} 758EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 759 760void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 761 struct sk_buff *skb) 762{ 763 int ack; 764 765 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 766 return; 767 if (!skb->wifi_acked_valid) 768 return; 769 770 ack = skb->wifi_acked; 771 772 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 773} 774EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 775 776static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 777 struct sk_buff *skb) 778{ 779 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 780 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 781 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 782} 783 784void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 785 struct sk_buff *skb) 786{ 787 sock_recv_timestamp(msg, sk, skb); 788 sock_recv_drops(msg, sk, skb); 789} 790EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 791 792static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 793 int flags) 794{ 795 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 796} 797 798int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 799{ 800 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 801 802 return err ?: sock_recvmsg_nosec(sock, msg, flags); 803} 804EXPORT_SYMBOL(sock_recvmsg); 805 806/** 807 * kernel_recvmsg - Receive a message from a socket (kernel space) 808 * @sock: The socket to receive the message from 809 * @msg: Received message 810 * @vec: Input s/g array for message data 811 * @num: Size of input s/g array 812 * @size: Number of bytes to read 813 * @flags: Message flags (MSG_DONTWAIT, etc...) 814 * 815 * On return the msg structure contains the scatter/gather array passed in the 816 * vec argument. The array is modified so that it consists of the unfilled 817 * portion of the original array. 818 * 819 * The returned value is the total number of bytes received, or an error. 820 */ 821int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 822 struct kvec *vec, size_t num, size_t size, int flags) 823{ 824 mm_segment_t oldfs = get_fs(); 825 int result; 826 827 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 828 set_fs(KERNEL_DS); 829 result = sock_recvmsg(sock, msg, flags); 830 set_fs(oldfs); 831 return result; 832} 833EXPORT_SYMBOL(kernel_recvmsg); 834 835static ssize_t sock_sendpage(struct file *file, struct page *page, 836 int offset, size_t size, loff_t *ppos, int more) 837{ 838 struct socket *sock; 839 int flags; 840 841 sock = file->private_data; 842 843 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 844 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 845 flags |= more; 846 847 return kernel_sendpage(sock, page, offset, size, flags); 848} 849 850static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 851 struct pipe_inode_info *pipe, size_t len, 852 unsigned int flags) 853{ 854 struct socket *sock = file->private_data; 855 856 if (unlikely(!sock->ops->splice_read)) 857 return generic_file_splice_read(file, ppos, pipe, len, flags); 858 859 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 860} 861 862static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 863{ 864 struct file *file = iocb->ki_filp; 865 struct socket *sock = file->private_data; 866 struct msghdr msg = {.msg_iter = *to, 867 .msg_iocb = iocb}; 868 ssize_t res; 869 870 if (file->f_flags & O_NONBLOCK) 871 msg.msg_flags = MSG_DONTWAIT; 872 873 if (iocb->ki_pos != 0) 874 return -ESPIPE; 875 876 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 877 return 0; 878 879 res = sock_recvmsg(sock, &msg, msg.msg_flags); 880 *to = msg.msg_iter; 881 return res; 882} 883 884static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 885{ 886 struct file *file = iocb->ki_filp; 887 struct socket *sock = file->private_data; 888 struct msghdr msg = {.msg_iter = *from, 889 .msg_iocb = iocb}; 890 ssize_t res; 891 892 if (iocb->ki_pos != 0) 893 return -ESPIPE; 894 895 if (file->f_flags & O_NONBLOCK) 896 msg.msg_flags = MSG_DONTWAIT; 897 898 if (sock->type == SOCK_SEQPACKET) 899 msg.msg_flags |= MSG_EOR; 900 901 res = sock_sendmsg(sock, &msg); 902 *from = msg.msg_iter; 903 return res; 904} 905 906/* 907 * Atomic setting of ioctl hooks to avoid race 908 * with module unload. 909 */ 910 911static DEFINE_MUTEX(br_ioctl_mutex); 912static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 913 914void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 915{ 916 mutex_lock(&br_ioctl_mutex); 917 br_ioctl_hook = hook; 918 mutex_unlock(&br_ioctl_mutex); 919} 920EXPORT_SYMBOL(brioctl_set); 921 922static DEFINE_MUTEX(vlan_ioctl_mutex); 923static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 924 925void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 926{ 927 mutex_lock(&vlan_ioctl_mutex); 928 vlan_ioctl_hook = hook; 929 mutex_unlock(&vlan_ioctl_mutex); 930} 931EXPORT_SYMBOL(vlan_ioctl_set); 932 933static DEFINE_MUTEX(dlci_ioctl_mutex); 934static int (*dlci_ioctl_hook) (unsigned int, void __user *); 935 936void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 937{ 938 mutex_lock(&dlci_ioctl_mutex); 939 dlci_ioctl_hook = hook; 940 mutex_unlock(&dlci_ioctl_mutex); 941} 942EXPORT_SYMBOL(dlci_ioctl_set); 943 944static long sock_do_ioctl(struct net *net, struct socket *sock, 945 unsigned int cmd, unsigned long arg) 946{ 947 int err; 948 void __user *argp = (void __user *)arg; 949 950 err = sock->ops->ioctl(sock, cmd, arg); 951 952 /* 953 * If this ioctl is unknown try to hand it down 954 * to the NIC driver. 955 */ 956 if (err != -ENOIOCTLCMD) 957 return err; 958 959 if (cmd == SIOCGIFCONF) { 960 struct ifconf ifc; 961 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 962 return -EFAULT; 963 rtnl_lock(); 964 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 965 rtnl_unlock(); 966 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 967 err = -EFAULT; 968 } else { 969 struct ifreq ifr; 970 bool need_copyout; 971 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 972 return -EFAULT; 973 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 974 if (!err && need_copyout) 975 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 976 return -EFAULT; 977 } 978 return err; 979} 980 981/* 982 * With an ioctl, arg may well be a user mode pointer, but we don't know 983 * what to do with it - that's up to the protocol still. 984 */ 985 986struct ns_common *get_net_ns(struct ns_common *ns) 987{ 988 return &get_net(container_of(ns, struct net, ns))->ns; 989} 990EXPORT_SYMBOL_GPL(get_net_ns); 991 992static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 993{ 994 struct socket *sock; 995 struct sock *sk; 996 void __user *argp = (void __user *)arg; 997 int pid, err; 998 struct net *net; 999 1000 sock = file->private_data; 1001 sk = sock->sk; 1002 net = sock_net(sk); 1003 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1004 struct ifreq ifr; 1005 bool need_copyout; 1006 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1007 return -EFAULT; 1008 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1009 if (!err && need_copyout) 1010 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1011 return -EFAULT; 1012 } else 1013#ifdef CONFIG_WEXT_CORE 1014 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1015 err = wext_handle_ioctl(net, cmd, argp); 1016 } else 1017#endif 1018 switch (cmd) { 1019 case FIOSETOWN: 1020 case SIOCSPGRP: 1021 err = -EFAULT; 1022 if (get_user(pid, (int __user *)argp)) 1023 break; 1024 err = f_setown(sock->file, pid, 1); 1025 break; 1026 case FIOGETOWN: 1027 case SIOCGPGRP: 1028 err = put_user(f_getown(sock->file), 1029 (int __user *)argp); 1030 break; 1031 case SIOCGIFBR: 1032 case SIOCSIFBR: 1033 case SIOCBRADDBR: 1034 case SIOCBRDELBR: 1035 err = -ENOPKG; 1036 if (!br_ioctl_hook) 1037 request_module("bridge"); 1038 1039 mutex_lock(&br_ioctl_mutex); 1040 if (br_ioctl_hook) 1041 err = br_ioctl_hook(net, cmd, argp); 1042 mutex_unlock(&br_ioctl_mutex); 1043 break; 1044 case SIOCGIFVLAN: 1045 case SIOCSIFVLAN: 1046 err = -ENOPKG; 1047 if (!vlan_ioctl_hook) 1048 request_module("8021q"); 1049 1050 mutex_lock(&vlan_ioctl_mutex); 1051 if (vlan_ioctl_hook) 1052 err = vlan_ioctl_hook(net, argp); 1053 mutex_unlock(&vlan_ioctl_mutex); 1054 break; 1055 case SIOCADDDLCI: 1056 case SIOCDELDLCI: 1057 err = -ENOPKG; 1058 if (!dlci_ioctl_hook) 1059 request_module("dlci"); 1060 1061 mutex_lock(&dlci_ioctl_mutex); 1062 if (dlci_ioctl_hook) 1063 err = dlci_ioctl_hook(cmd, argp); 1064 mutex_unlock(&dlci_ioctl_mutex); 1065 break; 1066 case SIOCGSKNS: 1067 err = -EPERM; 1068 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1069 break; 1070 1071 err = open_related_ns(&net->ns, get_net_ns); 1072 break; 1073 default: 1074 err = sock_do_ioctl(net, sock, cmd, arg); 1075 break; 1076 } 1077 return err; 1078} 1079 1080int sock_create_lite(int family, int type, int protocol, struct socket **res) 1081{ 1082 int err; 1083 struct socket *sock = NULL; 1084 1085 err = security_socket_create(family, type, protocol, 1); 1086 if (err) 1087 goto out; 1088 1089 sock = sock_alloc(); 1090 if (!sock) { 1091 err = -ENOMEM; 1092 goto out; 1093 } 1094 1095 sock->type = type; 1096 err = security_socket_post_create(sock, family, type, protocol, 1); 1097 if (err) 1098 goto out_release; 1099 1100out: 1101 *res = sock; 1102 return err; 1103out_release: 1104 sock_release(sock); 1105 sock = NULL; 1106 goto out; 1107} 1108EXPORT_SYMBOL(sock_create_lite); 1109 1110/* No kernel lock held - perfect */ 1111static __poll_t sock_poll(struct file *file, poll_table *wait) 1112{ 1113 struct socket *sock = file->private_data; 1114 __poll_t events = poll_requested_events(wait), flag = 0; 1115 1116 if (!sock->ops->poll) 1117 return 0; 1118 1119 if (sk_can_busy_loop(sock->sk)) { 1120 /* poll once if requested by the syscall */ 1121 if (events & POLL_BUSY_LOOP) 1122 sk_busy_loop(sock->sk, 1); 1123 1124 /* if this socket can poll_ll, tell the system call */ 1125 flag = POLL_BUSY_LOOP; 1126 } 1127 1128 return sock->ops->poll(file, sock, wait) | flag; 1129} 1130 1131static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1132{ 1133 struct socket *sock = file->private_data; 1134 1135 return sock->ops->mmap(file, sock, vma); 1136} 1137 1138static int sock_close(struct inode *inode, struct file *filp) 1139{ 1140 __sock_release(SOCKET_I(inode), inode); 1141 return 0; 1142} 1143 1144/* 1145 * Update the socket async list 1146 * 1147 * Fasync_list locking strategy. 