at v5.0 54 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_SCHED_H 3#define _LINUX_SCHED_H 4 5/* 6 * Define 'struct task_struct' and provide the main scheduler 7 * APIs (schedule(), wakeup variants, etc.) 8 */ 9 10#include <uapi/linux/sched.h> 11 12#include <asm/current.h> 13 14#include <linux/pid.h> 15#include <linux/sem.h> 16#include <linux/shm.h> 17#include <linux/kcov.h> 18#include <linux/mutex.h> 19#include <linux/plist.h> 20#include <linux/hrtimer.h> 21#include <linux/seccomp.h> 22#include <linux/nodemask.h> 23#include <linux/rcupdate.h> 24#include <linux/resource.h> 25#include <linux/latencytop.h> 26#include <linux/sched/prio.h> 27#include <linux/signal_types.h> 28#include <linux/psi_types.h> 29#include <linux/mm_types_task.h> 30#include <linux/task_io_accounting.h> 31#include <linux/rseq.h> 32 33/* task_struct member predeclarations (sorted alphabetically): */ 34struct audit_context; 35struct backing_dev_info; 36struct bio_list; 37struct blk_plug; 38struct cfs_rq; 39struct fs_struct; 40struct futex_pi_state; 41struct io_context; 42struct mempolicy; 43struct nameidata; 44struct nsproxy; 45struct perf_event_context; 46struct pid_namespace; 47struct pipe_inode_info; 48struct rcu_node; 49struct reclaim_state; 50struct robust_list_head; 51struct sched_attr; 52struct sched_param; 53struct seq_file; 54struct sighand_struct; 55struct signal_struct; 56struct task_delay_info; 57struct task_group; 58 59/* 60 * Task state bitmask. NOTE! These bits are also 61 * encoded in fs/proc/array.c: get_task_state(). 62 * 63 * We have two separate sets of flags: task->state 64 * is about runnability, while task->exit_state are 65 * about the task exiting. Confusing, but this way 66 * modifying one set can't modify the other one by 67 * mistake. 68 */ 69 70/* Used in tsk->state: */ 71#define TASK_RUNNING 0x0000 72#define TASK_INTERRUPTIBLE 0x0001 73#define TASK_UNINTERRUPTIBLE 0x0002 74#define __TASK_STOPPED 0x0004 75#define __TASK_TRACED 0x0008 76/* Used in tsk->exit_state: */ 77#define EXIT_DEAD 0x0010 78#define EXIT_ZOMBIE 0x0020 79#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 80/* Used in tsk->state again: */ 81#define TASK_PARKED 0x0040 82#define TASK_DEAD 0x0080 83#define TASK_WAKEKILL 0x0100 84#define TASK_WAKING 0x0200 85#define TASK_NOLOAD 0x0400 86#define TASK_NEW 0x0800 87#define TASK_STATE_MAX 0x1000 88 89/* Convenience macros for the sake of set_current_state: */ 90#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 91#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 92#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 93 94#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 95 96/* Convenience macros for the sake of wake_up(): */ 97#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 98 99/* get_task_state(): */ 100#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 101 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 102 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ 103 TASK_PARKED) 104 105#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 106 107#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 108 109#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 110 111#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 112 (task->flags & PF_FROZEN) == 0 && \ 113 (task->state & TASK_NOLOAD) == 0) 114 115#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 116 117/* 118 * Special states are those that do not use the normal wait-loop pattern. See 119 * the comment with set_special_state(). 120 */ 121#define is_special_task_state(state) \ 122 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) 123 124#define __set_current_state(state_value) \ 125 do { \ 126 WARN_ON_ONCE(is_special_task_state(state_value));\ 127 current->task_state_change = _THIS_IP_; \ 128 current->state = (state_value); \ 129 } while (0) 130 131#define set_current_state(state_value) \ 132 do { \ 133 WARN_ON_ONCE(is_special_task_state(state_value));\ 134 current->task_state_change = _THIS_IP_; \ 135 smp_store_mb(current->state, (state_value)); \ 136 } while (0) 137 138#define set_special_state(state_value) \ 139 do { \ 140 unsigned long flags; /* may shadow */ \ 141 WARN_ON_ONCE(!is_special_task_state(state_value)); \ 142 raw_spin_lock_irqsave(&current->pi_lock, flags); \ 143 current->task_state_change = _THIS_IP_; \ 144 current->state = (state_value); \ 145 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \ 146 } while (0) 147#else 148/* 149 * set_current_state() includes a barrier so that the write of current->state 150 * is correctly serialised wrt the caller's subsequent test of whether to 151 * actually sleep: 152 * 153 * for (;;) { 154 * set_current_state(TASK_UNINTERRUPTIBLE); 155 * if (!need_sleep) 156 * break; 157 * 158 * schedule(); 159 * } 160 * __set_current_state(TASK_RUNNING); 161 * 162 * If the caller does not need such serialisation (because, for instance, the 163 * condition test and condition change and wakeup are under the same lock) then 164 * use __set_current_state(). 165 * 166 * The above is typically ordered against the wakeup, which does: 167 * 168 * need_sleep = false; 169 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 170 * 171 * where wake_up_state() executes a full memory barrier before accessing the 172 * task state. 173 * 174 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 175 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 176 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 177 * 178 * However, with slightly different timing the wakeup TASK_RUNNING store can 179 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not 180 * a problem either because that will result in one extra go around the loop 181 * and our @cond test will save the day. 182 * 183 * Also see the comments of try_to_wake_up(). 184 */ 185#define __set_current_state(state_value) \ 186 current->state = (state_value) 187 188#define set_current_state(state_value) \ 189 smp_store_mb(current->state, (state_value)) 190 191/* 192 * set_special_state() should be used for those states when the blocking task 193 * can not use the regular condition based wait-loop. In that case we must 194 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores 195 * will not collide with our state change. 196 */ 197#define set_special_state(state_value) \ 198 do { \ 199 unsigned long flags; /* may shadow */ \ 200 raw_spin_lock_irqsave(&current->pi_lock, flags); \ 201 current->state = (state_value); \ 202 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \ 203 } while (0) 204 205#endif 206 207/* Task command name length: */ 208#define TASK_COMM_LEN 16 209 210extern void scheduler_tick(void); 211 212#define MAX_SCHEDULE_TIMEOUT LONG_MAX 213 214extern long schedule_timeout(long timeout); 215extern long schedule_timeout_interruptible(long timeout); 216extern long schedule_timeout_killable(long timeout); 217extern long schedule_timeout_uninterruptible(long timeout); 218extern long schedule_timeout_idle(long timeout); 219asmlinkage void schedule(void); 220extern void schedule_preempt_disabled(void); 221 222extern int __must_check io_schedule_prepare(void); 223extern void io_schedule_finish(int token); 224extern long io_schedule_timeout(long timeout); 225extern void io_schedule(void); 226 227/** 228 * struct prev_cputime - snapshot of system and user cputime 229 * @utime: time spent in user mode 230 * @stime: time spent in system mode 231 * @lock: protects the above two fields 232 * 233 * Stores previous user/system time values such that we can guarantee 234 * monotonicity. 