at v5.0 136 kB view raw
1/* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5#include <linux/list.h> 6#include <linux/init.h> 7#include <linux/mm.h> 8#include <linux/seq_file.h> 9#include <linux/sysctl.h> 10#include <linux/highmem.h> 11#include <linux/mmu_notifier.h> 12#include <linux/nodemask.h> 13#include <linux/pagemap.h> 14#include <linux/mempolicy.h> 15#include <linux/compiler.h> 16#include <linux/cpuset.h> 17#include <linux/mutex.h> 18#include <linux/memblock.h> 19#include <linux/sysfs.h> 20#include <linux/slab.h> 21#include <linux/mmdebug.h> 22#include <linux/sched/signal.h> 23#include <linux/rmap.h> 24#include <linux/string_helpers.h> 25#include <linux/swap.h> 26#include <linux/swapops.h> 27#include <linux/jhash.h> 28 29#include <asm/page.h> 30#include <asm/pgtable.h> 31#include <asm/tlb.h> 32 33#include <linux/io.h> 34#include <linux/hugetlb.h> 35#include <linux/hugetlb_cgroup.h> 36#include <linux/node.h> 37#include <linux/userfaultfd_k.h> 38#include <linux/page_owner.h> 39#include "internal.h" 40 41int hugetlb_max_hstate __read_mostly; 42unsigned int default_hstate_idx; 43struct hstate hstates[HUGE_MAX_HSTATE]; 44/* 45 * Minimum page order among possible hugepage sizes, set to a proper value 46 * at boot time. 47 */ 48static unsigned int minimum_order __read_mostly = UINT_MAX; 49 50__initdata LIST_HEAD(huge_boot_pages); 51 52/* for command line parsing */ 53static struct hstate * __initdata parsed_hstate; 54static unsigned long __initdata default_hstate_max_huge_pages; 55static unsigned long __initdata default_hstate_size; 56static bool __initdata parsed_valid_hugepagesz = true; 57 58/* 59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 60 * free_huge_pages, and surplus_huge_pages. 61 */ 62DEFINE_SPINLOCK(hugetlb_lock); 63 64/* 65 * Serializes faults on the same logical page. This is used to 66 * prevent spurious OOMs when the hugepage pool is fully utilized. 67 */ 68static int num_fault_mutexes; 69struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; 70 71/* Forward declaration */ 72static int hugetlb_acct_memory(struct hstate *h, long delta); 73 74static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 75{ 76 bool free = (spool->count == 0) && (spool->used_hpages == 0); 77 78 spin_unlock(&spool->lock); 79 80 /* If no pages are used, and no other handles to the subpool 81 * remain, give up any reservations mased on minimum size and 82 * free the subpool */ 83 if (free) { 84 if (spool->min_hpages != -1) 85 hugetlb_acct_memory(spool->hstate, 86 -spool->min_hpages); 87 kfree(spool); 88 } 89} 90 91struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 92 long min_hpages) 93{ 94 struct hugepage_subpool *spool; 95 96 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 97 if (!spool) 98 return NULL; 99 100 spin_lock_init(&spool->lock); 101 spool->count = 1; 102 spool->max_hpages = max_hpages; 103 spool->hstate = h; 104 spool->min_hpages = min_hpages; 105 106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 107 kfree(spool); 108 return NULL; 109 } 110 spool->rsv_hpages = min_hpages; 111 112 return spool; 113} 114 115void hugepage_put_subpool(struct hugepage_subpool *spool) 116{ 117 spin_lock(&spool->lock); 118 BUG_ON(!spool->count); 119 spool->count--; 120 unlock_or_release_subpool(spool); 121} 122 123/* 124 * Subpool accounting for allocating and reserving pages. 125 * Return -ENOMEM if there are not enough resources to satisfy the 126 * the request. Otherwise, return the number of pages by which the 127 * global pools must be adjusted (upward). The returned value may 128 * only be different than the passed value (delta) in the case where 129 * a subpool minimum size must be manitained. 130 */ 131static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 132 long delta) 133{ 134 long ret = delta; 135 136 if (!spool) 137 return ret; 138 139 spin_lock(&spool->lock); 140 141 if (spool->max_hpages != -1) { /* maximum size accounting */ 142 if ((spool->used_hpages + delta) <= spool->max_hpages) 143 spool->used_hpages += delta; 144 else { 145 ret = -ENOMEM; 146 goto unlock_ret; 147 } 148 } 149 150 /* minimum size accounting */ 151 if (spool->min_hpages != -1 && spool->rsv_hpages) { 152 if (delta > spool->rsv_hpages) { 153 /* 154 * Asking for more reserves than those already taken on 155 * behalf of subpool. Return difference. 156 */ 157 ret = delta - spool->rsv_hpages; 158 spool->rsv_hpages = 0; 159 } else { 160 ret = 0; /* reserves already accounted for */ 161 spool->rsv_hpages -= delta; 162 } 163 } 164 165unlock_ret: 166 spin_unlock(&spool->lock); 167 return ret; 168} 169 170/* 171 * Subpool accounting for freeing and unreserving pages. 172 * Return the number of global page reservations that must be dropped. 173 * The return value may only be different than the passed value (delta) 174 * in the case where a subpool minimum size must be maintained. 175 */ 176static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 177 long delta) 178{ 179 long ret = delta; 180 181 if (!spool) 182 return delta; 183 184 spin_lock(&spool->lock); 185 186 if (spool->max_hpages != -1) /* maximum size accounting */ 187 spool->used_hpages -= delta; 188 189 /* minimum size accounting */ 190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 191 if (spool->rsv_hpages + delta <= spool->min_hpages) 192 ret = 0; 193 else 194 ret = spool->rsv_hpages + delta - spool->min_hpages; 195 196 spool->rsv_hpages += delta; 197 if (spool->rsv_hpages > spool->min_hpages) 198 spool->rsv_hpages = spool->min_hpages; 199 } 200 201 /* 202 * If hugetlbfs_put_super couldn't free spool due to an outstanding 203 * quota reference, free it now. 204 */ 205 unlock_or_release_subpool(spool); 206 207 return ret; 208} 209 210static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 211{ 212 return HUGETLBFS_SB(inode->i_sb)->spool; 213} 214 215static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 216{ 217 return subpool_inode(file_inode(vma->vm_file)); 218} 219 220/* 221 * Region tracking -- allows tracking of reservations and instantiated pages 222 * across the pages in a mapping. 223 * 224 * The region data structures are embedded into a resv_map and protected 225 * by a resv_map's lock. The set of regions within the resv_map represent 226 * reservations for huge pages, or huge pages that have already been 227 * instantiated within the map. The from and to elements are huge page 228 * indicies into the associated mapping. from indicates the starting index 229 * of the region. to represents the first index past the end of the region. 230 * 231 * For example, a file region structure with from == 0 and to == 4 represents 232 * four huge pages in a mapping. It is important to note that the to element 233 * represents the first element past the end of the region. This is used in 234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region. 235 * 236 * Interval notation of the form [from, to) will be used to indicate that 237 * the endpoint from is inclusive and to is exclusive. 238 */ 239struct file_region { 240 struct list_head link; 241 long from; 242 long to; 243}; 244 245/* 246 * Add the huge page range represented by [f, t) to the reserve 247 * map. In the normal case, existing regions will be expanded 248 * to accommodate the specified range. Sufficient regions should 249 * exist for expansion due to the previous call to region_chg 250 * with the same range. However, it is possible that region_del 251 * could have been called after region_chg and modifed the map 252 * in such a way that no region exists to be expanded. In this 253 * case, pull a region descriptor from the cache associated with 254 * the map and use that for the new range. 255 * 256 * Return the number of new huge pages added to the map. This 257 * number is greater than or equal to zero. 258 */ 259static long region_add(struct resv_map *resv, long f, long t) 260{ 261 struct list_head *head = &resv->regions; 262 struct file_region *rg, *nrg, *trg; 263 long add = 0; 264 265 spin_lock(&resv->lock); 266 /* Locate the region we are either in or before. */ 267 list_for_each_entry(rg, head, link) 268 if (f <= rg->to) 269 break; 270 271 /* 272 * If no region exists which can be expanded to include the 273 * specified range, the list must have been modified by an 274 * interleving call to region_del(). Pull a region descriptor 275 * from the cache and use it for this range. 276 */ 277 if (&rg->link == head || t < rg->from) { 278 VM_BUG_ON(resv->region_cache_count <= 0); 279 280 resv->region_cache_count--; 281 nrg = list_first_entry(&resv->region_cache, struct file_region, 282 link); 283 list_del(&nrg->link); 284 285 nrg->from = f; 286 nrg->to = t; 287 list_add(&nrg->link, rg->link.prev); 288 289 add += t - f; 290 goto out_locked; 291 } 292 293 /* Round our left edge to the current segment if it encloses us. */ 294 if (f > rg->from) 295 f = rg->from; 296 297 /* Check for and consume any regions we now overlap with. */ 298 nrg = rg; 299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 300 if (&rg->link == head) 301 break; 302 if (rg->from > t) 303 break; 304 305 /* If this area reaches higher then extend our area to 306 * include it completely. If this is not the first area 307 * which we intend to reuse, free it. */ 308 if (rg->to > t) 309 t = rg->to; 310 if (rg != nrg) { 311 /* Decrement return value by the deleted range. 312 * Another range will span this area so that by 313 * end of routine add will be >= zero 314 */ 315 add -= (rg->to - rg->from); 316 list_del(&rg->link); 317 kfree(rg); 318 } 319 } 320 321 add += (nrg->from - f); /* Added to beginning of region */ 322 nrg->from = f; 323 add += t - nrg->to; /* Added to end of region */ 324 nrg->to = t; 325 326out_locked: 327 resv->adds_in_progress--; 328 spin_unlock(&resv->lock); 329 VM_BUG_ON(add < 0); 330 return add; 331} 332 333/* 334 * Examine the existing reserve map and determine how many 335 * huge pages in the specified range [f, t) are NOT currently 336 * represented. This routine is called before a subsequent 337 * call to region_add that will actually modify the reserve 338 * map to add the specified range [f, t). region_chg does 339 * not change the number of huge pages represented by the 340 * map. However, if the existing regions in the map can not 341 * be expanded to represent the new range, a new file_region 342 * structure is added to the map as a placeholder. This is 343 * so that the subsequent region_add call will have all the 344 * regions it needs and will not fail. 345 * 346 * Upon entry, region_chg will also examine the cache of region descriptors 347 * associated with the map. If there are not enough descriptors cached, one 348 * will be allocated for the in progress add operation. 349 * 350 * Returns the number of huge pages that need to be added to the existing 351 * reservation map for the range [f, t). This number is greater or equal to 352 * zero. -ENOMEM is returned if a new file_region structure or cache entry 353 * is needed and can not be allocated. 354 */ 355static long region_chg(struct resv_map *resv, long f, long t) 356{ 357 struct list_head *head = &resv->regions; 358 struct file_region *rg, *nrg = NULL; 359 long chg = 0; 360 361retry: 362 spin_lock(&resv->lock); 363retry_locked: 364 resv->adds_in_progress++; 365 366 /* 367 * Check for sufficient descriptors in the cache to accommodate 368 * the number of in progress add operations. 369 */ 370 if (resv->adds_in_progress > resv->region_cache_count) { 371 struct file_region *trg; 372 373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1); 374 /* Must drop lock to allocate a new descriptor. */ 375 resv->adds_in_progress--; 376 spin_unlock(&resv->lock); 377 378 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 379 if (!trg) { 380 kfree(nrg); 381 return -ENOMEM; 382 } 383 384 spin_lock(&resv->lock); 385 list_add(&trg->link, &resv->region_cache); 386 resv->region_cache_count++; 387 goto retry_locked; 388 } 389 390 /* Locate the region we are before or in. */ 391 list_for_each_entry(rg, head, link) 392 if (f <= rg->to) 393 break; 394 395 /* If we are below the current region then a new region is required. 396 * Subtle, allocate a new region at the position but make it zero 397 * size such that we can guarantee to record the reservation. */ 398 if (&rg->link == head || t < rg->from) { 399 if (!nrg) { 400 resv->adds_in_progress--; 401 spin_unlock(&resv->lock); 402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 403 if (!nrg) 404 return -ENOMEM; 405 406 nrg->from = f; 407 nrg->to = f; 408 INIT_LIST_HEAD(&nrg->link); 409 goto retry; 410 } 411 412 list_add(&nrg->link, rg->link.prev); 413 chg = t - f; 414 goto out_nrg; 415 } 416 417 /* Round our left edge to the current segment if it encloses us. */ 418 if (f > rg->from) 419 f = rg->from; 420 chg = t - f; 421 422 /* Check for and consume any regions we now overlap with. */ 423 list_for_each_entry(rg, rg->link.prev, link) { 424 if (&rg->link == head) 425 break; 426 if (rg->from > t) 427 goto out; 428 429 /* We overlap with this area, if it extends further than 430 * us then we must extend ourselves. Account for its 431 * existing reservation. */ 432 if (rg->to > t) { 433 chg += rg->to - t; 434 t = rg->to; 435 } 436 chg -= rg->to - rg->from; 437 } 438 439out: 440 spin_unlock(&resv->lock); 441 /* We already know we raced and no longer need the new region */ 442 kfree(nrg); 443 return chg; 444out_nrg: 445 spin_unlock(&resv->lock); 446 return chg; 447} 448 449/* 450 * Abort the in progress add operation. The adds_in_progress field 451 * of the resv_map keeps track of the operations in progress between 452 * calls to region_chg and region_add. Operations are sometimes 453 * aborted after the call to region_chg. In such cases, region_abort 454 * is called to decrement the adds_in_progress counter. 455 * 456 * NOTE: The range arguments [f, t) are not needed or used in this 457 * routine. They are kept to make reading the calling code easier as 458 * arguments will match the associated region_chg call. 459 */ 460static void region_abort(struct resv_map *resv, long f, long t) 461{ 462 spin_lock(&resv->lock); 463 VM_BUG_ON(!resv->region_cache_count); 464 resv->adds_in_progress--; 465 spin_unlock(&resv->lock); 466} 467 468/* 469 * Delete the specified range [f, t) from the reserve map. If the 470 * t parameter is LONG_MAX, this indicates that ALL regions after f 471 * should be deleted. Locate the regions which intersect [f, t) 472 * and either trim, delete or split the existing regions. 473 * 474 * Returns the number of huge pages deleted from the reserve map. 475 * In the normal case, the return value is zero or more. In the 476 * case where a region must be split, a new region descriptor must 477 * be allocated. If the allocation fails, -ENOMEM will be returned. 478 * NOTE: If the parameter t == LONG_MAX, then we will never split 479 * a region and possibly return -ENOMEM. Callers specifying 480 * t == LONG_MAX do not need to check for -ENOMEM error. 481 */ 482static long region_del(struct resv_map *resv, long f, long t) 483{ 484 struct list_head *head = &resv->regions; 485 struct file_region *rg, *trg; 486 struct file_region *nrg = NULL; 487 long del = 0; 488 489retry: 490 spin_lock(&resv->lock); 491 list_for_each_entry_safe(rg, trg, head, link) { 492 /* 493 * Skip regions before the range to be deleted. file_region 494 * ranges are normally of the form [from, to). However, there 495 * may be a "placeholder" entry in the map which is of the form 496 * (from, to) with from == to. Check for placeholder entries 497 * at the beginning of the range to be deleted. 498 */ 499 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 500 continue; 501 502 if (rg->from >= t) 503 break; 504 505 if (f > rg->from && t < rg->to) { /* Must split region */ 506 /* 507 * Check for an entry in the cache before dropping 508 * lock and attempting allocation. 509 */ 510 if (!nrg && 511 resv->region_cache_count > resv->adds_in_progress) { 512 nrg = list_first_entry(&resv->region_cache, 513 struct file_region, 514 link); 515 list_del(&nrg->link); 516 resv->region_cache_count--; 517 } 518 519 if (!nrg) { 520 spin_unlock(&resv->lock); 521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 522 if (!nrg) 523 return -ENOMEM; 524 goto retry; 525 } 526 527 del += t - f; 528 529 /* New entry for end of split region */ 530 nrg->from = t; 531 nrg->to = rg->to; 532 INIT_LIST_HEAD(&nrg->link); 533 534 /* Original entry is trimmed */ 535 rg->to = f; 536 537 list_add(&nrg->link, &rg->link); 538 nrg = NULL; 539 break; 540 } 541 542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 543 del += rg->to - rg->from; 544 list_del(&rg->link); 545 kfree(rg); 546 continue; 547 } 548 549 if (f <= rg->from) { /* Trim beginning of region */ 550 del += t - rg->from; 551 rg->from = t; 552 } else { /* Trim end of region */ 553 del += rg->to - f; 554 rg->to = f; 555 } 556 } 557 558 spin_unlock(&resv->lock); 559 kfree(nrg); 560 return del; 561} 562 563/* 564 * A rare out of memory error was encountered which prevented removal of 565 * the reserve map region for a page. The huge page itself was free'ed 566 * and removed from the page cache. This routine will adjust the subpool 567 * usage count, and the global reserve count if needed. By incrementing 568 * these counts, the reserve map entry which could not be deleted will 569 * appear as a "reserved" entry instead of simply dangling with incorrect 570 * counts. 571 */ 572void hugetlb_fix_reserve_counts(struct inode *inode) 573{ 574 struct hugepage_subpool *spool = subpool_inode(inode); 575 long rsv_adjust; 576 577 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 578 if (rsv_adjust) { 579 struct hstate *h = hstate_inode(inode); 580 581 hugetlb_acct_memory(h, 1); 582 } 583} 584 585/* 586 * Count and return the number of huge pages in the reserve map 587 * that intersect with the range [f, t). 588 */ 589static long region_count(struct resv_map *resv, long f, long t) 590{ 591 struct list_head *head = &resv->regions; 592 struct file_region *rg; 593 long chg = 0; 594 595 spin_lock(&resv->lock); 596 /* Locate each segment we overlap with, and count that overlap. */ 597 list_for_each_entry(rg, head, link) { 598 long seg_from; 599 long seg_to; 600 601 if (rg->to <= f) 602 continue; 603 if (rg->from >= t) 604 break; 605 606 seg_from = max(rg->from, f); 607 seg_to = min(rg->to, t); 608 609 chg += seg_to - seg_from; 610 } 611 spin_unlock(&resv->lock); 612 613 return chg; 614} 615 616/* 617 * Convert the address within this vma to the page offset within 618 * the mapping, in pagecache page units; huge pages here. 619 */ 620static pgoff_t vma_hugecache_offset(struct hstate *h, 621 struct vm_area_struct *vma, unsigned long address) 622{ 623 return ((address - vma->vm_start) >> huge_page_shift(h)) + 624 (vma->vm_pgoff >> huge_page_order(h)); 625} 626 627pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 628 unsigned long address) 629{ 630 return vma_hugecache_offset(hstate_vma(vma), vma, address); 631} 632EXPORT_SYMBOL_GPL(linear_hugepage_index); 633 634/* 635 * Return the size of the pages allocated when backing a VMA. In the majority 636 * cases this will be same size as used by the page table entries. 