1148 * 1149 * 1. fasync_list is modified only under process context socket lock 1150 * i.e. under semaphore. 1151 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1152 * or under socket lock 1153 */ 1154 1155static int sock_fasync(int fd, struct file *filp, int on) 1156{ 1157 struct socket *sock = filp->private_data; 1158 struct sock *sk = sock->sk; 1159 struct socket_wq *wq; 1160 1161 if (sk == NULL) 1162 return -EINVAL; 1163 1164 lock_sock(sk); 1165 wq = sock->wq; 1166 fasync_helper(fd, filp, on, &wq->fasync_list); 1167 1168 if (!wq->fasync_list) 1169 sock_reset_flag(sk, SOCK_FASYNC); 1170 else 1171 sock_set_flag(sk, SOCK_FASYNC); 1172 1173 release_sock(sk); 1174 return 0; 1175} 1176 1177/* This function may be called only under rcu_lock */ 1178 1179int sock_wake_async(struct socket_wq *wq, int how, int band) 1180{ 1181 if (!wq || !wq->fasync_list) 1182 return -1; 1183 1184 switch (how) { 1185 case SOCK_WAKE_WAITD: 1186 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1187 break; 1188 goto call_kill; 1189 case SOCK_WAKE_SPACE: 1190 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1191 break; 1192 /* fall through */ 1193 case SOCK_WAKE_IO: 1194call_kill: 1195 kill_fasync(&wq->fasync_list, SIGIO, band); 1196 break; 1197 case SOCK_WAKE_URG: 1198 kill_fasync(&wq->fasync_list, SIGURG, band); 1199 } 1200 1201 return 0; 1202} 1203EXPORT_SYMBOL(sock_wake_async); 1204 1205int __sock_create(struct net *net, int family, int type, int protocol, 1206 struct socket **res, int kern) 1207{ 1208 int err; 1209 struct socket *sock; 1210 const struct net_proto_family *pf; 1211 1212 /* 1213 * Check protocol is in range 1214 */ 1215 if (family < 0 || family >= NPROTO) 1216 return -EAFNOSUPPORT; 1217 if (type < 0 || type >= SOCK_MAX) 1218 return -EINVAL; 1219 1220 /* Compatibility. 1221 1222 This uglymoron is moved from INET layer to here to avoid 1223 deadlock in module load. 1224 */ 1225 if (family == PF_INET && type == SOCK_PACKET) { 1226 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1227 current->comm); 1228 family = PF_PACKET; 1229 } 1230 1231 err = security_socket_create(family, type, protocol, kern); 1232 if (err) 1233 return err; 1234 1235 /* 1236 * Allocate the socket and allow the family to set things up. if 1237 * the protocol is 0, the family is instructed to select an appropriate 1238 * default. 1239 */ 1240 sock = sock_alloc(); 1241 if (!sock) { 1242 net_warn_ratelimited("socket: no more sockets\n"); 1243 return -ENFILE; /* Not exactly a match, but its the 1244 closest posix thing */ 1245 } 1246 1247 sock->type = type; 1248 1249#ifdef CONFIG_MODULES 1250 /* Attempt to load a protocol module if the find failed. 1251 * 1252 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1253 * requested real, full-featured networking support upon configuration. 1254 * Otherwise module support will break! 1255 */ 1256 if (rcu_access_pointer(net_families[family]) == NULL) 1257 request_module("net-pf-%d", family); 1258#endif 1259 1260 rcu_read_lock(); 1261 pf = rcu_dereference(net_families[family]); 1262 err = -EAFNOSUPPORT; 1263 if (!pf) 1264 goto out_release; 1265 1266 /* 1267 * We will call the ->create function, that possibly is in a loadable 1268 * module, so we have to bump that loadable module refcnt first. 1269 */ 1270 if (!try_module_get(pf->owner)) 1271 goto out_release; 1272 1273 /* Now protected by module ref count */ 1274 rcu_read_unlock(); 1275 1276 err = pf->create(net, sock, protocol, kern); 1277 if (err < 0) 1278 goto out_module_put; 1279 1280 /* 1281 * Now to bump the refcnt of the [loadable] module that owns this 1282 * socket at sock_release time we decrement its refcnt. 1283 */ 1284 if (!try_module_get(sock->ops->owner)) 1285 goto out_module_busy; 1286 1287 /* 1288 * Now that we're done with the ->create function, the [loadable] 1289 * module can have its refcnt decremented 1290 */ 1291 module_put(pf->owner); 1292 err = security_socket_post_create(sock, family, type, protocol, kern); 1293 if (err) 1294 goto out_sock_release; 1295 *res = sock; 1296 1297 return 0; 1298 1299out_module_busy: 1300 err = -EAFNOSUPPORT; 1301out_module_put: 1302 sock->ops = NULL; 1303 module_put(pf->owner); 1304out_sock_release: 1305 sock_release(sock); 1306 return err; 1307 1308out_release: 1309 rcu_read_unlock(); 1310 goto out_sock_release; 1311} 1312EXPORT_SYMBOL(__sock_create); 1313 1314int sock_create(int family, int type, int protocol, struct socket **res) 1315{ 1316 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1317} 1318EXPORT_SYMBOL(sock_create); 1319 1320int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1321{ 1322 return __sock_create(net, family, type, protocol, res, 1); 1323} 1324EXPORT_SYMBOL(sock_create_kern); 1325 1326int __sys_socket(int family, int type, int protocol) 1327{ 1328 int retval; 1329 struct socket *sock; 1330 int flags; 1331 1332 /* Check the SOCK_* constants for consistency. */ 1333 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1334 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1335 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1336 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1337 1338 flags = type & ~SOCK_TYPE_MASK; 1339 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1340 return -EINVAL; 1341 type &= SOCK_TYPE_MASK; 1342 1343 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1344 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1345 1346 retval = sock_create(family, type, protocol, &sock); 1347 if (retval < 0) 1348 return retval; 1349 1350 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1351} 1352 1353SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1354{ 1355 return __sys_socket(family, type, protocol); 1356} 1357 1358/* 1359 * Create a pair of connected sockets. 1360 */ 1361 1362int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1363{ 1364 struct socket *sock1, *sock2; 1365 int fd1, fd2, err; 1366 struct file *newfile1, *newfile2; 1367 int flags; 1368 1369 flags = type & ~SOCK_TYPE_MASK; 1370 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1371 return -EINVAL; 1372 type &= SOCK_TYPE_MASK; 1373 1374 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1375 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1376 1377 /* 1378 * reserve descriptors and make sure we won't fail 1379 * to return them to userland. 1380 */ 1381 fd1 = get_unused_fd_flags(flags); 1382 if (unlikely(fd1 < 0)) 1383 return fd1; 1384 1385 fd2 = get_unused_fd_flags(flags); 1386 if (unlikely(fd2 < 0)) { 1387 put_unused_fd(fd1); 1388 return fd2; 1389 } 1390 1391 err = put_user(fd1, &usockvec[0]); 1392 if (err) 1393 goto out; 1394 1395 err = put_user(fd2, &usockvec[1]); 1396 if (err) 1397 goto out; 1398 1399 /* 1400 * Obtain the first socket and check if the underlying protocol 1401 * supports the socketpair call. 1402 */ 1403 1404 err = sock_create(family, type, protocol, &sock1); 1405 if (unlikely(err < 0)) 1406 goto out; 1407 1408 err = sock_create(family, type, protocol, &sock2); 1409 if (unlikely(err < 0)) { 1410 sock_release(sock1); 1411 goto out; 1412 } 1413 1414 err = security_socket_socketpair(sock1, sock2); 1415 if (unlikely(err)) { 1416 sock_release(sock2); 1417 sock_release(sock1); 1418 goto out; 1419 } 1420 1421 err = sock1->ops->socketpair(sock1, sock2); 1422 if (unlikely(err < 0)) { 1423 sock_release(sock2); 1424 sock_release(sock1); 1425 goto out; 1426 } 1427 1428 newfile1 = sock_alloc_file(sock1, flags, NULL); 1429 if (IS_ERR(newfile1)) { 1430 err = PTR_ERR(newfile1); 1431 sock_release(sock2); 1432 goto out; 1433 } 1434 1435 newfile2 = sock_alloc_file(sock2, flags, NULL); 1436 if (IS_ERR(newfile2)) { 1437 err = PTR_ERR(newfile2); 1438 fput(newfile1); 1439 goto out; 1440 } 1441 1442 audit_fd_pair(fd1, fd2); 1443 1444 fd_install(fd1, newfile1); 1445 fd_install(fd2, newfile2); 1446 return 0; 1447 1448out: 1449 put_unused_fd(fd2); 1450 put_unused_fd(fd1); 1451 return err; 1452} 1453 1454SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1455 int __user *, usockvec) 1456{ 1457 return __sys_socketpair(family, type, protocol, usockvec); 1458} 1459 1460/* 1461 * Bind a name to a socket. Nothing much to do here since it's 1462 * the protocol's responsibility to handle the local address. 