at v5.0 16 kB view raw
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * SLOB Allocator: Simple List Of Blocks 4 * 5 * Matt Mackall <mpm@selenic.com> 12/30/03 6 * 7 * NUMA support by Paul Mundt, 2007. 8 * 9 * How SLOB works: 10 * 11 * The core of SLOB is a traditional K&R style heap allocator, with 12 * support for returning aligned objects. The granularity of this 13 * allocator is as little as 2 bytes, however typically most architectures 14 * will require 4 bytes on 32-bit and 8 bytes on 64-bit. 15 * 16 * The slob heap is a set of linked list of pages from alloc_pages(), 17 * and within each page, there is a singly-linked list of free blocks 18 * (slob_t). The heap is grown on demand. To reduce fragmentation, 19 * heap pages are segregated into three lists, with objects less than 20 * 256 bytes, objects less than 1024 bytes, and all other objects. 21 * 22 * Allocation from heap involves first searching for a page with 23 * sufficient free blocks (using a next-fit-like approach) followed by 24 * a first-fit scan of the page. Deallocation inserts objects back 25 * into the free list in address order, so this is effectively an 26 * address-ordered first fit. 27 * 28 * Above this is an implementation of kmalloc/kfree. Blocks returned 29 * from kmalloc are prepended with a 4-byte header with the kmalloc size. 30 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls 31 * alloc_pages() directly, allocating compound pages so the page order 32 * does not have to be separately tracked. 33 * These objects are detected in kfree() because PageSlab() 34 * is false for them. 35 * 36 * SLAB is emulated on top of SLOB by simply calling constructors and 37 * destructors for every SLAB allocation. Objects are returned with the 38 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which 39 * case the low-level allocator will fragment blocks to create the proper 40 * alignment. Again, objects of page-size or greater are allocated by 41 * calling alloc_pages(). As SLAB objects know their size, no separate 42 * size bookkeeping is necessary and there is essentially no allocation 43 * space overhead, and compound pages aren't needed for multi-page 44 * allocations. 45 * 46 * NUMA support in SLOB is fairly simplistic, pushing most of the real 47 * logic down to the page allocator, and simply doing the node accounting 48 * on the upper levels. In the event that a node id is explicitly 49 * provided, __alloc_pages_node() with the specified node id is used 50 * instead. The common case (or when the node id isn't explicitly provided) 51 * will default to the current node, as per numa_node_id(). 52 * 53 * Node aware pages are still inserted in to the global freelist, and 54 * these are scanned for by matching against the node id encoded in the 55 * page flags. As a result, block allocations that can be satisfied from 56 * the freelist will only be done so on pages residing on the same node, 57 * in order to prevent random node placement. 58 */ 59 60#include <linux/kernel.h> 61#include <linux/slab.h> 62 63#include <linux/mm.h> 64#include <linux/swap.h> /* struct reclaim_state */ 65#include <linux/cache.h> 66#include <linux/init.h> 67#include <linux/export.h> 68#include <linux/rcupdate.h> 69#include <linux/list.h> 70#include <linux/kmemleak.h> 71 72#include <trace/events/kmem.h> 73 74#include <linux/atomic.h> 75 76#include "slab.h" 77/* 78 * slob_block has a field 'units', which indicates size of block if +ve, 79 * or offset of next block if -ve (in SLOB_UNITs). 80 * 81 * Free blocks of size 1 unit simply contain the offset of the next block. 