637 */ 638unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 639{ 640 if (vma->vm_ops && vma->vm_ops->pagesize) 641 return vma->vm_ops->pagesize(vma); 642 return PAGE_SIZE; 643} 644EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 645 646/* 647 * Return the page size being used by the MMU to back a VMA. In the majority 648 * of cases, the page size used by the kernel matches the MMU size. On 649 * architectures where it differs, an architecture-specific 'strong' 650 * version of this symbol is required. 651 */ 652__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 653{ 654 return vma_kernel_pagesize(vma); 655} 656 657/* 658 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 659 * bits of the reservation map pointer, which are always clear due to 660 * alignment. 661 */ 662#define HPAGE_RESV_OWNER (1UL << 0) 663#define HPAGE_RESV_UNMAPPED (1UL << 1) 664#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 665 666/* 667 * These helpers are used to track how many pages are reserved for 668 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 669 * is guaranteed to have their future faults succeed. 670 * 671 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 672 * the reserve counters are updated with the hugetlb_lock held. It is safe 673 * to reset the VMA at fork() time as it is not in use yet and there is no 674 * chance of the global counters getting corrupted as a result of the values. 675 * 676 * The private mapping reservation is represented in a subtly different 677 * manner to a shared mapping. A shared mapping has a region map associated 678 * with the underlying file, this region map represents the backing file 679 * pages which have ever had a reservation assigned which this persists even 680 * after the page is instantiated. A private mapping has a region map 681 * associated with the original mmap which is attached to all VMAs which 682 * reference it, this region map represents those offsets which have consumed 683 * reservation ie. where pages have been instantiated. 684 */ 685static unsigned long get_vma_private_data(struct vm_area_struct *vma) 686{ 687 return (unsigned long)vma->vm_private_data; 688} 689 690static void set_vma_private_data(struct vm_area_struct *vma, 691 unsigned long value) 692{ 693 vma->vm_private_data = (void *)value; 694} 695 696struct resv_map *resv_map_alloc(void) 697{ 698 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 699 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 700 701 if (!resv_map || !rg) { 702 kfree(resv_map); 703 kfree(rg); 704 return NULL; 705 } 706 707 kref_init(&resv_map->refs); 708 spin_lock_init(&resv_map->lock); 709 INIT_LIST_HEAD(&resv_map->regions); 710 711 resv_map->adds_in_progress = 0; 712 713 INIT_LIST_HEAD(&resv_map->region_cache); 714 list_add(&rg->link, &resv_map->region_cache); 715 resv_map->region_cache_count = 1; 716 717 return resv_map; 718} 719 720void resv_map_release(struct kref *ref) 721{ 722 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 723 struct list_head *head = &resv_map->region_cache; 724 struct file_region *rg, *trg; 725 726 /* Clear out any active regions before we release the map. */ 727 region_del(resv_map, 0, LONG_MAX); 728 729 /* ... and any entries left in the cache */ 730 list_for_each_entry_safe(rg, trg, head, link) { 731 list_del(&rg->link); 732 kfree(rg); 733 } 734 735 VM_BUG_ON(resv_map->adds_in_progress); 736 737 kfree(resv_map); 738} 739 740static inline struct resv_map *inode_resv_map(struct inode *inode) 741{ 742 return inode->i_mapping->private_data; 743} 744 745static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 746{ 747 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 748 if (vma->vm_flags & VM_MAYSHARE) { 749 struct address_space *mapping = vma->vm_file->f_mapping; 750 struct inode *inode = mapping->host; 751 752 return inode_resv_map(inode); 753 754 } else { 755 return (struct resv_map *)(get_vma_private_data(vma) & 756 ~HPAGE_RESV_MASK); 757 } 758} 759 760static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 761{ 762 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 763 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 764 765 set_vma_private_data(vma, (get_vma_private_data(vma) & 766 HPAGE_RESV_MASK) | (unsigned long)map); 767} 768 769static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 770{ 771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 772 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); 773 774 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 775} 776 777static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 778{ 779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 780 781 return (get_vma_private_data(vma) & flag) != 0; 782} 783 784/* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 785void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 786{ 787 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 788 if (!(vma->vm_flags & VM_MAYSHARE)) 789 vma->vm_private_data = (void *)0; 790} 791 792/* Returns true if the VMA has associated reserve pages */ 793static bool vma_has_reserves(struct vm_area_struct *vma, long chg) 794{ 795 if (vma->vm_flags & VM_NORESERVE) { 796 /* 797 * This address is already reserved by other process(chg == 0), 798 * so, we should decrement reserved count. Without decrementing, 799 * reserve count remains after releasing inode, because this 800 * allocated page will go into page cache and is regarded as 801 * coming from reserved pool in releasing step. Currently, we 802 * don't have any other solution to deal with this situation 803 * properly, so add work-around here. 804 */ 805 if (vma->vm_flags & VM_MAYSHARE && chg == 0) 806 return true; 807 else 808 return false; 809 } 810 811 /* Shared mappings always use reserves */ 812 if (vma->vm_flags & VM_MAYSHARE) { 813 /* 814 * We know VM_NORESERVE is not set. Therefore, there SHOULD 815 * be a region map for all pages. The only situation where 816 * there is no region map is if a hole was punched via 817 * fallocate. In this case, there really are no reverves to 818 * use. This situation is indicated if chg != 0. 819 */ 820 if (chg) 821 return false; 822 else 823 return true; 824 } 825 826 /* 827 * Only the process that called mmap() has reserves for 828 * private mappings. 829 */ 830 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 831 /* 832 * Like the shared case above, a hole punch or truncate 833 * could have been performed on the private mapping. 834 * Examine the value of chg to determine if reserves 835 * actually exist or were previously consumed. 836 * Very Subtle - The value of chg comes from a previous 837 * call to vma_needs_reserves(). The reserve map for 838 * private mappings has different (opposite) semantics 839 * than that of shared mappings. vma_needs_reserves() 840 * has already taken this difference in semantics into 841 * account. Therefore, the meaning of chg is the same 842 * as in the shared case above. Code could easily be 843 * combined, but keeping it separate draws attention to 844 * subtle differences. 845 */ 846 if (chg) 847 return false; 848 else 849 return true; 850 } 851 852 return false; 853} 854 855static void enqueue_huge_page(struct hstate *h, struct page *page) 856{ 857 int nid = page_to_nid(page); 858 list_move(&page->lru, &h->hugepage_freelists[nid]); 859 h->free_huge_pages++; 860 h->free_huge_pages_node[nid]++; 861} 862 863static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) 864{ 865 struct page *page; 866 867 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 868 if (!PageHWPoison(page)) 869 break; 870 /* 871 * if 'non-isolated free hugepage' not found on the list, 872 * the allocation fails. 873 */ 874 if (&h->hugepage_freelists[nid] == &page->lru) 875 return NULL; 876 list_move(&page->lru, &h->hugepage_activelist); 877 set_page_refcounted(page); 878 h->free_huge_pages--; 879 h->free_huge_pages_node[nid]--; 880 return page; 881} 882 883static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, 884 nodemask_t *nmask) 885{ 886 unsigned int cpuset_mems_cookie; 887 struct zonelist *zonelist; 888 struct zone *zone; 889 struct zoneref *z; 890 int node = -1; 891 892 zonelist = node_zonelist(nid, gfp_mask); 893 894retry_cpuset: 895 cpuset_mems_cookie = read_mems_allowed_begin(); 896 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 897 struct page *page; 898 899 if (!cpuset_zone_allowed(zone, gfp_mask)) 900 continue; 901 /* 902 * no need to ask again on the same node. Pool is node rather than 903 * zone aware 904 */ 905 if (zone_to_nid(zone) == node) 906 continue; 907 node = zone_to_nid(zone); 908 909 page = dequeue_huge_page_node_exact(h, node); 910 if (page) 911 return page; 912 } 913 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 914 goto retry_cpuset; 915 916 return NULL; 917} 918 919/* Movability of hugepages depends on migration support. */ 920static inline gfp_t htlb_alloc_mask(struct hstate *h) 921{ 922 if (hugepage_migration_supported(h)) 923 return GFP_HIGHUSER_MOVABLE; 924 else 925 return GFP_HIGHUSER; 926} 927 928static struct page *dequeue_huge_page_vma(struct hstate *h, 929 struct vm_area_struct *vma, 930 unsigned long address, int avoid_reserve, 931 long chg) 932{ 933 struct page *page; 934 struct mempolicy *mpol; 935 gfp_t gfp_mask; 936 nodemask_t *nodemask; 937 int nid; 938 939 /* 940 * A child process with MAP_PRIVATE mappings created by their parent 941 * have no page reserves. This check ensures that reservations are 942 * not "stolen". The child may still get SIGKILLed 943 */ 944 if (!vma_has_reserves(vma, chg) && 945 h->free_huge_pages - h->resv_huge_pages == 0) 946 goto err; 947 948 /* If reserves cannot be used, ensure enough pages are in the pool */ 949 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 950 goto err; 951 952 gfp_mask = htlb_alloc_mask(h); 953 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 954 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); 955 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { 956 SetPagePrivate(page); 957 h->resv_huge_pages--; 958 } 959 960 mpol_cond_put(mpol); 961 return page; 962 963err: 964 return NULL; 965} 966 967/* 968 * common helper functions for hstate_next_node_to_{alloc|free}. 969 * We may have allocated or freed a huge page based on a different 970 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 971 * be outside of *nodes_allowed. Ensure that we use an allowed 972 * node for alloc or free. 973 */ 974static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 975{ 976 nid = next_node_in(nid, *nodes_allowed); 977 VM_BUG_ON(nid >= MAX_NUMNODES); 978 979 return nid; 980} 981 982static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 983{ 984 if (!node_isset(nid, *nodes_allowed)) 985 nid = next_node_allowed(nid, nodes_allowed); 986 return nid; 987} 988 989/* 990 * returns the previously saved node ["this node"] from which to 991 * allocate a persistent huge page for the pool and advance the 992 * next node from which to allocate, handling wrap at end of node 993 * mask. 994 */ 995static int hstate_next_node_to_alloc(struct hstate *h, 996 nodemask_t *nodes_allowed) 997{ 998 int nid; 999 1000 VM_BUG_ON(!nodes_allowed); 1001 1002 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 1003 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 1004 1005 return nid; 1006} 1007 1008/* 1009 * helper for free_pool_huge_page() - return the previously saved 1010 * node ["this node"] from which to free a huge page. Advance the 1011 * next node id whether or not we find a free huge page to free so 1012 * that the next attempt to free addresses the next node. 1013 */ 1014static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 1015{ 1016 int nid; 1017 1018 VM_BUG_ON(!nodes_allowed); 1019 1020 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 1021 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 1022 1023 return nid; 1024} 1025 1026#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ 1027 for (nr_nodes = nodes_weight(*mask); \ 1028 nr_nodes > 0 && \ 1029 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ 1030 nr_nodes--) 1031 1032#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ 1033 for (nr_nodes = nodes_weight(*mask); \ 1034 nr_nodes > 0 && \ 1035 ((node = hstate_next_node_to_free(hs, mask)) || 1); \ 1036 nr_nodes--) 1037 1038#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 1039static void destroy_compound_gigantic_page(struct page *page, 1040 unsigned int order) 1041{ 1042 int i; 1043 int nr_pages = 1 << order; 1044 struct page *p = page + 1; 1045 1046 atomic_set(compound_mapcount_ptr(page), 0); 1047 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1048 clear_compound_head(p); 1049 set_page_refcounted(p); 1050 } 1051 1052 set_compound_order(page, 0); 1053 __ClearPageHead(page); 1054} 1055 1056static void free_gigantic_page(struct page *page, unsigned int order) 1057{ 1058 free_contig_range(page_to_pfn(page), 1 << order); 1059} 1060 1061static int __alloc_gigantic_page(unsigned long start_pfn, 1062 unsigned long nr_pages, gfp_t gfp_mask) 1063{ 1064 unsigned long end_pfn = start_pfn + nr_pages; 1065 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 1066 gfp_mask); 1067} 1068 1069static bool pfn_range_valid_gigantic(struct zone *z, 1070 unsigned long start_pfn, unsigned long nr_pages) 1071{ 1072 unsigned long i, end_pfn = start_pfn + nr_pages; 1073 struct page *page; 1074 1075 for (i = start_pfn; i < end_pfn; i++) { 1076 if (!pfn_valid(i)) 1077 return false; 1078 1079 page = pfn_to_page(i); 1080 1081 if (page_zone(page) != z) 1082 return false; 1083 1084 if (PageReserved(page)) 1085 return false; 1086 1087 if (page_count(page) > 0) 1088 return false; 1089 1090 if (PageHuge(page)) 1091 return false; 1092 } 1093 1094 return true; 1095} 1096 1097static bool zone_spans_last_pfn(const struct zone *zone, 1098 unsigned long start_pfn, unsigned long nr_pages) 1099{ 1100 unsigned long last_pfn = start_pfn + nr_pages - 1; 1101 return zone_spans_pfn(zone, last_pfn); 1102} 1103 1104static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1105 int nid, nodemask_t *nodemask) 1106{ 1107 unsigned int order = huge_page_order(h); 1108 unsigned long nr_pages = 1 << order; 1109 unsigned long ret, pfn, flags; 1110 struct zonelist *zonelist; 1111 struct zone *zone; 1112 struct zoneref *z; 1113 1114 zonelist = node_zonelist(nid, gfp_mask); 1115 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) { 1116 spin_lock_irqsave(&zone->lock, flags); 1117 1118 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 1119 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 1120 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) { 1121 /* 1122 * We release the zone lock here because 1123 * alloc_contig_range() will also lock the zone 1124 * at some point. If there's an allocation 1125 * spinning on this lock, it may win the race 1126 * and cause alloc_contig_range() to fail... 1127 */ 1128 spin_unlock_irqrestore(&zone->lock, flags); 1129 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask); 1130 if (!ret) 1131 return pfn_to_page(pfn); 1132 spin_lock_irqsave(&zone->lock, flags); 1133 } 1134 pfn += nr_pages; 1135 } 1136 1137 spin_unlock_irqrestore(&zone->lock, flags); 1138 } 1139 1140 return NULL; 1141} 1142 1143static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); 1144static void prep_compound_gigantic_page(struct page *page, unsigned int order); 1145 1146#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ 1147static inline bool gigantic_page_supported(void) { return false; } 1148static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask, 1149 int nid, nodemask_t *nodemask) { return NULL; } 1150static inline void free_gigantic_page(struct page *page, unsigned int order) { } 1151static inline void destroy_compound_gigantic_page(struct page *page, 1152 unsigned int order) { } 1153#endif 1154 1155static void update_and_free_page(struct hstate *h, struct page *page) 1156{ 1157 int i; 1158 1159 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 1160 return; 1161 1162 h->nr_huge_pages--; 1163 h->nr_huge_pages_node[page_to_nid(page)]--; 1164 for (i = 0; i < pages_per_huge_page(h); i++) { 1165 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1166 1 << PG_referenced | 1 << PG_dirty | 1167 1 << PG_active | 1 << PG_private | 1168 1 << PG_writeback); 1169 } 1170 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); 1171 set_compound_page_dtor(page, NULL_COMPOUND_DTOR); 1172 set_page_refcounted(page); 1173 if (hstate_is_gigantic(h)) { 1174 destroy_compound_gigantic_page(page, huge_page_order(h)); 1175 free_gigantic_page(page, huge_page_order(h)); 1176 } else { 1177 __free_pages(page, huge_page_order(h)); 1178 } 1179} 1180 1181struct hstate *size_to_hstate(unsigned long size) 1182{ 1183 struct hstate *h; 1184 1185 for_each_hstate(h) { 1186 if (huge_page_size(h) == size) 1187 return h; 1188 } 1189 return NULL; 1190} 1191 1192/* 1193 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked 1194 * to hstate->hugepage_activelist.) 1195 * 1196 * This function can be called for tail pages, but never returns true for them. 1197 */ 1198bool page_huge_active(struct page *page) 1199{ 1200 VM_BUG_ON_PAGE(!PageHuge(page), page); 1201 return PageHead(page) && PagePrivate(&page[1]); 1202} 1203 1204/* never called for tail page */ 1205static void set_page_huge_active(struct page *page) 1206{ 1207 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1208 SetPagePrivate(&page[1]); 1209} 1210 1211static void clear_page_huge_active(struct page *page) 1212{ 1213 VM_BUG_ON_PAGE(!PageHeadHuge(page), page); 1214 ClearPagePrivate(&page[1]); 1215} 1216 1217/* 1218 * Internal hugetlb specific page flag. Do not use outside of the hugetlb 1219 * code 1220 */ 1221static inline bool PageHugeTemporary(struct page *page) 1222{ 1223 if (!PageHuge(page)) 1224 return false; 1225 1226 return (unsigned long)page[2].mapping == -1U; 1227} 1228 1229static inline void SetPageHugeTemporary(struct page *page) 1230{ 1231 page[2].mapping = (void *)-1U; 1232} 1233 1234static inline void ClearPageHugeTemporary(struct page *page) 1235{ 1236 page[2].mapping = NULL; 1237} 1238 1239void free_huge_page(struct page *page) 1240{ 1241 /* 1242 * Can't pass hstate in here because it is called from the 1243 * compound page destructor. 