1463 * 1464 * We move the socket address to kernel space before we call 1465 * the protocol layer (having also checked the address is ok). 1466 */ 1467 1468int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1469{ 1470 struct socket *sock; 1471 struct sockaddr_storage address; 1472 int err, fput_needed; 1473 1474 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1475 if (sock) { 1476 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1477 if (!err) { 1478 err = security_socket_bind(sock, 1479 (struct sockaddr *)&address, 1480 addrlen); 1481 if (!err) 1482 err = sock->ops->bind(sock, 1483 (struct sockaddr *) 1484 &address, addrlen); 1485 } 1486 fput_light(sock->file, fput_needed); 1487 } 1488 return err; 1489} 1490 1491SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1492{ 1493 return __sys_bind(fd, umyaddr, addrlen); 1494} 1495 1496/* 1497 * Perform a listen. Basically, we allow the protocol to do anything 1498 * necessary for a listen, and if that works, we mark the socket as 1499 * ready for listening. 1500 */ 1501 1502int __sys_listen(int fd, int backlog) 1503{ 1504 struct socket *sock; 1505 int err, fput_needed; 1506 int somaxconn; 1507 1508 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1509 if (sock) { 1510 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1511 if ((unsigned int)backlog > somaxconn) 1512 backlog = somaxconn; 1513 1514 err = security_socket_listen(sock, backlog); 1515 if (!err) 1516 err = sock->ops->listen(sock, backlog); 1517 1518 fput_light(sock->file, fput_needed); 1519 } 1520 return err; 1521} 1522 1523SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1524{ 1525 return __sys_listen(fd, backlog); 1526} 1527 1528/* 1529 * For accept, we attempt to create a new socket, set up the link 1530 * with the client, wake up the client, then return the new 1531 * connected fd. We collect the address of the connector in kernel 1532 * space and move it to user at the very end. This is unclean because 1533 * we open the socket then return an error. 1534 * 1535 * 1003.1g adds the ability to recvmsg() to query connection pending 1536 * status to recvmsg. We need to add that support in a way thats 1537 * clean when we restructure accept also. 1538 */ 1539 1540int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1541 int __user *upeer_addrlen, int flags) 1542{ 1543 struct socket *sock, *newsock; 1544 struct file *newfile; 1545 int err, len, newfd, fput_needed; 1546 struct sockaddr_storage address; 1547 1548 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1549 return -EINVAL; 1550 1551 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1552 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1553 1554 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1555 if (!sock) 1556 goto out; 1557 1558 err = -ENFILE; 1559 newsock = sock_alloc(); 1560 if (!newsock) 1561 goto out_put; 1562 1563 newsock->type = sock->type; 1564 newsock->ops = sock->ops; 1565 1566 /* 1567 * We don't need try_module_get here, as the listening socket (sock) 1568 * has the protocol module (sock->ops->owner) held. 1569 */ 1570 __module_get(newsock->ops->owner); 1571 1572 newfd = get_unused_fd_flags(flags); 1573 if (unlikely(newfd < 0)) { 1574 err = newfd; 1575 sock_release(newsock); 1576 goto out_put; 1577 } 1578 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1579 if (IS_ERR(newfile)) { 1580 err = PTR_ERR(newfile); 1581 put_unused_fd(newfd); 1582 goto out_put; 1583 } 1584 1585 err = security_socket_accept(sock, newsock); 1586 if (err) 1587 goto out_fd; 1588 1589 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1590 if (err < 0) 1591 goto out_fd; 1592 1593 if (upeer_sockaddr) { 1594 len = newsock->ops->getname(newsock, 1595 (struct sockaddr *)&address, 2); 1596 if (len < 0) { 1597 err = -ECONNABORTED; 1598 goto out_fd; 1599 } 1600 err = move_addr_to_user(&address, 1601 len, upeer_sockaddr, upeer_addrlen); 1602 if (err < 0) 1603 goto out_fd; 1604 } 1605 1606 /* File flags are not inherited via accept() unlike another OSes. */ 1607 1608 fd_install(newfd, newfile); 1609 err = newfd; 1610 1611out_put: 1612 fput_light(sock->file, fput_needed); 1613out: 1614 return err; 1615out_fd: 1616 fput(newfile); 1617 put_unused_fd(newfd); 1618 goto out_put; 1619} 1620 1621SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1622 int __user *, upeer_addrlen, int, flags) 1623{ 1624 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1625} 1626 1627SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1628 int __user *, upeer_addrlen) 1629{ 1630 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1631} 1632 1633/* 1634 * Attempt to connect to a socket with the server address. The address 1635 * is in user space so we verify it is OK and move it to kernel space. 1636 * 1637 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1638 * break bindings 1639 * 1640 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1641 * other SEQPACKET protocols that take time to connect() as it doesn't 1642 * include the -EINPROGRESS status for such sockets. 1643 */ 1644 1645int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1646{ 1647 struct socket *sock; 1648 struct sockaddr_storage address; 1649 int err, fput_needed; 1650 1651 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1652 if (!sock) 1653 goto out; 1654 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1655 if (err < 0) 1656 goto out_put; 1657 1658 err = 1659 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1660 if (err) 1661 goto out_put; 1662 1663 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1664 sock->file->f_flags); 1665out_put: 1666 fput_light(sock->file, fput_needed); 1667out: 1668 return err; 1669} 1670 1671SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1672 int, addrlen) 1673{ 1674 return __sys_connect(fd, uservaddr, addrlen); 1675} 1676 1677/* 1678 * Get the local address ('name') of a socket object. Move the obtained 1679 * name to user space. 1680 */ 1681 1682int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1683 int __user *usockaddr_len) 1684{ 1685 struct socket *sock; 1686 struct sockaddr_storage address; 1687 int err, fput_needed; 1688 1689 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1690 if (!sock) 1691 goto out; 1692 1693 err = security_socket_getsockname(sock); 1694 if (err) 1695 goto out_put; 1696 1697 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1698 if (err < 0) 1699 goto out_put; 1700 /* "err" is actually length in this case */ 1701 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1702 1703out_put: 1704 fput_light(sock->file, fput_needed); 1705out: 1706 return err; 1707} 1708 1709SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1710 int __user *, usockaddr_len) 1711{ 1712 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1713} 1714 1715/* 1716 * Get the remote address ('name') of a socket object. Move the obtained 1717 * name to user space. 1718 */ 1719 1720int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1721 int __user *usockaddr_len) 1722{ 1723 struct socket *sock; 1724 struct sockaddr_storage address; 1725 int err, fput_needed; 1726 1727 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1728 if (sock != NULL) { 1729 err = security_socket_getpeername(sock); 1730 if (err) { 1731 fput_light(sock->file, fput_needed); 1732 return err; 1733 } 1734 1735 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1736 if (err >= 0) 1737 /* "err" is actually length in this case */ 1738 err = move_addr_to_user(&address, err, usockaddr, 1739 usockaddr_len); 1740 fput_light(sock->file, fput_needed); 1741 } 1742 return err; 1743} 1744 1745SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1746 int __user *, usockaddr_len) 1747{ 1748 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1749} 1750 1751/* 1752 * Send a datagram to a given address. We move the address into kernel 1753 * space and check the user space data area is readable before invoking 1754 * the protocol. 1755 */ 1756int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1757 struct sockaddr __user *addr, int addr_len) 1758{ 1759 struct socket *sock; 1760 struct sockaddr_storage address; 1761 int err; 1762 struct msghdr msg; 1763 struct iovec iov; 1764 int fput_needed; 1765 1766 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1767 if (unlikely(err)) 1768 return err; 1769 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1770 if (!sock) 1771 goto out; 1772 1773 msg.msg_name = NULL; 1774 msg.msg_control = NULL; 1775 msg.msg_controllen = 0; 1776 msg.msg_namelen = 0; 1777 if (addr) { 1778 err = move_addr_to_kernel(addr, addr_len, &address); 1779 if (err < 0) 1780 goto out_put; 1781 msg.msg_name = (struct sockaddr *)&address; 1782 msg.msg_namelen = addr_len; 1783 } 1784 if (sock->file->f_flags & O_NONBLOCK) 1785 flags |= MSG_DONTWAIT; 1786 msg.msg_flags = flags; 1787 err = sock_sendmsg(sock, &msg); 1788 1789out_put: 1790 fput_light(sock->file, fput_needed); 1791out: 1792 return err; 1793} 1794 1795SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1796 unsigned int, flags, struct sockaddr __user *, addr, 1797 int, addr_len) 1798{ 1799 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1800} 1801 1802/* 1803 * Send a datagram down a socket. 