235 */ 236struct prev_cputime { 237#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 238 u64 utime; 239 u64 stime; 240 raw_spinlock_t lock; 241#endif 242}; 243 244/** 245 * struct task_cputime - collected CPU time counts 246 * @utime: time spent in user mode, in nanoseconds 247 * @stime: time spent in kernel mode, in nanoseconds 248 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 249 * 250 * This structure groups together three kinds of CPU time that are tracked for 251 * threads and thread groups. Most things considering CPU time want to group 252 * these counts together and treat all three of them in parallel. 253 */ 254struct task_cputime { 255 u64 utime; 256 u64 stime; 257 unsigned long long sum_exec_runtime; 258}; 259 260/* Alternate field names when used on cache expirations: */ 261#define virt_exp utime 262#define prof_exp stime 263#define sched_exp sum_exec_runtime 264 265enum vtime_state { 266 /* Task is sleeping or running in a CPU with VTIME inactive: */ 267 VTIME_INACTIVE = 0, 268 /* Task runs in userspace in a CPU with VTIME active: */ 269 VTIME_USER, 270 /* Task runs in kernelspace in a CPU with VTIME active: */ 271 VTIME_SYS, 272}; 273 274struct vtime { 275 seqcount_t seqcount; 276 unsigned long long starttime; 277 enum vtime_state state; 278 u64 utime; 279 u64 stime; 280 u64 gtime; 281}; 282 283struct sched_info { 284#ifdef CONFIG_SCHED_INFO 285 /* Cumulative counters: */ 286 287 /* # of times we have run on this CPU: */ 288 unsigned long pcount; 289 290 /* Time spent waiting on a runqueue: */ 291 unsigned long long run_delay; 292 293 /* Timestamps: */ 294 295 /* When did we last run on a CPU? */ 296 unsigned long long last_arrival; 297 298 /* When were we last queued to run? */ 299 unsigned long long last_queued; 300 301#endif /* CONFIG_SCHED_INFO */ 302}; 303 304/* 305 * Integer metrics need fixed point arithmetic, e.g., sched/fair 306 * has a few: load, load_avg, util_avg, freq, and capacity. 307 * 308 * We define a basic fixed point arithmetic range, and then formalize 309 * all these metrics based on that basic range. 310 */ 311# define SCHED_FIXEDPOINT_SHIFT 10 312# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 313 314struct load_weight { 315 unsigned long weight; 316 u32 inv_weight; 317}; 318 319/** 320 * struct util_est - Estimation utilization of FAIR tasks 321 * @enqueued: instantaneous estimated utilization of a task/cpu 322 * @ewma: the Exponential Weighted Moving Average (EWMA) 323 * utilization of a task 324 * 325 * Support data structure to track an Exponential Weighted Moving Average 326 * (EWMA) of a FAIR task's utilization. New samples are added to the moving 327 * average each time a task completes an activation. Sample's weight is chosen 328 * so that the EWMA will be relatively insensitive to transient changes to the 329 * task's workload. 330 * 331 * The enqueued attribute has a slightly different meaning for tasks and cpus: 332 * - task: the task's util_avg at last task dequeue time 333 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU 334 * Thus, the util_est.enqueued of a task represents the contribution on the 335 * estimated utilization of the CPU where that task is currently enqueued. 336 * 337 * Only for tasks we track a moving average of the past instantaneous 338 * estimated utilization. This allows to absorb sporadic drops in utilization 339 * of an otherwise almost periodic task. 340 */ 341struct util_est { 342 unsigned int enqueued; 343 unsigned int ewma; 344#define UTIL_EST_WEIGHT_SHIFT 2 345} __attribute__((__aligned__(sizeof(u64)))); 346 347/* 348 * The load_avg/util_avg accumulates an infinite geometric series 349 * (see __update_load_avg() in kernel/sched/fair.c). 350 * 351 * [load_avg definition] 352 * 353 * load_avg = runnable% * scale_load_down(load) 354 * 355 * where runnable% is the time ratio that a sched_entity is runnable. 356 * For cfs_rq, it is the aggregated load_avg of all runnable and 357 * blocked sched_entities. 358 * 359 * load_avg may also take frequency scaling into account: 360 * 361 * load_avg = runnable% * scale_load_down(load) * freq% 362 * 363 * where freq% is the CPU frequency normalized to the highest frequency. 364 * 365 * [util_avg definition] 366 * 367 * util_avg = running% * SCHED_CAPACITY_SCALE 368 * 369 * where running% is the time ratio that a sched_entity is running on 370 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable 371 * and blocked sched_entities. 372 * 373 * util_avg may also factor frequency scaling and CPU capacity scaling: 374 * 375 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity% 376 * 377 * where freq% is the same as above, and capacity% is the CPU capacity 378 * normalized to the greatest capacity (due to uarch differences, etc). 379 * 380 * N.B., the above ratios (runnable%, running%, freq%, and capacity%) 381 * themselves are in the range of [0, 1]. To do fixed point arithmetics, 382 * we therefore scale them to as large a range as necessary. This is for 383 * example reflected by util_avg's SCHED_CAPACITY_SCALE. 384 * 385 * [Overflow issue] 386 * 387 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 388 * with the highest load (=88761), always runnable on a single cfs_rq, 389 * and should not overflow as the number already hits PID_MAX_LIMIT. 390 * 391 * For all other cases (including 32-bit kernels), struct load_weight's 392 * weight will overflow first before we do, because: 393 * 394 * Max(load_avg) <= Max(load.weight) 395 * 396 * Then it is the load_weight's responsibility to consider overflow 397 * issues. 398 */ 399struct sched_avg { 400 u64 last_update_time; 401 u64 load_sum; 402 u64 runnable_load_sum; 403 u32 util_sum; 404 u32 period_contrib; 405 unsigned long load_avg; 406 unsigned long runnable_load_avg; 407 unsigned long util_avg; 408 struct util_est util_est; 409} ____cacheline_aligned; 410 411struct sched_statistics { 412#ifdef CONFIG_SCHEDSTATS 413 u64 wait_start; 414 u64 wait_max; 415 u64 wait_count; 416 u64 wait_sum; 417 u64 iowait_count; 418 u64 iowait_sum; 419 420 u64 sleep_start; 421 u64 sleep_max; 422 s64 sum_sleep_runtime; 423 424 u64 block_start; 425 u64 block_max; 426 u64 exec_max; 427 u64 slice_max; 428 429 u64 nr_migrations_cold; 430 u64 nr_failed_migrations_affine; 431 u64 nr_failed_migrations_running; 432 u64 nr_failed_migrations_hot; 433 u64 nr_forced_migrations; 434 435 u64 nr_wakeups; 436 u64 nr_wakeups_sync; 437 u64 nr_wakeups_migrate; 438 u64 nr_wakeups_local; 439 u64 nr_wakeups_remote; 440 u64 nr_wakeups_affine; 441 u64 nr_wakeups_affine_attempts; 442 u64 nr_wakeups_passive; 443 u64 nr_wakeups_idle; 444#endif 445}; 446 447struct sched_entity { 448 /* For load-balancing: */ 449 struct load_weight load; 450 unsigned long runnable_weight; 451 struct rb_node run_node; 452 struct list_head group_node; 453 unsigned int on_rq; 454 455 u64 exec_start; 456 u64 sum_exec_runtime; 457 u64 vruntime; 458 u64 prev_sum_exec_runtime; 459 460 u64 nr_migrations; 461 462 struct sched_statistics statistics; 463 464#ifdef CONFIG_FAIR_GROUP_SCHED 465 int depth; 466 struct sched_entity *parent; 467 /* rq on which this entity is (to be) queued: */ 468 struct cfs_rq *cfs_rq; 469 /* rq "owned" by this entity/group: */ 470 struct cfs_rq *my_q; 471#endif 472 473#ifdef CONFIG_SMP 474 /* 475 * Per entity load average tracking. 