1244 */ 1245 struct hstate *h = page_hstate(page); 1246 int nid = page_to_nid(page); 1247 struct hugepage_subpool *spool = 1248 (struct hugepage_subpool *)page_private(page); 1249 bool restore_reserve; 1250 1251 VM_BUG_ON_PAGE(page_count(page), page); 1252 VM_BUG_ON_PAGE(page_mapcount(page), page); 1253 1254 set_page_private(page, 0); 1255 page->mapping = NULL; 1256 restore_reserve = PagePrivate(page); 1257 ClearPagePrivate(page); 1258 1259 /* 1260 * A return code of zero implies that the subpool will be under its 1261 * minimum size if the reservation is not restored after page is free. 1262 * Therefore, force restore_reserve operation. 1263 */ 1264 if (hugepage_subpool_put_pages(spool, 1) == 0) 1265 restore_reserve = true; 1266 1267 spin_lock(&hugetlb_lock); 1268 clear_page_huge_active(page); 1269 hugetlb_cgroup_uncharge_page(hstate_index(h), 1270 pages_per_huge_page(h), page); 1271 if (restore_reserve) 1272 h->resv_huge_pages++; 1273 1274 if (PageHugeTemporary(page)) { 1275 list_del(&page->lru); 1276 ClearPageHugeTemporary(page); 1277 update_and_free_page(h, page); 1278 } else if (h->surplus_huge_pages_node[nid]) { 1279 /* remove the page from active list */ 1280 list_del(&page->lru); 1281 update_and_free_page(h, page); 1282 h->surplus_huge_pages--; 1283 h->surplus_huge_pages_node[nid]--; 1284 } else { 1285 arch_clear_hugepage_flags(page); 1286 enqueue_huge_page(h, page); 1287 } 1288 spin_unlock(&hugetlb_lock); 1289} 1290 1291static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 1292{ 1293 INIT_LIST_HEAD(&page->lru); 1294 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); 1295 spin_lock(&hugetlb_lock); 1296 set_hugetlb_cgroup(page, NULL); 1297 h->nr_huge_pages++; 1298 h->nr_huge_pages_node[nid]++; 1299 spin_unlock(&hugetlb_lock); 1300} 1301 1302static void prep_compound_gigantic_page(struct page *page, unsigned int order) 1303{ 1304 int i; 1305 int nr_pages = 1 << order; 1306 struct page *p = page + 1; 1307 1308 /* we rely on prep_new_huge_page to set the destructor */ 1309 set_compound_order(page, order); 1310 __ClearPageReserved(page); 1311 __SetPageHead(page); 1312 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 1313 /* 1314 * For gigantic hugepages allocated through bootmem at 1315 * boot, it's safer to be consistent with the not-gigantic 1316 * hugepages and clear the PG_reserved bit from all tail pages 1317 * too. Otherwse drivers using get_user_pages() to access tail 1318 * pages may get the reference counting wrong if they see 1319 * PG_reserved set on a tail page (despite the head page not 1320 * having PG_reserved set). Enforcing this consistency between 1321 * head and tail pages allows drivers to optimize away a check 1322 * on the head page when they need know if put_page() is needed 1323 * after get_user_pages(). 1324 */ 1325 __ClearPageReserved(p); 1326 set_page_count(p, 0); 1327 set_compound_head(p, page); 1328 } 1329 atomic_set(compound_mapcount_ptr(page), -1); 1330} 1331 1332/* 1333 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 1334 * transparent huge pages. See the PageTransHuge() documentation for more 1335 * details. 1336 */ 1337int PageHuge(struct page *page) 1338{ 1339 if (!PageCompound(page)) 1340 return 0; 1341 1342 page = compound_head(page); 1343 return page[1].compound_dtor == HUGETLB_PAGE_DTOR; 1344} 1345EXPORT_SYMBOL_GPL(PageHuge); 1346 1347/* 1348 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 1349 * normal or transparent huge pages. 1350 */ 1351int PageHeadHuge(struct page *page_head) 1352{ 1353 if (!PageHead(page_head)) 1354 return 0; 1355 1356 return get_compound_page_dtor(page_head) == free_huge_page; 1357} 1358 1359pgoff_t __basepage_index(struct page *page) 1360{ 1361 struct page *page_head = compound_head(page); 1362 pgoff_t index = page_index(page_head); 1363 unsigned long compound_idx; 1364 1365 if (!PageHuge(page_head)) 1366 return page_index(page); 1367 1368 if (compound_order(page_head) >= MAX_ORDER) 1369 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 1370 else 1371 compound_idx = page - page_head; 1372 1373 return (index << compound_order(page_head)) + compound_idx; 1374} 1375 1376static struct page *alloc_buddy_huge_page(struct hstate *h, 1377 gfp_t gfp_mask, int nid, nodemask_t *nmask) 1378{ 1379 int order = huge_page_order(h); 1380 struct page *page; 1381 1382 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; 1383 if (nid == NUMA_NO_NODE) 1384 nid = numa_mem_id(); 1385 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask); 1386 if (page) 1387 __count_vm_event(HTLB_BUDDY_PGALLOC); 1388 else 1389 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1390 1391 return page; 1392} 1393 1394/* 1395 * Common helper to allocate a fresh hugetlb page. All specific allocators 1396 * should use this function to get new hugetlb pages 1397 */ 1398static struct page *alloc_fresh_huge_page(struct hstate *h, 1399 gfp_t gfp_mask, int nid, nodemask_t *nmask) 1400{ 1401 struct page *page; 1402 1403 if (hstate_is_gigantic(h)) 1404 page = alloc_gigantic_page(h, gfp_mask, nid, nmask); 1405 else 1406 page = alloc_buddy_huge_page(h, gfp_mask, 1407 nid, nmask); 1408 if (!page) 1409 return NULL; 1410 1411 if (hstate_is_gigantic(h)) 1412 prep_compound_gigantic_page(page, huge_page_order(h)); 1413 prep_new_huge_page(h, page, page_to_nid(page)); 1414 1415 return page; 1416} 1417 1418/* 1419 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved 1420 * manner. 1421 */ 1422static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 1423{ 1424 struct page *page; 1425 int nr_nodes, node; 1426 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1427 1428 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 1429 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed); 1430 if (page) 1431 break; 1432 } 1433 1434 if (!page) 1435 return 0; 1436 1437 put_page(page); /* free it into the hugepage allocator */ 1438 1439 return 1; 1440} 1441 1442/* 1443 * Free huge page from pool from next node to free. 1444 * Attempt to keep persistent huge pages more or less 1445 * balanced over allowed nodes. 1446 * Called with hugetlb_lock locked. 1447 */ 1448static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 1449 bool acct_surplus) 1450{ 1451 int nr_nodes, node; 1452 int ret = 0; 1453 1454 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1455 /* 1456 * If we're returning unused surplus pages, only examine 1457 * nodes with surplus pages. 1458 */ 1459 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1460 !list_empty(&h->hugepage_freelists[node])) { 1461 struct page *page = 1462 list_entry(h->hugepage_freelists[node].next, 1463 struct page, lru); 1464 list_del(&page->lru); 1465 h->free_huge_pages--; 1466 h->free_huge_pages_node[node]--; 1467 if (acct_surplus) { 1468 h->surplus_huge_pages--; 1469 h->surplus_huge_pages_node[node]--; 1470 } 1471 update_and_free_page(h, page); 1472 ret = 1; 1473 break; 1474 } 1475 } 1476 1477 return ret; 1478} 1479 1480/* 1481 * Dissolve a given free hugepage into free buddy pages. This function does 1482 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the 1483 * dissolution fails because a give page is not a free hugepage, or because 1484 * free hugepages are fully reserved. 1485 */ 1486int dissolve_free_huge_page(struct page *page) 1487{ 1488 int rc = -EBUSY; 1489 1490 spin_lock(&hugetlb_lock); 1491 if (PageHuge(page) && !page_count(page)) { 1492 struct page *head = compound_head(page); 1493 struct hstate *h = page_hstate(head); 1494 int nid = page_to_nid(head); 1495 if (h->free_huge_pages - h->resv_huge_pages == 0) 1496 goto out; 1497 /* 1498 * Move PageHWPoison flag from head page to the raw error page, 1499 * which makes any subpages rather than the error page reusable. 1500 */ 1501 if (PageHWPoison(head) && page != head) { 1502 SetPageHWPoison(page); 1503 ClearPageHWPoison(head); 1504 } 1505 list_del(&head->lru); 1506 h->free_huge_pages--; 1507 h->free_huge_pages_node[nid]--; 1508 h->max_huge_pages--; 1509 update_and_free_page(h, head); 1510 rc = 0; 1511 } 1512out: 1513 spin_unlock(&hugetlb_lock); 1514 return rc; 1515} 1516 1517/* 1518 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 1519 * make specified memory blocks removable from the system. 1520 * Note that this will dissolve a free gigantic hugepage completely, if any 1521 * part of it lies within the given range. 1522 * Also note that if dissolve_free_huge_page() returns with an error, all 1523 * free hugepages that were dissolved before that error are lost. 1524 */ 1525int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) 1526{ 1527 unsigned long pfn; 1528 struct page *page; 1529 int rc = 0; 1530 1531 if (!hugepages_supported()) 1532 return rc; 1533 1534 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) { 1535 page = pfn_to_page(pfn); 1536 if (PageHuge(page) && !page_count(page)) { 1537 rc = dissolve_free_huge_page(page); 1538 if (rc) 1539 break; 1540 } 1541 } 1542 1543 return rc; 1544} 1545 1546/* 1547 * Allocates a fresh surplus page from the page allocator. 1548 */ 1549static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, 1550 int nid, nodemask_t *nmask) 1551{ 1552 struct page *page = NULL; 1553 1554 if (hstate_is_gigantic(h)) 1555 return NULL; 1556 1557 spin_lock(&hugetlb_lock); 1558 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 1559 goto out_unlock; 1560 spin_unlock(&hugetlb_lock); 1561 1562 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask); 1563 if (!page) 1564 return NULL; 1565 1566 spin_lock(&hugetlb_lock); 1567 /* 1568 * We could have raced with the pool size change. 1569 * Double check that and simply deallocate the new page 1570 * if we would end up overcommiting the surpluses. Abuse 1571 * temporary page to workaround the nasty free_huge_page 1572 * codeflow 1573 */ 1574 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 1575 SetPageHugeTemporary(page); 1576 put_page(page); 1577 page = NULL; 1578 } else { 1579 h->surplus_huge_pages++; 1580 h->surplus_huge_pages_node[page_to_nid(page)]++; 1581 } 1582 1583out_unlock: 1584 spin_unlock(&hugetlb_lock); 1585 1586 return page; 1587} 1588 1589static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, 1590 int nid, nodemask_t *nmask) 1591{ 1592 struct page *page; 1593 1594 if (hstate_is_gigantic(h)) 1595 return NULL; 1596 1597 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask); 1598 if (!page) 1599 return NULL; 1600 1601 /* 1602 * We do not account these pages as surplus because they are only 1603 * temporary and will be released properly on the last reference 1604 */ 1605 SetPageHugeTemporary(page); 1606 1607 return page; 1608} 1609 1610/* 1611 * Use the VMA's mpolicy to allocate a huge page from the buddy. 1612 */ 1613static 1614struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, 1615 struct vm_area_struct *vma, unsigned long addr) 1616{ 1617 struct page *page; 1618 struct mempolicy *mpol; 1619 gfp_t gfp_mask = htlb_alloc_mask(h); 1620 int nid; 1621 nodemask_t *nodemask; 1622 1623 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 1624 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); 1625 mpol_cond_put(mpol); 1626 1627 return page; 1628} 1629 1630/* page migration callback function */ 1631struct page *alloc_huge_page_node(struct hstate *h, int nid) 1632{ 1633 gfp_t gfp_mask = htlb_alloc_mask(h); 1634 struct page *page = NULL; 1635 1636 if (nid != NUMA_NO_NODE) 1637 gfp_mask |= __GFP_THISNODE; 1638 1639 spin_lock(&hugetlb_lock); 1640 if (h->free_huge_pages - h->resv_huge_pages > 0) 1641 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL); 1642 spin_unlock(&hugetlb_lock); 1643 1644 if (!page) 1645 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1646 1647 return page; 1648} 1649 1650/* page migration callback function */ 1651struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, 1652 nodemask_t *nmask) 1653{ 1654 gfp_t gfp_mask = htlb_alloc_mask(h); 1655 1656 spin_lock(&hugetlb_lock); 1657 if (h->free_huge_pages - h->resv_huge_pages > 0) { 1658 struct page *page; 1659 1660 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); 1661 if (page) { 1662 spin_unlock(&hugetlb_lock); 1663 return page; 1664 } 1665 } 1666 spin_unlock(&hugetlb_lock); 1667 1668 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); 1669} 1670 1671/* mempolicy aware migration callback */ 1672struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, 1673 unsigned long address) 1674{ 1675 struct mempolicy *mpol; 1676 nodemask_t *nodemask; 1677 struct page *page; 1678 gfp_t gfp_mask; 1679 int node; 1680 1681 gfp_mask = htlb_alloc_mask(h); 1682 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1683 page = alloc_huge_page_nodemask(h, node, nodemask); 1684 mpol_cond_put(mpol); 1685 1686 return page; 1687} 1688 1689/* 1690 * Increase the hugetlb pool such that it can accommodate a reservation 1691 * of size 'delta'. 1692 */ 1693static int gather_surplus_pages(struct hstate *h, int delta) 1694{ 1695 struct list_head surplus_list; 1696 struct page *page, *tmp; 1697 int ret, i; 1698 int needed, allocated; 1699 bool alloc_ok = true; 1700 1701 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 1702 if (needed <= 0) { 1703 h->resv_huge_pages += delta; 1704 return 0; 1705 } 1706 1707 allocated = 0; 1708 INIT_LIST_HEAD(&surplus_list); 1709 1710 ret = -ENOMEM; 1711retry: 1712 spin_unlock(&hugetlb_lock); 1713 for (i = 0; i < needed; i++) { 1714 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), 1715 NUMA_NO_NODE, NULL); 1716 if (!page) { 1717 alloc_ok = false; 1718 break; 1719 } 1720 list_add(&page->lru, &surplus_list); 1721 cond_resched(); 1722 } 1723 allocated += i; 1724 1725 /* 1726 * After retaking hugetlb_lock, we need to recalculate 'needed' 1727 * because either resv_huge_pages or free_huge_pages may have changed. 1728 */ 1729 spin_lock(&hugetlb_lock); 1730 needed = (h->resv_huge_pages + delta) - 1731 (h->free_huge_pages + allocated); 1732 if (needed > 0) { 1733 if (alloc_ok) 1734 goto retry; 1735 /* 1736 * We were not able to allocate enough pages to 1737 * satisfy the entire reservation so we free what 1738 * we've allocated so far. 1739 */ 1740 goto free; 1741 } 1742 /* 1743 * The surplus_list now contains _at_least_ the number of extra pages 1744 * needed to accommodate the reservation. Add the appropriate number 1745 * of pages to the hugetlb pool and free the extras back to the buddy 1746 * allocator. Commit the entire reservation here to prevent another 1747 * process from stealing the pages as they are added to the pool but 1748 * before they are reserved. 1749 */ 1750 needed += allocated; 1751 h->resv_huge_pages += delta; 1752 ret = 0; 1753 1754 /* Free the needed pages to the hugetlb pool */ 1755 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1756 if ((--needed) < 0) 1757 break; 1758 /* 1759 * This page is now managed by the hugetlb allocator and has 1760 * no users -- drop the buddy allocator's reference. 1761 */ 1762 put_page_testzero(page); 1763 VM_BUG_ON_PAGE(page_count(page), page); 1764 enqueue_huge_page(h, page); 1765 } 1766free: 1767 spin_unlock(&hugetlb_lock); 1768 1769 /* Free unnecessary surplus pages to the buddy allocator */ 1770 list_for_each_entry_safe(page, tmp, &surplus_list, lru) 1771 put_page(page); 1772 spin_lock(&hugetlb_lock); 1773 1774 return ret; 1775} 1776 1777/* 1778 * This routine has two main purposes: 1779 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 1780 * in unused_resv_pages. This corresponds to the prior adjustments made 1781 * to the associated reservation map. 1782 * 2) Free any unused surplus pages that may have been allocated to satisfy 1783 * the reservation. As many as unused_resv_pages may be freed. 1784 * 1785 * Called with hugetlb_lock held. However, the lock could be dropped (and 1786 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 1787 * we must make sure nobody else can claim pages we are in the process of 1788 * freeing. Do this by ensuring resv_huge_page always is greater than the 1789 * number of huge pages we plan to free when dropping the lock. 1790 */ 1791static void return_unused_surplus_pages(struct hstate *h, 1792 unsigned long unused_resv_pages) 1793{ 1794 unsigned long nr_pages; 1795 1796 /* Cannot return gigantic pages currently */ 1797 if (hstate_is_gigantic(h)) 1798 goto out; 1799 1800 /* 1801 * Part (or even all) of the reservation could have been backed 1802 * by pre-allocated pages. Only free surplus pages. 1803 */ 1804 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1805 1806 /* 1807 * We want to release as many surplus pages as possible, spread 1808 * evenly across all nodes with memory. Iterate across these nodes 1809 * until we can no longer free unreserved surplus pages. This occurs 1810 * when the nodes with surplus pages have no free pages. 1811 * free_pool_huge_page() will balance the the freed pages across the 1812 * on-line nodes with memory and will handle the hstate accounting. 1813 * 1814 * Note that we decrement resv_huge_pages as we free the pages. If 1815 * we drop the lock, resv_huge_pages will still be sufficiently large 1816 * to cover subsequent pages we may free. 1817 */ 1818 while (nr_pages--) { 1819 h->resv_huge_pages--; 1820 unused_resv_pages--; 1821 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1822 goto out; 1823 cond_resched_lock(&hugetlb_lock); 1824 } 1825 1826out: 1827 /* Fully uncommit the reservation */ 1828 h->resv_huge_pages -= unused_resv_pages; 1829} 1830 1831 1832/* 1833 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 1834 * are used by the huge page allocation routines to manage reservations. 1835 * 1836 * vma_needs_reservation is called to determine if the huge page at addr 1837 * within the vma has an associated reservation. If a reservation is 1838 * needed, the value 1 is returned. The caller is then responsible for 1839 * managing the global reservation and subpool usage counts. After 1840 * the huge page has been allocated, vma_commit_reservation is called 1841 * to add the page to the reservation map. If the page allocation fails, 1842 * the reservation must be ended instead of committed. vma_end_reservation 1843 * is called in such cases. 1844 * 1845 * In the normal case, vma_commit_reservation returns the same value 1846 * as the preceding vma_needs_reservation call. The only time this 1847 * is not the case is if a reserve map was changed between calls. It 1848 * is the responsibility of the caller to notice the difference and 1849 * take appropriate action. 