1804 */ 1805 1806SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1807 unsigned int, flags) 1808{ 1809 return __sys_sendto(fd, buff, len, flags, NULL, 0); 1810} 1811 1812/* 1813 * Receive a frame from the socket and optionally record the address of the 1814 * sender. We verify the buffers are writable and if needed move the 1815 * sender address from kernel to user space. 1816 */ 1817int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 1818 struct sockaddr __user *addr, int __user *addr_len) 1819{ 1820 struct socket *sock; 1821 struct iovec iov; 1822 struct msghdr msg; 1823 struct sockaddr_storage address; 1824 int err, err2; 1825 int fput_needed; 1826 1827 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1828 if (unlikely(err)) 1829 return err; 1830 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1831 if (!sock) 1832 goto out; 1833 1834 msg.msg_control = NULL; 1835 msg.msg_controllen = 0; 1836 /* Save some cycles and don't copy the address if not needed */ 1837 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1838 /* We assume all kernel code knows the size of sockaddr_storage */ 1839 msg.msg_namelen = 0; 1840 msg.msg_iocb = NULL; 1841 msg.msg_flags = 0; 1842 if (sock->file->f_flags & O_NONBLOCK) 1843 flags |= MSG_DONTWAIT; 1844 err = sock_recvmsg(sock, &msg, flags); 1845 1846 if (err >= 0 && addr != NULL) { 1847 err2 = move_addr_to_user(&address, 1848 msg.msg_namelen, addr, addr_len); 1849 if (err2 < 0) 1850 err = err2; 1851 } 1852 1853 fput_light(sock->file, fput_needed); 1854out: 1855 return err; 1856} 1857 1858SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1859 unsigned int, flags, struct sockaddr __user *, addr, 1860 int __user *, addr_len) 1861{ 1862 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 1863} 1864 1865/* 1866 * Receive a datagram from a socket. 1867 */ 1868 1869SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1870 unsigned int, flags) 1871{ 1872 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1873} 1874 1875/* 1876 * Set a socket option. Because we don't know the option lengths we have 1877 * to pass the user mode parameter for the protocols to sort out. 1878 */ 1879 1880static int __sys_setsockopt(int fd, int level, int optname, 1881 char __user *optval, int optlen) 1882{ 1883 int err, fput_needed; 1884 struct socket *sock; 1885 1886 if (optlen < 0) 1887 return -EINVAL; 1888 1889 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1890 if (sock != NULL) { 1891 err = security_socket_setsockopt(sock, level, optname); 1892 if (err) 1893 goto out_put; 1894 1895 if (level == SOL_SOCKET) 1896 err = 1897 sock_setsockopt(sock, level, optname, optval, 1898 optlen); 1899 else 1900 err = 1901 sock->ops->setsockopt(sock, level, optname, optval, 1902 optlen); 1903out_put: 1904 fput_light(sock->file, fput_needed); 1905 } 1906 return err; 1907} 1908 1909SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1910 char __user *, optval, int, optlen) 1911{ 1912 return __sys_setsockopt(fd, level, optname, optval, optlen); 1913} 1914 1915/* 1916 * Get a socket option. Because we don't know the option lengths we have 1917 * to pass a user mode parameter for the protocols to sort out. 1918 */ 1919 1920static int __sys_getsockopt(int fd, int level, int optname, 1921 char __user *optval, int __user *optlen) 1922{ 1923 int err, fput_needed; 1924 struct socket *sock; 1925 1926 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1927 if (sock != NULL) { 1928 err = security_socket_getsockopt(sock, level, optname); 1929 if (err) 1930 goto out_put; 1931 1932 if (level == SOL_SOCKET) 1933 err = 1934 sock_getsockopt(sock, level, optname, optval, 1935 optlen); 1936 else 1937 err = 1938 sock->ops->getsockopt(sock, level, optname, optval, 1939 optlen); 1940out_put: 1941 fput_light(sock->file, fput_needed); 1942 } 1943 return err; 1944} 1945 1946SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1947 char __user *, optval, int __user *, optlen) 1948{ 1949 return __sys_getsockopt(fd, level, optname, optval, optlen); 1950} 1951 1952/* 1953 * Shutdown a socket. 1954 */ 1955 1956int __sys_shutdown(int fd, int how) 1957{ 1958 int err, fput_needed; 1959 struct socket *sock; 1960 1961 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1962 if (sock != NULL) { 1963 err = security_socket_shutdown(sock, how); 1964 if (!err) 1965 err = sock->ops->shutdown(sock, how); 1966 fput_light(sock->file, fput_needed); 1967 } 1968 return err; 1969} 1970 1971SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1972{ 1973 return __sys_shutdown(fd, how); 1974} 1975 1976/* A couple of helpful macros for getting the address of the 32/64 bit 1977 * fields which are the same type (int / unsigned) on our platforms. 1978 */ 1979#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1980#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1981#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1982 1983struct used_address { 1984 struct sockaddr_storage name; 1985 unsigned int name_len; 1986}; 1987 1988static int copy_msghdr_from_user(struct msghdr *kmsg, 1989 struct user_msghdr __user *umsg, 1990 struct sockaddr __user **save_addr, 1991 struct iovec **iov) 1992{ 1993 struct user_msghdr msg; 1994 ssize_t err; 1995 1996 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 1997 return -EFAULT; 1998 1999 kmsg->msg_control = (void __force *)msg.msg_control; 2000 kmsg->msg_controllen = msg.msg_controllen; 2001 kmsg->msg_flags = msg.msg_flags; 2002 2003 kmsg->msg_namelen = msg.msg_namelen; 2004 if (!msg.msg_name) 2005 kmsg->msg_namelen = 0; 2006 2007 if (kmsg->msg_namelen < 0) 2008 return -EINVAL; 2009 2010 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2011 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2012 2013 if (save_addr) 2014 *save_addr = msg.msg_name; 2015 2016 if (msg.msg_name && kmsg->msg_namelen) { 2017 if (!save_addr) { 2018 err = move_addr_to_kernel(msg.msg_name, 2019 kmsg->msg_namelen, 2020 kmsg->msg_name); 2021 if (err < 0) 2022 return err; 2023 } 2024 } else { 2025 kmsg->msg_name = NULL; 2026 kmsg->msg_namelen = 0; 2027 } 2028 2029 if (msg.msg_iovlen > UIO_MAXIOV) 2030 return -EMSGSIZE; 2031 2032 kmsg->msg_iocb = NULL; 2033 2034 return import_iovec(save_addr ? READ : WRITE, 2035 msg.msg_iov, msg.msg_iovlen, 2036 UIO_FASTIOV, iov, &kmsg->msg_iter); 2037} 2038 2039static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2040 struct msghdr *msg_sys, unsigned int flags, 2041 struct used_address *used_address, 2042 unsigned int allowed_msghdr_flags) 2043{ 2044 struct compat_msghdr __user *msg_compat = 2045 (struct compat_msghdr __user *)msg; 2046 struct sockaddr_storage address; 2047 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2048 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2049 __aligned(sizeof(__kernel_size_t)); 2050 /* 20 is size of ipv6_pktinfo */ 2051 unsigned char *ctl_buf = ctl; 2052 int ctl_len; 2053 ssize_t err; 2054 2055 msg_sys->msg_name = &address; 2056 2057 if (MSG_CMSG_COMPAT & flags) 2058 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2059 else 2060 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2061 if (err < 0) 2062 return err; 2063 2064 err = -ENOBUFS; 2065 2066 if (msg_sys->msg_controllen > INT_MAX) 2067 goto out_freeiov; 2068 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2069 ctl_len = msg_sys->msg_controllen; 2070 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2071 err = 2072 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2073 sizeof(ctl)); 2074 if (err) 2075 goto out_freeiov; 2076 ctl_buf = msg_sys->msg_control; 2077 ctl_len = msg_sys->msg_controllen; 2078 } else if (ctl_len) { 2079 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2080 CMSG_ALIGN(sizeof(struct cmsghdr))); 2081 if (ctl_len > sizeof(ctl)) { 2082 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2083 if (ctl_buf == NULL) 2084 goto out_freeiov; 2085 } 2086 err = -EFAULT; 2087 /* 2088 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2089 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2090 * checking falls down on this. 2091 */ 2092 if (copy_from_user(ctl_buf, 2093 (void __user __force *)msg_sys->msg_control, 2094 ctl_len)) 2095 goto out_freectl; 2096 msg_sys->msg_control = ctl_buf; 2097 } 2098 msg_sys->msg_flags = flags; 2099 2100 if (sock->file->f_flags & O_NONBLOCK) 2101 msg_sys->msg_flags |= MSG_DONTWAIT; 2102 /* 2103 * If this is sendmmsg() and current destination address is same as 2104 * previously succeeded address, omit asking LSM's decision. 2105 * used_address->name_len is initialized to UINT_MAX so that the first 2106 * destination address never matches. 