Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10#include <uapi/linux/sched.h>
11
12#include <asm/current.h>
13
14#include <linux/pid.h>
15#include <linux/sem.h>
16#include <linux/shm.h>
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
21#include <linux/seccomp.h>
22#include <linux/nodemask.h>
23#include <linux/rcupdate.h>
24#include <linux/resource.h>
25#include <linux/latencytop.h>
26#include <linux/sched/prio.h>
27#include <linux/signal_types.h>
28#include <linux/psi_types.h>
29#include <linux/mm_types_task.h>
30#include <linux/task_io_accounting.h>
31#include <linux/rseq.h>
32
33/* task_struct member predeclarations (sorted alphabetically): */
34struct audit_context;
35struct backing_dev_info;
36struct bio_list;
37struct blk_plug;
38struct cfs_rq;
39struct fs_struct;
40struct futex_pi_state;
41struct io_context;
42struct mempolicy;
43struct nameidata;
44struct nsproxy;
45struct perf_event_context;
46struct pid_namespace;
47struct pipe_inode_info;
48struct rcu_node;
49struct reclaim_state;
50struct robust_list_head;
51struct sched_attr;
52struct sched_param;
53struct seq_file;
54struct sighand_struct;
55struct signal_struct;
56struct task_delay_info;
57struct task_group;
58
59/*
60 * Task state bitmask. NOTE! These bits are also
61 * encoded in fs/proc/array.c: get_task_state().
62 *
63 * We have two separate sets of flags: task->state
64 * is about runnability, while task->exit_state are
65 * about the task exiting. Confusing, but this way
66 * modifying one set can't modify the other one by
67 * mistake.
68 */
69
70/* Used in tsk->state: */
71#define TASK_RUNNING 0x0000
72#define TASK_INTERRUPTIBLE 0x0001
73#define TASK_UNINTERRUPTIBLE 0x0002
74#define __TASK_STOPPED 0x0004
75#define __TASK_TRACED 0x0008
76/* Used in tsk->exit_state: */
77#define EXIT_DEAD 0x0010
78#define EXIT_ZOMBIE 0x0020
79#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
80/* Used in tsk->state again: */
81#define TASK_PARKED 0x0040
82#define TASK_DEAD 0x0080
83#define TASK_WAKEKILL 0x0100
84#define TASK_WAKING 0x0200
85#define TASK_NOLOAD 0x0400
86#define TASK_NEW 0x0800
87#define TASK_STATE_MAX 0x1000
88
89/* Convenience macros for the sake of set_current_state: */
90#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
91#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
92#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
93
94#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
95
96/* Convenience macros for the sake of wake_up(): */
97#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
98
99/* get_task_state(): */
100#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
101 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
102 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
103 TASK_PARKED)
104
105#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
106
107#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
108
109#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
110
111#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
112 (task->flags & PF_FROZEN) == 0 && \
113 (task->state & TASK_NOLOAD) == 0)
114
115#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
116
117/*
118 * Special states are those that do not use the normal wait-loop pattern. See
119 * the comment with set_special_state().
120 */
121#define is_special_task_state(state) \
122 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
123
124#define __set_current_state(state_value) \
125 do { \
126 WARN_ON_ONCE(is_special_task_state(state_value));\
127 current->task_state_change = _THIS_IP_; \
128 current->state = (state_value); \
129 } while (0)
130
131#define set_current_state(state_value) \
132 do { \
133 WARN_ON_ONCE(is_special_task_state(state_value));\
134 current->task_state_change = _THIS_IP_; \
135 smp_store_mb(current->state, (state_value)); \
136 } while (0)
137
138#define set_special_state(state_value) \
139 do { \
140 unsigned long flags; /* may shadow */ \
141 WARN_ON_ONCE(!is_special_task_state(state_value)); \
142 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
143 current->task_state_change = _THIS_IP_; \
144 current->state = (state_value); \
145 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
146 } while (0)
147#else
148/*
149 * set_current_state() includes a barrier so that the write of current->state
150 * is correctly serialised wrt the caller's subsequent test of whether to
151 * actually sleep:
152 *
153 * for (;;) {
154 * set_current_state(TASK_UNINTERRUPTIBLE);
155 * if (!need_sleep)
156 * break;
157 *
158 * schedule();
159 * }
160 * __set_current_state(TASK_RUNNING);
161 *
162 * If the caller does not need such serialisation (because, for instance, the
163 * condition test and condition change and wakeup are under the same lock) then
164 * use __set_current_state().
165 *
166 * The above is typically ordered against the wakeup, which does:
167 *
168 * need_sleep = false;
169 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
170 *
171 * where wake_up_state() executes a full memory barrier before accessing the
172 * task state.
173 *
174 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
175 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
176 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
177 *
178 * However, with slightly different timing the wakeup TASK_RUNNING store can
179 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
180 * a problem either because that will result in one extra go around the loop
181 * and our @cond test will save the day.
182 *
183 * Also see the comments of try_to_wake_up().
184 */
185#define __set_current_state(state_value) \
186 current->state = (state_value)
187
188#define set_current_state(state_value) \
189 smp_store_mb(current->state, (state_value))
190
191/*
192 * set_special_state() should be used for those states when the blocking task
193 * can not use the regular condition based wait-loop. In that case we must
194 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
195 * will not collide with our state change.
196 */
197#define set_special_state(state_value) \
198 do { \
199 unsigned long flags; /* may shadow */ \
200 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
201 current->state = (state_value); \
202 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
203 } while (0)
204
205#endif
206
207/* Task command name length: */
208#define TASK_COMM_LEN 16
209
210extern void scheduler_tick(void);
211
212#define MAX_SCHEDULE_TIMEOUT LONG_MAX
213
214extern long schedule_timeout(long timeout);
215extern long schedule_timeout_interruptible(long timeout);
216extern long schedule_timeout_killable(long timeout);
217extern long schedule_timeout_uninterruptible(long timeout);
218extern long schedule_timeout_idle(long timeout);
219asmlinkage void schedule(void);
220extern void schedule_preempt_disabled(void);
221
222extern int __must_check io_schedule_prepare(void);
223extern void io_schedule_finish(int token);
224extern long io_schedule_timeout(long timeout);
225extern void io_schedule(void);
226
227/**
228 * struct prev_cputime - snapshot of system and user cputime
229 * @utime: time spent in user mode
230 * @stime: time spent in system mode
231 * @lock: protects the above two fields
232 *
233 * Stores previous user/system time values such that we can guarantee
234 * monotonicity.