1850 * 1851 * vma_add_reservation is used in error paths where a reservation must 1852 * be restored when a newly allocated huge page must be freed. It is 1853 * to be called after calling vma_needs_reservation to determine if a 1854 * reservation exists. 1855 */ 1856enum vma_resv_mode { 1857 VMA_NEEDS_RESV, 1858 VMA_COMMIT_RESV, 1859 VMA_END_RESV, 1860 VMA_ADD_RESV, 1861}; 1862static long __vma_reservation_common(struct hstate *h, 1863 struct vm_area_struct *vma, unsigned long addr, 1864 enum vma_resv_mode mode) 1865{ 1866 struct resv_map *resv; 1867 pgoff_t idx; 1868 long ret; 1869 1870 resv = vma_resv_map(vma); 1871 if (!resv) 1872 return 1; 1873 1874 idx = vma_hugecache_offset(h, vma, addr); 1875 switch (mode) { 1876 case VMA_NEEDS_RESV: 1877 ret = region_chg(resv, idx, idx + 1); 1878 break; 1879 case VMA_COMMIT_RESV: 1880 ret = region_add(resv, idx, idx + 1); 1881 break; 1882 case VMA_END_RESV: 1883 region_abort(resv, idx, idx + 1); 1884 ret = 0; 1885 break; 1886 case VMA_ADD_RESV: 1887 if (vma->vm_flags & VM_MAYSHARE) 1888 ret = region_add(resv, idx, idx + 1); 1889 else { 1890 region_abort(resv, idx, idx + 1); 1891 ret = region_del(resv, idx, idx + 1); 1892 } 1893 break; 1894 default: 1895 BUG(); 1896 } 1897 1898 if (vma->vm_flags & VM_MAYSHARE) 1899 return ret; 1900 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) { 1901 /* 1902 * In most cases, reserves always exist for private mappings. 1903 * However, a file associated with mapping could have been 1904 * hole punched or truncated after reserves were consumed. 1905 * As subsequent fault on such a range will not use reserves. 1906 * Subtle - The reserve map for private mappings has the 1907 * opposite meaning than that of shared mappings. If NO 1908 * entry is in the reserve map, it means a reservation exists. 1909 * If an entry exists in the reserve map, it means the 1910 * reservation has already been consumed. As a result, the 1911 * return value of this routine is the opposite of the 1912 * value returned from reserve map manipulation routines above. 1913 */ 1914 if (ret) 1915 return 0; 1916 else 1917 return 1; 1918 } 1919 else 1920 return ret < 0 ? ret : 0; 1921} 1922 1923static long vma_needs_reservation(struct hstate *h, 1924 struct vm_area_struct *vma, unsigned long addr) 1925{ 1926 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 1927} 1928 1929static long vma_commit_reservation(struct hstate *h, 1930 struct vm_area_struct *vma, unsigned long addr) 1931{ 1932 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 1933} 1934 1935static void vma_end_reservation(struct hstate *h, 1936 struct vm_area_struct *vma, unsigned long addr) 1937{ 1938 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 1939} 1940 1941static long vma_add_reservation(struct hstate *h, 1942 struct vm_area_struct *vma, unsigned long addr) 1943{ 1944 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 1945} 1946 1947/* 1948 * This routine is called to restore a reservation on error paths. In the 1949 * specific error paths, a huge page was allocated (via alloc_huge_page) 1950 * and is about to be freed. If a reservation for the page existed, 1951 * alloc_huge_page would have consumed the reservation and set PagePrivate 1952 * in the newly allocated page. When the page is freed via free_huge_page, 1953 * the global reservation count will be incremented if PagePrivate is set. 1954 * However, free_huge_page can not adjust the reserve map. Adjust the 1955 * reserve map here to be consistent with global reserve count adjustments 1956 * to be made by free_huge_page. 1957 */ 1958static void restore_reserve_on_error(struct hstate *h, 1959 struct vm_area_struct *vma, unsigned long address, 1960 struct page *page) 1961{ 1962 if (unlikely(PagePrivate(page))) { 1963 long rc = vma_needs_reservation(h, vma, address); 1964 1965 if (unlikely(rc < 0)) { 1966 /* 1967 * Rare out of memory condition in reserve map 1968 * manipulation. Clear PagePrivate so that 1969 * global reserve count will not be incremented 1970 * by free_huge_page. This will make it appear 1971 * as though the reservation for this page was 1972 * consumed. This may prevent the task from 1973 * faulting in the page at a later time. This 1974 * is better than inconsistent global huge page 1975 * accounting of reserve counts. 1976 */ 1977 ClearPagePrivate(page); 1978 } else if (rc) { 1979 rc = vma_add_reservation(h, vma, address); 1980 if (unlikely(rc < 0)) 1981 /* 1982 * See above comment about rare out of 1983 * memory condition. 1984 */ 1985 ClearPagePrivate(page); 1986 } else 1987 vma_end_reservation(h, vma, address); 1988 } 1989} 1990 1991struct page *alloc_huge_page(struct vm_area_struct *vma, 1992 unsigned long addr, int avoid_reserve) 1993{ 1994 struct hugepage_subpool *spool = subpool_vma(vma); 1995 struct hstate *h = hstate_vma(vma); 1996 struct page *page; 1997 long map_chg, map_commit; 1998 long gbl_chg; 1999 int ret, idx; 2000 struct hugetlb_cgroup *h_cg; 2001 2002 idx = hstate_index(h); 2003 /* 2004 * Examine the region/reserve map to determine if the process 2005 * has a reservation for the page to be allocated. A return 2006 * code of zero indicates a reservation exists (no change). 2007 */ 2008 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); 2009 if (map_chg < 0) 2010 return ERR_PTR(-ENOMEM); 2011 2012 /* 2013 * Processes that did not create the mapping will have no 2014 * reserves as indicated by the region/reserve map. Check 2015 * that the allocation will not exceed the subpool limit. 2016 * Allocations for MAP_NORESERVE mappings also need to be 2017 * checked against any subpool limit. 2018 */ 2019 if (map_chg || avoid_reserve) { 2020 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2021 if (gbl_chg < 0) { 2022 vma_end_reservation(h, vma, addr); 2023 return ERR_PTR(-ENOSPC); 2024 } 2025 2026 /* 2027 * Even though there was no reservation in the region/reserve 2028 * map, there could be reservations associated with the 2029 * subpool that can be used. This would be indicated if the 2030 * return value of hugepage_subpool_get_pages() is zero. 2031 * However, if avoid_reserve is specified we still avoid even 2032 * the subpool reservations. 2033 */ 2034 if (avoid_reserve) 2035 gbl_chg = 1; 2036 } 2037 2038 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2039 if (ret) 2040 goto out_subpool_put; 2041 2042 spin_lock(&hugetlb_lock); 2043 /* 2044 * glb_chg is passed to indicate whether or not a page must be taken 2045 * from the global free pool (global change). gbl_chg == 0 indicates 2046 * a reservation exists for the allocation. 2047 */ 2048 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); 2049 if (!page) { 2050 spin_unlock(&hugetlb_lock); 2051 page = alloc_buddy_huge_page_with_mpol(h, vma, addr); 2052 if (!page) 2053 goto out_uncharge_cgroup; 2054 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { 2055 SetPagePrivate(page); 2056 h->resv_huge_pages--; 2057 } 2058 spin_lock(&hugetlb_lock); 2059 list_move(&page->lru, &h->hugepage_activelist); 2060 /* Fall through */ 2061 } 2062 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); 2063 spin_unlock(&hugetlb_lock); 2064 2065 set_page_private(page, (unsigned long)spool); 2066 2067 map_commit = vma_commit_reservation(h, vma, addr); 2068 if (unlikely(map_chg > map_commit)) { 2069 /* 2070 * The page was added to the reservation map between 2071 * vma_needs_reservation and vma_commit_reservation. 2072 * This indicates a race with hugetlb_reserve_pages. 2073 * Adjust for the subpool count incremented above AND 2074 * in hugetlb_reserve_pages for the same page. Also, 2075 * the reservation count added in hugetlb_reserve_pages 2076 * no longer applies. 2077 */ 2078 long rsv_adjust; 2079 2080 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 2081 hugetlb_acct_memory(h, -rsv_adjust); 2082 } 2083 return page; 2084 2085out_uncharge_cgroup: 2086 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 2087out_subpool_put: 2088 if (map_chg || avoid_reserve) 2089 hugepage_subpool_put_pages(spool, 1); 2090 vma_end_reservation(h, vma, addr); 2091 return ERR_PTR(-ENOSPC); 2092} 2093 2094int alloc_bootmem_huge_page(struct hstate *h) 2095 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 2096int __alloc_bootmem_huge_page(struct hstate *h) 2097{ 2098 struct huge_bootmem_page *m; 2099 int nr_nodes, node; 2100 2101 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { 2102 void *addr; 2103 2104 addr = memblock_alloc_try_nid_raw( 2105 huge_page_size(h), huge_page_size(h), 2106 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); 2107 if (addr) { 2108 /* 2109 * Use the beginning of the huge page to store the 2110 * huge_bootmem_page struct (until gather_bootmem 2111 * puts them into the mem_map). 2112 */ 2113 m = addr; 2114 goto found; 2115 } 2116 } 2117 return 0; 2118 2119found: 2120 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h))); 2121 /* Put them into a private list first because mem_map is not up yet */ 2122 INIT_LIST_HEAD(&m->list); 2123 list_add(&m->list, &huge_boot_pages); 2124 m->hstate = h; 2125 return 1; 2126} 2127 2128static void __init prep_compound_huge_page(struct page *page, 2129 unsigned int order) 2130{ 2131 if (unlikely(order > (MAX_ORDER - 1))) 2132 prep_compound_gigantic_page(page, order); 2133 else 2134 prep_compound_page(page, order); 2135} 2136 2137/* Put bootmem huge pages into the standard lists after mem_map is up */ 2138static void __init gather_bootmem_prealloc(void) 2139{ 2140 struct huge_bootmem_page *m; 2141 2142 list_for_each_entry(m, &huge_boot_pages, list) { 2143 struct page *page = virt_to_page(m); 2144 struct hstate *h = m->hstate; 2145 2146 WARN_ON(page_count(page) != 1); 2147 prep_compound_huge_page(page, h->order); 2148 WARN_ON(PageReserved(page)); 2149 prep_new_huge_page(h, page, page_to_nid(page)); 2150 put_page(page); /* free it into the hugepage allocator */ 2151 2152 /* 2153 * If we had gigantic hugepages allocated at boot time, we need 2154 * to restore the 'stolen' pages to totalram_pages in order to 2155 * fix confusing memory reports from free(1) and another 2156 * side-effects, like CommitLimit going negative. 2157 */ 2158 if (hstate_is_gigantic(h)) 2159 adjust_managed_page_count(page, 1 << h->order); 2160 cond_resched(); 2161 } 2162} 2163 2164static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 2165{ 2166 unsigned long i; 2167 2168 for (i = 0; i < h->max_huge_pages; ++i) { 2169 if (hstate_is_gigantic(h)) { 2170 if (!alloc_bootmem_huge_page(h)) 2171 break; 2172 } else if (!alloc_pool_huge_page(h, 2173 &node_states[N_MEMORY])) 2174 break; 2175 cond_resched(); 2176 } 2177 if (i < h->max_huge_pages) { 2178 char buf[32]; 2179 2180 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2181 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 2182 h->max_huge_pages, buf, i); 2183 h->max_huge_pages = i; 2184 } 2185} 2186 2187static void __init hugetlb_init_hstates(void) 2188{ 2189 struct hstate *h; 2190 2191 for_each_hstate(h) { 2192 if (minimum_order > huge_page_order(h)) 2193 minimum_order = huge_page_order(h); 2194 2195 /* oversize hugepages were init'ed in early boot */ 2196 if (!hstate_is_gigantic(h)) 2197 hugetlb_hstate_alloc_pages(h); 2198 } 2199 VM_BUG_ON(minimum_order == UINT_MAX); 2200} 2201 2202static void __init report_hugepages(void) 2203{ 2204 struct hstate *h; 2205 2206 for_each_hstate(h) { 2207 char buf[32]; 2208 2209 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 2210 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 2211 buf, h->free_huge_pages); 2212 } 2213} 2214 2215#ifdef CONFIG_HIGHMEM 2216static void try_to_free_low(struct hstate *h, unsigned long count, 2217 nodemask_t *nodes_allowed) 2218{ 2219 int i; 2220 2221 if (hstate_is_gigantic(h)) 2222 return; 2223 2224 for_each_node_mask(i, *nodes_allowed) { 2225 struct page *page, *next; 2226 struct list_head *freel = &h->hugepage_freelists[i]; 2227 list_for_each_entry_safe(page, next, freel, lru) { 2228 if (count >= h->nr_huge_pages) 2229 return; 2230 if (PageHighMem(page)) 2231 continue; 2232 list_del(&page->lru); 2233 update_and_free_page(h, page); 2234 h->free_huge_pages--; 2235 h->free_huge_pages_node[page_to_nid(page)]--; 2236 } 2237 } 2238} 2239#else 2240static inline void try_to_free_low(struct hstate *h, unsigned long count, 2241 nodemask_t *nodes_allowed) 2242{ 2243} 2244#endif 2245 2246/* 2247 * Increment or decrement surplus_huge_pages. Keep node-specific counters 2248 * balanced by operating on them in a round-robin fashion. 2249 * Returns 1 if an adjustment was made. 2250 */ 2251static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 2252 int delta) 2253{ 2254 int nr_nodes, node; 2255 2256 VM_BUG_ON(delta != -1 && delta != 1); 2257 2258 if (delta < 0) { 2259 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { 2260 if (h->surplus_huge_pages_node[node]) 2261 goto found; 2262 } 2263 } else { 2264 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 2265 if (h->surplus_huge_pages_node[node] < 2266 h->nr_huge_pages_node[node]) 2267 goto found; 2268 } 2269 } 2270 return 0; 2271 2272found: 2273 h->surplus_huge_pages += delta; 2274 h->surplus_huge_pages_node[node] += delta; 2275 return 1; 2276} 2277 2278#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 2279static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 2280 nodemask_t *nodes_allowed) 2281{ 2282 unsigned long min_count, ret; 2283 2284 if (hstate_is_gigantic(h) && !gigantic_page_supported()) 2285 return h->max_huge_pages; 2286 2287 /* 2288 * Increase the pool size 2289 * First take pages out of surplus state. Then make up the 2290 * remaining difference by allocating fresh huge pages. 2291 * 2292 * We might race with alloc_surplus_huge_page() here and be unable 2293 * to convert a surplus huge page to a normal huge page. That is 2294 * not critical, though, it just means the overall size of the 2295 * pool might be one hugepage larger than it needs to be, but 2296 * within all the constraints specified by the sysctls. 2297 */ 2298 spin_lock(&hugetlb_lock); 2299 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 2300 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 2301 break; 2302 } 2303 2304 while (count > persistent_huge_pages(h)) { 2305 /* 2306 * If this allocation races such that we no longer need the 2307 * page, free_huge_page will handle it by freeing the page 2308 * and reducing the surplus. 2309 */ 2310 spin_unlock(&hugetlb_lock); 2311 2312 /* yield cpu to avoid soft lockup */ 2313 cond_resched(); 2314 2315 ret = alloc_pool_huge_page(h, nodes_allowed); 2316 spin_lock(&hugetlb_lock); 2317 if (!ret) 2318 goto out; 2319 2320 /* Bail for signals. Probably ctrl-c from user */ 2321 if (signal_pending(current)) 2322 goto out; 2323 } 2324 2325 /* 2326 * Decrease the pool size 2327 * First return free pages to the buddy allocator (being careful 2328 * to keep enough around to satisfy reservations). Then place 2329 * pages into surplus state as needed so the pool will shrink 2330 * to the desired size as pages become free. 2331 * 2332 * By placing pages into the surplus state independent of the 2333 * overcommit value, we are allowing the surplus pool size to 2334 * exceed overcommit. There are few sane options here. Since 2335 * alloc_surplus_huge_page() is checking the global counter, 2336 * though, we'll note that we're not allowed to exceed surplus 2337 * and won't grow the pool anywhere else. Not until one of the 2338 * sysctls are changed, or the surplus pages go out of use. 2339 */ 2340 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 2341 min_count = max(count, min_count); 2342 try_to_free_low(h, min_count, nodes_allowed); 2343 while (min_count < persistent_huge_pages(h)) { 2344 if (!free_pool_huge_page(h, nodes_allowed, 0)) 2345 break; 2346 cond_resched_lock(&hugetlb_lock); 2347 } 2348 while (count < persistent_huge_pages(h)) { 2349 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 2350 break; 2351 } 2352out: 2353 ret = persistent_huge_pages(h); 2354 spin_unlock(&hugetlb_lock); 2355 return ret; 2356} 2357 2358#define HSTATE_ATTR_RO(_name) \ 2359 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2360 2361#define HSTATE_ATTR(_name) \ 2362 static struct kobj_attribute _name##_attr = \ 2363 __ATTR(_name, 0644, _name##_show, _name##_store) 2364 2365static struct kobject *hugepages_kobj; 2366static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2367 2368static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 2369 2370static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 2371{ 2372 int i; 2373 2374 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2375 if (hstate_kobjs[i] == kobj) { 2376 if (nidp) 2377 *nidp = NUMA_NO_NODE; 2378 return &hstates[i]; 2379 } 2380 2381 return kobj_to_node_hstate(kobj, nidp); 2382} 2383 2384static ssize_t nr_hugepages_show_common(struct kobject *kobj, 2385 struct kobj_attribute *attr, char *buf) 2386{ 2387 struct hstate *h; 2388 unsigned long nr_huge_pages; 2389 int nid; 2390 2391 h = kobj_to_hstate(kobj, &nid); 2392 if (nid == NUMA_NO_NODE) 2393 nr_huge_pages = h->nr_huge_pages; 2394 else 2395 nr_huge_pages = h->nr_huge_pages_node[nid]; 2396 2397 return sprintf(buf, "%lu\n", nr_huge_pages); 2398} 2399 2400static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 2401 struct hstate *h, int nid, 2402 unsigned long count, size_t len) 2403{ 2404 int err; 2405 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 2406 2407 if (hstate_is_gigantic(h) && !gigantic_page_supported()) { 2408 err = -EINVAL; 2409 goto out; 2410 } 2411 2412 if (nid == NUMA_NO_NODE) { 2413 /* 2414 * global hstate attribute 2415 */ 2416 if (!