2107 */ 2108 if (used_address && msg_sys->msg_name && 2109 used_address->name_len == msg_sys->msg_namelen && 2110 !memcmp(&used_address->name, msg_sys->msg_name, 2111 used_address->name_len)) { 2112 err = sock_sendmsg_nosec(sock, msg_sys); 2113 goto out_freectl; 2114 } 2115 err = sock_sendmsg(sock, msg_sys); 2116 /* 2117 * If this is sendmmsg() and sending to current destination address was 2118 * successful, remember it. 2119 */ 2120 if (used_address && err >= 0) { 2121 used_address->name_len = msg_sys->msg_namelen; 2122 if (msg_sys->msg_name) 2123 memcpy(&used_address->name, msg_sys->msg_name, 2124 used_address->name_len); 2125 } 2126 2127out_freectl: 2128 if (ctl_buf != ctl) 2129 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2130out_freeiov: 2131 kfree(iov); 2132 return err; 2133} 2134 2135/* 2136 * BSD sendmsg interface 2137 */ 2138 2139long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2140 bool forbid_cmsg_compat) 2141{ 2142 int fput_needed, err; 2143 struct msghdr msg_sys; 2144 struct socket *sock; 2145 2146 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2147 return -EINVAL; 2148 2149 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2150 if (!sock) 2151 goto out; 2152 2153 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2154 2155 fput_light(sock->file, fput_needed); 2156out: 2157 return err; 2158} 2159 2160SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2161{ 2162 return __sys_sendmsg(fd, msg, flags, true); 2163} 2164 2165/* 2166 * Linux sendmmsg interface 2167 */ 2168 2169int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2170 unsigned int flags, bool forbid_cmsg_compat) 2171{ 2172 int fput_needed, err, datagrams; 2173 struct socket *sock; 2174 struct mmsghdr __user *entry; 2175 struct compat_mmsghdr __user *compat_entry; 2176 struct msghdr msg_sys; 2177 struct used_address used_address; 2178 unsigned int oflags = flags; 2179 2180 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2181 return -EINVAL; 2182 2183 if (vlen > UIO_MAXIOV) 2184 vlen = UIO_MAXIOV; 2185 2186 datagrams = 0; 2187 2188 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2189 if (!sock) 2190 return err; 2191 2192 used_address.name_len = UINT_MAX; 2193 entry = mmsg; 2194 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2195 err = 0; 2196 flags |= MSG_BATCH; 2197 2198 while (datagrams < vlen) { 2199 if (datagrams == vlen - 1) 2200 flags = oflags; 2201 2202 if (MSG_CMSG_COMPAT & flags) { 2203 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2204 &msg_sys, flags, &used_address, MSG_EOR); 2205 if (err < 0) 2206 break; 2207 err = __put_user(err, &compat_entry->msg_len); 2208 ++compat_entry; 2209 } else { 2210 err = ___sys_sendmsg(sock, 2211 (struct user_msghdr __user *)entry, 2212 &msg_sys, flags, &used_address, MSG_EOR); 2213 if (err < 0) 2214 break; 2215 err = put_user(err, &entry->msg_len); 2216 ++entry; 2217 } 2218 2219 if (err) 2220 break; 2221 ++datagrams; 2222 if (msg_data_left(&msg_sys)) 2223 break; 2224 cond_resched(); 2225 } 2226 2227 fput_light(sock->file, fput_needed); 2228 2229 /* We only return an error if no datagrams were able to be sent */ 2230 if (datagrams != 0) 2231 return datagrams; 2232 2233 return err; 2234} 2235 2236SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2237 unsigned int, vlen, unsigned int, flags) 2238{ 2239 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2240} 2241 2242static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2243 struct msghdr *msg_sys, unsigned int flags, int nosec) 2244{ 2245 struct compat_msghdr __user *msg_compat = 2246 (struct compat_msghdr __user *)msg; 2247 struct iovec iovstack[UIO_FASTIOV]; 2248 struct iovec *iov = iovstack; 2249 unsigned long cmsg_ptr; 2250 int len; 2251 ssize_t err; 2252 2253 /* kernel mode address */ 2254 struct sockaddr_storage addr; 2255 2256 /* user mode address pointers */ 2257 struct sockaddr __user *uaddr; 2258 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2259 2260 msg_sys->msg_name = &addr; 2261 2262 if (MSG_CMSG_COMPAT & flags) 2263 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2264 else 2265 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2266 if (err < 0) 2267 return err; 2268 2269 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2270 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2271 2272 /* We assume all kernel code knows the size of sockaddr_storage */ 2273 msg_sys->msg_namelen = 0; 2274 2275 if (sock->file->f_flags & O_NONBLOCK) 2276 flags |= MSG_DONTWAIT; 2277 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2278 if (err < 0) 2279 goto out_freeiov; 2280 len = err; 2281 2282 if (uaddr != NULL) { 2283 err = move_addr_to_user(&addr, 2284 msg_sys->msg_namelen, uaddr, 2285 uaddr_len); 2286 if (err < 0) 2287 goto out_freeiov; 2288 } 2289 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2290 COMPAT_FLAGS(msg)); 2291 if (err) 2292 goto out_freeiov; 2293 if (MSG_CMSG_COMPAT & flags) 2294 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2295 &msg_compat->msg_controllen); 2296 else 2297 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2298 &msg->msg_controllen); 2299 if (err) 2300 goto out_freeiov; 2301 err = len; 2302 2303out_freeiov: 2304 kfree(iov); 2305 return err; 2306} 2307 2308/* 2309 * BSD recvmsg interface 2310 */ 2311 2312long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2313 bool forbid_cmsg_compat) 2314{ 2315 int fput_needed, err; 2316 struct msghdr msg_sys; 2317 struct socket *sock; 2318 2319 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2320 return -EINVAL; 2321 2322 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2323 if (!sock) 2324 goto out; 2325 2326 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2327 2328 fput_light(sock->file, fput_needed); 2329out: 2330 return err; 2331} 2332 2333SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2334 unsigned int, flags) 2335{ 2336 return __sys_recvmsg(fd, msg, flags, true); 2337} 2338 2339/* 2340 * Linux recvmmsg interface 2341 */ 2342 2343static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2344 unsigned int vlen, unsigned int flags, 2345 struct timespec64 *timeout) 2346{ 2347 int fput_needed, err, datagrams; 2348 struct socket *sock; 2349 struct mmsghdr __user *entry; 2350 struct compat_mmsghdr __user *compat_entry; 2351 struct msghdr msg_sys; 2352 struct timespec64 end_time; 2353 struct timespec64 timeout64; 2354 2355 if (timeout && 2356 poll_select_set_timeout(&end_time, timeout->tv_sec, 2357 timeout->tv_nsec)) 2358 return -EINVAL; 2359 2360 datagrams = 0; 2361 2362 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2363 if (!sock) 2364 return err; 2365 2366 if (likely(!(flags & MSG_ERRQUEUE))) { 2367 err = sock_error(sock->sk); 2368 if (err) { 2369 datagrams = err; 2370 goto out_put; 2371 } 2372 } 2373 2374 entry = mmsg; 2375 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2376 2377 while (datagrams < vlen) { 2378 /* 2379 * No need to ask LSM for more than the first datagram. 2380 */ 2381 if (MSG_CMSG_COMPAT & flags) { 2382 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2383 &msg_sys, flags & ~MSG_WAITFORONE, 2384 datagrams); 2385 if (err < 0) 2386 break; 2387 err = __put_user(err, &compat_entry->msg_len); 2388 ++compat_entry; 2389 } else { 2390 err = ___sys_recvmsg(sock, 2391 (struct user_msghdr __user *)entry, 2392 &msg_sys, flags & ~MSG_WAITFORONE, 2393 datagrams); 2394 if (err < 0) 2395 break; 2396 err = put_user(err, &entry->msg_len); 2397 ++entry; 2398 } 2399 2400 if (err) 2401 break; 2402 ++datagrams; 2403 2404 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2405 if (flags & MSG_WAITFORONE) 2406 flags |= MSG_DONTWAIT; 2407 2408 if (timeout) { 2409 ktime_get_ts64(&timeout64); 2410 *timeout = timespec64_sub(end_time, timeout64); 2411 if (timeout->tv_sec < 0) { 2412 timeout->tv_sec = timeout->tv_nsec = 0; 2413 break; 2414 } 2415 2416 /* Timeout, return less than vlen datagrams */ 2417 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2418 break; 2419 } 2420 2421 /* Out of band data, return right away */ 2422 if (msg_sys.msg_flags & MSG_OOB) 2423 break; 2424 cond_resched(); 2425 } 2426 2427 if (err == 0) 2428 goto out_put; 2429 2430 if (datagrams == 0) { 2431 datagrams = err; 2432 goto out_put; 2433 } 2434 2435 /* 2436 * We may return less entries than requested (vlen) if the 2437 * sock is non block and there aren't enough datagrams... 2438 */ 2439 if (err != -EAGAIN) { 2440 /* 2441 * ... or if recvmsg returns an error after we 2442 * received some datagrams, where we record the 2443 * error to return on the next call or if the 2444 * app asks about it using getsockopt(SO_ERROR). 2445 */ 2446 sock->sk->sk_err = -err; 2447 } 2448out_put: 2449 fput_light(sock->file, fput_needed); 2450 2451 return datagrams; 2452} 2453 2454int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2455 unsigned int vlen, unsigned int flags, 2456 struct __kernel_timespec __user *timeout, 2457 struct old_timespec32 __user *timeout32) 2458{ 2459 int datagrams; 2460 struct timespec64 timeout_sys; 2461 2462 if (timeout && get_timespec64(&timeout_sys, timeout)) 2463 return -EFAULT; 2464 2465 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2466 return -EFAULT; 2467 2468 if (!timeout && !timeout32) 2469 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2470 2471 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2472 2473 if (datagrams <= 0) 2474 return datagrams; 2475 2476 if (timeout && put_timespec64(&timeout_sys, timeout)) 2477 datagrams = -EFAULT; 2478 2479 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2480 datagrams = -EFAULT; 2481 2482 return datagrams; 2483} 2484 2485SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2486 unsigned int, vlen, unsigned int, flags, 2487 struct __kernel_timespec __user *, timeout) 2488{ 2489 if (flags & MSG_CMSG_COMPAT) 2490 return -EINVAL; 2491 2492 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2493} 2494 2495#ifdef CONFIG_COMPAT_32BIT_TIME 2496SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2497 unsigned int, vlen, unsigned int, flags, 2498 struct old_timespec32 __user *, timeout) 2499{ 2500 if (flags & MSG_CMSG_COMPAT) 2501 return -EINVAL; 2502 2503 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2504} 2505#endif 2506 2507#ifdef __ARCH_WANT_SYS_SOCKETCALL 2508/* Argument list sizes for sys_socketcall */ 2509#define AL(x) ((x) * sizeof(unsigned long)) 2510static const unsigned char nargs[21] = { 2511 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2512 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2513 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2514 AL(4), AL(5), AL(4) 2515}; 2516 2517#undef AL 2518 2519/* 2520 * System call vectors. 