235 */
236struct prev_cputime {
237#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
238 u64 utime;
239 u64 stime;
240 raw_spinlock_t lock;
241#endif
242};
243
244/**
245 * struct task_cputime - collected CPU time counts
246 * @utime: time spent in user mode, in nanoseconds
247 * @stime: time spent in kernel mode, in nanoseconds
248 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
249 *
250 * This structure groups together three kinds of CPU time that are tracked for
251 * threads and thread groups. Most things considering CPU time want to group
252 * these counts together and treat all three of them in parallel.
253 */
254struct task_cputime {
255 u64 utime;
256 u64 stime;
257 unsigned long long sum_exec_runtime;
258};
259
260/* Alternate field names when used on cache expirations: */
261#define virt_exp utime
262#define prof_exp stime
263#define sched_exp sum_exec_runtime
264
265enum vtime_state {
266 /* Task is sleeping or running in a CPU with VTIME inactive: */
267 VTIME_INACTIVE = 0,
268 /* Task runs in userspace in a CPU with VTIME active: */
269 VTIME_USER,
270 /* Task runs in kernelspace in a CPU with VTIME active: */
271 VTIME_SYS,
272};
273
274struct vtime {
275 seqcount_t seqcount;
276 unsigned long long starttime;
277 enum vtime_state state;
278 u64 utime;
279 u64 stime;
280 u64 gtime;
281};
282
283struct sched_info {
284#ifdef CONFIG_SCHED_INFO
285 /* Cumulative counters: */
286
287 /* # of times we have run on this CPU: */
288 unsigned long pcount;
289
290 /* Time spent waiting on a runqueue: */
291 unsigned long long run_delay;
292
293 /* Timestamps: */
294
295 /* When did we last run on a CPU? */
296 unsigned long long last_arrival;
297
298 /* When were we last queued to run? */
299 unsigned long long last_queued;
300
301#endif /* CONFIG_SCHED_INFO */
302};
303
304/*
305 * Integer metrics need fixed point arithmetic, e.g., sched/fair
306 * has a few: load, load_avg, util_avg, freq, and capacity.
307 *
308 * We define a basic fixed point arithmetic range, and then formalize
309 * all these metrics based on that basic range.
310 */
311# define SCHED_FIXEDPOINT_SHIFT 10
312# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
313
314struct load_weight {
315 unsigned long weight;
316 u32 inv_weight;
317};
318
319/**
320 * struct util_est - Estimation utilization of FAIR tasks
321 * @enqueued: instantaneous estimated utilization of a task/cpu
322 * @ewma: the Exponential Weighted Moving Average (EWMA)
323 * utilization of a task
324 *
325 * Support data structure to track an Exponential Weighted Moving Average
326 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
327 * average each time a task completes an activation. Sample's weight is chosen
328 * so that the EWMA will be relatively insensitive to transient changes to the
329 * task's workload.
330 *
331 * The enqueued attribute has a slightly different meaning for tasks and cpus:
332 * - task: the task's util_avg at last task dequeue time
333 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
334 * Thus, the util_est.enqueued of a task represents the contribution on the
335 * estimated utilization of the CPU where that task is currently enqueued.
336 *
337 * Only for tasks we track a moving average of the past instantaneous
338 * estimated utilization. This allows to absorb sporadic drops in utilization
339 * of an otherwise almost periodic task.
340 */
341struct util_est {
342 unsigned int enqueued;
343 unsigned int ewma;
344#define UTIL_EST_WEIGHT_SHIFT 2
345} __attribute__((__aligned__(sizeof(u64))));
346
347/*
348 * The load_avg/util_avg accumulates an infinite geometric series
349 * (see __update_load_avg() in kernel/sched/fair.c).
350 *
351 * [load_avg definition]
352 *
353 * load_avg = runnable% * scale_load_down(load)
354 *
355 * where runnable% is the time ratio that a sched_entity is runnable.
356 * For cfs_rq, it is the aggregated load_avg of all runnable and
357 * blocked sched_entities.
358 *
359 * load_avg may also take frequency scaling into account:
360 *
361 * load_avg = runnable% * scale_load_down(load) * freq%
362 *
363 * where freq% is the CPU frequency normalized to the highest frequency.
364 *
365 * [util_avg definition]
366 *
367 * util_avg = running% * SCHED_CAPACITY_SCALE
368 *
369 * where running% is the time ratio that a sched_entity is running on
370 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
371 * and blocked sched_entities.
372 *
373 * util_avg may also factor frequency scaling and CPU capacity scaling:
374 *
375 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
376 *
377 * where freq% is the same as above, and capacity% is the CPU capacity
378 * normalized to the greatest capacity (due to uarch differences, etc).
379 *
380 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
381 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
382 * we therefore scale them to as large a range as necessary. This is for
383 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
384 *
385 * [Overflow issue]
386 *
387 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
388 * with the highest load (=88761), always runnable on a single cfs_rq,
389 * and should not overflow as the number already hits PID_MAX_LIMIT.
390 *
391 * For all other cases (including 32-bit kernels), struct load_weight's
392 * weight will overflow first before we do, because:
393 *
394 * Max(load_avg) <= Max(load.weight)
395 *
396 * Then it is the load_weight's responsibility to consider overflow
397 * issues.