(obey_mempolicy && 2417 init_nodemask_of_mempolicy(nodes_allowed))) { 2418 NODEMASK_FREE(nodes_allowed); 2419 nodes_allowed = &node_states[N_MEMORY]; 2420 } 2421 } else if (nodes_allowed) { 2422 /* 2423 * per node hstate attribute: adjust count to global, 2424 * but restrict alloc/free to the specified node. 2425 */ 2426 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 2427 init_nodemask_of_node(nodes_allowed, nid); 2428 } else 2429 nodes_allowed = &node_states[N_MEMORY]; 2430 2431 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 2432 2433 if (nodes_allowed != &node_states[N_MEMORY]) 2434 NODEMASK_FREE(nodes_allowed); 2435 2436 return len; 2437out: 2438 NODEMASK_FREE(nodes_allowed); 2439 return err; 2440} 2441 2442static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 2443 struct kobject *kobj, const char *buf, 2444 size_t len) 2445{ 2446 struct hstate *h; 2447 unsigned long count; 2448 int nid; 2449 int err; 2450 2451 err = kstrtoul(buf, 10, &count); 2452 if (err) 2453 return err; 2454 2455 h = kobj_to_hstate(kobj, &nid); 2456 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); 2457} 2458 2459static ssize_t nr_hugepages_show(struct kobject *kobj, 2460 struct kobj_attribute *attr, char *buf) 2461{ 2462 return nr_hugepages_show_common(kobj, attr, buf); 2463} 2464 2465static ssize_t nr_hugepages_store(struct kobject *kobj, 2466 struct kobj_attribute *attr, const char *buf, size_t len) 2467{ 2468 return nr_hugepages_store_common(false, kobj, buf, len); 2469} 2470HSTATE_ATTR(nr_hugepages); 2471 2472#ifdef CONFIG_NUMA 2473 2474/* 2475 * hstate attribute for optionally mempolicy-based constraint on persistent 2476 * huge page alloc/free. 2477 */ 2478static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 2479 struct kobj_attribute *attr, char *buf) 2480{ 2481 return nr_hugepages_show_common(kobj, attr, buf); 2482} 2483 2484static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 2485 struct kobj_attribute *attr, const char *buf, size_t len) 2486{ 2487 return nr_hugepages_store_common(true, kobj, buf, len); 2488} 2489HSTATE_ATTR(nr_hugepages_mempolicy); 2490#endif 2491 2492 2493static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 2494 struct kobj_attribute *attr, char *buf) 2495{ 2496 struct hstate *h = kobj_to_hstate(kobj, NULL); 2497 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 2498} 2499 2500static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 2501 struct kobj_attribute *attr, const char *buf, size_t count) 2502{ 2503 int err; 2504 unsigned long input; 2505 struct hstate *h = kobj_to_hstate(kobj, NULL); 2506 2507 if (hstate_is_gigantic(h)) 2508 return -EINVAL; 2509 2510 err = kstrtoul(buf, 10, &input); 2511 if (err) 2512 return err; 2513 2514 spin_lock(&hugetlb_lock); 2515 h->nr_overcommit_huge_pages = input; 2516 spin_unlock(&hugetlb_lock); 2517 2518 return count; 2519} 2520HSTATE_ATTR(nr_overcommit_hugepages); 2521 2522static ssize_t free_hugepages_show(struct kobject *kobj, 2523 struct kobj_attribute *attr, char *buf) 2524{ 2525 struct hstate *h; 2526 unsigned long free_huge_pages; 2527 int nid; 2528 2529 h = kobj_to_hstate(kobj, &nid); 2530 if (nid == NUMA_NO_NODE) 2531 free_huge_pages = h->free_huge_pages; 2532 else 2533 free_huge_pages = h->free_huge_pages_node[nid]; 2534 2535 return sprintf(buf, "%lu\n", free_huge_pages); 2536} 2537HSTATE_ATTR_RO(free_hugepages); 2538 2539static ssize_t resv_hugepages_show(struct kobject *kobj, 2540 struct kobj_attribute *attr, char *buf) 2541{ 2542 struct hstate *h = kobj_to_hstate(kobj, NULL); 2543 return sprintf(buf, "%lu\n", h->resv_huge_pages); 2544} 2545HSTATE_ATTR_RO(resv_hugepages); 2546 2547static ssize_t surplus_hugepages_show(struct kobject *kobj, 2548 struct kobj_attribute *attr, char *buf) 2549{ 2550 struct hstate *h; 2551 unsigned long surplus_huge_pages; 2552 int nid; 2553 2554 h = kobj_to_hstate(kobj, &nid); 2555 if (nid == NUMA_NO_NODE) 2556 surplus_huge_pages = h->surplus_huge_pages; 2557 else 2558 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 2559 2560 return sprintf(buf, "%lu\n", surplus_huge_pages); 2561} 2562HSTATE_ATTR_RO(surplus_hugepages); 2563 2564static struct attribute *hstate_attrs[] = { 2565 &nr_hugepages_attr.attr, 2566 &nr_overcommit_hugepages_attr.attr, 2567 &free_hugepages_attr.attr, 2568 &resv_hugepages_attr.attr, 2569 &surplus_hugepages_attr.attr, 2570#ifdef CONFIG_NUMA 2571 &nr_hugepages_mempolicy_attr.attr, 2572#endif 2573 NULL, 2574}; 2575 2576static const struct attribute_group hstate_attr_group = { 2577 .attrs = hstate_attrs, 2578}; 2579 2580static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 2581 struct kobject **hstate_kobjs, 2582 const struct attribute_group *hstate_attr_group) 2583{ 2584 int retval; 2585 int hi = hstate_index(h); 2586 2587 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 2588 if (!hstate_kobjs[hi]) 2589 return -ENOMEM; 2590 2591 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 2592 if (retval) 2593 kobject_put(hstate_kobjs[hi]); 2594 2595 return retval; 2596} 2597 2598static void __init hugetlb_sysfs_init(void) 2599{ 2600 struct hstate *h; 2601 int err; 2602 2603 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 2604 if (!hugepages_kobj) 2605 return; 2606 2607 for_each_hstate(h) { 2608 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 2609 hstate_kobjs, &hstate_attr_group); 2610 if (err) 2611 pr_err("Hugetlb: Unable to add hstate %s", h->name); 2612 } 2613} 2614 2615#ifdef CONFIG_NUMA 2616 2617/* 2618 * node_hstate/s - associate per node hstate attributes, via their kobjects, 2619 * with node devices in node_devices[] using a parallel array. The array 2620 * index of a node device or _hstate == node id. 2621 * This is here to avoid any static dependency of the node device driver, in 2622 * the base kernel, on the hugetlb module. 2623 */ 2624struct node_hstate { 2625 struct kobject *hugepages_kobj; 2626 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 2627}; 2628static struct node_hstate node_hstates[MAX_NUMNODES]; 2629 2630/* 2631 * A subset of global hstate attributes for node devices 2632 */ 2633static struct attribute *per_node_hstate_attrs[] = { 2634 &nr_hugepages_attr.attr, 2635 &free_hugepages_attr.attr, 2636 &surplus_hugepages_attr.attr, 2637 NULL, 2638}; 2639 2640static const struct attribute_group per_node_hstate_attr_group = { 2641 .attrs = per_node_hstate_attrs, 2642}; 2643 2644/* 2645 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 2646 * Returns node id via non-NULL nidp. 2647 */ 2648static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2649{ 2650 int nid; 2651 2652 for (nid = 0; nid < nr_node_ids; nid++) { 2653 struct node_hstate *nhs = &node_hstates[nid]; 2654 int i; 2655 for (i = 0; i < HUGE_MAX_HSTATE; i++) 2656 if (nhs->hstate_kobjs[i] == kobj) { 2657 if (nidp) 2658 *nidp = nid; 2659 return &hstates[i]; 2660 } 2661 } 2662 2663 BUG(); 2664 return NULL; 2665} 2666 2667/* 2668 * Unregister hstate attributes from a single node device. 2669 * No-op if no hstate attributes attached. 2670 */ 2671static void hugetlb_unregister_node(struct node *node) 2672{ 2673 struct hstate *h; 2674 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2675 2676 if (!nhs->hugepages_kobj) 2677 return; /* no hstate attributes */ 2678 2679 for_each_hstate(h) { 2680 int idx = hstate_index(h); 2681 if (nhs->hstate_kobjs[idx]) { 2682 kobject_put(nhs->hstate_kobjs[idx]); 2683 nhs->hstate_kobjs[idx] = NULL; 2684 } 2685 } 2686 2687 kobject_put(nhs->hugepages_kobj); 2688 nhs->hugepages_kobj = NULL; 2689} 2690 2691 2692/* 2693 * Register hstate attributes for a single node device. 2694 * No-op if attributes already registered. 2695 */ 2696static void hugetlb_register_node(struct node *node) 2697{ 2698 struct hstate *h; 2699 struct node_hstate *nhs = &node_hstates[node->dev.id]; 2700 int err; 2701 2702 if (nhs->hugepages_kobj) 2703 return; /* already allocated */ 2704 2705 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 2706 &node->dev.kobj); 2707 if (!nhs->hugepages_kobj) 2708 return; 2709 2710 for_each_hstate(h) { 2711 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 2712 nhs->hstate_kobjs, 2713 &per_node_hstate_attr_group); 2714 if (err) { 2715 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 2716 h->name, node->dev.id); 2717 hugetlb_unregister_node(node); 2718 break; 2719 } 2720 } 2721} 2722 2723/* 2724 * hugetlb init time: register hstate attributes for all registered node 2725 * devices of nodes that have memory. All on-line nodes should have 2726 * registered their associated device by this time. 2727 */ 2728static void __init hugetlb_register_all_nodes(void) 2729{ 2730 int nid; 2731 2732 for_each_node_state(nid, N_MEMORY) { 2733 struct node *node = node_devices[nid]; 2734 if (node->dev.id == nid) 2735 hugetlb_register_node(node); 2736 } 2737 2738 /* 2739 * Let the node device driver know we're here so it can 2740 * [un]register hstate attributes on node hotplug. 2741 */ 2742 register_hugetlbfs_with_node(hugetlb_register_node, 2743 hugetlb_unregister_node); 2744} 2745#else /* !CONFIG_NUMA */ 2746 2747static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 2748{ 2749 BUG(); 2750 if (nidp) 2751 *nidp = -1; 2752 return NULL; 2753} 2754 2755static void hugetlb_register_all_nodes(void) { } 2756 2757#endif 2758 2759static int __init hugetlb_init(void) 2760{ 2761 int i; 2762 2763 if (!hugepages_supported()) 2764 return 0; 2765 2766 if (!size_to_hstate(default_hstate_size)) { 2767 if (default_hstate_size != 0) { 2768 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n", 2769 default_hstate_size, HPAGE_SIZE); 2770 } 2771 2772 default_hstate_size = HPAGE_SIZE; 2773 if (!size_to_hstate(default_hstate_size)) 2774 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 2775 } 2776 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 2777 if (default_hstate_max_huge_pages) { 2778 if (!default_hstate.max_huge_pages) 2779 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 2780 } 2781 2782 hugetlb_init_hstates(); 2783 gather_bootmem_prealloc(); 2784 report_hugepages(); 2785 2786 hugetlb_sysfs_init(); 2787 hugetlb_register_all_nodes(); 2788 hugetlb_cgroup_file_init(); 2789 2790#ifdef CONFIG_SMP 2791 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 2792#else 2793 num_fault_mutexes = 1; 2794#endif 2795 hugetlb_fault_mutex_table = 2796 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 2797 GFP_KERNEL); 2798 BUG_ON(!hugetlb_fault_mutex_table); 2799 2800 for (i = 0; i < num_fault_mutexes; i++) 2801 mutex_init(&hugetlb_fault_mutex_table[i]); 2802 return 0; 2803} 2804subsys_initcall(hugetlb_init); 2805 2806/* Should be called on processing a hugepagesz=... option */ 2807void __init hugetlb_bad_size(void) 2808{ 2809 parsed_valid_hugepagesz = false; 2810} 2811 2812void __init hugetlb_add_hstate(unsigned int order) 2813{ 2814 struct hstate *h; 2815 unsigned long i; 2816 2817 if (size_to_hstate(PAGE_SIZE << order)) { 2818 pr_warn("hugepagesz= specified twice, ignoring\n"); 2819 return; 2820 } 2821 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 2822 BUG_ON(order == 0); 2823 h = &hstates[hugetlb_max_hstate++]; 2824 h->order = order; 2825 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 2826 h->nr_huge_pages = 0; 2827 h->free_huge_pages = 0; 2828 for (i = 0; i < MAX_NUMNODES; ++i) 2829 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 2830 INIT_LIST_HEAD(&h->hugepage_activelist); 2831 h->next_nid_to_alloc = first_memory_node; 2832 h->next_nid_to_free = first_memory_node; 2833 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2834 huge_page_size(h)/1024); 2835 2836 parsed_hstate = h; 2837} 2838 2839static int __init hugetlb_nrpages_setup(char *s) 2840{ 2841 unsigned long *mhp; 2842 static unsigned long *last_mhp; 2843 2844 if (!parsed_valid_hugepagesz) { 2845 pr_warn("hugepages = %s preceded by " 2846 "an unsupported hugepagesz, ignoring\n", s); 2847 parsed_valid_hugepagesz = true; 2848 return 1; 2849 } 2850 /* 2851 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2852 * so this hugepages= parameter goes to the "default hstate". 2853 */ 2854 else if (!hugetlb_max_hstate) 2855 mhp = &default_hstate_max_huge_pages; 2856 else 2857 mhp = &parsed_hstate->max_huge_pages; 2858 2859 if (mhp == last_mhp) { 2860 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n"); 2861 return 1; 2862 } 2863 2864 if (sscanf(s, "%lu", mhp) <= 0) 2865 *mhp = 0; 2866 2867 /* 2868 * Global state is always initialized later in hugetlb_init. 2869 * But we need to allocate >= MAX_ORDER hstates here early to still 2870 * use the bootmem allocator. 2871 */ 2872 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2873 hugetlb_hstate_alloc_pages(parsed_hstate); 2874 2875 last_mhp = mhp; 2876 2877 return 1; 2878} 2879__setup("hugepages=", hugetlb_nrpages_setup); 2880 2881static int __init hugetlb_default_setup(char *s) 2882{ 2883 default_hstate_size = memparse(s, &s); 2884 return 1; 2885} 2886__setup("default_hugepagesz=", hugetlb_default_setup); 2887 2888static unsigned int cpuset_mems_nr(unsigned int *array) 2889{ 2890 int node; 2891 unsigned int nr = 0; 2892 2893 for_each_node_mask(node, cpuset_current_mems_allowed) 2894 nr += array[node]; 2895 2896 return nr; 2897} 2898 2899#ifdef CONFIG_SYSCTL 2900static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2901 struct ctl_table *table, int write, 2902 void __user *buffer, size_t *length, loff_t *ppos) 2903{ 2904 struct hstate *h = &default_hstate; 2905 unsigned long tmp = h->max_huge_pages; 2906 int ret; 2907 2908 if (!hugepages_supported()) 2909 return -EOPNOTSUPP; 2910 2911 table->data = &tmp; 2912 table->maxlen = sizeof(unsigned long); 2913 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2914 if (ret) 2915 goto out; 2916 2917 if (write) 2918 ret = __nr_hugepages_store_common(obey_mempolicy, h, 2919 NUMA_NO_NODE, tmp, *length); 2920out: 2921 return ret; 2922} 2923 2924int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2925 void __user *buffer, size_t *length, loff_t *ppos) 2926{ 2927 2928 return hugetlb_sysctl_handler_common(false, table, write, 2929 buffer, length, ppos); 2930} 2931 2932#ifdef CONFIG_NUMA 2933int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2934 void __user *buffer, size_t *length, loff_t *ppos) 2935{ 2936 return hugetlb_sysctl_handler_common(true, table, write, 2937 buffer, length, ppos); 2938} 2939#endif /* CONFIG_NUMA */ 2940 2941int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2942 void __user *buffer, 2943 size_t *length, loff_t *ppos) 2944{ 2945 struct hstate *h = &default_hstate; 2946 unsigned long tmp; 2947 int ret; 2948 2949 if (!hugepages_supported()) 2950 return -EOPNOTSUPP; 2951 2952 tmp = h->nr_overcommit_huge_pages; 2953 2954 if (write && hstate_is_gigantic(h)) 2955 return -EINVAL; 2956 2957 table->data = &tmp; 2958 table->maxlen = sizeof(unsigned long); 2959 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2960 if (ret) 2961 goto out; 2962 2963 if (write) { 2964 spin_lock(&hugetlb_lock); 2965 h->nr_overcommit_huge_pages = tmp; 2966 spin_unlock(&hugetlb_lock); 2967 } 2968out: 2969 return ret; 2970} 2971 2972#endif /* CONFIG_SYSCTL */ 2973 2974void hugetlb_report_meminfo(struct seq_file *m) 2975{ 2976 struct hstate *h; 2977 unsigned long total = 0; 2978 2979 if (!hugepages_supported()) 2980 return; 2981 2982 for_each_hstate(h) { 2983 unsigned long count = h->nr_huge_pages; 2984 2985 total += (PAGE_SIZE << huge_page_order(h)) * count; 2986 2987 if (h == &default_hstate) 2988 seq_printf(m, 2989 "HugePages_Total: %5lu\n" 2990 "HugePages_Free: %5lu\n" 2991 "HugePages_Rsvd: %5lu\n" 2992 "HugePages_Surp: %5lu\n" 2993 "Hugepagesize: %8lu kB\n", 2994 count, 2995 h->free_huge_pages, 2996 h->resv_huge_pages, 2997 h->surplus_huge_pages, 2998 (PAGE_SIZE << huge_page_order(h)) / 1024); 2999 } 3000 3001 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); 3002} 3003 3004int hugetlb_report_node_meminfo(int nid, char *buf) 3005{ 3006 struct hstate *h = &default_hstate; 3007 if (!hugepages_supported()) 3008 return 0; 3009 return sprintf(buf, 3010 "Node %d HugePages_Total: %5u\n" 3011 "Node %d HugePages_Free: %5u\n" 3012 "Node %d HugePages_Surp: %5u\n", 3013 nid, h->nr_huge_pages_node[nid], 3014 nid, h->free_huge_pages_node[nid], 3015 nid, h->surplus_huge_pages_node[nid]); 3016} 3017 3018void hugetlb_show_meminfo(void) 3019{ 3020 struct hstate *h; 3021 int nid; 3022 3023 if (!hugepages_supported()) 3024 return; 3025 3026 for_each_node_state(nid, N_MEMORY) 3027 for_each_hstate(h) 3028 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 3029 nid, 3030 h->nr_huge_pages_node[nid], 3031 h->free_huge_pages_node[nid], 3032 h->surplus_huge_pages_node[nid], 3033 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 3034} 3035 3036void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 3037{ 3038 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 3039 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); 3040} 3041 3042/* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 3043unsigned long hugetlb_total_pages(void) 3044{ 3045 struct hstate *h; 3046 unsigned long nr_total_pages = 0; 3047 3048 for_each_hstate(h) 3049 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 3050 return nr_total_pages; 3051} 3052 3053static int hugetlb_acct_memory(struct hstate *h, long delta) 3054{ 3055 int ret = -ENOMEM; 3056 3057 spin_lock(&hugetlb_lock); 3058 /* 3059 * When cpuset is configured, it breaks the strict hugetlb page 3060 * reservation as the accounting is done on a global variable. Such 3061 * reservation is completely rubbish in the presence of cpuset because 3062 * the reservation is not checked against page availability for the 3063 * current cpuset. Application can still potentially OOM'ed by kernel 3064 * with lack of free htlb page in cpuset that the task is in. 3065 * Attempt to enforce strict accounting with cpuset is almost 3066 * impossible (or too ugly) because cpuset is too fluid that 3067 * task or memory node can be dynamically moved between cpusets. 3068 * 3069 * The change of semantics for shared hugetlb mapping with cpuset is 3070 * undesirable. However, in order to preserve some of the semantics, 3071 * we fall back to check against current free page availability as 3072 * a best attempt and hopefully to minimize the impact of changing 3073 * semantics that cpuset has. 3074 */ 3075 if (delta > 0) { 3076 if (gather_surplus_pages(h, delta) < 0) 3077 goto out; 3078 3079 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 3080 return_unused_surplus_pages(h, delta); 3081 goto out; 3082 } 3083 } 3084 3085 ret = 0; 3086 if (delta < 0) 3087 return_unused_surplus_pages(h, (unsigned long) -delta); 3088 3089out: 3090 spin_unlock(&hugetlb_lock); 3091 return ret; 3092} 3093 3094static void hugetlb_vm_op_open(struct vm_area_struct *vma) 3095{ 3096 struct resv_map *resv = vma_resv_map(vma); 3097 3098 /* 3099 * This new VMA should share its siblings reservation map if present. 3100 * The VMA will only ever have a valid reservation map pointer where 3101 * it is being copied for another still existing VMA. As that VMA 3102 * has a reference to the reservation map it cannot disappear until 3103 * after this open call completes. It is therefore safe to take a 3104 * new reference here without additional locking. 