2521 * 2522 * Argument checking cleaned up. Saved 20% in size. 2523 * This function doesn't need to set the kernel lock because 2524 * it is set by the callees. 2525 */ 2526 2527SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2528{ 2529 unsigned long a[AUDITSC_ARGS]; 2530 unsigned long a0, a1; 2531 int err; 2532 unsigned int len; 2533 2534 if (call < 1 || call > SYS_SENDMMSG) 2535 return -EINVAL; 2536 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2537 2538 len = nargs[call]; 2539 if (len > sizeof(a)) 2540 return -EINVAL; 2541 2542 /* copy_from_user should be SMP safe. */ 2543 if (copy_from_user(a, args, len)) 2544 return -EFAULT; 2545 2546 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2547 if (err) 2548 return err; 2549 2550 a0 = a[0]; 2551 a1 = a[1]; 2552 2553 switch (call) { 2554 case SYS_SOCKET: 2555 err = __sys_socket(a0, a1, a[2]); 2556 break; 2557 case SYS_BIND: 2558 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2559 break; 2560 case SYS_CONNECT: 2561 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2562 break; 2563 case SYS_LISTEN: 2564 err = __sys_listen(a0, a1); 2565 break; 2566 case SYS_ACCEPT: 2567 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2568 (int __user *)a[2], 0); 2569 break; 2570 case SYS_GETSOCKNAME: 2571 err = 2572 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2573 (int __user *)a[2]); 2574 break; 2575 case SYS_GETPEERNAME: 2576 err = 2577 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2578 (int __user *)a[2]); 2579 break; 2580 case SYS_SOCKETPAIR: 2581 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2582 break; 2583 case SYS_SEND: 2584 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2585 NULL, 0); 2586 break; 2587 case SYS_SENDTO: 2588 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2589 (struct sockaddr __user *)a[4], a[5]); 2590 break; 2591 case SYS_RECV: 2592 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2593 NULL, NULL); 2594 break; 2595 case SYS_RECVFROM: 2596 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2597 (struct sockaddr __user *)a[4], 2598 (int __user *)a[5]); 2599 break; 2600 case SYS_SHUTDOWN: 2601 err = __sys_shutdown(a0, a1); 2602 break; 2603 case SYS_SETSOCKOPT: 2604 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2605 a[4]); 2606 break; 2607 case SYS_GETSOCKOPT: 2608 err = 2609 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2610 (int __user *)a[4]); 2611 break; 2612 case SYS_SENDMSG: 2613 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2614 a[2], true); 2615 break; 2616 case SYS_SENDMMSG: 2617 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2618 a[3], true); 2619 break; 2620 case SYS_RECVMSG: 2621 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2622 a[2], true); 2623 break; 2624 case SYS_RECVMMSG: 2625 if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME)) 2626 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2627 a[2], a[3], 2628 (struct __kernel_timespec __user *)a[4], 2629 NULL); 2630 else 2631 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2632 a[2], a[3], NULL, 2633 (struct old_timespec32 __user *)a[4]); 2634 break; 2635 case SYS_ACCEPT4: 2636 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2637 (int __user *)a[2], a[3]); 2638 break; 2639 default: 2640 err = -EINVAL; 2641 break; 2642 } 2643 return err; 2644} 2645 2646#endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2647 2648/** 2649 * sock_register - add a socket protocol handler 2650 * @ops: description of protocol 2651 * 2652 * This function is called by a protocol handler that wants to 2653 * advertise its address family, and have it linked into the 2654 * socket interface. The value ops->family corresponds to the 2655 * socket system call protocol family. 2656 */ 2657int sock_register(const struct net_proto_family *ops) 2658{ 2659 int err; 2660 2661 if (ops->family >= NPROTO) { 2662 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2663 return -ENOBUFS; 2664 } 2665 2666 spin_lock(&net_family_lock); 2667 if (rcu_dereference_protected(net_families[ops->family], 2668 lockdep_is_held(&net_family_lock))) 2669 err = -EEXIST; 2670 else { 2671 rcu_assign_pointer(net_families[ops->family], ops); 2672 err = 0; 2673 } 2674 spin_unlock(&net_family_lock); 2675 2676 pr_info("NET: Registered protocol family %d\n", ops->family); 2677 return err; 2678} 2679EXPORT_SYMBOL(sock_register); 2680 2681/** 2682 * sock_unregister - remove a protocol handler 2683 * @family: protocol family to remove 2684 * 2685 * This function is called by a protocol handler that wants to 2686 * remove its address family, and have it unlinked from the 2687 * new socket creation. 2688 * 2689 * If protocol handler is a module, then it can use module reference 2690 * counts to protect against new references. If protocol handler is not 2691 * a module then it needs to provide its own protection in 2692 * the ops->create routine. 2693 */ 2694void sock_unregister(int family) 2695{ 2696 BUG_ON(family < 0 || family >= NPROTO); 2697 2698 spin_lock(&net_family_lock); 2699 RCU_INIT_POINTER(net_families[family], NULL); 2700 spin_unlock(&net_family_lock); 2701 2702 synchronize_rcu(); 2703 2704 pr_info("NET: Unregistered protocol family %d\n", family); 2705} 2706EXPORT_SYMBOL(sock_unregister); 2707 2708bool sock_is_registered(int family) 2709{ 2710 return family < NPROTO && rcu_access_pointer(net_families[family]); 2711} 2712 2713static int __init sock_init(void) 2714{ 2715 int err; 2716 /* 2717 * Initialize the network sysctl infrastructure. 2718 */ 2719 err = net_sysctl_init(); 2720 if (err) 2721 goto out; 2722 2723 /* 2724 * Initialize skbuff SLAB cache 2725 */ 2726 skb_init(); 2727 2728 /* 2729 * Initialize the protocols module. 2730 */ 2731 2732 init_inodecache(); 2733 2734 err = register_filesystem(&sock_fs_type); 2735 if (err) 2736 goto out_fs; 2737 sock_mnt = kern_mount(&sock_fs_type); 2738 if (IS_ERR(sock_mnt)) { 2739 err = PTR_ERR(sock_mnt); 2740 goto out_mount; 2741 } 2742 2743 /* The real protocol initialization is performed in later initcalls. 2744 */ 2745 2746#ifdef CONFIG_NETFILTER 2747 err = netfilter_init(); 2748 if (err) 2749 goto out; 2750#endif 2751 2752 ptp_classifier_init(); 2753 2754out: 2755 return err; 2756 2757out_mount: 2758 unregister_filesystem(&sock_fs_type); 2759out_fs: 2760 goto out; 2761} 2762 2763core_initcall(sock_init); /* early initcall */ 2764 2765#ifdef CONFIG_PROC_FS 2766void socket_seq_show(struct seq_file *seq) 2767{ 2768 seq_printf(seq, "sockets: used %d\n", 2769 sock_inuse_get(seq->private)); 2770} 2771#endif /* CONFIG_PROC_FS */ 2772 2773#ifdef CONFIG_COMPAT 2774static int do_siocgstamp(struct net *net, struct socket *sock, 2775 unsigned int cmd, void __user *up) 2776{ 2777 mm_segment_t old_fs = get_fs(); 2778 struct timeval ktv; 2779 int err; 2780 2781 set_fs(KERNEL_DS); 2782 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2783 set_fs(old_fs); 2784 if (!err) 2785 err = compat_put_timeval(&ktv, up); 2786 2787 return err; 2788} 2789 2790static int do_siocgstampns(struct net *net, struct socket *sock, 2791 unsigned int cmd, void __user *up) 2792{ 2793 mm_segment_t old_fs = get_fs(); 2794 struct timespec kts; 2795 int err; 2796 2797 set_fs(KERNEL_DS); 2798 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2799 set_fs(old_fs); 2800 if (!err) 2801 err = compat_put_timespec(&kts, up); 2802 2803 return err; 2804} 2805 2806static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2807{ 2808 struct compat_ifconf ifc32; 2809 struct ifconf ifc; 2810 int err; 2811 2812 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2813 return -EFAULT; 2814 2815 ifc.ifc_len = ifc32.ifc_len; 2816 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2817 2818 rtnl_lock(); 2819 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2820 rtnl_unlock(); 2821 if (err) 2822 return err; 2823 2824 ifc32.ifc_len = ifc.ifc_len; 2825 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2826 return -EFAULT; 2827 2828 return 0; 2829} 2830 2831static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2832{ 2833 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2834 bool convert_in = false, convert_out = false; 2835 size_t buf_size = 0; 2836 struct ethtool_rxnfc __user *rxnfc = NULL; 2837 struct ifreq ifr; 2838 u32 rule_cnt = 0, actual_rule_cnt; 2839 u32 ethcmd; 2840 u32 data; 2841 int ret; 2842 2843 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2844 return -EFAULT; 2845 2846 compat_rxnfc = compat_ptr(data); 2847 2848 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2849 return -EFAULT; 2850 2851 /* Most ethtool structures are defined without padding. 