476 * 477 * Put into separate cache line so it does not 478 * collide with read-mostly values above. 479 */ 480 struct sched_avg avg; 481#endif 482}; 483 484struct sched_rt_entity { 485 struct list_head run_list; 486 unsigned long timeout; 487 unsigned long watchdog_stamp; 488 unsigned int time_slice; 489 unsigned short on_rq; 490 unsigned short on_list; 491 492 struct sched_rt_entity *back; 493#ifdef CONFIG_RT_GROUP_SCHED 494 struct sched_rt_entity *parent; 495 /* rq on which this entity is (to be) queued: */ 496 struct rt_rq *rt_rq; 497 /* rq "owned" by this entity/group: */ 498 struct rt_rq *my_q; 499#endif 500} __randomize_layout; 501 502struct sched_dl_entity { 503 struct rb_node rb_node; 504 505 /* 506 * Original scheduling parameters. Copied here from sched_attr 507 * during sched_setattr(), they will remain the same until 508 * the next sched_setattr(). 509 */ 510 u64 dl_runtime; /* Maximum runtime for each instance */ 511 u64 dl_deadline; /* Relative deadline of each instance */ 512 u64 dl_period; /* Separation of two instances (period) */ 513 u64 dl_bw; /* dl_runtime / dl_period */ 514 u64 dl_density; /* dl_runtime / dl_deadline */ 515 516 /* 517 * Actual scheduling parameters. Initialized with the values above, 518 * they are continuously updated during task execution. Note that 519 * the remaining runtime could be < 0 in case we are in overrun. 520 */ 521 s64 runtime; /* Remaining runtime for this instance */ 522 u64 deadline; /* Absolute deadline for this instance */ 523 unsigned int flags; /* Specifying the scheduler behaviour */ 524 525 /* 526 * Some bool flags: 527 * 528 * @dl_throttled tells if we exhausted the runtime. If so, the 529 * task has to wait for a replenishment to be performed at the 530 * next firing of dl_timer. 531 * 532 * @dl_boosted tells if we are boosted due to DI. If so we are 533 * outside bandwidth enforcement mechanism (but only until we 534 * exit the critical section); 535 * 536 * @dl_yielded tells if task gave up the CPU before consuming 537 * all its available runtime during the last job. 538 * 539 * @dl_non_contending tells if the task is inactive while still 540 * contributing to the active utilization. In other words, it 541 * indicates if the inactive timer has been armed and its handler 542 * has not been executed yet. This flag is useful to avoid race 543 * conditions between the inactive timer handler and the wakeup 544 * code. 545 * 546 * @dl_overrun tells if the task asked to be informed about runtime 547 * overruns. 548 */ 549 unsigned int dl_throttled : 1; 550 unsigned int dl_boosted : 1; 551 unsigned int dl_yielded : 1; 552 unsigned int dl_non_contending : 1; 553 unsigned int dl_overrun : 1; 554 555 /* 556 * Bandwidth enforcement timer. Each -deadline task has its 557 * own bandwidth to be enforced, thus we need one timer per task. 558 */ 559 struct hrtimer dl_timer; 560 561 /* 562 * Inactive timer, responsible for decreasing the active utilization 563 * at the "0-lag time". When a -deadline task blocks, it contributes 564 * to GRUB's active utilization until the "0-lag time", hence a 565 * timer is needed to decrease the active utilization at the correct 566 * time. 567 */ 568 struct hrtimer inactive_timer; 569}; 570 571union rcu_special { 572 struct { 573 u8 blocked; 574 u8 need_qs; 575 u8 exp_hint; /* Hint for performance. */ 576 u8 pad; /* No garbage from compiler! */ 577 } b; /* Bits. */ 578 u32 s; /* Set of bits. */ 579}; 580 581enum perf_event_task_context { 582 perf_invalid_context = -1, 583 perf_hw_context = 0, 584 perf_sw_context, 585 perf_nr_task_contexts, 586}; 587 588struct wake_q_node { 589 struct wake_q_node *next; 590}; 591 592struct task_struct { 593#ifdef CONFIG_THREAD_INFO_IN_TASK 594 /* 595 * For reasons of header soup (see current_thread_info()), this 596 * must be the first element of task_struct. 597 */ 598 struct thread_info thread_info; 599#endif 600 /* -1 unrunnable, 0 runnable, >0 stopped: */ 601 volatile long state; 602 603 /* 604 * This begins the randomizable portion of task_struct. Only 605 * scheduling-critical items should be added above here. 606 */ 607 randomized_struct_fields_start 608 609 void *stack; 610 atomic_t usage; 611 /* Per task flags (PF_*), defined further below: */ 612 unsigned int flags; 613 unsigned int ptrace; 614 615#ifdef CONFIG_SMP 616 struct llist_node wake_entry; 617 int on_cpu; 618#ifdef CONFIG_THREAD_INFO_IN_TASK 619 /* Current CPU: */ 620 unsigned int cpu; 621#endif 622 unsigned int wakee_flips; 623 unsigned long wakee_flip_decay_ts; 624 struct task_struct *last_wakee; 625 626 /* 627 * recent_used_cpu is initially set as the last CPU used by a task 628 * that wakes affine another task. Waker/wakee relationships can 629 * push tasks around a CPU where each wakeup moves to the next one. 630 * Tracking a recently used CPU allows a quick search for a recently 631 * used CPU that may be idle. 632 */ 633 int recent_used_cpu; 634 int wake_cpu; 635#endif 636 int on_rq; 637 638 int prio; 639 int static_prio; 640 int normal_prio; 641 unsigned int rt_priority; 642 643 const struct sched_class *sched_class; 644 struct sched_entity se; 645 struct sched_rt_entity rt; 646#ifdef CONFIG_CGROUP_SCHED 647 struct task_group *sched_task_group; 648#endif 649 struct sched_dl_entity dl; 650 651#ifdef CONFIG_PREEMPT_NOTIFIERS 652 /* List of struct preempt_notifier: */ 653 struct hlist_head preempt_notifiers; 654#endif 655 656#ifdef CONFIG_BLK_DEV_IO_TRACE 657 unsigned int btrace_seq; 658#endif 659 660 unsigned int policy; 661 int nr_cpus_allowed; 662 cpumask_t cpus_allowed; 663 664#ifdef CONFIG_PREEMPT_RCU 665 int rcu_read_lock_nesting; 666 union rcu_special rcu_read_unlock_special; 667 struct list_head rcu_node_entry; 668 struct rcu_node *rcu_blocked_node; 669#endif /* #ifdef CONFIG_PREEMPT_RCU */ 670 671#ifdef CONFIG_TASKS_RCU 672 unsigned long rcu_tasks_nvcsw; 673 u8 rcu_tasks_holdout; 674 u8 rcu_tasks_idx; 675 int rcu_tasks_idle_cpu; 676 struct list_head rcu_tasks_holdout_list; 677#endif /* #ifdef CONFIG_TASKS_RCU */ 678 679 struct sched_info sched_info; 680 681 struct list_head tasks; 682#ifdef CONFIG_SMP 683 struct plist_node pushable_tasks; 684 struct rb_node pushable_dl_tasks; 685#endif 686 687 struct mm_struct *mm; 688 struct mm_struct *active_mm; 689 690 /* Per-thread vma caching: */ 691 struct vmacache vmacache; 692 693#ifdef SPLIT_RSS_COUNTING 694 struct task_rss_stat rss_stat; 695#endif 696 int exit_state; 697 int exit_code; 698 int exit_signal; 699 /* The signal sent when the parent dies: */ 700 int pdeath_signal; 701 /* JOBCTL_*, siglock protected: */ 702 unsigned long jobctl; 703 704 /* Used for emulating ABI behavior of previous Linux versions: */ 705 unsigned int personality; 706 707 /* Scheduler