3105 */ 3106 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3107 kref_get(&resv->refs); 3108} 3109 3110static void hugetlb_vm_op_close(struct vm_area_struct *vma) 3111{ 3112 struct hstate *h = hstate_vma(vma); 3113 struct resv_map *resv = vma_resv_map(vma); 3114 struct hugepage_subpool *spool = subpool_vma(vma); 3115 unsigned long reserve, start, end; 3116 long gbl_reserve; 3117 3118 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 3119 return; 3120 3121 start = vma_hugecache_offset(h, vma, vma->vm_start); 3122 end = vma_hugecache_offset(h, vma, vma->vm_end); 3123 3124 reserve = (end - start) - region_count(resv, start, end); 3125 3126 kref_put(&resv->refs, resv_map_release); 3127 3128 if (reserve) { 3129 /* 3130 * Decrement reserve counts. The global reserve count may be 3131 * adjusted if the subpool has a minimum size. 3132 */ 3133 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 3134 hugetlb_acct_memory(h, -gbl_reserve); 3135 } 3136} 3137 3138static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 3139{ 3140 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 3141 return -EINVAL; 3142 return 0; 3143} 3144 3145static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 3146{ 3147 struct hstate *hstate = hstate_vma(vma); 3148 3149 return 1UL << huge_page_shift(hstate); 3150} 3151 3152/* 3153 * We cannot handle pagefaults against hugetlb pages at all. They cause 3154 * handle_mm_fault() to try to instantiate regular-sized pages in the 3155 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 3156 * this far. 3157 */ 3158static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 3159{ 3160 BUG(); 3161 return 0; 3162} 3163 3164/* 3165 * When a new function is introduced to vm_operations_struct and added 3166 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 3167 * This is because under System V memory model, mappings created via 3168 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 3169 * their original vm_ops are overwritten with shm_vm_ops. 3170 */ 3171const struct vm_operations_struct hugetlb_vm_ops = { 3172 .fault = hugetlb_vm_op_fault, 3173 .open = hugetlb_vm_op_open, 3174 .close = hugetlb_vm_op_close, 3175 .split = hugetlb_vm_op_split, 3176 .pagesize = hugetlb_vm_op_pagesize, 3177}; 3178 3179static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 3180 int writable) 3181{ 3182 pte_t entry; 3183 3184 if (writable) { 3185 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 3186 vma->vm_page_prot))); 3187 } else { 3188 entry = huge_pte_wrprotect(mk_huge_pte(page, 3189 vma->vm_page_prot)); 3190 } 3191 entry = pte_mkyoung(entry); 3192 entry = pte_mkhuge(entry); 3193 entry = arch_make_huge_pte(entry, vma, page, writable); 3194 3195 return entry; 3196} 3197 3198static void set_huge_ptep_writable(struct vm_area_struct *vma, 3199 unsigned long address, pte_t *ptep) 3200{ 3201 pte_t entry; 3202 3203 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 3204 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 3205 update_mmu_cache(vma, address, ptep); 3206} 3207 3208bool is_hugetlb_entry_migration(pte_t pte) 3209{ 3210 swp_entry_t swp; 3211 3212 if (huge_pte_none(pte) || pte_present(pte)) 3213 return false; 3214 swp = pte_to_swp_entry(pte); 3215 if (non_swap_entry(swp) && is_migration_entry(swp)) 3216 return true; 3217 else 3218 return false; 3219} 3220 3221static int is_hugetlb_entry_hwpoisoned(pte_t pte) 3222{ 3223 swp_entry_t swp; 3224 3225 if (huge_pte_none(pte) || pte_present(pte)) 3226 return 0; 3227 swp = pte_to_swp_entry(pte); 3228 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 3229 return 1; 3230 else 3231 return 0; 3232} 3233 3234int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 3235 struct vm_area_struct *vma) 3236{ 3237 pte_t *src_pte, *dst_pte, entry, dst_entry; 3238 struct page *ptepage; 3239 unsigned long addr; 3240 int cow; 3241 struct hstate *h = hstate_vma(vma); 3242 unsigned long sz = huge_page_size(h); 3243 struct mmu_notifier_range range; 3244 int ret = 0; 3245 3246 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 3247 3248 if (cow) { 3249 mmu_notifier_range_init(&range, src, vma->vm_start, 3250 vma->vm_end); 3251 mmu_notifier_invalidate_range_start(&range); 3252 } 3253 3254 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 3255 spinlock_t *src_ptl, *dst_ptl; 3256 src_pte = huge_pte_offset(src, addr, sz); 3257 if (!src_pte) 3258 continue; 3259 dst_pte = huge_pte_alloc(dst, addr, sz); 3260 if (!dst_pte) { 3261 ret = -ENOMEM; 3262 break; 3263 } 3264 3265 /* 3266 * If the pagetables are shared don't copy or take references. 3267 * dst_pte == src_pte is the common case of src/dest sharing. 3268 * 3269 * However, src could have 'unshared' and dst shares with 3270 * another vma. If dst_pte !none, this implies sharing. 3271 * Check here before taking page table lock, and once again 3272 * after taking the lock below. 3273 */ 3274 dst_entry = huge_ptep_get(dst_pte); 3275 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) 3276 continue; 3277 3278 dst_ptl = huge_pte_lock(h, dst, dst_pte); 3279 src_ptl = huge_pte_lockptr(h, src, src_pte); 3280 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 3281 entry = huge_ptep_get(src_pte); 3282 dst_entry = huge_ptep_get(dst_pte); 3283 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { 3284 /* 3285 * Skip if src entry none. Also, skip in the 3286 * unlikely case dst entry !none as this implies 3287 * sharing with another vma. 3288 */ 3289 ; 3290 } else if (unlikely(is_hugetlb_entry_migration(entry) || 3291 is_hugetlb_entry_hwpoisoned(entry))) { 3292 swp_entry_t swp_entry = pte_to_swp_entry(entry); 3293 3294 if (is_write_migration_entry(swp_entry) && cow) { 3295 /* 3296 * COW mappings require pages in both 3297 * parent and child to be set to read. 3298 */ 3299 make_migration_entry_read(&swp_entry); 3300 entry = swp_entry_to_pte(swp_entry); 3301 set_huge_swap_pte_at(src, addr, src_pte, 3302 entry, sz); 3303 } 3304 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); 3305 } else { 3306 if (cow) { 3307 /* 3308 * No need to notify as we are downgrading page 3309 * table protection not changing it to point 3310 * to a new page. 3311 * 3312 * See Documentation/vm/mmu_notifier.rst 3313 */ 3314 huge_ptep_set_wrprotect(src, addr, src_pte); 3315 } 3316 entry = huge_ptep_get(src_pte); 3317 ptepage = pte_page(entry); 3318 get_page(ptepage); 3319 page_dup_rmap(ptepage, true); 3320 set_huge_pte_at(dst, addr, dst_pte, entry); 3321 hugetlb_count_add(pages_per_huge_page(h), dst); 3322 } 3323 spin_unlock(src_ptl); 3324 spin_unlock(dst_ptl); 3325 } 3326 3327 if (cow) 3328 mmu_notifier_invalidate_range_end(&range); 3329 3330 return ret; 3331} 3332 3333void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 3334 unsigned long start, unsigned long end, 3335 struct page *ref_page) 3336{ 3337 struct mm_struct *mm = vma->vm_mm; 3338 unsigned long address; 3339 pte_t *ptep; 3340 pte_t pte; 3341 spinlock_t *ptl; 3342 struct page *page; 3343 struct hstate *h = hstate_vma(vma); 3344 unsigned long sz = huge_page_size(h); 3345 struct mmu_notifier_range range; 3346 3347 WARN_ON(!is_vm_hugetlb_page(vma)); 3348 BUG_ON(start & ~huge_page_mask(h)); 3349 BUG_ON(end & ~huge_page_mask(h)); 3350 3351 /* 3352 * This is a hugetlb vma, all the pte entries should point 3353 * to huge page. 3354 */ 3355 tlb_remove_check_page_size_change(tlb, sz); 3356 tlb_start_vma(tlb, vma); 3357 3358 /* 3359 * If sharing possible, alert mmu notifiers of worst case. 3360 */ 3361 mmu_notifier_range_init(&range, mm, start, end); 3362 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 3363 mmu_notifier_invalidate_range_start(&range); 3364 address = start; 3365 for (; address < end; address += sz) { 3366 ptep = huge_pte_offset(mm, address, sz); 3367 if (!ptep) 3368 continue; 3369 3370 ptl = huge_pte_lock(h, mm, ptep); 3371 if (huge_pmd_unshare(mm, &address, ptep)) { 3372 spin_unlock(ptl); 3373 /* 3374 * We just unmapped a page of PMDs by clearing a PUD. 3375 * The caller's TLB flush range should cover this area. 3376 */ 3377 continue; 3378 } 3379 3380 pte = huge_ptep_get(ptep); 3381 if (huge_pte_none(pte)) { 3382 spin_unlock(ptl); 3383 continue; 3384 } 3385 3386 /* 3387 * Migrating hugepage or HWPoisoned hugepage is already 3388 * unmapped and its refcount is dropped, so just clear pte here. 3389 */ 3390 if (unlikely(!pte_present(pte))) { 3391 huge_pte_clear(mm, address, ptep, sz); 3392 spin_unlock(ptl); 3393 continue; 3394 } 3395 3396 page = pte_page(pte); 3397 /* 3398 * If a reference page is supplied, it is because a specific 3399 * page is being unmapped, not a range. Ensure the page we 3400 * are about to unmap is the actual page of interest. 3401 */ 3402 if (ref_page) { 3403 if (page != ref_page) { 3404 spin_unlock(ptl); 3405 continue; 3406 } 3407 /* 3408 * Mark the VMA as having unmapped its page so that 3409 * future faults in this VMA will fail rather than 3410 * looking like data was lost 3411 */ 3412 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 3413 } 3414 3415 pte = huge_ptep_get_and_clear(mm, address, ptep); 3416 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 3417 if (huge_pte_dirty(pte)) 3418 set_page_dirty(page); 3419 3420 hugetlb_count_sub(pages_per_huge_page(h), mm); 3421 page_remove_rmap(page, true); 3422 3423 spin_unlock(ptl); 3424 tlb_remove_page_size(tlb, page, huge_page_size(h)); 3425 /* 3426 * Bail out after unmapping reference page if supplied 3427 */ 3428 if (ref_page) 3429 break; 3430 } 3431 mmu_notifier_invalidate_range_end(&range); 3432 tlb_end_vma(tlb, vma); 3433} 3434 3435void __unmap_hugepage_range_final(struct mmu_gather *tlb, 3436 struct vm_area_struct *vma, unsigned long start, 3437 unsigned long end, struct page *ref_page) 3438{ 3439 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 3440 3441 /* 3442 * Clear this flag so that x86's huge_pmd_share page_table_shareable 3443 * test will fail on a vma being torn down, and not grab a page table 3444 * on its way out. We're lucky that the flag has such an appropriate 3445 * name, and can in fact be safely cleared here. We could clear it 3446 * before the __unmap_hugepage_range above, but all that's necessary 3447 * is to clear it before releasing the i_mmap_rwsem. This works 3448 * because in the context this is called, the VMA is about to be 3449 * destroyed and the i_mmap_rwsem is held. 3450 */ 3451 vma->vm_flags &= ~VM_MAYSHARE; 3452} 3453 3454void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 3455 unsigned long end, struct page *ref_page) 3456{ 3457 struct mm_struct *mm; 3458 struct mmu_gather tlb; 3459 unsigned long tlb_start = start; 3460 unsigned long tlb_end = end; 3461 3462 /* 3463 * If shared PMDs were possibly used within this vma range, adjust 3464 * start/end for worst case tlb flushing. 3465 * Note that we can not be sure if PMDs are shared until we try to 3466 * unmap pages. However, we want to make sure TLB flushing covers 3467 * the largest possible range. 3468 */ 3469 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end); 3470 3471 mm = vma->vm_mm; 3472 3473 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end); 3474 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 3475 tlb_finish_mmu(&tlb, tlb_start, tlb_end); 3476} 3477 3478/* 3479 * This is called when the original mapper is failing to COW a MAP_PRIVATE 3480 * mappping it owns the reserve page for. The intention is to unmap the page 3481 * from other VMAs and let the children be SIGKILLed if they are faulting the 3482 * same region. 3483 */ 3484static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 3485 struct page *page, unsigned long address) 3486{ 3487 struct hstate *h = hstate_vma(vma); 3488 struct vm_area_struct *iter_vma; 3489 struct address_space *mapping; 3490 pgoff_t pgoff; 3491 3492 /* 3493 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 3494 * from page cache lookup which is in HPAGE_SIZE units. 3495 */ 3496 address = address & huge_page_mask(h); 3497 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 3498 vma->vm_pgoff; 3499 mapping = vma->vm_file->f_mapping; 3500 3501 /* 3502 * Take the mapping lock for the duration of the table walk. As 3503 * this mapping should be shared between all the VMAs, 3504 * __unmap_hugepage_range() is called as the lock is already held 3505 */ 3506 i_mmap_lock_write(mapping); 3507 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 3508 /* Do not unmap the current VMA */ 3509 if (iter_vma == vma) 3510 continue; 3511 3512 /* 3513 * Shared VMAs have their own reserves and do not affect 3514 * MAP_PRIVATE accounting but it is possible that a shared 3515 * VMA is using the same page so check and skip such VMAs. 3516 */ 3517 if (iter_vma->vm_flags & VM_MAYSHARE) 3518 continue; 3519 3520 /* 3521 * Unmap the page from other VMAs without their own reserves. 3522 * They get marked to be SIGKILLed if they fault in these 3523 * areas. This is because a future no-page fault on this VMA 3524 * could insert a zeroed page instead of the data existing 3525 * from the time of fork. This would look like data corruption 3526 */ 3527 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 3528 unmap_hugepage_range(iter_vma, address, 3529 address + huge_page_size(h), page); 3530 } 3531 i_mmap_unlock_write(mapping); 3532} 3533 3534/* 3535 * Hugetlb_cow() should be called with page lock of the original hugepage held. 3536 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 3537 * cannot race with other handlers or page migration. 3538 * Keep the pte_same checks anyway to make transition from the mutex easier. 3539 */ 3540static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 3541 unsigned long address, pte_t *ptep, 3542 struct page *pagecache_page, spinlock_t *ptl) 3543{ 3544 pte_t pte; 3545 struct hstate *h = hstate_vma(vma); 3546 struct page *old_page, *new_page; 3547 int outside_reserve = 0; 3548 vm_fault_t ret = 0; 3549 unsigned long haddr = address & huge_page_mask(h); 3550 struct mmu_notifier_range range; 3551 3552 pte = huge_ptep_get(ptep); 3553 old_page = pte_page(pte); 3554 3555retry_avoidcopy: 3556 /* If no-one else is actually using this page, avoid the copy 3557 * and just make the page writable */ 3558 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { 3559 page_move_anon_rmap(old_page, vma); 3560 set_huge_ptep_writable(vma, haddr, ptep); 3561 return 0; 3562 } 3563 3564 /* 3565 * If the process that created a MAP_PRIVATE mapping is about to 3566 * perform a COW due to a shared page count, attempt to satisfy 3567 * the allocation without using the existing reserves. The pagecache 3568 * page is used to determine if the reserve at this address was 3569 * consumed or not. If reserves were used, a partial faulted mapping 3570 * at the time of fork() could consume its reserves on COW instead 3571 * of the full address range. 3572 */ 3573 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 3574 old_page != pagecache_page) 3575 outside_reserve = 1; 3576 3577 get_page(old_page); 3578 3579 /* 3580 * Drop page table lock as buddy allocator may be called. It will 3581 * be acquired again before returning to the caller, as expected. 3582 */ 3583 spin_unlock(ptl); 3584 new_page = alloc_huge_page(vma, haddr, outside_reserve); 3585 3586 if (IS_ERR(new_page)) { 3587 /* 3588 * If a process owning a MAP_PRIVATE mapping fails to COW, 3589 * it is due to references held by a child and an insufficient 3590 * huge page pool. To guarantee the original mappers 3591 * reliability, unmap the page from child processes. The child 3592 * may get SIGKILLed if it later faults. 3593 */ 3594 if (outside_reserve) { 3595 put_page(old_page); 3596 BUG_ON(huge_pte_none(pte)); 3597 unmap_ref_private(mm, vma, old_page, haddr); 3598 BUG_ON(huge_pte_none(pte)); 3599 spin_lock(ptl); 3600 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3601 if (likely(ptep && 3602 pte_same(huge_ptep_get(ptep), pte))) 3603 goto retry_avoidcopy; 3604 /* 3605 * race occurs while re-acquiring page table 3606 * lock, and our job is done. 3607 */ 3608 return 0; 3609 } 3610 3611 ret = vmf_error(PTR_ERR(new_page)); 3612 goto out_release_old; 3613 } 3614 3615 /* 3616 * When the original hugepage is shared one, it does not have 3617 * anon_vma prepared. 3618 */ 3619 if (unlikely(anon_vma_prepare(vma))) { 3620 ret = VM_FAULT_OOM; 3621 goto out_release_all; 3622 } 3623 3624 copy_user_huge_page(new_page, old_page, address, vma, 3625 pages_per_huge_page(h)); 3626 __SetPageUptodate(new_page); 3627 3628 mmu_notifier_range_init(&range, mm, haddr, haddr + huge_page_size(h)); 3629 mmu_notifier_invalidate_range_start(&range); 3630 3631 /* 3632 * Retake the page table lock to check for racing updates 3633 * before the page tables are altered 3634 */ 3635 spin_lock(ptl); 3636 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3637 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { 3638 ClearPagePrivate(new_page); 3639 3640 /* Break COW */ 3641 huge_ptep_clear_flush(vma, haddr, ptep); 3642 mmu_notifier_invalidate_range(mm, range.start, range.end); 3643 set_huge_pte_at(mm, haddr, ptep, 3644 make_huge_pte(vma, new_page, 1)); 3645 page_remove_rmap(old_page, true); 3646 hugepage_add_new_anon_rmap(new_page, vma, haddr); 3647 set_page_huge_active(new_page); 3648 /* Make the old page be freed below */ 3649 new_page = old_page; 3650 } 3651 spin_unlock(ptl); 3652 mmu_notifier_invalidate_range_end(&range); 3653out_release_all: 3654 restore_reserve_on_error(h, vma, haddr, new_page); 3655 put_page(new_page); 3656out_release_old: 3657 put_page(old_page); 3658 3659 spin_lock(ptl); /* Caller expects lock to be held */ 3660 return ret; 3661} 3662 3663/* Return the pagecache page at a given address within a VMA */ 3664static struct page *hugetlbfs_pagecache_page(struct hstate *h, 3665 struct vm_area_struct *vma, unsigned long address) 3666{ 3667 struct address_space *mapping; 3668 pgoff_t idx; 3669 3670 mapping = vma->vm_file->f_mapping; 3671 idx = vma_hugecache_offset(h, vma, address); 3672 3673 return find_lock_page(mapping, idx); 3674} 3675 3676/* 3677 * Return whether there is a pagecache page to back given address within VMA. 3678 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 3679 */ 3680static bool hugetlbfs_pagecache_present(struct hstate *h, 3681 struct vm_area_struct *vma, unsigned long address) 3682{ 3683 struct address_space *mapping; 3684 pgoff_t idx; 3685 struct page *page; 3686 3687 mapping = vma->vm_file->f_mapping; 3688 idx = vma_hugecache_offset(h, vma, address); 3689 3690 page = find_get_page(mapping, idx); 3691 if (page) 3692 put_page(page); 3693 return page != NULL; 3694} 3695 3696int huge_add_to_page_cache(struct page *page, struct address_space *mapping, 3697 pgoff_t idx) 3698{ 3699 struct inode *inode = mapping->host; 3700 struct hstate *h = hstate_inode(inode); 3701 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 3702 3703 if (err) 3704 return err; 3705 ClearPagePrivate(page); 3706 3707 /* 3708 * set page dirty so that it will not be removed from cache/file 3709 * by non-hugetlbfs specific code paths. 