2852 * Unfortunately struct ethtool_rxnfc is an exception. 2853 */ 2854 switch (ethcmd) { 2855 default: 2856 break; 2857 case ETHTOOL_GRXCLSRLALL: 2858 /* Buffer size is variable */ 2859 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2860 return -EFAULT; 2861 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2862 return -ENOMEM; 2863 buf_size += rule_cnt * sizeof(u32); 2864 /* fall through */ 2865 case ETHTOOL_GRXRINGS: 2866 case ETHTOOL_GRXCLSRLCNT: 2867 case ETHTOOL_GRXCLSRULE: 2868 case ETHTOOL_SRXCLSRLINS: 2869 convert_out = true; 2870 /* fall through */ 2871 case ETHTOOL_SRXCLSRLDEL: 2872 buf_size += sizeof(struct ethtool_rxnfc); 2873 convert_in = true; 2874 rxnfc = compat_alloc_user_space(buf_size); 2875 break; 2876 } 2877 2878 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2879 return -EFAULT; 2880 2881 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 2882 2883 if (convert_in) { 2884 /* We expect there to be holes between fs.m_ext and 2885 * fs.ring_cookie and at the end of fs, but nowhere else. 2886 */ 2887 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2888 sizeof(compat_rxnfc->fs.m_ext) != 2889 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2890 sizeof(rxnfc->fs.m_ext)); 2891 BUILD_BUG_ON( 2892 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2893 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2894 offsetof(struct ethtool_rxnfc, fs.location) - 2895 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2896 2897 if (copy_in_user(rxnfc, compat_rxnfc, 2898 (void __user *)(&rxnfc->fs.m_ext + 1) - 2899 (void __user *)rxnfc) || 2900 copy_in_user(&rxnfc->fs.ring_cookie, 2901 &compat_rxnfc->fs.ring_cookie, 2902 (void __user *)(&rxnfc->fs.location + 1) - 2903 (void __user *)&rxnfc->fs.ring_cookie)) 2904 return -EFAULT; 2905 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2906 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 2907 return -EFAULT; 2908 } else if (copy_in_user(&rxnfc->rule_cnt, 2909 &compat_rxnfc->rule_cnt, 2910 sizeof(rxnfc->rule_cnt))) 2911 return -EFAULT; 2912 } 2913 2914 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 2915 if (ret) 2916 return ret; 2917 2918 if (convert_out) { 2919 if (copy_in_user(compat_rxnfc, rxnfc, 2920 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2921 (const void __user *)rxnfc) || 2922 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2923 &rxnfc->fs.ring_cookie, 2924 (const void __user *)(&rxnfc->fs.location + 1) - 2925 (const void __user *)&rxnfc->fs.ring_cookie) || 2926 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2927 sizeof(rxnfc->rule_cnt))) 2928 return -EFAULT; 2929 2930 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2931 /* As an optimisation, we only copy the actual 2932 * number of rules that the underlying 2933 * function returned. Since Mallory might 2934 * change the rule count in user memory, we 2935 * check that it is less than the rule count 2936 * originally given (as the user buffer size), 2937 * which has been range-checked. 2938 */ 2939 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2940 return -EFAULT; 2941 if (actual_rule_cnt < rule_cnt) 2942 rule_cnt = actual_rule_cnt; 2943 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2944 &rxnfc->rule_locs[0], 2945 rule_cnt * sizeof(u32))) 2946 return -EFAULT; 2947 } 2948 } 2949 2950 return 0; 2951} 2952 2953static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2954{ 2955 compat_uptr_t uptr32; 2956 struct ifreq ifr; 2957 void __user *saved; 2958 int err; 2959 2960 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 2961 return -EFAULT; 2962 2963 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2964 return -EFAULT; 2965 2966 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 2967 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 2968 2969 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 2970 if (!err) { 2971 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 2972 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 2973 err = -EFAULT; 2974 } 2975 return err; 2976} 2977 2978/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2979static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2980 struct compat_ifreq __user *u_ifreq32) 2981{ 2982 struct ifreq ifreq; 2983 u32 data32; 2984 2985 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 2986 return -EFAULT; 2987 if (get_user(data32, &u_ifreq32->ifr_data)) 2988 return -EFAULT; 2989 ifreq.ifr_data = compat_ptr(data32); 2990 2991 return dev_ioctl(net, cmd, &ifreq, NULL); 2992} 2993 2994static int compat_ifreq_ioctl(struct net *net, struct socket *sock, 2995 unsigned int cmd, 2996 struct compat_ifreq __user *uifr32) 2997{ 2998 struct ifreq __user *uifr; 2999 int err; 3000 3001 /* Handle the fact that while struct ifreq has the same *layout* on 3002 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3003 * which are handled elsewhere, it still has different *size* due to 3004 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3005 * resulting in struct ifreq being 32 and 40 bytes respectively). 3006 * As a result, if the struct happens to be at the end of a page and 3007 * the next page isn't readable/writable, we get a fault. To prevent 3008 * that, copy back and forth to the full size. 3009 */ 3010 3011 uifr = compat_alloc_user_space(sizeof(*uifr)); 3012 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3013 return -EFAULT; 3014 3015 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3016 3017 if (!err) { 3018 switch (cmd) { 3019 case SIOCGIFFLAGS: 3020 case SIOCGIFMETRIC: 3021 case SIOCGIFMTU: 3022 case SIOCGIFMEM: 3023 case SIOCGIFHWADDR: 3024 case SIOCGIFINDEX: 3025 case SIOCGIFADDR: 3026 case SIOCGIFBRDADDR: 3027 case SIOCGIFDSTADDR: 3028 case SIOCGIFNETMASK: 3029 case SIOCGIFPFLAGS: 3030 case SIOCGIFTXQLEN: 3031 case SIOCGMIIPHY: 3032 case SIOCGMIIREG: 3033 case SIOCGIFNAME: 3034 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3035 err = -EFAULT; 3036 break; 3037 } 3038 } 3039 return err; 3040} 3041 3042static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3043 struct compat_ifreq __user *uifr32) 3044{ 3045 struct ifreq ifr; 3046 struct compat_ifmap __user *uifmap32; 3047 int err; 3048 3049 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3050 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3051 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3052 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3053 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3054 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3055 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3056 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3057 if (err) 3058 return -EFAULT; 3059 3060 err = dev_ioctl(net, cmd, &ifr, NULL); 3061 3062 if (cmd == SIOCGIFMAP && !err) { 3063 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3064 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3065 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3066 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3067 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3068 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3069 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3070 if (err) 3071 err = -EFAULT; 3072 } 3073 return err; 3074} 3075 3076struct rtentry32 { 3077 u32 rt_pad1; 3078 struct sockaddr rt_dst; /* target address */ 3079 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3080 struct sockaddr rt_genmask; /* target network mask (IP) */ 3081 unsigned short rt_flags; 3082 short rt_pad2; 3083 u32 rt_pad3; 3084 unsigned char rt_tos; 3085 unsigned char rt_class; 3086 short rt_pad4; 3087 short rt_metric; /* +1 for binary compatibility! */ 3088 /* char * */ u32 rt_dev; /* forcing the device at add */ 3089 u32 rt_mtu; /* per route MTU/Window */ 3090 u32 rt_window; /* Window clamping */ 3091 unsigned short rt_irtt; /* Initial RTT */ 3092}; 3093 3094struct in6_rtmsg32 { 3095 struct in6_addr rtmsg_dst; 3096 struct in6_addr rtmsg_src; 3097 struct in6_addr rtmsg_gateway; 3098 u32 rtmsg_type; 3099 u16 rtmsg_dst_len; 3100 u16 rtmsg_src_len; 3101 u32 rtmsg_metric; 3102 u32 rtmsg_info; 3103 u32 rtmsg_flags; 3104 s32 rtmsg_ifindex; 3105}; 3106 3107static int routing_ioctl(struct net *net, struct socket *sock, 3108 unsigned int cmd, void __user *argp) 3109{ 3110 int ret; 3111 void *r = NULL; 3112 struct in6_rtmsg r6; 3113 struct rtentry r4; 3114 char devname[16]; 3115 u32 rtdev; 3116 mm_segment_t old_fs = get_fs(); 3117 3118 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3119 struct in6_rtmsg32 __user *ur6 = argp; 3120 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3121 3 * sizeof(struct in6_addr)); 3122 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3123 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3124 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3125 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3126 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3127 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3128 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3129 3130 r = (void *) &r6; 3131 } else { /* ipv4 */ 3132 struct rtentry32 __user *ur4 = argp; 3133 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3134 3 * sizeof(struct sockaddr)); 3135 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3136 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3137 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3138 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3139 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3140 ret |= get_user(rtdev, &(ur4->rt_dev)); 3141 if (rtdev) { 3142 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3143 r4.rt_dev = (char __user __force *)devname; 3144 devname[15] = 0; 3145 } else 3146 r4.rt_dev = NULL; 3147 3148 r = (void *) &r4; 3149 } 3150 3151 if (ret) { 3152 ret = -EFAULT; 3153 goto out; 3154 } 3155 3156 set_fs(KERNEL_DS); 3157 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3158 set_fs(old_fs); 3159 3160out: 3161 return ret; 3162} 3163 3164/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3165 * for some operations; this forces use of the newer bridge-utils that 3166 * use compatible ioctls 3167 */ 3168static int old_bridge_ioctl(compat_ulong_t __user *argp) 3169{ 3170 compat_ulong_t tmp; 3171 3172 if (get_user(tmp, argp)) 3173 return -EFAULT; 3174 if (tmp == BRCTL_GET_VERSION) 3175 return BRCTL_VERSION + 1; 3176 return -EINVAL; 3177} 3178 3179static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3180 unsigned int cmd, unsigned long arg) 3181{ 3182 void __user *argp = compat_ptr(arg); 3183 struct sock *sk = sock->sk; 3184 struct net *net = sock_net(sk); 3185 3186 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3187 return compat_ifr_data_ioctl(net, cmd, argp); 3188 3189 switch (cmd) { 3190 case SIOCSIFBR: 3191 case SIOCGIFBR: 3192 return old_bridge_ioctl(argp); 3193 case SIOCGIFCONF: 3194 return compat_dev_ifconf(net, argp); 3195 case SIOCETHTOOL: 3196 return ethtool_ioctl(net, argp); 3197 case SIOCWANDEV: 3198 return compat_siocwandev(net, argp); 3199 case SIOCGIFMAP: 3200 case SIOCSIFMAP: 3201 return compat_sioc_ifmap(net, cmd, argp); 3202 case SIOCADDRT: 3203 case SIOCDELRT: 3204 return routing_ioctl(net, sock, cmd, argp); 3205 case SIOCGSTAMP: 3206 return do_siocgstamp(net, sock, cmd, argp); 3207 case SIOCGSTAMPNS: 3208 return do_siocgstampns(net, sock, cmd, argp); 3209 case SIOCBONDSLAVEINFOQUERY: 3210 case SIOCBONDINFOQUERY: 3211 case SIOCSHWTSTAMP: 3212 case SIOCGHWTSTAMP: 3213 return compat_ifr_data_ioctl(net, cmd, argp); 3214 3215 case FIOSETOWN: 3216 case SIOCSPGRP: 3217 case FIOGETOWN: 3218 case SIOCGPGRP: 3219 case SIOCBRADDBR: 3220 case SIOCBRDELBR: 3221 case SIOCGIFVLAN: 3222 case SIOCSIFVLAN: 3223 case SIOCADDDLCI: 3224 case SIOCDELDLCI: 3225 case SIOCGSKNS: 3226 return sock_ioctl(file, cmd, arg); 3227 3228 case SIOCGIFFLAGS: 3229 case SIOCSIFFLAGS: 3230 case SIOCGIFMETRIC: 3231 case SIOCSIFMETRIC: 3232 case SIOCGIFMTU: 3233 case SIOCSIFMTU: 3234 case SIOCGIFMEM: 3235 case SIOCSIFMEM: 3236 case SIOCGIFHWADDR: 3237 case SIOCSIFHWADDR: 3238 case SIOCADDMULTI: 3239 case SIOCDELMULTI: 3240 case SIOCGIFINDEX: 3241 case SIOCGIFADDR: 3242 case SIOCSIFADDR: 3243 case SIOCSIFHWBROADCAST: 3244 case SIOCDIFADDR: 3245 case SIOCGIFBRDADDR: 3246 case SIOCSIFBRDADDR: 3247 case SIOCGIFDSTADDR: 3248 case SIOCSIFDSTADDR: 3249 case SIOCGIFNETMASK: 3250 case SIOCSIFNETMASK: 3251 case SIOCSIFPFLAGS: 3252 case SIOCGIFPFLAGS: 3253 case SIOCGIFTXQLEN: 3254 case SIOCSIFTXQLEN: 3255 case SIOCBRADDIF: 3256 case SIOCBRDELIF: 3257 case SIOCGIFNAME: 3258 case SIOCSIFNAME: 3259 case SIOCGMIIPHY: 3260 case SIOCGMIIREG: 3261 case SIOCSMIIREG: 3262 case SIOCBONDENSLAVE: 3263 case SIOCBONDRELEASE: 3264 case SIOCBONDSETHWADDR: 3265 case SIOCBONDCHANGEACTIVE: 3266 return compat_ifreq_ioctl(net, sock, cmd, argp); 3267 3268 case SIOCSARP: 3269 case SIOCGARP: 3270 case SIOCDARP: 3271 case SIOCATMARK: 3272 return sock_do_ioctl(net, sock, cmd, arg); 3273 } 3274 3275 return -ENOIOCTLCMD; 3276} 3277 3278static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3279 unsigned long arg) 3280{ 3281 struct socket *sock = file->private_data; 3282 int ret = -ENOIOCTLCMD; 3283 struct sock *sk; 3284 struct net *net; 3285 3286 sk = sock->sk; 3287 net = sock_net(sk); 3288 3289 if (sock->ops->compat_ioctl) 3290 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3291 3292 if (ret == -ENOIOCTLCMD && 3293 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3294 ret = compat_wext_handle_ioctl(net, cmd, arg); 3295 3296 if (ret == -ENOIOCTLCMD) 3297 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3298 3299 return ret; 3300} 3301#endif 3302 3303int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3304{ 3305 return sock->ops->bind(sock, addr, addrlen); 3306} 3307EXPORT_SYMBOL(kernel_bind); 3308 3309int kernel_listen(struct socket *sock, int backlog) 3310{ 3311 return sock->ops->listen(sock, backlog); 3312} 3313EXPORT_SYMBOL(kernel_listen); 3314 3315int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3316{ 3317 struct sock *sk = sock->sk; 3318 int err; 3319 3320 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3321 newsock); 3322 if (err < 0) 3323 goto done; 3324 3325 err = sock->ops->accept(sock, *newsock, flags, true); 3326 if (err < 0) { 3327 sock_release(*newsock); 3328 *newsock = NULL; 3329 goto done; 3330 } 3331 3332 (*newsock)->ops = sock->ops; 3333 __module_get((*newsock)->ops->owner); 3334 3335done: 3336 return err; 3337} 3338EXPORT_SYMBOL(kernel_accept); 3339 3340int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3341 int flags) 3342{ 3343 return sock->ops->connect(sock, addr, addrlen, flags); 3344} 3345EXPORT_SYMBOL(kernel_connect); 3346 3347int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3348{ 3349 return sock->ops->getname(sock, addr, 0); 3350} 3351EXPORT_SYMBOL(kernel_getsockname); 3352 3353int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3354{ 3355 return sock->ops->getname(sock, addr, 1); 3356} 3357EXPORT_SYMBOL(kernel_getpeername); 3358 3359int kernel_getsockopt(struct socket *sock, int level, int optname, 3360 char *optval, int *optlen) 3361{ 3362 mm_segment_t oldfs = get_fs(); 3363 char __user *uoptval; 3364 int __user *uoptlen; 3365 int err; 3366 3367 uoptval = (char __user __force *) optval; 3368 uoptlen = (int __user __force *) optlen; 3369 3370 set_fs(KERNEL_DS); 3371 if (level == SOL_SOCKET) 3372 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3373 else 3374 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3375 uoptlen); 3376 set_fs(oldfs); 3377 return err; 3378} 3379EXPORT_SYMBOL(kernel_getsockopt); 3380 3381int kernel_setsockopt(struct socket *sock, int level, int optname, 3382 char *optval, unsigned int optlen) 3383{ 3384 mm_segment_t oldfs = get_fs(); 3385 char __user *uoptval; 3386 int err; 3387 3388 uoptval = (char __user __force *) optval; 3389 3390 set_fs(KERNEL_DS); 3391 if (level == SOL_SOCKET) 3392 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3393 else 3394 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3395 optlen); 3396 set_fs(oldfs); 3397 return err; 3398} 3399EXPORT_SYMBOL(kernel_setsockopt); 3400 3401int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3402 size_t size, int flags) 3403{ 3404 if (sock->ops->sendpage) 3405 return sock->ops->sendpage(sock, page, offset, size, flags); 3406 3407 return sock_no_sendpage(sock, page, offset, size, flags); 3408} 3409EXPORT_SYMBOL(kernel_sendpage); 3410 3411int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3412 size_t size, int flags) 3413{ 3414 struct socket *sock = sk->sk_socket; 3415 3416 if (sock->ops->sendpage_locked) 3417 return sock->ops->sendpage_locked(sk, page, offset, size, 3418 flags); 3419 3420 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3421} 3422EXPORT_SYMBOL(kernel_sendpage_locked); 3423 3424int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3425{ 3426 return sock->ops->shutdown(sock, how); 3427} 3428EXPORT_SYMBOL(kernel_sock_shutdown); 3429 3430/* This routine returns the IP overhead imposed by a socket i.e. 3431 * the length of the underlying IP header, depending on whether 3432 * this is an IPv4 or IPv6 socket and the length from IP options turned 3433 * on at the socket. Assumes that the caller has a lock on the socket. 3434 */ 3435u32 kernel_sock_ip_overhead(struct sock *sk) 3436{ 3437 struct inet_sock *inet; 3438 struct ip_options_rcu *opt; 3439 u32 overhead = 0; 3440#if IS_ENABLED(CONFIG_IPV6) 3441 struct ipv6_pinfo *np; 3442 struct ipv6_txoptions *optv6 = NULL; 3443#endif /* IS_ENABLED(CONFIG_IPV6) */ 3444 3445 if (!sk) 3446 return overhead; 3447 3448 switch (sk->sk_family) { 3449 case AF_INET: 3450 inet = inet_sk(sk); 3451 overhead += sizeof(struct iphdr); 3452 opt = rcu_dereference_protected(inet->inet_opt, 3453 sock_owned_by_user(sk)); 3454 if (opt) 3455 overhead += opt->opt.optlen; 3456 return overhead; 3457#if IS_ENABLED(CONFIG_IPV6) 3458 case AF_INET6: 3459 np = inet6_sk(sk); 3460 overhead += sizeof(struct ipv6hdr); 3461 if (np) 3462 optv6 = rcu_dereference_protected(np->opt, 3463 sock_owned_by_user(sk)); 3464 if (optv6) 3465 overhead += (optv6->opt_flen + optv6->opt_nflen); 3466 return overhead; 3467#endif /* IS_ENABLED(CONFIG_IPV6) */ 3468 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3469 return overhead; 3470 } 3471} 3472EXPORT_SYMBOL(kernel_sock_ip_overhead);