398 */
399struct sched_avg {
400 u64 last_update_time;
401 u64 load_sum;
402 u64 runnable_load_sum;
403 u32 util_sum;
404 u32 period_contrib;
405 unsigned long load_avg;
406 unsigned long runnable_load_avg;
407 unsigned long util_avg;
408 struct util_est util_est;
409} ____cacheline_aligned;
410
411struct sched_statistics {
412#ifdef CONFIG_SCHEDSTATS
413 u64 wait_start;
414 u64 wait_max;
415 u64 wait_count;
416 u64 wait_sum;
417 u64 iowait_count;
418 u64 iowait_sum;
419
420 u64 sleep_start;
421 u64 sleep_max;
422 s64 sum_sleep_runtime;
423
424 u64 block_start;
425 u64 block_max;
426 u64 exec_max;
427 u64 slice_max;
428
429 u64 nr_migrations_cold;
430 u64 nr_failed_migrations_affine;
431 u64 nr_failed_migrations_running;
432 u64 nr_failed_migrations_hot;
433 u64 nr_forced_migrations;
434
435 u64 nr_wakeups;
436 u64 nr_wakeups_sync;
437 u64 nr_wakeups_migrate;
438 u64 nr_wakeups_local;
439 u64 nr_wakeups_remote;
440 u64 nr_wakeups_affine;
441 u64 nr_wakeups_affine_attempts;
442 u64 nr_wakeups_passive;
443 u64 nr_wakeups_idle;
444#endif
445};
446
447struct sched_entity {
448 /* For load-balancing: */
449 struct load_weight load;
450 unsigned long runnable_weight;
451 struct rb_node run_node;
452 struct list_head group_node;
453 unsigned int on_rq;
454
455 u64 exec_start;
456 u64 sum_exec_runtime;
457 u64 vruntime;
458 u64 prev_sum_exec_runtime;
459
460 u64 nr_migrations;
461
462 struct sched_statistics statistics;
463
464#ifdef CONFIG_FAIR_GROUP_SCHED
465 int depth;
466 struct sched_entity *parent;
467 /* rq on which this entity is (to be) queued: */
468 struct cfs_rq *cfs_rq;
469 /* rq "owned" by this entity/group: */
470 struct cfs_rq *my_q;
471#endif
472
473#ifdef CONFIG_SMP
474 /*
475 * Per entity load average tracking.
476 *
477 * Put into separate cache line so it does not
478 * collide with read-mostly values above.
479 */
480 struct sched_avg avg;
481#endif
482};
483
484struct sched_rt_entity {
485 struct list_head run_list;
486 unsigned long timeout;
487 unsigned long watchdog_stamp;
488 unsigned int time_slice;
489 unsigned short on_rq;
490 unsigned short on_list;
491
492 struct sched_rt_entity *back;
493#ifdef CONFIG_RT_GROUP_SCHED
494 struct sched_rt_entity *parent;
495 /* rq on which this entity is (to be) queued: */
496 struct rt_rq *rt_rq;
497 /* rq "owned" by this entity/group: */
498 struct rt_rq *my_q;
499#endif
500} __randomize_layout;
501
502struct sched_dl_entity {
503 struct rb_node rb_node;
504
505 /*
506 * Original scheduling parameters. Copied here from sched_attr
507 * during sched_setattr(), they will remain the same until
508 * the next sched_setattr().
509 */
510 u64 dl_runtime; /* Maximum runtime for each instance */
511 u64 dl_deadline; /* Relative deadline of each instance */
512 u64 dl_period; /* Separation of two instances (period) */
513 u64 dl_bw; /* dl_runtime / dl_period */
514 u64 dl_density; /* dl_runtime / dl_deadline */
515
516 /*
517 * Actual scheduling parameters. Initialized with the values above,
518 * they are continuously updated during task execution. Note that
519 * the remaining runtime could be < 0 in case we are in overrun.
520 */
521 s64 runtime; /* Remaining runtime for this instance */
522 u64 deadline; /* Absolute deadline for this instance */
523 unsigned int flags; /* Specifying the scheduler behaviour */
524
525 /*
526 * Some bool flags:
527 *
528 * @dl_throttled tells if we exhausted the runtime. If so, the
529 * task has to wait for a replenishment to be performed at the
530 * next firing of dl_timer.
531 *
532 * @dl_boosted tells if we are boosted due to DI. If so we are
533 * outside bandwidth enforcement mechanism (but only until we
534 * exit the critical section);
535 *
536 * @dl_yielded tells if task gave up the CPU before consuming
537 * all its available runtime during the last job.
538 *
539 * @dl_non_contending tells if the task is inactive while still
540 * contributing to the active utilization. In other words, it
541 * indicates if the inactive timer has been armed and its handler
542 * has not been executed yet. This flag is useful to avoid race
543 * conditions between the inactive timer handler and the wakeup
544 * code.
545 *
546 * @dl_overrun tells if the task asked to be informed about runtime
547 * overruns.
548 */
549 unsigned int dl_throttled : 1;
550 unsigned int dl_boosted : 1;
551 unsigned int dl_yielded : 1;
552 unsigned int dl_non_contending : 1;
553 unsigned int dl_overrun : 1;
554
555 /*
556 * Bandwidth enforcement timer. Each -deadline task has its
557 * own bandwidth to be enforced, thus we need one timer per task.
558 */
559 struct hrtimer dl_timer;
560
561 /*
562 * Inactive timer, responsible for decreasing the active utilization
563 * at the "0-lag time". When a -deadline task blocks, it contributes
564 * to GRUB's active utilization until the "0-lag time", hence a
565 * timer is needed to decrease the active utilization at the correct
566 * time.