82 * Those with larger size contain their size in the first SLOB_UNIT of 83 * memory, and the offset of the next free block in the second SLOB_UNIT. 84 */ 85#if PAGE_SIZE <= (32767 * 2) 86typedef s16 slobidx_t; 87#else 88typedef s32 slobidx_t; 89#endif 90 91struct slob_block { 92 slobidx_t units; 93}; 94typedef struct slob_block slob_t; 95 96/* 97 * All partially free slob pages go on these lists. 98 */ 99#define SLOB_BREAK1 256 100#define SLOB_BREAK2 1024 101static LIST_HEAD(free_slob_small); 102static LIST_HEAD(free_slob_medium); 103static LIST_HEAD(free_slob_large); 104 105/* 106 * slob_page_free: true for pages on free_slob_pages list. 107 */ 108static inline int slob_page_free(struct page *sp) 109{ 110 return PageSlobFree(sp); 111} 112 113static void set_slob_page_free(struct page *sp, struct list_head *list) 114{ 115 list_add(&sp->lru, list); 116 __SetPageSlobFree(sp); 117} 118 119static inline void clear_slob_page_free(struct page *sp) 120{ 121 list_del(&sp->lru); 122 __ClearPageSlobFree(sp); 123} 124 125#define SLOB_UNIT sizeof(slob_t) 126#define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT) 127 128/* 129 * struct slob_rcu is inserted at the tail of allocated slob blocks, which 130 * were created with a SLAB_TYPESAFE_BY_RCU slab. slob_rcu is used to free 131 * the block using call_rcu. 132 */ 133struct slob_rcu { 134 struct rcu_head head; 135 int size; 136}; 137 138/* 139 * slob_lock protects all slob allocator structures. 140 */ 141static DEFINE_SPINLOCK(slob_lock); 142 143/* 144 * Encode the given size and next info into a free slob block s. 145 */ 146static void set_slob(slob_t *s, slobidx_t size, slob_t *next) 147{ 148 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); 149 slobidx_t offset = next - base; 150 151 if (size > 1) { 152 s[0].units = size; 153 s[1].units = offset; 154 } else 155 s[0].units = -offset; 156} 157 158/* 159 * Return the size of a slob block. 160 */ 161static slobidx_t slob_units(slob_t *s) 162{ 163 if (s->units > 0) 164 return s->units; 165 return 1; 166} 167 168/* 169 * Return the next free slob block pointer after this one. 170 */ 171static slob_t *slob_next(slob_t *s) 172{ 173 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); 174 slobidx_t next; 175 176 if (s[0].units < 0) 177 next = -s[0].units; 178 else 179 next = s[1].units; 180 return base+next; 181} 182 183/* 184 * Returns true if s is the last free block in its page. 185 */ 186static int slob_last(slob_t *s) 187{ 188 return !((unsigned long)slob_next(s) & ~PAGE_MASK); 189} 190 191static void *slob_new_pages(gfp_t gfp, int order, int node) 192{ 193 void *page; 194 195#ifdef CONFIG_NUMA 196 if (node != NUMA_NO_NODE) 197 page = __alloc_pages_node(node, gfp, order); 198 else 199#endif 200 page = alloc_pages(gfp, order); 201 202 if (!page) 203 return NULL; 204 205 return page_address(page); 206} 207 208static void slob_free_pages(void *b, int order) 209{ 210 if (current->reclaim_state) 211 current->reclaim_state->reclaimed_slab += 1 << order; 212 free_pages((unsigned long)b, order); 213} 214 215/* 216 * Allocate a slob block within a given slob_page sp. 217 */ 218static void *slob_page_alloc(struct page *sp, size_t size, int align) 219{ 220 slob_t *prev, *cur, *aligned = NULL; 221 int delta = 0, units = SLOB_UNITS(size); 222 223 for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) { 224 slobidx_t avail = slob_units(cur); 225 226 if (align) { 227 aligned = (slob_t *)ALIGN((unsigned long)cur, align); 228 delta = aligned - cur; 229 } 230 if (avail >= units + delta) { /* room enough? */ 231 slob_t *next; 232 233 if (delta) { /* need to fragment head to