bits, serialized by scheduler locks: */ 708 unsigned sched_reset_on_fork:1; 709 unsigned sched_contributes_to_load:1; 710 unsigned sched_migrated:1; 711 unsigned sched_remote_wakeup:1; 712#ifdef CONFIG_PSI 713 unsigned sched_psi_wake_requeue:1; 714#endif 715 716 /* Force alignment to the next boundary: */ 717 unsigned :0; 718 719 /* Unserialized, strictly 'current' */ 720 721 /* Bit to tell LSMs we're in execve(): */ 722 unsigned in_execve:1; 723 unsigned in_iowait:1; 724#ifndef TIF_RESTORE_SIGMASK 725 unsigned restore_sigmask:1; 726#endif 727#ifdef CONFIG_MEMCG 728 unsigned in_user_fault:1; 729#endif 730#ifdef CONFIG_COMPAT_BRK 731 unsigned brk_randomized:1; 732#endif 733#ifdef CONFIG_CGROUPS 734 /* disallow userland-initiated cgroup migration */ 735 unsigned no_cgroup_migration:1; 736#endif 737#ifdef CONFIG_BLK_CGROUP 738 /* to be used once the psi infrastructure lands upstream. */ 739 unsigned use_memdelay:1; 740#endif 741 742 unsigned long atomic_flags; /* Flags requiring atomic access. */ 743 744 struct restart_block restart_block; 745 746 pid_t pid; 747 pid_t tgid; 748 749#ifdef CONFIG_STACKPROTECTOR 750 /* Canary value for the -fstack-protector GCC feature: */ 751 unsigned long stack_canary; 752#endif 753 /* 754 * Pointers to the (original) parent process, youngest child, younger sibling, 755 * older sibling, respectively. (p->father can be replaced with 756 * p->real_parent->pid) 757 */ 758 759 /* Real parent process: */ 760 struct task_struct __rcu *real_parent; 761 762 /* Recipient of SIGCHLD, wait4() reports: */ 763 struct task_struct __rcu *parent; 764 765 /* 766 * Children/sibling form the list of natural children: 767 */ 768 struct list_head children; 769 struct list_head sibling; 770 struct task_struct *group_leader; 771 772 /* 773 * 'ptraced' is the list of tasks this task is using ptrace() on. 774 * 775 * This includes both natural children and PTRACE_ATTACH targets. 776 * 'ptrace_entry' is this task's link on the p->parent->ptraced list. 777 */ 778 struct list_head ptraced; 779 struct list_head ptrace_entry; 780 781 /* PID/PID hash table linkage. */ 782 struct pid *thread_pid; 783 struct hlist_node pid_links[PIDTYPE_MAX]; 784 struct list_head thread_group; 785 struct list_head thread_node; 786 787 struct completion *vfork_done; 788 789 /* CLONE_CHILD_SETTID: */ 790 int __user *set_child_tid; 791 792 /* CLONE_CHILD_CLEARTID: */ 793 int __user *clear_child_tid; 794 795 u64 utime; 796 u64 stime; 797#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 798 u64 utimescaled; 799 u64 stimescaled; 800#endif 801 u64 gtime; 802 struct prev_cputime prev_cputime; 803#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 804 struct vtime vtime; 805#endif 806 807#ifdef CONFIG_NO_HZ_FULL 808 atomic_t tick_dep_mask; 809#endif 810 /* Context switch counts: */ 811 unsigned long nvcsw; 812 unsigned long nivcsw; 813 814 /* Monotonic time in nsecs: */ 815 u64 start_time; 816 817 /* Boot based time in nsecs: */ 818 u64 real_start_time; 819 820 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ 821 unsigned long min_flt; 822 unsigned long maj_flt; 823 824#ifdef CONFIG_POSIX_TIMERS 825 struct task_cputime cputime_expires; 826 struct list_head cpu_timers[3]; 827#endif 828 829 /* Process credentials: */ 830 831 /* Tracer's credentials at attach: */ 832 const struct cred __rcu *ptracer_cred; 833 834 /* Objective and real subjective task credentials (COW): */ 835 const struct cred __rcu *real_cred; 836 837 /* Effective (overridable) subjective task credentials (COW): */ 838 const struct cred __rcu *cred; 839 840 /* 841 * executable name, excluding path. 842 * 843 * - normally initialized setup_new_exec() 844 * - access it with [gs]et_task_comm() 845 * - lock it with task_lock() 846 */ 847 char comm[TASK_COMM_LEN]; 848 849 struct nameidata *nameidata; 850 851#ifdef CONFIG_SYSVIPC 852 struct sysv_sem sysvsem; 853 struct sysv_shm sysvshm; 854#endif 855#ifdef CONFIG_DETECT_HUNG_TASK 856 unsigned long last_switch_count; 857 unsigned long last_switch_time; 858#endif 859 /* Filesystem information: */ 860 struct fs_struct *fs; 861 862 /* Open file information: */ 863 struct files_struct *files; 864 865 /* Namespaces: */ 866 struct nsproxy *nsproxy; 867 868 /* Signal handlers: */ 869 struct signal_struct *signal; 870 struct sighand_struct *sighand; 871 sigset_t blocked; 872 sigset_t real_blocked; 873 /* Restored if set_restore_sigmask() was used: */ 874 sigset_t saved_sigmask; 875 struct sigpending pending; 876 unsigned long sas_ss_sp; 877 size_t sas_ss_size; 878 unsigned int sas_ss_flags; 879 880 struct callback_head *task_works; 881 882 struct audit_context *audit_context; 883#ifdef CONFIG_AUDITSYSCALL 884 kuid_t loginuid; 885 unsigned int sessionid; 886#endif 887 struct seccomp seccomp; 888 889 /* Thread group tracking: */ 890 u32 parent_exec_id; 891 u32 self_exec_id; 892 893 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ 894 spinlock_t alloc_lock; 895 896 /* Protection of the PI data structures: */ 897 raw_spinlock_t pi_lock; 898 899 struct wake_q_node wake_q; 900 901#ifdef CONFIG_RT_MUTEXES 902 /* PI waiters blocked on a rt_mutex held by this task: */ 903 struct rb_root_cached pi_waiters; 904 /* Updated under owner's pi_lock and rq lock */ 905 struct task_struct *pi_top_task; 906 /* Deadlock detection and priority inheritance handling: */ 907 struct rt_mutex_waiter *pi_blocked_on; 908#endif 909 910#ifdef CONFIG_DEBUG_MUTEXES 911 /* Mutex deadlock detection: */ 912 struct mutex_waiter *blocked_on; 913#endif 914 915#ifdef CONFIG_TRACE_IRQFLAGS 916 unsigned int irq_events; 917 unsigned long hardirq_enable_ip; 918 unsigned long hardirq_disable_ip; 919 unsigned int hardirq_enable_event; 920 unsigned int hardirq_disable_event; 921 int hardirqs_enabled; 922 int hardirq_context; 923 unsigned long softirq_disable_ip; 924 unsigned long softirq_enable_ip; 925 unsigned int softirq_disable_event; 926 unsigned int softirq_enable_event; 927 int softirqs_enabled; 928 int softirq_context; 929#endif 930 931#ifdef CONFIG_LOCKDEP 932# define MAX_LOCK_DEPTH 48UL 933 u64 curr_chain_key; 934 int lockdep_depth; 935 unsigned int lockdep_recursion; 936 struct held_lock held_locks[MAX_LOCK_DEPTH]; 937#endif 938 939#ifdef CONFIG_UBSAN 940 unsigned int in_ubsan; 941#endif 942 943 /* Journalling filesystem info: */ 944 void *journal_info; 945 946 /* Stacked block device info: */ 947 struct bio_list *bio_list; 948 949#ifdef CONFIG_BLOCK 950 /* Stack plugging: */ 951 struct blk_plug *plug; 952#endif 953 954 /* VM state: */ 955 struct reclaim_state *reclaim_state; 956 957 struct backing_dev_info *backing_dev_info; 958 959 struct io_context *io_context; 960 961 /* Ptrace state: */ 962 unsigned long ptrace_message; 963 kernel_siginfo_t *last_siginfo; 964 965 struct task_io_accounting ioac; 966#ifdef CONFIG_PSI 967 /* Pressure stall state */ 968 unsigned int psi_flags; 969#endif 970#ifdef CONFIG_TASK_XACCT 971 /* Accumulated RSS usage: */ 972 u64 acct_rss_mem1; 973 /* Accumulated virtual memory usage: */ 974 u64 acct_vm_mem1; 975 /* stime + utime since last update: */ 976 u64 acct_timexpd; 977#endif 978#ifdef CONFIG_CPUSETS 979 /* Protected by ->alloc_lock: */ 980 nodemask_t mems_allowed; 