567 */
568 struct hrtimer inactive_timer;
569};
570
571union rcu_special {
572 struct {
573 u8 blocked;
574 u8 need_qs;
575 u8 exp_hint; /* Hint for performance. */
576 u8 pad; /* No garbage from compiler! */
577 } b; /* Bits. */
578 u32 s; /* Set of bits. */
579};
580
581enum perf_event_task_context {
582 perf_invalid_context = -1,
583 perf_hw_context = 0,
584 perf_sw_context,
585 perf_nr_task_contexts,
586};
587
588struct wake_q_node {
589 struct wake_q_node *next;
590};
591
592struct task_struct {
593#ifdef CONFIG_THREAD_INFO_IN_TASK
594 /*
595 * For reasons of header soup (see current_thread_info()), this
596 * must be the first element of task_struct.
597 */
598 struct thread_info thread_info;
599#endif
600 /* -1 unrunnable, 0 runnable, >0 stopped: */
601 volatile long state;
602
603 /*
604 * This begins the randomizable portion of task_struct. Only
605 * scheduling-critical items should be added above here.
606 */
607 randomized_struct_fields_start
608
609 void *stack;
610 atomic_t usage;
611 /* Per task flags (PF_*), defined further below: */
612 unsigned int flags;
613 unsigned int ptrace;
614
615#ifdef CONFIG_SMP
616 struct llist_node wake_entry;
617 int on_cpu;
618#ifdef CONFIG_THREAD_INFO_IN_TASK
619 /* Current CPU: */
620 unsigned int cpu;
621#endif
622 unsigned int wakee_flips;
623 unsigned long wakee_flip_decay_ts;
624 struct task_struct *last_wakee;
625
626 /*
627 * recent_used_cpu is initially set as the last CPU used by a task
628 * that wakes affine another task. Waker/wakee relationships can
629 * push tasks around a CPU where each wakeup moves to the next one.
630 * Tracking a recently used CPU allows a quick search for a recently
631 * used CPU that may be idle.
632 */
633 int recent_used_cpu;
634 int wake_cpu;
635#endif
636 int on_rq;
637
638 int prio;
639 int static_prio;
640 int normal_prio;
641 unsigned int rt_priority;
642
643 const struct sched_class *sched_class;
644 struct sched_entity se;
645 struct sched_rt_entity rt;
646#ifdef CONFIG_CGROUP_SCHED
647 struct task_group *sched_task_group;
648#endif
649 struct sched_dl_entity dl;
650
651#ifdef CONFIG_PREEMPT_NOTIFIERS
652 /* List of struct preempt_notifier: */
653 struct hlist_head preempt_notifiers;
654#endif
655
656#ifdef CONFIG_BLK_DEV_IO_TRACE
657 unsigned int btrace_seq;
658#endif
659
660 unsigned int policy;
661 int nr_cpus_allowed;
662 cpumask_t cpus_allowed;
663
664#ifdef CONFIG_PREEMPT_RCU
665 int rcu_read_lock_nesting;
666 union rcu_special rcu_read_unlock_special;
667 struct list_head rcu_node_entry;
668 struct rcu_node *rcu_blocked_node;
669#endif /* #ifdef CONFIG_PREEMPT_RCU */
670
671#ifdef CONFIG_TASKS_RCU
672 unsigned long rcu_tasks_nvcsw;
673 u8 rcu_tasks_holdout;
674 u8 rcu_tasks_idx;
675 int rcu_tasks_idle_cpu;
676 struct list_head rcu_tasks_holdout_list;
677#endif /* #ifdef CONFIG_TASKS_RCU */
678
679 struct sched_info sched_info;
680
681 struct list_head tasks;
682#ifdef CONFIG_SMP
683 struct plist_node pushable_tasks;
684 struct rb_node pushable_dl_tasks;
685#endif
686
687 struct mm_struct *mm;
688 struct mm_struct *active_mm;
689
690 /* Per-thread vma caching: */
691 struct vmacache vmacache;
692
693#ifdef SPLIT_RSS_COUNTING
694 struct task_rss_stat rss_stat;
695#endif
696 int exit_state;
697 int exit_code;
698 int exit_signal;
699 /* The signal sent when the parent dies: */
700 int pdeath_signal;
701 /* JOBCTL_*, siglock protected: */
702 unsigned long jobctl;
703
704 /* Used for emulating ABI behavior of previous Linux versions: */
705 unsigned int personality;
706
707 /* Scheduler bits, serialized by scheduler locks: */
708 unsigned sched_reset_on_fork:1;
709 unsigned sched_contributes_to_load:1;
710 unsigned sched_migrated:1;
711 unsigned sched_remote_wakeup:1;
712#ifdef CONFIG_PSI
713 unsigned sched_psi_wake_requeue:1;
714#endif
715
716 /* Force alignment to the next boundary: */
717 unsigned :0;
718
719 /* Unserialized, strictly 'current' */
720
721 /* Bit to tell LSMs we're in execve(): */
722 unsigned in_execve:1;
723 unsigned in_iowait:1;
724#ifndef TIF_RESTORE_SIGMASK
725 unsigned restore_sigmask:1;
726#endif
727#ifdef CONFIG_MEMCG
728 unsigned in_user_fault:1;
729#endif
730#ifdef CONFIG_COMPAT_BRK
731 unsigned brk_randomized:1;
732#endif
733#ifdef CONFIG_CGROUPS
734 /* disallow userland-initiated cgroup migration */
735 unsigned no_cgroup_migration:1;
736#endif
737#ifdef CONFIG_BLK_CGROUP
738 /* to be used once the psi infrastructure lands upstream. */
739 unsigned use_memdelay:1;
740#endif
741
742 unsigned long atomic_flags; /* Flags requiring atomic access. */
743
744 struct restart_block restart_block;
745
746 pid_t pid;
747 pid_t tgid;
748
749#ifdef CONFIG_STACKPROTECTOR
750 /* Canary value for the -fstack-protector GCC feature: */
751 unsigned long stack_canary;
752#endif
753 /*
754 * Pointers to the (original) parent process, youngest child, younger sibling,
755 * older sibling, respectively. (p->father can be replaced with
756 * p->real_parent->pid)
757 */
758
759 /* Real parent process: */
760 struct task_struct __rcu *real_parent;
761
762 /* Recipient of SIGCHLD, wait4() reports: */
763 struct task_struct __rcu *parent;
764
765 /*
766 * Children/sibling form the list of natural children:
767 */
768 struct list_head children;
769 struct list_head sibling;
770 struct task_struct *group_leader;
771
772 /*
773 * 'ptraced' is the list of tasks this task is using ptrace() on.