3710 */ 3711 set_page_dirty(page); 3712 3713 spin_lock(&inode->i_lock); 3714 inode->i_blocks += blocks_per_huge_page(h); 3715 spin_unlock(&inode->i_lock); 3716 return 0; 3717} 3718 3719static vm_fault_t hugetlb_no_page(struct mm_struct *mm, 3720 struct vm_area_struct *vma, 3721 struct address_space *mapping, pgoff_t idx, 3722 unsigned long address, pte_t *ptep, unsigned int flags) 3723{ 3724 struct hstate *h = hstate_vma(vma); 3725 vm_fault_t ret = VM_FAULT_SIGBUS; 3726 int anon_rmap = 0; 3727 unsigned long size; 3728 struct page *page; 3729 pte_t new_pte; 3730 spinlock_t *ptl; 3731 unsigned long haddr = address & huge_page_mask(h); 3732 bool new_page = false; 3733 3734 /* 3735 * Currently, we are forced to kill the process in the event the 3736 * original mapper has unmapped pages from the child due to a failed 3737 * COW. Warn that such a situation has occurred as it may not be obvious 3738 */ 3739 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 3740 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 3741 current->pid); 3742 return ret; 3743 } 3744 3745 /* 3746 * Use page lock to guard against racing truncation 3747 * before we get page_table_lock. 3748 */ 3749retry: 3750 page = find_lock_page(mapping, idx); 3751 if (!page) { 3752 size = i_size_read(mapping->host) >> huge_page_shift(h); 3753 if (idx >= size) 3754 goto out; 3755 3756 /* 3757 * Check for page in userfault range 3758 */ 3759 if (userfaultfd_missing(vma)) { 3760 u32 hash; 3761 struct vm_fault vmf = { 3762 .vma = vma, 3763 .address = haddr, 3764 .flags = flags, 3765 /* 3766 * Hard to debug if it ends up being 3767 * used by a callee that assumes 3768 * something about the other 3769 * uninitialized fields... same as in 3770 * memory.c 3771 */ 3772 }; 3773 3774 /* 3775 * hugetlb_fault_mutex must be dropped before 3776 * handling userfault. Reacquire after handling 3777 * fault to make calling code simpler. 3778 */ 3779 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, 3780 idx, haddr); 3781 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 3782 ret = handle_userfault(&vmf, VM_UFFD_MISSING); 3783 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3784 goto out; 3785 } 3786 3787 page = alloc_huge_page(vma, haddr, 0); 3788 if (IS_ERR(page)) { 3789 ret = vmf_error(PTR_ERR(page)); 3790 goto out; 3791 } 3792 clear_huge_page(page, address, pages_per_huge_page(h)); 3793 __SetPageUptodate(page); 3794 new_page = true; 3795 3796 if (vma->vm_flags & VM_MAYSHARE) { 3797 int err = huge_add_to_page_cache(page, mapping, idx); 3798 if (err) { 3799 put_page(page); 3800 if (err == -EEXIST) 3801 goto retry; 3802 goto out; 3803 } 3804 } else { 3805 lock_page(page); 3806 if (unlikely(anon_vma_prepare(vma))) { 3807 ret = VM_FAULT_OOM; 3808 goto backout_unlocked; 3809 } 3810 anon_rmap = 1; 3811 } 3812 } else { 3813 /* 3814 * If memory error occurs between mmap() and fault, some process 3815 * don't have hwpoisoned swap entry for errored virtual address. 3816 * So we need to block hugepage fault by PG_hwpoison bit check. 3817 */ 3818 if (unlikely(PageHWPoison(page))) { 3819 ret = VM_FAULT_HWPOISON | 3820 VM_FAULT_SET_HINDEX(hstate_index(h)); 3821 goto backout_unlocked; 3822 } 3823 } 3824 3825 /* 3826 * If we are going to COW a private mapping later, we examine the 3827 * pending reservations for this page now. This will ensure that 3828 * any allocations necessary to record that reservation occur outside 3829 * the spinlock. 3830 */ 3831 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3832 if (vma_needs_reservation(h, vma, haddr) < 0) { 3833 ret = VM_FAULT_OOM; 3834 goto backout_unlocked; 3835 } 3836 /* Just decrements count, does not deallocate */ 3837 vma_end_reservation(h, vma, haddr); 3838 } 3839 3840 ptl = huge_pte_lock(h, mm, ptep); 3841 size = i_size_read(mapping->host) >> huge_page_shift(h); 3842 if (idx >= size) 3843 goto backout; 3844 3845 ret = 0; 3846 if (!huge_pte_none(huge_ptep_get(ptep))) 3847 goto backout; 3848 3849 if (anon_rmap) { 3850 ClearPagePrivate(page); 3851 hugepage_add_new_anon_rmap(page, vma, haddr); 3852 } else 3853 page_dup_rmap(page, true); 3854 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 3855 && (vma->vm_flags & VM_SHARED))); 3856 set_huge_pte_at(mm, haddr, ptep, new_pte); 3857 3858 hugetlb_count_add(pages_per_huge_page(h), mm); 3859 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3860 /* Optimization, do the COW without a second fault */ 3861 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); 3862 } 3863 3864 spin_unlock(ptl); 3865 3866 /* 3867 * Only make newly allocated pages active. Existing pages found 3868 * in the pagecache could be !page_huge_active() if they have been 3869 * isolated for migration. 3870 */ 3871 if (new_page) 3872 set_page_huge_active(page); 3873 3874 unlock_page(page); 3875out: 3876 return ret; 3877 3878backout: 3879 spin_unlock(ptl); 3880backout_unlocked: 3881 unlock_page(page); 3882 restore_reserve_on_error(h, vma, haddr, page); 3883 put_page(page); 3884 goto out; 3885} 3886 3887#ifdef CONFIG_SMP 3888u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3889 struct vm_area_struct *vma, 3890 struct address_space *mapping, 3891 pgoff_t idx, unsigned long address) 3892{ 3893 unsigned long key[2]; 3894 u32 hash; 3895 3896 if (vma->vm_flags & VM_SHARED) { 3897 key[0] = (unsigned long) mapping; 3898 key[1] = idx; 3899 } else { 3900 key[0] = (unsigned long) mm; 3901 key[1] = address >> huge_page_shift(h); 3902 } 3903 3904 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); 3905 3906 return hash & (num_fault_mutexes - 1); 3907} 3908#else 3909/* 3910 * For uniprocesor systems we always use a single mutex, so just 3911 * return 0 and avoid the hashing overhead. 3912 */ 3913u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm, 3914 struct vm_area_struct *vma, 3915 struct address_space *mapping, 3916 pgoff_t idx, unsigned long address) 3917{ 3918 return 0; 3919} 3920#endif 3921 3922vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3923 unsigned long address, unsigned int flags) 3924{ 3925 pte_t *ptep, entry; 3926 spinlock_t *ptl; 3927 vm_fault_t ret; 3928 u32 hash; 3929 pgoff_t idx; 3930 struct page *page = NULL; 3931 struct page *pagecache_page = NULL; 3932 struct hstate *h = hstate_vma(vma); 3933 struct address_space *mapping; 3934 int need_wait_lock = 0; 3935 unsigned long haddr = address & huge_page_mask(h); 3936 3937 ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); 3938 if (ptep) { 3939 entry = huge_ptep_get(ptep); 3940 if (unlikely(is_hugetlb_entry_migration(entry))) { 3941 migration_entry_wait_huge(vma, mm, ptep); 3942 return 0; 3943 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 3944 return VM_FAULT_HWPOISON_LARGE | 3945 VM_FAULT_SET_HINDEX(hstate_index(h)); 3946 } else { 3947 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); 3948 if (!ptep) 3949 return VM_FAULT_OOM; 3950 } 3951 3952 mapping = vma->vm_file->f_mapping; 3953 idx = vma_hugecache_offset(h, vma, haddr); 3954 3955 /* 3956 * Serialize hugepage allocation and instantiation, so that we don't 3957 * get spurious allocation failures if two CPUs race to instantiate 3958 * the same page in the page cache. 3959 */ 3960 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr); 3961 mutex_lock(&hugetlb_fault_mutex_table[hash]); 3962 3963 entry = huge_ptep_get(ptep); 3964 if (huge_pte_none(entry)) { 3965 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); 3966 goto out_mutex; 3967 } 3968 3969 ret = 0; 3970 3971 /* 3972 * entry could be a migration/hwpoison entry at this point, so this 3973 * check prevents the kernel from going below assuming that we have 3974 * a active hugepage in pagecache. This goto expects the 2nd page fault, 3975 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly 3976 * handle it. 3977 */ 3978 if (!pte_present(entry)) 3979 goto out_mutex; 3980 3981 /* 3982 * If we are going to COW the mapping later, we examine the pending 3983 * reservations for this page now. This will ensure that any 3984 * allocations necessary to record that reservation occur outside the 3985 * spinlock. For private mappings, we also lookup the pagecache 3986 * page now as it is used to determine if a reservation has been 3987 * consumed. 3988 */ 3989 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 3990 if (vma_needs_reservation(h, vma, haddr) < 0) { 3991 ret = VM_FAULT_OOM; 3992 goto out_mutex; 3993 } 3994 /* Just decrements count, does not deallocate */ 3995 vma_end_reservation(h, vma, haddr); 3996 3997 if (!(vma->vm_flags & VM_MAYSHARE)) 3998 pagecache_page = hugetlbfs_pagecache_page(h, 3999 vma, haddr); 4000 } 4001 4002 ptl = huge_pte_lock(h, mm, ptep); 4003 4004 /* Check for a racing update before calling hugetlb_cow */ 4005 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 4006 goto out_ptl; 4007 4008 /* 4009 * hugetlb_cow() requires page locks of pte_page(entry) and 4010 * pagecache_page, so here we need take the former one 4011 * when page != pagecache_page or !pagecache_page. 4012 */ 4013 page = pte_page(entry); 4014 if (page != pagecache_page) 4015 if (!trylock_page(page)) { 4016 need_wait_lock = 1; 4017 goto out_ptl; 4018 } 4019 4020 get_page(page); 4021 4022 if (flags & FAULT_FLAG_WRITE) { 4023 if (!huge_pte_write(entry)) { 4024 ret = hugetlb_cow(mm, vma, address, ptep, 4025 pagecache_page, ptl); 4026 goto out_put_page; 4027 } 4028 entry = huge_pte_mkdirty(entry); 4029 } 4030 entry = pte_mkyoung(entry); 4031 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, 4032 flags & FAULT_FLAG_WRITE)) 4033 update_mmu_cache(vma, haddr, ptep); 4034out_put_page: 4035 if (page != pagecache_page) 4036 unlock_page(page); 4037 put_page(page); 4038out_ptl: 4039 spin_unlock(ptl); 4040 4041 if (pagecache_page) { 4042 unlock_page(pagecache_page); 4043 put_page(pagecache_page); 4044 } 4045out_mutex: 4046 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 4047 /* 4048 * Generally it's safe to hold refcount during waiting page lock. But 4049 * here we just wait to defer the next page fault to avoid busy loop and 4050 * the page is not used after unlocked before returning from the current 4051 * page fault. So we are safe from accessing freed page, even if we wait 4052 * here without taking refcount. 4053 */ 4054 if (need_wait_lock) 4055 wait_on_page_locked(page); 4056 return ret; 4057} 4058 4059/* 4060 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with 4061 * modifications for huge pages. 4062 */ 4063int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, 4064 pte_t *dst_pte, 4065 struct vm_area_struct *dst_vma, 4066 unsigned long dst_addr, 4067 unsigned long src_addr, 4068 struct page **pagep) 4069{ 4070 struct address_space *mapping; 4071 pgoff_t idx; 4072 unsigned long size; 4073 int vm_shared = dst_vma->vm_flags & VM_SHARED; 4074 struct hstate *h = hstate_vma(dst_vma); 4075 pte_t _dst_pte; 4076 spinlock_t *ptl; 4077 int ret; 4078 struct page *page; 4079 4080 if (!*pagep) { 4081 ret = -ENOMEM; 4082 page = alloc_huge_page(dst_vma, dst_addr, 0); 4083 if (IS_ERR(page)) 4084 goto out; 4085 4086 ret = copy_huge_page_from_user(page, 4087 (const void __user *) src_addr, 4088 pages_per_huge_page(h), false); 4089 4090 /* fallback to copy_from_user outside mmap_sem */ 4091 if (unlikely(ret)) { 4092 ret = -ENOENT; 4093 *pagep = page; 4094 /* don't free the page */ 4095 goto out; 4096 } 4097 } else { 4098 page = *pagep; 4099 *pagep = NULL; 4100 } 4101 4102 /* 4103 * The memory barrier inside __SetPageUptodate makes sure that 4104 * preceding stores to the page contents become visible before 4105 * the set_pte_at() write. 4106 */ 4107 __SetPageUptodate(page); 4108 4109 mapping = dst_vma->vm_file->f_mapping; 4110 idx = vma_hugecache_offset(h, dst_vma, dst_addr); 4111 4112 /* 4113 * If shared, add to page cache 4114 */ 4115 if (vm_shared) { 4116 size = i_size_read(mapping->host) >> huge_page_shift(h); 4117 ret = -EFAULT; 4118 if (idx >= size) 4119 goto out_release_nounlock; 4120 4121 /* 4122 * Serialization between remove_inode_hugepages() and 4123 * huge_add_to_page_cache() below happens through the 4124 * hugetlb_fault_mutex_table that here must be hold by 4125 * the caller. 4126 */ 4127 ret = huge_add_to_page_cache(page, mapping, idx); 4128 if (ret) 4129 goto out_release_nounlock; 4130 } 4131 4132 ptl = huge_pte_lockptr(h, dst_mm, dst_pte); 4133 spin_lock(ptl); 4134 4135 /* 4136 * Recheck the i_size after holding PT lock to make sure not 4137 * to leave any page mapped (as page_mapped()) beyond the end 4138 * of the i_size (remove_inode_hugepages() is strict about 4139 * enforcing that). If we bail out here, we'll also leave a 4140 * page in the radix tree in the vm_shared case beyond the end 4141 * of the i_size, but remove_inode_hugepages() will take care 4142 * of it as soon as we drop the hugetlb_fault_mutex_table. 4143 */ 4144 size = i_size_read(mapping->host) >> huge_page_shift(h); 4145 ret = -EFAULT; 4146 if (idx >= size) 4147 goto out_release_unlock; 4148 4149 ret = -EEXIST; 4150 if (!huge_pte_none(huge_ptep_get(dst_pte))) 4151 goto out_release_unlock; 4152 4153 if (vm_shared) { 4154 page_dup_rmap(page, true); 4155 } else { 4156 ClearPagePrivate(page); 4157 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); 4158 } 4159 4160 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); 4161 if (dst_vma->vm_flags & VM_WRITE) 4162 _dst_pte = huge_pte_mkdirty(_dst_pte); 4163 _dst_pte = pte_mkyoung(_dst_pte); 4164 4165 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 4166 4167 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, 4168 dst_vma->vm_flags & VM_WRITE); 4169 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 4170 4171 /* No need to invalidate - it was non-present before */ 4172 update_mmu_cache(dst_vma, dst_addr, dst_pte); 4173 4174 spin_unlock(ptl); 4175 set_page_huge_active(page); 4176 if (vm_shared) 4177 unlock_page(page); 4178 ret = 0; 4179out: 4180 return ret; 4181out_release_unlock: 4182 spin_unlock(ptl); 4183 if (vm_shared) 4184 unlock_page(page); 4185out_release_nounlock: 4186 put_page(page); 4187 goto out; 4188} 4189 4190long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 4191 struct page **pages, struct vm_area_struct **vmas, 4192 unsigned long *position, unsigned long *nr_pages, 4193 long i, unsigned int flags, int *nonblocking) 4194{ 4195 unsigned long pfn_offset; 4196 unsigned long vaddr = *position; 4197 unsigned long remainder = *nr_pages; 4198 struct hstate *h = hstate_vma(vma); 4199 int err = -EFAULT; 4200 4201 while (vaddr < vma->vm_end && remainder) { 4202 pte_t *pte; 4203 spinlock_t *ptl = NULL; 4204 int absent; 4205 struct page *page; 4206 4207 /* 4208 * If we have a pending SIGKILL, don't keep faulting pages and 4209 * potentially allocating memory. 4210 */ 4211 if (fatal_signal_pending(current)) { 4212 remainder = 0; 4213 break; 4214 } 4215 4216 /* 4217 * Some archs (sparc64, sh*) have multiple pte_ts to 4218 * each hugepage. We have to make sure we get the 4219 * first, for the page indexing below to work. 4220 * 4221 * Note that page table lock is not held when pte is null. 4222 */ 4223 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), 4224 huge_page_size(h)); 4225 if (pte) 4226 ptl = huge_pte_lock(h, mm, pte); 4227 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 4228 4229 /* 4230 * When coredumping, it suits get_dump_page if we just return 4231 * an error where there's an empty slot with no huge pagecache 4232 * to back it. This way, we avoid allocating a hugepage, and 4233 * the sparse dumpfile avoids allocating disk blocks, but its 4234 * huge holes still show up with zeroes where they need to be. 4235 */ 4236 if (absent && (flags & FOLL_DUMP) && 4237 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 4238 if (pte) 4239 spin_unlock(ptl); 4240 remainder = 0; 4241 break; 4242 } 4243 4244 /* 4245 * We need call hugetlb_fault for both hugepages under migration 4246 * (in which case hugetlb_fault waits for the migration,) and 4247 * hwpoisoned hugepages (in which case we need to prevent the 4248 * caller from accessing to them.) In order to do this, we use 4249 * here is_swap_pte instead of is_hugetlb_entry_migration and 4250 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 4251 * both cases, and because we can't follow correct pages 4252 * directly from any kind of swap entries. 4253 */ 4254 if (absent || is_swap_pte(huge_ptep_get(pte)) || 4255 ((flags & FOLL_WRITE) && 4256 !huge_pte_write(huge_ptep_get(pte)))) { 4257 vm_fault_t ret; 4258 unsigned int fault_flags = 0; 4259 4260 if (pte) 4261 spin_unlock(ptl); 4262 if (flags & FOLL_WRITE) 4263 fault_flags |= FAULT_FLAG_WRITE; 4264 if (nonblocking) 4265 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 4266 if (flags & FOLL_NOWAIT) 4267 fault_flags |= FAULT_FLAG_ALLOW_RETRY | 4268 FAULT_FLAG_RETRY_NOWAIT; 4269 if (flags & FOLL_TRIED) { 4270 VM_WARN_ON_ONCE(fault_flags & 4271 FAULT_FLAG_ALLOW_RETRY); 4272 fault_flags |= FAULT_FLAG_TRIED; 4273 } 4274 ret = hugetlb_fault(mm, vma, vaddr, fault_flags); 4275 if (ret & VM_FAULT_ERROR) { 4276 err = vm_fault_to_errno(ret, flags); 4277 remainder = 0; 4278 break; 4279 } 4280 if (ret & VM_FAULT_RETRY) { 4281 if (nonblocking && 4282 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 4283 *nonblocking = 0; 4284 *nr_pages = 0; 4285 /* 4286 * VM_FAULT_RETRY must not return an 4287 * error, it will return zero 4288 * instead. 4289 * 4290 * No need to update "position" as the 4291 * caller will not check it after 4292 * *nr_pages is set to 0. 4293 */ 4294 return i; 4295 } 4296 continue; 4297 } 4298 4299 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 4300 page = pte_page(huge_ptep_get(pte)); 4301same_page: 4302 if (pages) { 4303 pages[i] = mem_map_offset(page, pfn_offset); 4304 get_page(pages[i]); 4305 } 4306 4307 if (vmas) 4308 vmas[i] = vma; 4309 4310 vaddr += PAGE_SIZE; 4311 ++pfn_offset; 4312 --remainder; 4313 ++i; 4314 if (vaddr < vma->vm_end && remainder && 4315 pfn_offset < pages_per_huge_page(h)) { 4316 /* 4317 * We use pfn_offset to avoid touching the pageframes 4318 * of this compound page. 4319 */ 4320 goto same_page; 4321 } 4322 spin_unlock(ptl); 4323 } 4324 *nr_pages = remainder; 4325 /* 4326 * setting position is actually required only if remainder is 4327 * not zero but it's faster not to add a "if (remainder)" 4328 * branch. 