981 /* Seqence number to catch updates: */ 982 seqcount_t mems_allowed_seq; 983 int cpuset_mem_spread_rotor; 984 int cpuset_slab_spread_rotor; 985#endif 986#ifdef CONFIG_CGROUPS 987 /* Control Group info protected by css_set_lock: */ 988 struct css_set __rcu *cgroups; 989 /* cg_list protected by css_set_lock and tsk->alloc_lock: */ 990 struct list_head cg_list; 991#endif 992#ifdef CONFIG_X86_CPU_RESCTRL 993 u32 closid; 994 u32 rmid; 995#endif 996#ifdef CONFIG_FUTEX 997 struct robust_list_head __user *robust_list; 998#ifdef CONFIG_COMPAT 999 struct compat_robust_list_head __user *compat_robust_list; 1000#endif 1001 struct list_head pi_state_list; 1002 struct futex_pi_state *pi_state_cache; 1003#endif 1004#ifdef CONFIG_PERF_EVENTS 1005 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1006 struct mutex perf_event_mutex; 1007 struct list_head perf_event_list; 1008#endif 1009#ifdef CONFIG_DEBUG_PREEMPT 1010 unsigned long preempt_disable_ip; 1011#endif 1012#ifdef CONFIG_NUMA 1013 /* Protected by alloc_lock: */ 1014 struct mempolicy *mempolicy; 1015 short il_prev; 1016 short pref_node_fork; 1017#endif 1018#ifdef CONFIG_NUMA_BALANCING 1019 int numa_scan_seq; 1020 unsigned int numa_scan_period; 1021 unsigned int numa_scan_period_max; 1022 int numa_preferred_nid; 1023 unsigned long numa_migrate_retry; 1024 /* Migration stamp: */ 1025 u64 node_stamp; 1026 u64 last_task_numa_placement; 1027 u64 last_sum_exec_runtime; 1028 struct callback_head numa_work; 1029 1030 struct numa_group *numa_group; 1031 1032 /* 1033 * numa_faults is an array split into four regions: 1034 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1035 * in this precise order. 1036 * 1037 * faults_memory: Exponential decaying average of faults on a per-node 1038 * basis. Scheduling placement decisions are made based on these 1039 * counts. The values remain static for the duration of a PTE scan. 1040 * faults_cpu: Track the nodes the process was running on when a NUMA 1041 * hinting fault was incurred. 1042 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1043 * during the current scan window. When the scan completes, the counts 1044 * in faults_memory and faults_cpu decay and these values are copied. 1045 */ 1046 unsigned long *numa_faults; 1047 unsigned long total_numa_faults; 1048 1049 /* 1050 * numa_faults_locality tracks if faults recorded during the last 1051 * scan window were remote/local or failed to migrate. The task scan 1052 * period is adapted based on the locality of the faults with different 1053 * weights depending on whether they were shared or private faults 1054 */ 1055 unsigned long numa_faults_locality[3]; 1056 1057 unsigned long numa_pages_migrated; 1058#endif /* CONFIG_NUMA_BALANCING */ 1059 1060#ifdef CONFIG_RSEQ 1061 struct rseq __user *rseq; 1062 u32 rseq_len; 1063 u32 rseq_sig; 1064 /* 1065 * RmW on rseq_event_mask must be performed atomically 1066 * with respect to preemption. 1067 */ 1068 unsigned long rseq_event_mask; 1069#endif 1070 1071 struct tlbflush_unmap_batch tlb_ubc; 1072 1073 struct rcu_head rcu; 1074 1075 /* Cache last used pipe for splice(): */ 1076 struct pipe_inode_info *splice_pipe; 1077 1078 struct page_frag task_frag; 1079 1080#ifdef CONFIG_TASK_DELAY_ACCT 1081 struct task_delay_info *delays; 1082#endif 1083 1084#ifdef CONFIG_FAULT_INJECTION 1085 int make_it_fail; 1086 unsigned int fail_nth; 1087#endif 1088 /* 1089 * When (nr_dirtied >= nr_dirtied_pause), it's time to call 1090 * balance_dirty_pages() for a dirty throttling pause: 1091 */ 1092 int nr_dirtied; 1093 int nr_dirtied_pause; 1094 /* Start of a write-and-pause period: */ 1095 unsigned long dirty_paused_when; 1096 1097#ifdef CONFIG_LATENCYTOP 1098 int latency_record_count; 1099 struct latency_record latency_record[LT_SAVECOUNT]; 1100#endif 1101 /* 1102 * Time slack values; these are used to round up poll() and 1103 * select() etc timeout values. These are in nanoseconds. 1104 */ 1105 u64 timer_slack_ns; 1106 u64 default_timer_slack_ns; 1107 1108#ifdef CONFIG_KASAN 1109 unsigned int kasan_depth; 1110#endif 1111 1112#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1113 /* Index of current stored address in ret_stack: */ 1114 int curr_ret_stack; 1115 int curr_ret_depth; 1116 1117 /* Stack of return addresses for return function tracing: */ 1118 struct ftrace_ret_stack *ret_stack; 1119 1120 /* Timestamp for last schedule: */ 1121 unsigned long long ftrace_timestamp; 1122 1123 /* 1124 * Number of functions that haven't been traced 1125 * because of depth overrun: 1126 */ 1127 atomic_t trace_overrun; 1128 1129 /* Pause tracing: */ 1130 atomic_t tracing_graph_pause; 1131#endif 1132 1133#ifdef CONFIG_TRACING 1134 /* State flags for use by tracers: */ 1135 unsigned long trace; 1136 1137 /* Bitmask and counter of trace recursion: */ 1138 unsigned long trace_recursion; 1139#endif /* CONFIG_TRACING */ 1140 1141#ifdef CONFIG_KCOV 1142 /* Coverage collection mode enabled for this task (0 if disabled): */ 1143 unsigned int kcov_mode; 1144 1145 /* Size of the kcov_area: */ 1146 unsigned int kcov_size; 1147 1148 /* Buffer for coverage collection: */ 1149 void *kcov_area; 1150 1151 /* KCOV descriptor wired with this task or NULL: */ 1152 struct kcov *kcov; 1153#endif 1154 1155#ifdef CONFIG_MEMCG 1156 struct mem_cgroup *memcg_in_oom; 1157 gfp_t memcg_oom_gfp_mask; 1158 int memcg_oom_order; 1159 1160 /* Number of pages to reclaim on returning to userland: */ 1161 unsigned int memcg_nr_pages_over_high; 1162 1163 /* Used by memcontrol for targeted memcg charge: */ 1164 struct mem_cgroup *active_memcg; 1165#endif 1166 1167#ifdef CONFIG_BLK_CGROUP 1168 struct request_queue *throttle_queue; 1169#endif 1170 1171#ifdef CONFIG_UPROBES 1172 struct uprobe_task *utask; 1173#endif 1174#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1175 unsigned int sequential_io; 1176 unsigned int sequential_io_avg; 1177#endif 1178#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1179 unsigned long task_state_change; 1180#endif 1181 int pagefault_disabled; 1182#ifdef CONFIG_MMU 1183 struct task_struct *oom_reaper_list; 1184#endif 1185#ifdef CONFIG_VMAP_STACK 1186 struct vm_struct *stack_vm_area; 1187#endif 1188#ifdef CONFIG_THREAD_INFO_IN_TASK 1189 /* A live task holds one reference: */ 1190 atomic_t stack_refcount; 1191#endif 1192#ifdef CONFIG_LIVEPATCH 1193 int patch_state; 1194#endif 1195#ifdef CONFIG_SECURITY 1196 /* Used by LSM modules for access restriction: */ 1197 void *security; 1198#endif 1199 1200#ifdef CONFIG_GCC_PLUGIN_STACKLEAK 1201 unsigned long lowest_stack; 1202 unsigned long prev_lowest_stack; 1203#endif 1204 1205 /* 1206 * New fields for task_struct should be added above here, so that 1207 * they are included in the randomized portion of task_struct. 1208 */ 1209 randomized_struct_fields_end 1210 1211 /* CPU-specific state of this task: */ 1212 struct thread_struct thread; 1213 1214 /* 1215 * WARNING: on x86, 'thread_struct' contains a variable-sized 1216 * structure. It *MUST* be at the end of 'task_struct'. 