774 *
775 * This includes both natural children and PTRACE_ATTACH targets.
776 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
777 */
778 struct list_head ptraced;
779 struct list_head ptrace_entry;
780
781 /* PID/PID hash table linkage. */
782 struct pid *thread_pid;
783 struct hlist_node pid_links[PIDTYPE_MAX];
784 struct list_head thread_group;
785 struct list_head thread_node;
786
787 struct completion *vfork_done;
788
789 /* CLONE_CHILD_SETTID: */
790 int __user *set_child_tid;
791
792 /* CLONE_CHILD_CLEARTID: */
793 int __user *clear_child_tid;
794
795 u64 utime;
796 u64 stime;
797#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
798 u64 utimescaled;
799 u64 stimescaled;
800#endif
801 u64 gtime;
802 struct prev_cputime prev_cputime;
803#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
804 struct vtime vtime;
805#endif
806
807#ifdef CONFIG_NO_HZ_FULL
808 atomic_t tick_dep_mask;
809#endif
810 /* Context switch counts: */
811 unsigned long nvcsw;
812 unsigned long nivcsw;
813
814 /* Monotonic time in nsecs: */
815 u64 start_time;
816
817 /* Boot based time in nsecs: */
818 u64 real_start_time;
819
820 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
821 unsigned long min_flt;
822 unsigned long maj_flt;
823
824#ifdef CONFIG_POSIX_TIMERS
825 struct task_cputime cputime_expires;
826 struct list_head cpu_timers[3];
827#endif
828
829 /* Process credentials: */
830
831 /* Tracer's credentials at attach: */
832 const struct cred __rcu *ptracer_cred;
833
834 /* Objective and real subjective task credentials (COW): */
835 const struct cred __rcu *real_cred;
836
837 /* Effective (overridable) subjective task credentials (COW): */
838 const struct cred __rcu *cred;
839
840 /*
841 * executable name, excluding path.
842 *
843 * - normally initialized setup_new_exec()
844 * - access it with [gs]et_task_comm()
845 * - lock it with task_lock()
846 */
847 char comm[TASK_COMM_LEN];
848
849 struct nameidata *nameidata;
850
851#ifdef CONFIG_SYSVIPC
852 struct sysv_sem sysvsem;
853 struct sysv_shm sysvshm;
854#endif
855#ifdef CONFIG_DETECT_HUNG_TASK
856 unsigned long last_switch_count;
857 unsigned long last_switch_time;
858#endif
859 /* Filesystem information: */
860 struct fs_struct *fs;
861
862 /* Open file information: */
863 struct files_struct *files;
864
865 /* Namespaces: */
866 struct nsproxy *nsproxy;
867
868 /* Signal handlers: */
869 struct signal_struct *signal;
870 struct sighand_struct *sighand;
871 sigset_t blocked;
872 sigset_t real_blocked;
873 /* Restored if set_restore_sigmask() was used: */
874 sigset_t saved_sigmask;
875 struct sigpending pending;
876 unsigned long sas_ss_sp;
877 size_t sas_ss_size;
878 unsigned int sas_ss_flags;
879
880 struct callback_head *task_works;
881
882 struct audit_context *audit_context;
883#ifdef CONFIG_AUDITSYSCALL
884 kuid_t loginuid;
885 unsigned int sessionid;
886#endif
887 struct seccomp seccomp;
888
889 /* Thread group tracking: */
890 u32 parent_exec_id;
891 u32 self_exec_id;
892
893 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
894 spinlock_t alloc_lock;
895
896 /* Protection of the PI data structures: */
897 raw_spinlock_t pi_lock;
898
899 struct wake_q_node wake_q;
900
901#ifdef CONFIG_RT_MUTEXES
902 /* PI waiters blocked on a rt_mutex held by this task: */
903 struct rb_root_cached pi_waiters;
904 /* Updated under owner's pi_lock and rq lock */
905 struct task_struct *pi_top_task;
906 /* Deadlock detection and priority inheritance handling: */
907 struct rt_mutex_waiter *pi_blocked_on;
908#endif
909
910#ifdef CONFIG_DEBUG_MUTEXES
911 /* Mutex deadlock detection: */
912 struct mutex_waiter *blocked_on;
913#endif
914
915#ifdef CONFIG_TRACE_IRQFLAGS
916 unsigned int irq_events;
917 unsigned long hardirq_enable_ip;
918 unsigned long hardirq_disable_ip;
919 unsigned int hardirq_enable_event;
920 unsigned int hardirq_disable_event;
921 int hardirqs_enabled;
922 int hardirq_context;
923 unsigned long softirq_disable_ip;
924 unsigned long softirq_enable_ip;
925 unsigned int softirq_disable_event;
926 unsigned int softirq_enable_event;
927 int softirqs_enabled;
928 int softirq_context;
929#endif
930
931#ifdef CONFIG_LOCKDEP
932# define MAX_LOCK_DEPTH 48UL
933 u64 curr_chain_key;
934 int lockdep_depth;
935 unsigned int lockdep_recursion;
936 struct held_lock held_locks[MAX_LOCK_DEPTH];
937#endif
938
939#ifdef CONFIG_UBSAN
940 unsigned int in_ubsan;
941#endif
942
943 /* Journalling filesystem info: */
944 void *journal_info;
945
946 /* Stacked block device info: */
947 struct bio_list *bio_list;
948
949#ifdef CONFIG_BLOCK
950 /* Stack plugging: */
951 struct blk_plug *plug;