align? */ 234 next = slob_next(cur); 235 set_slob(aligned, avail - delta, next); 236 set_slob(cur, delta, aligned); 237 prev = cur; 238 cur = aligned; 239 avail = slob_units(cur); 240 } 241 242 next = slob_next(cur); 243 if (avail == units) { /* exact fit? unlink. */ 244 if (prev) 245 set_slob(prev, slob_units(prev), next); 246 else 247 sp->freelist = next; 248 } else { /* fragment */ 249 if (prev) 250 set_slob(prev, slob_units(prev), cur + units); 251 else 252 sp->freelist = cur + units; 253 set_slob(cur + units, avail - units, next); 254 } 255 256 sp->units -= units; 257 if (!sp->units) 258 clear_slob_page_free(sp); 259 return cur; 260 } 261 if (slob_last(cur)) 262 return NULL; 263 } 264} 265 266/* 267 * slob_alloc: entry point into the slob allocator. 268 */ 269static void *slob_alloc(size_t size, gfp_t gfp, int align, int node) 270{ 271 struct page *sp; 272 struct list_head *prev; 273 struct list_head *slob_list; 274 slob_t *b = NULL; 275 unsigned long flags; 276 277 if (size < SLOB_BREAK1) 278 slob_list = &free_slob_small; 279 else if (size < SLOB_BREAK2) 280 slob_list = &free_slob_medium; 281 else 282 slob_list = &free_slob_large; 283 284 spin_lock_irqsave(&slob_lock, flags); 285 /* Iterate through each partially free page, try to find room */ 286 list_for_each_entry(sp, slob_list, lru) { 287#ifdef CONFIG_NUMA 288 /* 289 * If there's a node specification, search for a partial 290 * page with a matching node id in the freelist. 291 */ 292 if (node != NUMA_NO_NODE && page_to_nid(sp) != node) 293 continue; 294#endif 295 /* Enough room on this page? */ 296 if (sp->units < SLOB_UNITS(size)) 297 continue; 298 299 /* Attempt to alloc */ 300 prev = sp->lru.prev; 301 b = slob_page_alloc(sp, size, align); 302 if (!b) 303 continue; 304 305 /* Improve fragment distribution and reduce our average 306 * search time by starting our next search here. (see 307 * Knuth vol 1, sec 2.5, pg 449) */ 308 if (prev != slob_list->prev && 309 slob_list->next != prev->next) 310 list_move_tail(slob_list, prev->next); 311 break; 312 } 313 spin_unlock_irqrestore(&slob_lock, flags); 314 315 /* Not enough space: must allocate a new page */ 316 if (!b) { 317 b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node); 318 if (!b) 319 return NULL; 320 sp = virt_to_page(b); 321 __SetPageSlab(sp); 322 323 spin_lock_irqsave(&slob_lock, flags); 324 sp->units = SLOB_UNITS(PAGE_SIZE); 325 sp->freelist = b; 326 INIT_LIST_HEAD(&sp->lru); 327 set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE)); 328 set_slob_page_free(sp, slob_list); 329 b = slob_page_alloc(sp, size, align); 330 BUG_ON(!b); 331 spin_unlock_irqrestore(&slob_lock, flags); 332 } 333 if (unlikely(gfp & __GFP_ZERO)) 334 memset(b, 0, size); 335 return b; 336} 337 338/* 339 * slob_free: entry point into the slob allocator. 340 */ 341static void slob_free(void *block, int size) 342{ 343 struct page *sp; 344 slob_t *prev, *next, *b = (slob_t *)block; 345 slobidx_t units; 346 unsigned long flags; 347 struct list_head *slob_list; 348 349 if (unlikely(ZERO_OR_NULL_PTR(block))) 350 return; 351 BUG_ON(!size); 352 353 sp = virt_to_page(block); 354 units = SLOB_UNITS(size); 355 356 spin_lock_irqsave(&slob_lock, flags); 357 358 if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) { 359 /* Go directly to page allocator. Do not pass slob allocator */ 360 if (slob_page_free(sp)) 361 clear_slob_page_free(sp); 362 spin_unlock_irqrestore(&slob_lock, flags); 363 __ClearPageSlab(sp); 364 page_mapcount_reset(sp); 365 slob_free_pages(b, 0); 366 return; 367 } 368 369 if (!slob_page_free(sp)) { 370 /* This slob page is about to become partially free. Easy! */ 371 sp->units = units; 372 sp->freelist = b; 373 set_slob(b, units, 374 (void *)((unsigned long)(b + 375 SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK)); 376 if (size < SLOB_BREAK1) 377 slob_list = &free_slob_small; 378 else if (size < SLOB_BREAK2) 379 slob_list = &free_slob_medium; 380 else 381 slob_list = &free_slob_large; 382 set_slob_page_free(sp, slob_list); 383 goto out; 384 } 385 386 /* 387 * Otherwise the page is already partially free, so find reinsertion 388 * point. 