1217 * 1218 * Do not put anything below here! 1219 */ 1220}; 1221 1222static inline struct pid *task_pid(struct task_struct *task) 1223{ 1224 return task->thread_pid; 1225} 1226 1227/* 1228 * the helpers to get the task's different pids as they are seen 1229 * from various namespaces 1230 * 1231 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1232 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1233 * current. 1234 * task_xid_nr_ns() : id seen from the ns specified; 1235 * 1236 * see also pid_nr() etc in include/linux/pid.h 1237 */ 1238pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); 1239 1240static inline pid_t task_pid_nr(struct task_struct *tsk) 1241{ 1242 return tsk->pid; 1243} 1244 1245static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1246{ 1247 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1248} 1249 1250static inline pid_t task_pid_vnr(struct task_struct *tsk) 1251{ 1252 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1253} 1254 1255 1256static inline pid_t task_tgid_nr(struct task_struct *tsk) 1257{ 1258 return tsk->tgid; 1259} 1260 1261/** 1262 * pid_alive - check that a task structure is not stale 1263 * @p: Task structure to be checked. 1264 * 1265 * Test if a process is not yet dead (at most zombie state) 1266 * If pid_alive fails, then pointers within the task structure 1267 * can be stale and must not be dereferenced. 1268 * 1269 * Return: 1 if the process is alive. 0 otherwise. 1270 */ 1271static inline int pid_alive(const struct task_struct *p) 1272{ 1273 return p->thread_pid != NULL; 1274} 1275 1276static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1277{ 1278 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1279} 1280 1281static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1282{ 1283 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1284} 1285 1286 1287static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1288{ 1289 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1290} 1291 1292static inline pid_t task_session_vnr(struct task_struct *tsk) 1293{ 1294 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1295} 1296 1297static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1298{ 1299 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); 1300} 1301 1302static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1303{ 1304 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); 1305} 1306 1307static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1308{ 1309 pid_t pid = 0; 1310 1311 rcu_read_lock(); 1312 if (pid_alive(tsk)) 1313 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1314 rcu_read_unlock(); 1315 1316 return pid; 1317} 1318 1319static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1320{ 1321 return task_ppid_nr_ns(tsk, &init_pid_ns); 1322} 1323 1324/* Obsolete, do not use: */ 1325static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1326{ 1327 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1328} 1329 1330#define TASK_REPORT_IDLE (TASK_REPORT + 1) 1331#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) 1332 1333static inline unsigned int task_state_index(struct task_struct *tsk) 1334{ 1335 unsigned int tsk_state = READ_ONCE(tsk->state); 1336 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT; 1337 1338 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); 1339 1340 if (tsk_state == TASK_IDLE) 1341 state = TASK_REPORT_IDLE; 1342 1343 return fls(state); 1344} 1345 1346static inline char task_index_to_char(unsigned int state) 1347{ 1348 static const char state_char[] = "RSDTtXZPI"; 1349 1350 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); 1351 1352 return state_char[state]; 1353} 1354 1355static inline char task_state_to_char(struct task_struct *tsk) 1356{ 1357 return task_index_to_char(task_state_index(tsk)); 1358} 1359 1360/** 1361 * is_global_init - check if a task structure is init. Since init 1362 * is free to have sub-threads we need to check tgid. 1363 * @tsk: Task structure to be checked. 1364 * 1365 * Check if a task structure is the first user space task the kernel created. 1366 * 1367 * Return: 1 if the task structure is init. 0 otherwise. 1368 */ 1369static inline int is_global_init(struct task_struct *tsk) 1370{ 1371 return task_tgid_nr(tsk) == 1; 1372} 1373 1374extern struct pid *cad_pid; 1375 1376/* 1377 * Per process flags 1378 */ 1379#define PF_IDLE 0x00000002 /* I am an IDLE thread */ 1380#define PF_EXITING 0x00000004 /* Getting shut down */ 1381#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */ 1382#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1383#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1384#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ 1385#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ 1386#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ 1387#define PF_DUMPCORE 0x00000200 /* Dumped core */ 1388#define PF_SIGNALED 0x00000400 /* Killed by a signal */ 1389#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1390#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ 1391#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ 1392#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */ 1393#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ 1394#define PF_FROZEN 0x00010000 /* Frozen for system suspend */ 1395#define PF_KSWAPD 0x00020000 /* I am kswapd */ 1396#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ 1397#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ 1398#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1399#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1400#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ 1401#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1402#define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */ 1403#define PF_UMH 0x02000000 /* I'm an Usermodehelper process */ 1404#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 1405#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1406#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1407#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1408#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ 1409 1410/* 1411 * Only the _current_ task can read/write to tsk->flags, but other 1412 * tasks can access tsk->flags in readonly mode for example 1413 * with tsk_used_math (like during threaded core dumping). 