4329 */ 4330 *position = vaddr; 4331 4332 return i ? i : err; 4333} 4334 4335#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE 4336/* 4337 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can 4338 * implement this. 4339 */ 4340#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 4341#endif 4342 4343unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 4344 unsigned long address, unsigned long end, pgprot_t newprot) 4345{ 4346 struct mm_struct *mm = vma->vm_mm; 4347 unsigned long start = address; 4348 pte_t *ptep; 4349 pte_t pte; 4350 struct hstate *h = hstate_vma(vma); 4351 unsigned long pages = 0; 4352 bool shared_pmd = false; 4353 struct mmu_notifier_range range; 4354 4355 /* 4356 * In the case of shared PMDs, the area to flush could be beyond 4357 * start/end. Set range.start/range.end to cover the maximum possible 4358 * range if PMD sharing is possible. 4359 */ 4360 mmu_notifier_range_init(&range, mm, start, end); 4361 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 4362 4363 BUG_ON(address >= end); 4364 flush_cache_range(vma, range.start, range.end); 4365 4366 mmu_notifier_invalidate_range_start(&range); 4367 i_mmap_lock_write(vma->vm_file->f_mapping); 4368 for (; address < end; address += huge_page_size(h)) { 4369 spinlock_t *ptl; 4370 ptep = huge_pte_offset(mm, address, huge_page_size(h)); 4371 if (!ptep) 4372 continue; 4373 ptl = huge_pte_lock(h, mm, ptep); 4374 if (huge_pmd_unshare(mm, &address, ptep)) { 4375 pages++; 4376 spin_unlock(ptl); 4377 shared_pmd = true; 4378 continue; 4379 } 4380 pte = huge_ptep_get(ptep); 4381 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { 4382 spin_unlock(ptl); 4383 continue; 4384 } 4385 if (unlikely(is_hugetlb_entry_migration(pte))) { 4386 swp_entry_t entry = pte_to_swp_entry(pte); 4387 4388 if (is_write_migration_entry(entry)) { 4389 pte_t newpte; 4390 4391 make_migration_entry_read(&entry); 4392 newpte = swp_entry_to_pte(entry); 4393 set_huge_swap_pte_at(mm, address, ptep, 4394 newpte, huge_page_size(h)); 4395 pages++; 4396 } 4397 spin_unlock(ptl); 4398 continue; 4399 } 4400 if (!huge_pte_none(pte)) { 4401 pte = huge_ptep_get_and_clear(mm, address, ptep); 4402 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 4403 pte = arch_make_huge_pte(pte, vma, NULL, 0); 4404 set_huge_pte_at(mm, address, ptep, pte); 4405 pages++; 4406 } 4407 spin_unlock(ptl); 4408 } 4409 /* 4410 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare 4411 * may have cleared our pud entry and done put_page on the page table: 4412 * once we release i_mmap_rwsem, another task can do the final put_page 4413 * and that page table be reused and filled with junk. If we actually 4414 * did unshare a page of pmds, flush the range corresponding to the pud. 4415 */ 4416 if (shared_pmd) 4417 flush_hugetlb_tlb_range(vma, range.start, range.end); 4418 else 4419 flush_hugetlb_tlb_range(vma, start, end); 4420 /* 4421 * No need to call mmu_notifier_invalidate_range() we are downgrading 4422 * page table protection not changing it to point to a new page. 4423 * 4424 * See Documentation/vm/mmu_notifier.rst 4425 */ 4426 i_mmap_unlock_write(vma->vm_file->f_mapping); 4427 mmu_notifier_invalidate_range_end(&range); 4428 4429 return pages << h->order; 4430} 4431 4432int hugetlb_reserve_pages(struct inode *inode, 4433 long from, long to, 4434 struct vm_area_struct *vma, 4435 vm_flags_t vm_flags) 4436{ 4437 long ret, chg; 4438 struct hstate *h = hstate_inode(inode); 4439 struct hugepage_subpool *spool = subpool_inode(inode); 4440 struct resv_map *resv_map; 4441 long gbl_reserve; 4442 4443 /* This should never happen */ 4444 if (from > to) { 4445 VM_WARN(1, "%s called with a negative range\n", __func__); 4446 return -EINVAL; 4447 } 4448 4449 /* 4450 * Only apply hugepage reservation if asked. At fault time, an 4451 * attempt will be made for VM_NORESERVE to allocate a page 4452 * without using reserves 4453 */ 4454 if (vm_flags & VM_NORESERVE) 4455 return 0; 4456 4457 /* 4458 * Shared mappings base their reservation on the number of pages that 4459 * are already allocated on behalf of the file. Private mappings need 4460 * to reserve the full area even if read-only as mprotect() may be 4461 * called to make the mapping read-write. Assume !vma is a shm mapping 4462 */ 4463 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4464 resv_map = inode_resv_map(inode); 4465 4466 chg = region_chg(resv_map, from, to); 4467 4468 } else { 4469 resv_map = resv_map_alloc(); 4470 if (!resv_map) 4471 return -ENOMEM; 4472 4473 chg = to - from; 4474 4475 set_vma_resv_map(vma, resv_map); 4476 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 4477 } 4478 4479 if (chg < 0) { 4480 ret = chg; 4481 goto out_err; 4482 } 4483 4484 /* 4485 * There must be enough pages in the subpool for the mapping. If 4486 * the subpool has a minimum size, there may be some global 4487 * reservations already in place (gbl_reserve). 4488 */ 4489 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 4490 if (gbl_reserve < 0) { 4491 ret = -ENOSPC; 4492 goto out_err; 4493 } 4494 4495 /* 4496 * Check enough hugepages are available for the reservation. 4497 * Hand the pages back to the subpool if there are not 4498 */ 4499 ret = hugetlb_acct_memory(h, gbl_reserve); 4500 if (ret < 0) { 4501 /* put back original number of pages, chg */ 4502 (void)hugepage_subpool_put_pages(spool, chg); 4503 goto out_err; 4504 } 4505 4506 /* 4507 * Account for the reservations made. Shared mappings record regions 4508 * that have reservations as they are shared by multiple VMAs. 4509 * When the last VMA disappears, the region map says how much 4510 * the reservation was and the page cache tells how much of 4511 * the reservation was consumed. Private mappings are per-VMA and 4512 * only the consumed reservations are tracked. When the VMA 4513 * disappears, the original reservation is the VMA size and the 4514 * consumed reservations are stored in the map. Hence, nothing 4515 * else has to be done for private mappings here 4516 */ 4517 if (!vma || vma->vm_flags & VM_MAYSHARE) { 4518 long add = region_add(resv_map, from, to); 4519 4520 if (unlikely(chg > add)) { 4521 /* 4522 * pages in this range were added to the reserve 4523 * map between region_chg and region_add. This 4524 * indicates a race with alloc_huge_page. Adjust 4525 * the subpool and reserve counts modified above 4526 * based on the difference. 4527 */ 4528 long rsv_adjust; 4529 4530 rsv_adjust = hugepage_subpool_put_pages(spool, 4531 chg - add); 4532 hugetlb_acct_memory(h, -rsv_adjust); 4533 } 4534 } 4535 return 0; 4536out_err: 4537 if (!vma || vma->vm_flags & VM_MAYSHARE) 4538 /* Don't call region_abort if region_chg failed */ 4539 if (chg >= 0) 4540 region_abort(resv_map, from, to); 4541 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4542 kref_put(&resv_map->refs, resv_map_release); 4543 return ret; 4544} 4545 4546long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 4547 long freed) 4548{ 4549 struct hstate *h = hstate_inode(inode); 4550 struct resv_map *resv_map = inode_resv_map(inode); 4551 long chg = 0; 4552 struct hugepage_subpool *spool = subpool_inode(inode); 4553 long gbl_reserve; 4554 4555 if (resv_map) { 4556 chg = region_del(resv_map, start, end); 4557 /* 4558 * region_del() can fail in the rare case where a region 4559 * must be split and another region descriptor can not be 4560 * allocated. If end == LONG_MAX, it will not fail. 4561 */ 4562 if (chg < 0) 4563 return chg; 4564 } 4565 4566 spin_lock(&inode->i_lock); 4567 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 4568 spin_unlock(&inode->i_lock); 4569 4570 /* 4571 * If the subpool has a minimum size, the number of global 4572 * reservations to be released may be adjusted. 4573 */ 4574 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 4575 hugetlb_acct_memory(h, -gbl_reserve); 4576 4577 return 0; 4578} 4579 4580#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE 4581static unsigned long page_table_shareable(struct vm_area_struct *svma, 4582 struct vm_area_struct *vma, 4583 unsigned long addr, pgoff_t idx) 4584{ 4585 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 4586 svma->vm_start; 4587 unsigned long sbase = saddr & PUD_MASK; 4588 unsigned long s_end = sbase + PUD_SIZE; 4589 4590 /* Allow segments to share if only one is marked locked */ 4591 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; 4592 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; 4593 4594 /* 4595 * match the virtual addresses, permission and the alignment of the 4596 * page table page. 4597 */ 4598 if (pmd_index(addr) != pmd_index(saddr) || 4599 vm_flags != svm_flags || 4600 sbase < svma->vm_start || svma->vm_end < s_end) 4601 return 0; 4602 4603 return saddr; 4604} 4605 4606static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) 4607{ 4608 unsigned long base = addr & PUD_MASK; 4609 unsigned long end = base + PUD_SIZE; 4610 4611 /* 4612 * check on proper vm_flags and page table alignment 4613 */ 4614 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end)) 4615 return true; 4616 return false; 4617} 4618 4619/* 4620 * Determine if start,end range within vma could be mapped by shared pmd. 4621 * If yes, adjust start and end to cover range associated with possible 4622 * shared pmd mappings. 4623 */ 4624void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 4625 unsigned long *start, unsigned long *end) 4626{ 4627 unsigned long check_addr = *start; 4628 4629 if (!(vma->vm_flags & VM_MAYSHARE)) 4630 return; 4631 4632 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) { 4633 unsigned long a_start = check_addr & PUD_MASK; 4634 unsigned long a_end = a_start + PUD_SIZE; 4635 4636 /* 4637 * If sharing is possible, adjust start/end if necessary. 4638 */ 4639 if (range_in_vma(vma, a_start, a_end)) { 4640 if (a_start < *start) 4641 *start = a_start; 4642 if (a_end > *end) 4643 *end = a_end; 4644 } 4645 } 4646} 4647 4648/* 4649 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 4650 * and returns the corresponding pte. While this is not necessary for the 4651 * !shared pmd case because we can allocate the pmd later as well, it makes the 4652 * code much cleaner. pmd allocation is essential for the shared case because 4653 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 4654 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 4655 * bad pmd for sharing. 4656 */ 4657pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4658{ 4659 struct vm_area_struct *vma = find_vma(mm, addr); 4660 struct address_space *mapping = vma->vm_file->f_mapping; 4661 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 4662 vma->vm_pgoff; 4663 struct vm_area_struct *svma; 4664 unsigned long saddr; 4665 pte_t *spte = NULL; 4666 pte_t *pte; 4667 spinlock_t *ptl; 4668 4669 if (!vma_shareable(vma, addr)) 4670 return (pte_t *)pmd_alloc(mm, pud, addr); 4671 4672 i_mmap_lock_write(mapping); 4673 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 4674 if (svma == vma) 4675 continue; 4676 4677 saddr = page_table_shareable(svma, vma, addr, idx); 4678 if (saddr) { 4679 spte = huge_pte_offset(svma->vm_mm, saddr, 4680 vma_mmu_pagesize(svma)); 4681 if (spte) { 4682 get_page(virt_to_page(spte)); 4683 break; 4684 } 4685 } 4686 } 4687 4688 if (!spte) 4689 goto out; 4690 4691 ptl = huge_pte_lock(hstate_vma(vma), mm, spte); 4692 if (pud_none(*pud)) { 4693 pud_populate(mm, pud, 4694 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 4695 mm_inc_nr_pmds(mm); 4696 } else { 4697 put_page(virt_to_page(spte)); 4698 } 4699 spin_unlock(ptl); 4700out: 4701 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4702 i_mmap_unlock_write(mapping); 4703 return pte; 4704} 4705 4706/* 4707 * unmap huge page backed by shared pte. 4708 * 4709 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared 4710 * indicated by page_count > 1, unmap is achieved by clearing pud and 4711 * decrementing the ref count. If count == 1, the pte page is not shared. 4712 * 4713 * called with page table lock held. 4714 * 4715 * returns: 1 successfully unmapped a shared pte page 4716 * 0 the underlying pte page is not shared, or it is the last user 4717 */ 4718int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4719{ 4720 pgd_t *pgd = pgd_offset(mm, *addr); 4721 p4d_t *p4d = p4d_offset(pgd, *addr); 4722 pud_t *pud = pud_offset(p4d, *addr); 4723 4724 BUG_ON(page_count(virt_to_page(ptep)) == 0); 4725 if (page_count(virt_to_page(ptep)) == 1) 4726 return 0; 4727 4728 pud_clear(pud); 4729 put_page(virt_to_page(ptep)); 4730 mm_dec_nr_pmds(mm); 4731 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; 4732 return 1; 4733} 4734#define want_pmd_share() (1) 4735#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4736pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) 4737{ 4738 return NULL; 4739} 4740 4741int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) 4742{ 4743 return 0; 4744} 4745 4746void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 4747 unsigned long *start, unsigned long *end) 4748{ 4749} 4750#define want_pmd_share() (0) 4751#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ 4752 4753#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 4754pte_t *huge_pte_alloc(struct mm_struct *mm, 4755 unsigned long addr, unsigned long sz) 4756{ 4757 pgd_t *pgd; 4758 p4d_t *p4d; 4759 pud_t *pud; 4760 pte_t *pte = NULL; 4761 4762 pgd = pgd_offset(mm, addr); 4763 p4d = p4d_alloc(mm, pgd, addr); 4764 if (!p4d) 4765 return NULL; 4766 pud = pud_alloc(mm, p4d, addr); 4767 if (pud) { 4768 if (sz == PUD_SIZE) { 4769 pte = (pte_t *)pud; 4770 } else { 4771 BUG_ON(sz != PMD_SIZE); 4772 if (want_pmd_share() && pud_none(*pud)) 4773 pte = huge_pmd_share(mm, addr, pud); 4774 else 4775 pte = (pte_t *)pmd_alloc(mm, pud, addr); 4776 } 4777 } 4778 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); 4779 4780 return pte; 4781} 4782 4783/* 4784 * huge_pte_offset() - Walk the page table to resolve the hugepage 4785 * entry at address @addr 4786 * 4787 * Return: Pointer to page table or swap entry (PUD or PMD) for 4788 * address @addr, or NULL if a p*d_none() entry is encountered and the 4789 * size @sz doesn't match the hugepage size at this level of the page 4790 * table. 4791 */ 4792pte_t *huge_pte_offset(struct mm_struct *mm, 4793 unsigned long addr, unsigned long sz) 4794{ 4795 pgd_t *pgd; 4796 p4d_t *p4d; 4797 pud_t *pud; 4798 pmd_t *pmd; 4799 4800 pgd = pgd_offset(mm, addr); 4801 if (!pgd_present(*pgd)) 4802 return NULL; 4803 p4d = p4d_offset(pgd, addr); 4804 if (!p4d_present(*p4d)) 4805 return NULL; 4806 4807 pud = pud_offset(p4d, addr); 4808 if (sz != PUD_SIZE && pud_none(*pud)) 4809 return NULL; 4810 /* hugepage or swap? */ 4811 if (pud_huge(*pud) || !pud_present(*pud)) 4812 return (pte_t *)pud; 4813 4814 pmd = pmd_offset(pud, addr); 4815 if (sz != PMD_SIZE && pmd_none(*pmd)) 4816 return NULL; 4817 /* hugepage or swap? */ 4818 if (pmd_huge(*pmd) || !pmd_present(*pmd)) 4819 return (pte_t *)pmd; 4820 4821 return NULL; 4822} 4823 4824#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 4825 4826/* 4827 * These functions are overwritable if your architecture needs its own 4828 * behavior. 4829 */ 4830struct page * __weak 4831follow_huge_addr(struct mm_struct *mm, unsigned long address, 4832 int write) 4833{ 4834 return ERR_PTR(-EINVAL); 4835} 4836 4837struct page * __weak 4838follow_huge_pd(struct vm_area_struct *vma, 4839 unsigned long address, hugepd_t hpd, int flags, int pdshift) 4840{ 4841 WARN(1, "hugepd follow called with no support for hugepage directory format\n"); 4842 return NULL; 4843} 4844 4845struct page * __weak 4846follow_huge_pmd(struct mm_struct *mm, unsigned long address, 4847 pmd_t *pmd, int flags) 4848{ 4849 struct page *page = NULL; 4850 spinlock_t *ptl; 4851 pte_t pte; 4852retry: 4853 ptl = pmd_lockptr(mm, pmd); 4854 spin_lock(ptl); 4855 /* 4856 * make sure that the address range covered by this pmd is not 4857 * unmapped from other threads. 4858 */ 4859 if (!pmd_huge(*pmd)) 4860 goto out; 4861 pte = huge_ptep_get((pte_t *)pmd); 4862 if (pte_present(pte)) { 4863 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT); 4864 if (flags & FOLL_GET) 4865 get_page(page); 4866 } else { 4867 if (is_hugetlb_entry_migration(pte)) { 4868 spin_unlock(ptl); 4869 __migration_entry_wait(mm, (pte_t *)pmd, ptl); 4870 goto retry; 4871 } 4872 /* 4873 * hwpoisoned entry is treated as no_page_table in 4874 * follow_page_mask(). 4875 */ 4876 } 4877out: 4878 spin_unlock(ptl); 4879 return page; 4880} 4881 4882struct page * __weak 4883follow_huge_pud(struct mm_struct *mm, unsigned long address, 4884 pud_t *pud, int flags) 4885{ 4886 if (flags & FOLL_GET) 4887 return NULL; 4888 4889 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT); 4890} 4891 4892struct page * __weak 4893follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags) 4894{ 4895 if (flags & FOLL_GET) 4896 return NULL; 4897 4898 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT); 4899} 4900 4901bool isolate_huge_page(struct page *page, struct list_head *list) 4902{ 4903 bool ret = true; 4904 4905 VM_BUG_ON_PAGE(!PageHead(page), page); 4906 spin_lock(&hugetlb_lock); 4907 if (!page_huge_active(page) || !get_page_unless_zero(page)) { 4908 ret = false; 4909 goto unlock; 4910 } 4911 clear_page_huge_active(page); 4912 list_move_tail(&page->lru, list); 4913unlock: 4914 spin_unlock(&hugetlb_lock); 4915 return ret; 4916} 4917 4918void putback_active_hugepage(struct page *page) 4919{ 4920 VM_BUG_ON_PAGE(!PageHead(page), page); 4921 spin_lock(&hugetlb_lock); 4922 set_page_huge_active(page); 4923 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); 4924 spin_unlock(&hugetlb_lock); 4925 put_page(page); 4926} 4927 4928void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) 4929{ 4930 struct hstate *h = page_hstate(oldpage); 4931 4932 hugetlb_cgroup_migrate(oldpage, newpage); 4933 set_page_owner_migrate_reason(newpage, reason); 4934 4935 /* 4936 * transfer temporary state of the new huge page. This is 4937 * reverse to other transitions because the newpage is going to 4938 * be final while the old one will be freed so it takes over 4939 * the temporary status. 4940 * 4941 * Also note that we have to transfer the per-node surplus state 4942 * here as well otherwise the global surplus count will not match 4943 * the per-node's. 4944 */ 4945 if (PageHugeTemporary(newpage)) { 4946 int old_nid = page_to_nid(oldpage); 4947 int new_nid = page_to_nid(newpage); 4948 4949 SetPageHugeTemporary(oldpage); 4950 ClearPageHugeTemporary(newpage); 4951 4952 spin_lock(&hugetlb_lock); 4953 if (h->surplus_huge_pages_node[old_nid]) { 4954 h->surplus_huge_pages_node[old_nid]--; 4955 h->surplus_huge_pages_node[new_nid]++; 4956 } 4957 spin_unlock(&hugetlb_lock); 4958 } 4959}