389 */ 390 sp->units += units; 391 392 if (b < (slob_t *)sp->freelist) { 393 if (b + units == sp->freelist) { 394 units += slob_units(sp->freelist); 395 sp->freelist = slob_next(sp->freelist); 396 } 397 set_slob(b, units, sp->freelist); 398 sp->freelist = b; 399 } else { 400 prev = sp->freelist; 401 next = slob_next(prev); 402 while (b > next) { 403 prev = next; 404 next = slob_next(prev); 405 } 406 407 if (!slob_last(prev) && b + units == next) { 408 units += slob_units(next); 409 set_slob(b, units, slob_next(next)); 410 } else 411 set_slob(b, units, next); 412 413 if (prev + slob_units(prev) == b) { 414 units = slob_units(b) + slob_units(prev); 415 set_slob(prev, units, slob_next(b)); 416 } else 417 set_slob(prev, slob_units(prev), b); 418 } 419out: 420 spin_unlock_irqrestore(&slob_lock, flags); 421} 422 423/* 424 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend. 425 */ 426 427static __always_inline void * 428__do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller) 429{ 430 unsigned int *m; 431 int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); 432 void *ret; 433 434 gfp &= gfp_allowed_mask; 435 436 fs_reclaim_acquire(gfp); 437 fs_reclaim_release(gfp); 438 439 if (size < PAGE_SIZE - align) { 440 if (!size) 441 return ZERO_SIZE_PTR; 442 443 m = slob_alloc(size + align, gfp, align, node); 444 445 if (!m) 446 return NULL; 447 *m = size; 448 ret = (void *)m + align; 449 450 trace_kmalloc_node(caller, ret, 451 size, size + align, gfp, node); 452 } else { 453 unsigned int order = get_order(size); 454 455 if (likely(order)) 456 gfp |= __GFP_COMP; 457 ret = slob_new_pages(gfp, order, node); 458 459 trace_kmalloc_node(caller, ret, 460 size, PAGE_SIZE << order, gfp, node); 461 } 462 463 kmemleak_alloc(ret, size, 1, gfp); 464 return ret; 465} 466 467void *__kmalloc(size_t size, gfp_t gfp) 468{ 469 return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_); 470} 471EXPORT_SYMBOL(__kmalloc); 472 473void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller) 474{ 475 return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller); 476} 477 478#ifdef CONFIG_NUMA 479void *__kmalloc_node_track_caller(size_t size, gfp_t gfp, 480 int node, unsigned long caller) 481{ 482 return __do_kmalloc_node(size, gfp, node, caller); 483} 484#endif 485 486void kfree(const void *block) 487{ 488 struct page *sp; 489 490 trace_kfree(_RET_IP_, block); 491 492 if (unlikely(ZERO_OR_NULL_PTR(block))) 493 return; 494 kmemleak_free(block); 495 496 sp = virt_to_page(block); 497 if (PageSlab(sp)) { 498 int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); 499 unsigned int *m = (unsigned int *)(block - align); 500 slob_free(m, *m + align); 501 } else 502 __free_pages(sp, compound_order(sp)); 503} 504EXPORT_SYMBOL(kfree); 505 506/* can't use ksize for kmem_cache_alloc memory, only kmalloc */ 507size_t ksize(const void *block) 508{ 509 struct page *sp; 510 int align; 511 unsigned int *m; 512 513 BUG_ON(!block); 514 if (unlikely(block == ZERO_SIZE_PTR)) 515 return 0; 516 517 sp = virt_to_page(block); 518 if (unlikely(!PageSlab(sp))) 519 return