1414 * There is however an exception to this rule during ptrace 1415 * or during fork: the ptracer task is allowed to write to the 1416 * child->flags of its traced child (same goes for fork, the parent 1417 * can write to the child->flags), because we're guaranteed the 1418 * child is not running and in turn not changing child->flags 1419 * at the same time the parent does it. 1420 */ 1421#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1422#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1423#define clear_used_math() clear_stopped_child_used_math(current) 1424#define set_used_math() set_stopped_child_used_math(current) 1425 1426#define conditional_stopped_child_used_math(condition, child) \ 1427 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1428 1429#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) 1430 1431#define copy_to_stopped_child_used_math(child) \ 1432 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1433 1434/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1435#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1436#define used_math() tsk_used_math(current) 1437 1438static inline bool is_percpu_thread(void) 1439{ 1440#ifdef CONFIG_SMP 1441 return (current->flags & PF_NO_SETAFFINITY) && 1442 (current->nr_cpus_allowed == 1); 1443#else 1444 return true; 1445#endif 1446} 1447 1448/* Per-process atomic flags. */ 1449#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 1450#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 1451#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 1452#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ 1453#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ 1454#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ 1455#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ 1456 1457#define TASK_PFA_TEST(name, func) \ 1458 static inline bool task_##func(struct task_struct *p) \ 1459 { return test_bit(PFA_##name, &p->atomic_flags); } 1460 1461#define TASK_PFA_SET(name, func) \ 1462 static inline void task_set_##func(struct task_struct *p) \ 1463 { set_bit(PFA_##name, &p->atomic_flags); } 1464 1465#define TASK_PFA_CLEAR(name, func) \ 1466 static inline void task_clear_##func(struct task_struct *p) \ 1467 { clear_bit(PFA_##name, &p->atomic_flags); } 1468 1469TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 1470TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 1471 1472TASK_PFA_TEST(SPREAD_PAGE, spread_page) 1473TASK_PFA_SET(SPREAD_PAGE, spread_page) 1474TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 1475 1476TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 1477TASK_PFA_SET(SPREAD_SLAB, spread_slab) 1478TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 1479 1480TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) 1481TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) 1482TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) 1483 1484TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1485TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1486 1487TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) 1488TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) 1489TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) 1490 1491TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1492TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1493 1494static inline void 1495current_restore_flags(unsigned long orig_flags, unsigned long flags) 1496{ 1497 current->flags &= ~flags; 1498 current->flags |= orig_flags & flags; 1499} 1500 1501extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 1502extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 1503#ifdef CONFIG_SMP 1504extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); 1505extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); 1506#else 1507static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1508{ 1509} 1510static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1511{ 1512 if (!cpumask_test_cpu(0, new_mask)) 1513 return -EINVAL; 1514 return 0; 1515} 1516#endif 1517 1518#ifndef cpu_relax_yield 1519#define cpu_relax_yield() cpu_relax() 1520#endif 1521 1522extern int yield_to(struct task_struct *p, bool preempt); 1523extern void set_user_nice(struct task_struct *p, long nice); 1524extern int task_prio(const struct task_struct *p); 1525 1526/** 1527 * task_nice - return the nice value of a given task. 1528 * @p: the task in question. 1529 * 1530 * Return: The nice value [ -20 ... 0 ... 19 ]. 1531 */ 1532static inline int task_nice(const struct task_struct *p) 1533{ 1534 return PRIO_TO_NICE((p)->static_prio); 1535} 1536 1537extern int can_nice(const struct task_struct *p, const int nice); 1538extern int task_curr(const struct task_struct *p); 1539extern int idle_cpu(int cpu); 1540extern int available_idle_cpu(int cpu); 1541extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); 1542extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); 1543extern int sched_setattr(struct task_struct *, const struct sched_attr *); 1544extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); 1545extern struct task_struct *idle_task(int cpu); 1546 1547/** 1548 * is_idle_task - is the specified task an idle task? 1549 * @p: the task in question. 1550 * 1551 * Return: 1 if @p is an idle task. 0 otherwise. 1552 */ 1553static inline bool is_idle_task(const struct task_struct *p) 1554{ 1555 return !!(p->flags & PF_IDLE); 1556} 1557 1558extern struct task_struct *curr_task(int cpu); 1559extern void ia64_set_curr_task(int cpu, struct task_struct *p); 1560 1561void yield(void); 1562 1563union thread_union { 1564#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK 1565 struct task_struct task; 1566#endif 1567#ifndef CONFIG_THREAD_INFO_IN_TASK 1568 struct thread_info thread_info; 1569#endif 1570 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1571}; 1572 1573#ifndef CONFIG_THREAD_INFO_IN_TASK 1574extern struct thread_info init_thread_info; 1575#endif 1576 1577extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; 1578 1579#ifdef CONFIG_THREAD_INFO_IN_TASK 1580static inline struct thread_info *task_thread_info(struct task_struct *task) 1581{ 1582 return &task->thread_info; 1583} 1584#elif !defined(__HAVE_THREAD_FUNCTIONS) 1585# define task_thread_info(task) ((struct thread_info *)(task)->stack) 1586#endif 1587 1588/* 1589 * find a task by one of its numerical ids 1590 * 1591 * find_task_by_pid_ns(): 1592 * finds a task by its pid in the specified namespace 1593 * find_task_by_vpid(): 1594 * finds a task by its virtual pid 1595 * 1596 * see also find_vpid() etc in include/linux/pid.h 1597 */ 1598 1599extern struct task_struct *find_task_by_vpid(pid_t nr); 1600extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); 1601 1602/* 1603 * find a task by its virtual pid and get the task struct 1604 */ 1605extern struct task_struct *find_get_task_by_vpid(pid_t nr); 1606 1607extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1608extern int wake_up_process(struct task_struct *tsk); 1609extern void wake_up_new_task(struct task_struct *tsk); 1610 1611#ifdef CONFIG_SMP 1612extern void kick_process(struct task_struct *tsk); 1613#else 1614static inline void kick_process(struct task_struct *tsk) { } 1615#endif 1616 1617extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 1618 1619static inline void set_task_comm(struct task_struct *tsk, const char *from) 1620{ 1621 __set_task_comm(tsk, from, false); 1622} 1623 1624extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); 1625#define get_task_comm(buf, tsk) ({ \ 1626 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ 1627 __get_task_comm(buf, sizeof(buf), tsk); \ 1628}) 1629 1630#ifdef CONFIG_SMP 1631void scheduler_ipi(void); 1632extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 1633#else 1634static inline void scheduler_ipi(void) { } 1635static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1636{ 1637 return 1; 1638} 1639#endif 1640 1641/* 1642 * Set thread flags in other task's structures. 