952#endif
953
954 /* VM state: */
955 struct reclaim_state *reclaim_state;
956
957 struct backing_dev_info *backing_dev_info;
958
959 struct io_context *io_context;
960
961 /* Ptrace state: */
962 unsigned long ptrace_message;
963 kernel_siginfo_t *last_siginfo;
964
965 struct task_io_accounting ioac;
966#ifdef CONFIG_PSI
967 /* Pressure stall state */
968 unsigned int psi_flags;
969#endif
970#ifdef CONFIG_TASK_XACCT
971 /* Accumulated RSS usage: */
972 u64 acct_rss_mem1;
973 /* Accumulated virtual memory usage: */
974 u64 acct_vm_mem1;
975 /* stime + utime since last update: */
976 u64 acct_timexpd;
977#endif
978#ifdef CONFIG_CPUSETS
979 /* Protected by ->alloc_lock: */
980 nodemask_t mems_allowed;
981 /* Seqence number to catch updates: */
982 seqcount_t mems_allowed_seq;
983 int cpuset_mem_spread_rotor;
984 int cpuset_slab_spread_rotor;
985#endif
986#ifdef CONFIG_CGROUPS
987 /* Control Group info protected by css_set_lock: */
988 struct css_set __rcu *cgroups;
989 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
990 struct list_head cg_list;
991#endif
992#ifdef CONFIG_X86_CPU_RESCTRL
993 u32 closid;
994 u32 rmid;
995#endif
996#ifdef CONFIG_FUTEX
997 struct robust_list_head __user *robust_list;
998#ifdef CONFIG_COMPAT
999 struct compat_robust_list_head __user *compat_robust_list;
1000#endif
1001 struct list_head pi_state_list;
1002 struct futex_pi_state *pi_state_cache;
1003#endif
1004#ifdef CONFIG_PERF_EVENTS
1005 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1006 struct mutex perf_event_mutex;
1007 struct list_head perf_event_list;
1008#endif
1009#ifdef CONFIG_DEBUG_PREEMPT
1010 unsigned long preempt_disable_ip;
1011#endif
1012#ifdef CONFIG_NUMA
1013 /* Protected by alloc_lock: */
1014 struct mempolicy *mempolicy;
1015 short il_prev;
1016 short pref_node_fork;
1017#endif
1018#ifdef CONFIG_NUMA_BALANCING
1019 int numa_scan_seq;
1020 unsigned int numa_scan_period;
1021 unsigned int numa_scan_period_max;
1022 int numa_preferred_nid;
1023 unsigned long numa_migrate_retry;
1024 /* Migration stamp: */
1025 u64 node_stamp;
1026 u64 last_task_numa_placement;
1027 u64 last_sum_exec_runtime;
1028 struct callback_head numa_work;
1029
1030 struct numa_group *numa_group;
1031
1032 /*
1033 * numa_faults is an array split into four regions:
1034 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1035 * in this precise order.
1036 *
1037 * faults_memory: Exponential decaying average of faults on a per-node
1038 * basis. Scheduling placement decisions are made based on these
1039 * counts. The values remain static for the duration of a PTE scan.
1040 * faults_cpu: Track the nodes the process was running on when a NUMA
1041 * hinting fault was incurred.
1042 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1043 * during the current scan window. When the scan completes, the counts
1044 * in faults_memory and faults_cpu decay and these values are copied.
1045 */
1046 unsigned long *numa_faults;
1047 unsigned long total_numa_faults;
1048
1049 /*
1050 * numa_faults_locality tracks if faults recorded during the last
1051 * scan window were remote/local or failed to migrate. The task scan
1052 * period is adapted based on the locality of the faults with different
1053 * weights depending on whether they were shared or private faults
1054 */
1055 unsigned long numa_faults_locality[3];
1056
1057 unsigned long numa_pages_migrated;
1058#endif /* CONFIG_NUMA_BALANCING */
1059
1060#ifdef CONFIG_RSEQ
1061 struct rseq __user *rseq;
1062 u32 rseq_len;
1063 u32 rseq_sig;
1064 /*
1065 * RmW on rseq_event_mask must be performed atomically
1066 * with respect to preemption.
1067 */
1068 unsigned long rseq_event_mask;
1069#endif
1070
1071 struct tlbflush_unmap_batch tlb_ubc;
1072
1073 struct rcu_head rcu;
1074
1075 /* Cache last used pipe for splice(): */
1076 struct pipe_inode_info *splice_pipe;
1077
1078 struct page_frag task_frag;
1079
1080#ifdef CONFIG_TASK_DELAY_ACCT
1081 struct task_delay_info *delays;
1082#endif
1083
1084#ifdef CONFIG_FAULT_INJECTION
1085 int make_it_fail;
1086 unsigned int fail_nth;
1087#endif
1088 /*
1089 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1090 * balance_dirty_pages() for a dirty throttling pause:
1091 */
1092 int nr_dirtied;
1093 int nr_dirtied_pause;
1094 /* Start of a write-and-pause period: */
1095 unsigned long dirty_paused_when;
1096
1097#ifdef CONFIG_LATENCYTOP
1098 int latency_record_count;
1099 struct latency_record latency_record[LT_SAVECOUNT];
1100#endif
1101 /*
1102 * Time slack values; these are used to round up poll() and
1103 * select() etc timeout values. These are in nanoseconds.