PAGE_SIZE << compound_order(sp); 520 521 align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); 522 m = (unsigned int *)(block - align); 523 return SLOB_UNITS(*m) * SLOB_UNIT; 524} 525EXPORT_SYMBOL(ksize); 526 527int __kmem_cache_create(struct kmem_cache *c, slab_flags_t flags) 528{ 529 if (flags & SLAB_TYPESAFE_BY_RCU) { 530 /* leave room for rcu footer at the end of object */ 531 c->size += sizeof(struct slob_rcu); 532 } 533 c->flags = flags; 534 return 0; 535} 536 537static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node) 538{ 539 void *b; 540 541 flags &= gfp_allowed_mask; 542 543 fs_reclaim_acquire(flags); 544 fs_reclaim_release(flags); 545 546 if (c->size < PAGE_SIZE) { 547 b = slob_alloc(c->size, flags, c->align, node); 548 trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size, 549 SLOB_UNITS(c->size) * SLOB_UNIT, 550 flags, node); 551 } else { 552 b = slob_new_pages(flags, get_order(c->size), node); 553 trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size, 554 PAGE_SIZE << get_order(c->size), 555 flags, node); 556 } 557 558 if (b && c->ctor) { 559 WARN_ON_ONCE(flags & __GFP_ZERO); 560 c->ctor(b); 561 } 562 563 kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags); 564 return b; 565} 566 567void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) 568{ 569 return slob_alloc_node(cachep, flags, NUMA_NO_NODE); 570} 571EXPORT_SYMBOL(kmem_cache_alloc); 572 573#ifdef CONFIG_NUMA 574void *__kmalloc_node(size_t size, gfp_t gfp, int node) 575{ 576 return __do_kmalloc_node(size, gfp, node, _RET_IP_); 577} 578EXPORT_SYMBOL(__kmalloc_node); 579 580void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node) 581{ 582 return slob_alloc_node(cachep, gfp, node); 583} 584EXPORT_SYMBOL(kmem_cache_alloc_node); 585#endif 586 587static void __kmem_cache_free(void *b, int size) 588{ 589 if (size < PAGE_SIZE) 590 slob_free(b, size); 591 else 592 slob_free_pages(b, get_order(size)); 593} 594 595static void kmem_rcu_free(struct rcu_head *head) 596{ 597 struct slob_rcu *slob_rcu = (struct slob_rcu *)head; 598 void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu)); 599 600 __kmem_cache_free(b, slob_rcu->size); 601} 602 603void kmem_cache_free(struct kmem_cache *c, void *b) 604{ 605 kmemleak_free_recursive(b, c->flags); 606 if (unlikely(c->flags & SLAB_TYPESAFE_BY_RCU)) { 607 struct slob_rcu *slob_rcu; 608 slob_rcu = b + (c->size - sizeof(struct slob_rcu)); 609 slob_rcu->size = c->size; 610 call_rcu(&slob_rcu->head, kmem_rcu_free); 611 } else { 612 __kmem_cache_free(b, c->size); 613 } 614 615 trace_kmem_cache_free(_RET_IP_, b); 616} 617EXPORT_SYMBOL(kmem_cache_free); 618 619void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 620{ 621 __kmem_cache_free_bulk(s, size, p); 622} 623EXPORT_SYMBOL(kmem_cache_free_bulk); 624 625int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 626 void **p) 627{ 628 return __kmem_cache_alloc_bulk(s, flags, size, p); 629} 630EXPORT_SYMBOL(kmem_cache_alloc_bulk); 631 632int __kmem_cache_shutdown(struct kmem_cache *c) 633{ 634 /* No way to check for remaining objects */ 635 return 0; 636} 637 638void __kmem_cache_release(struct kmem_cache *c) 639{ 640} 641 642int __kmem_cache_shrink(struct kmem_cache *d) 643{ 644 return 0; 645} 646 647struct kmem_cache kmem_cache_boot = { 648 .name = "kmem_cache", 649 .size = sizeof(struct kmem_cache), 650 .flags = SLAB_PANIC, 651 .align = ARCH_KMALLOC_MINALIGN, 652}; 653 654void __init kmem_cache_init(void) 655{ 656 kmem_cache = &kmem_cache_boot; 657 slab_state = UP; 658} 659 660void __init kmem_cache_init_late(void) 661{ 662 slab_state = FULL; 663}