1643 * See asm/thread_info.h for TIF_xxxx flags available: 1644 */ 1645static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1646{ 1647 set_ti_thread_flag(task_thread_info(tsk), flag); 1648} 1649 1650static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1651{ 1652 clear_ti_thread_flag(task_thread_info(tsk), flag); 1653} 1654 1655static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, 1656 bool value) 1657{ 1658 update_ti_thread_flag(task_thread_info(tsk), flag, value); 1659} 1660 1661static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1662{ 1663 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1664} 1665 1666static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1667{ 1668 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1669} 1670 1671static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1672{ 1673 return test_ti_thread_flag(task_thread_info(tsk), flag); 1674} 1675 1676static inline void set_tsk_need_resched(struct task_struct *tsk) 1677{ 1678 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1679} 1680 1681static inline void clear_tsk_need_resched(struct task_struct *tsk) 1682{ 1683 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1684} 1685 1686static inline int test_tsk_need_resched(struct task_struct *tsk) 1687{ 1688 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 1689} 1690 1691/* 1692 * cond_resched() and cond_resched_lock(): latency reduction via 1693 * explicit rescheduling in places that are safe. The return 1694 * value indicates whether a reschedule was done in fact. 1695 * cond_resched_lock() will drop the spinlock before scheduling, 1696 */ 1697#ifndef CONFIG_PREEMPT 1698extern int _cond_resched(void); 1699#else 1700static inline int _cond_resched(void) { return 0; } 1701#endif 1702 1703#define cond_resched() ({ \ 1704 ___might_sleep(__FILE__, __LINE__, 0); \ 1705 _cond_resched(); \ 1706}) 1707 1708extern int __cond_resched_lock(spinlock_t *lock); 1709 1710#define cond_resched_lock(lock) ({ \ 1711 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 1712 __cond_resched_lock(lock); \ 1713}) 1714 1715static inline void cond_resched_rcu(void) 1716{ 1717#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 1718 rcu_read_unlock(); 1719 cond_resched(); 1720 rcu_read_lock(); 1721#endif 1722} 1723 1724/* 1725 * Does a critical section need to be broken due to another 1726 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 1727 * but a general need for low latency) 1728 */ 1729static inline int spin_needbreak(spinlock_t *lock) 1730{ 1731#ifdef CONFIG_PREEMPT 1732 return spin_is_contended(lock); 1733#else 1734 return 0; 1735#endif 1736} 1737 1738static __always_inline bool need_resched(void) 1739{ 1740 return unlikely(tif_need_resched()); 1741} 1742 1743/* 1744 * Wrappers for p->thread_info->cpu access. No-op on UP. 1745 */ 1746#ifdef CONFIG_SMP 1747 1748static inline unsigned int task_cpu(const struct task_struct *p) 1749{ 1750#ifdef CONFIG_THREAD_INFO_IN_TASK 1751 return p->cpu; 1752#else 1753 return task_thread_info(p)->cpu; 1754#endif 1755} 1756 1757extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 1758 1759#else 1760 1761static inline unsigned int task_cpu(const struct task_struct *p) 1762{ 1763 return 0; 1764} 1765 1766static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1767{ 1768} 1769 1770#endif /* CONFIG_SMP */ 1771 1772/* 1773 * In order to reduce various lock holder preemption latencies provide an 1774 * interface to see if a vCPU is currently running or not. 1775 * 1776 * This allows us to terminate optimistic spin loops and block, analogous to 1777 * the native optimistic spin heuristic of testing if the lock owner task is 1778 * running or not. 1779 */ 1780#ifndef vcpu_is_preempted 1781# define vcpu_is_preempted(cpu) false 1782#endif 1783 1784extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 1785extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 1786 1787#ifndef TASK_SIZE_OF 1788#define TASK_SIZE_OF(tsk) TASK_SIZE 1789#endif 1790 1791#ifdef CONFIG_RSEQ 1792 1793/* 1794 * Map the event mask on the user-space ABI enum rseq_cs_flags 1795 * for direct mask checks. 1796 */ 1797enum rseq_event_mask_bits { 1798 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, 1799 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, 1800 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, 1801}; 1802 1803enum rseq_event_mask { 1804 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), 1805 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), 1806 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), 1807}; 1808 1809static inline void rseq_set_notify_resume(struct task_struct *t) 1810{ 1811 if (t->rseq) 1812 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1813} 1814 1815void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); 1816 1817static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1818 struct pt_regs *regs) 1819{ 1820 if (current->rseq) 1821 __rseq_handle_notify_resume(ksig, regs); 1822} 1823 1824static inline void rseq_signal_deliver(struct ksignal *ksig, 1825 struct pt_regs *regs) 1826{ 1827 preempt_disable(); 1828 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask); 1829 preempt_enable(); 1830 rseq_handle_notify_resume(ksig, regs); 1831} 1832 1833/* rseq_preempt() requires preemption to be disabled. */ 1834static inline void rseq_preempt(struct task_struct *t) 1835{ 1836 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); 1837 rseq_set_notify_resume(t); 1838} 1839 1840/* rseq_migrate() requires preemption to be disabled. */ 1841static inline void rseq_migrate(struct task_struct *t) 1842{ 1843 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); 1844 rseq_set_notify_resume(t); 1845} 1846 1847/* 1848 * If parent process has a registered restartable sequences area, the 1849 * child inherits. Only applies when forking a process, not a thread. 1850 */ 1851static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1852{ 1853 if (clone_flags & CLONE_THREAD) { 1854 t->rseq = NULL; 1855 t->rseq_len = 0; 1856 t->rseq_sig = 0; 1857 t->rseq_event_mask = 0; 1858 } else { 1859 t->rseq = current->rseq; 1860 t->rseq_len = current->rseq_len; 1861 t->rseq_sig = current->rseq_sig; 1862 t->rseq_event_mask = current->rseq_event_mask; 1863 } 1864} 1865 1866static inline void rseq_execve(struct task_struct *t) 1867{ 1868 t->rseq = NULL; 1869 t->rseq_len = 0; 1870 t->rseq_sig = 0; 1871 t->rseq_event_mask = 0; 1872} 1873 1874#else 1875 1876static inline void rseq_set_notify_resume(struct task_struct *t) 1877{ 1878} 1879static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1880 struct pt_regs *regs) 1881{ 1882} 1883static inline void rseq_signal_deliver(struct ksignal *ksig, 1884 struct pt_regs *regs) 1885{ 1886} 1887static inline void rseq_preempt(struct task_struct *t) 1888{ 1889} 1890static inline void rseq_migrate(struct task_struct *t) 1891{ 1892} 1893static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1894{ 1895} 1896static inline void rseq_execve(struct task_struct *t) 1897{ 1898} 1899 1900#endif 1901 1902void __exit_umh(struct task_struct *tsk); 1903 1904static inline void exit_umh(struct task_struct *tsk) 1905{ 1906 if (unlikely(tsk->flags & PF_UMH)) 1907 __exit_umh(tsk); 1908} 1909 1910#ifdef CONFIG_DEBUG_RSEQ 1911 1912void rseq_syscall(struct pt_regs *regs); 1913 1914#else 1915 1916static inline void rseq_syscall(struct pt_regs *regs) 1917{ 1918} 1919 1920#endif 1921 1922#endif