1104 */
1105 u64 timer_slack_ns;
1106 u64 default_timer_slack_ns;
1107
1108#ifdef CONFIG_KASAN
1109 unsigned int kasan_depth;
1110#endif
1111
1112#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1113 /* Index of current stored address in ret_stack: */
1114 int curr_ret_stack;
1115 int curr_ret_depth;
1116
1117 /* Stack of return addresses for return function tracing: */
1118 struct ftrace_ret_stack *ret_stack;
1119
1120 /* Timestamp for last schedule: */
1121 unsigned long long ftrace_timestamp;
1122
1123 /*
1124 * Number of functions that haven't been traced
1125 * because of depth overrun:
1126 */
1127 atomic_t trace_overrun;
1128
1129 /* Pause tracing: */
1130 atomic_t tracing_graph_pause;
1131#endif
1132
1133#ifdef CONFIG_TRACING
1134 /* State flags for use by tracers: */
1135 unsigned long trace;
1136
1137 /* Bitmask and counter of trace recursion: */
1138 unsigned long trace_recursion;
1139#endif /* CONFIG_TRACING */
1140
1141#ifdef CONFIG_KCOV
1142 /* Coverage collection mode enabled for this task (0 if disabled): */
1143 unsigned int kcov_mode;
1144
1145 /* Size of the kcov_area: */
1146 unsigned int kcov_size;
1147
1148 /* Buffer for coverage collection: */
1149 void *kcov_area;
1150
1151 /* KCOV descriptor wired with this task or NULL: */
1152 struct kcov *kcov;
1153#endif
1154
1155#ifdef CONFIG_MEMCG
1156 struct mem_cgroup *memcg_in_oom;
1157 gfp_t memcg_oom_gfp_mask;
1158 int memcg_oom_order;
1159
1160 /* Number of pages to reclaim on returning to userland: */
1161 unsigned int memcg_nr_pages_over_high;
1162
1163 /* Used by memcontrol for targeted memcg charge: */
1164 struct mem_cgroup *active_memcg;
1165#endif
1166
1167#ifdef CONFIG_BLK_CGROUP
1168 struct request_queue *throttle_queue;
1169#endif
1170
1171#ifdef CONFIG_UPROBES
1172 struct uprobe_task *utask;
1173#endif
1174#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1175 unsigned int sequential_io;
1176 unsigned int sequential_io_avg;
1177#endif
1178#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1179 unsigned long task_state_change;
1180#endif
1181 int pagefault_disabled;
1182#ifdef CONFIG_MMU
1183 struct task_struct *oom_reaper_list;
1184#endif
1185#ifdef CONFIG_VMAP_STACK
1186 struct vm_struct *stack_vm_area;
1187#endif
1188#ifdef CONFIG_THREAD_INFO_IN_TASK
1189 /* A live task holds one reference: */
1190 atomic_t stack_refcount;
1191#endif
1192#ifdef CONFIG_LIVEPATCH
1193 int patch_state;
1194#endif
1195#ifdef CONFIG_SECURITY
1196 /* Used by LSM modules for access restriction: */
1197 void *security;
1198#endif
1199
1200#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1201 unsigned long lowest_stack;
1202 unsigned long prev_lowest_stack;
1203#endif
1204
1205 /*
1206 * New fields for task_struct should be added above here, so that
1207 * they are included in the randomized portion of task_struct.
1208 */
1209 randomized_struct_fields_end
1210
1211 /* CPU-specific state of this task: */
1212 struct thread_struct thread;
1213
1214 /*
1215 * WARNING: on x86, 'thread_struct' contains a variable-sized
1216 * structure. It *MUST* be at the end of 'task_struct'.
1217 *
1218 * Do not put anything below here!
1219 */
1220};
1221
1222static inline struct pid *task_pid(struct task_struct *task)
1223{
1224 return task->thread_pid;
1225}
1226
1227/*
1228 * the helpers to get the task's different pids as they are seen
1229 * from various namespaces
1230 *
1231 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1232 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1233 * current.
1234 * task_xid_nr_ns() : id seen from the ns specified;
1235 *
1236 * see also pid_nr() etc in include/linux/pid.h
1237 */
1238pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1239
1240static inline pid_t task_pid_nr(struct task_struct *tsk)
1241{
1242 return tsk->pid;
1243}
1244
1245static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1246{
1247 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1248}
1249
1250static inline pid_t task_pid_vnr(struct task_struct *tsk)
1251{
1252 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1253}
1254
1255
1256static inline pid_t task_tgid_nr(struct task_struct *tsk)
1257{
1258 return tsk->tgid;
1259}
1260
1261/**
1262 * pid_alive - check that a task structure is not stale
1263 * @p: Task structure to be checked.
1264 *
1265 * Test if a process is not yet dead (at most zombie state)
1266 * If pid_alive fails, then pointers within the task structure
1267 * can be stale and must not be dereferenced.
1268 *
1269 * Return: 1 if the process is alive. 0 otherwise.
1270 */
1271static inline int pid_alive(const struct task_struct *p)
1272{
1273 return p->thread_pid != NULL;
1274}
1275
1276static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1277{
1278 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1279}
1280
1281static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1282{
1283 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1284}
1285
1286
1287static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1288{
1289 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1290}
1291
1292static inline pid_t task_session_vnr(struct task_struct *tsk)
1293{
1294 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1295}
1296
1297static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1298{
1299 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1300}
1301
1302static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1303{
1304 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1305}
1306
1307static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1308{
1309 pid_t pid = 0;
1310
1311 rcu_read_lock();
1312 if (pid_alive(tsk))
1313 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1314 rcu_read_unlock();
1315
1316 return pid;
1317}
1318
1319static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1320{
1321 return task_ppid_nr_ns(tsk, &init_pid_ns);
1322}
1323
1324/* Obsolete, do not use: */
1325static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1326{
1327 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1328}
1329
1330#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1331#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1332
1333static inline unsigned int task_state_index(struct task_struct *tsk)
1334{
1335 unsigned int tsk_state = READ_ONCE(tsk->state);
1336 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1337
1338 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1339
1340 if (tsk_state == TASK_IDLE)
1341 state = TASK_REPORT_IDLE;
1342
1343 return fls(state);
1344}
1345
1346static inline char task_index_to_char(unsigned int state)
1347{
1348 static const char state_char[] = "RSDTtXZPI";
1349
1350 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1351
1352 return state_char[state];
1353}
1354
1355static inline char task_state_to_char(struct task_struct *tsk)
1356{
1357 return task_index_to_char(task_state_index(tsk));
1358}
1359
1360/**
1361 * is_global_init - check if a task structure is init. Since init
1362 * is free to have sub-threads we need to check tgid.
1363 * @tsk: Task structure to be checked.
1364 *
1365 * Check if a task structure is the first user space task the kernel created.
1366 *
1367 * Return: 1 if the task structure is init. 0 otherwise.
1368 */
1369static inline int is_global_init(struct task_struct *tsk)
1370{
1371 return task_tgid_nr(tsk) == 1;
1372}
1373
1374extern struct pid *cad_pid;
1375
1376/*
1377 * Per process flags
1378 */
1379#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1380#define PF_EXITING 0x00000004 /* Getting shut down */
1381#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1382#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1383#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1384#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1385#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1386#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1387#define PF_DUMPCORE 0x00000200 /* Dumped core */
1388#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1389#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1390#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1391#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1392#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1393#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1394#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1395#define PF_KSWAPD 0x00020000 /* I am kswapd */
1396#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1397#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1398#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1399#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1400#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1401#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1402#define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */
1403#define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
1404#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1405#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1406#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1407#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1408#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1409
1410/*
1411 * Only the _current_ task can read/write to tsk->flags, but other
1412 * tasks can access tsk->flags in readonly mode for example
1413 * with tsk_used_math (like during threaded core dumping).
1414 * There is however an exception to this rule during ptrace
1415 * or during fork: the ptracer task is allowed to write to the
1416 * child->flags of its traced child (same goes for fork, the parent
1417 * can write to the child->flags), because we're guaranteed the
1418 * child is not running and in turn not changing child->flags
1419 * at the same time the parent does it.
1420 */
1421#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1422#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1423#define clear_used_math() clear_stopped_child_used_math(current)
1424#define set_used_math() set_stopped_child_used_math(current)
1425
1426#define conditional_stopped_child_used_math(condition, child) \
1427 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1428
1429#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1430
1431#define copy_to_stopped_child_used_math(child) \
1432 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1433
1434/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1435#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1436#define used_math() tsk_used_math(current)
1437
1438static inline bool is_percpu_thread(void)
1439{
1440#ifdef CONFIG_SMP
1441 return (current->flags & PF_NO_SETAFFINITY) &&
1442 (current->nr_cpus_allowed == 1);
1443#else
1444 return true;
1445#endif
1446}
1447
1448/* Per-process atomic flags. */
1449#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1450#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1451#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1452#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1453#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1454#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1455#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1456
1457#define TASK_PFA_TEST(name, func) \
1458 static inline bool task_##func(struct task_struct *p) \
1459 { return test_bit(PFA_##name, &p->atomic_flags); }
1460
1461#define TASK_PFA_SET(name, func) \
1462 static inline void task_set_##func(struct task_struct *p) \
1463 { set_bit(PFA_##name, &p->atomic_flags); }
1464
1465#define TASK_PFA_CLEAR(name, func) \
1466 static inline void task_clear_##func(struct task_struct *p) \
1467 { clear_bit(PFA_##name, &p->atomic_flags); }
1468
1469TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1470TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1471
1472TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1473TASK_PFA_SET(SPREAD_PAGE, spread_page)
1474TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1475
1476TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1477TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1478TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1479
1480TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1481TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1482TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1483
1484TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1485TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1486
1487TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1488TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1489TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1490
1491TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1492TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1493
1494static inline void
1495current_restore_flags(unsigned long orig_flags, unsigned long flags)
1496{
1497 current->flags &= ~flags;
1498 current->flags |= orig_flags & flags;
1499}
1500
1501extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1502extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1503#ifdef CONFIG_SMP
1504extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1505extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1506#else
1507static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1508{
1509}
1510static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1511{
1512 if (!cpumask_test_cpu(0, new_mask))
1513 return -EINVAL;
1514 return 0;
1515}
1516#endif
1517
1518#ifndef cpu_relax_yield
1519#define cpu_relax_yield() cpu_relax()
1520#endif
1521
1522extern int yield_to(struct task_struct *p, bool preempt);
1523extern void set_user_nice(struct task_struct *p, long nice);
1524extern int task_prio(const struct task_struct *p);
1525
1526/**
1527 * task_nice - return the nice value of a given task.
1528 * @p: the task in question.
1529 *
1530 * Return: The nice value [ -20 ... 0 ... 19 ].
1531 */
1532static inline int task_nice(const struct task_struct *p)
1533{
1534 return PRIO_TO_NICE((p)->static_prio);
1535}
1536
1537extern int can_nice(const struct task_struct *p, const int nice);
1538extern int task_curr(const struct task_struct *p);
1539extern int idle_cpu(int cpu);
1540extern int available_idle_cpu(int cpu);
1541extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1542extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1543extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1544extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1545extern struct task_struct *idle_task(int cpu);
1546
1547/**
1548 * is_idle_task - is the specified task an idle task?
1549 * @p: the task in question.
1550 *
1551 * Return: 1 if @p is an idle task. 0 otherwise.
1552 */
1553static inline bool is_idle_task(const struct task_struct *p)
1554{
1555 return !!(p->flags & PF_IDLE);
1556}
1557
1558extern struct task_struct *curr_task(int cpu);
1559extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1560
1561void yield(void);
1562
1563union thread_union {
1564#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1565 struct task_struct task;
1566#endif
1567#ifndef CONFIG_THREAD_INFO_IN_TASK
1568 struct thread_info thread_info;
1569#endif
1570 unsigned long stack[THREAD_SIZE/sizeof(long)];
1571};
1572
1573#ifndef CONFIG_THREAD_INFO_IN_TASK
1574extern struct thread_info init_thread_info;
1575#endif
1576
1577extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1578
1579#ifdef CONFIG_THREAD_INFO_IN_TASK
1580static inline struct thread_info *task_thread_info(struct task_struct *task)
1581{
1582 return &task->thread_info;
1583}
1584#elif !defined(__HAVE_THREAD_FUNCTIONS)
1585# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1586#endif
1587
1588/*
1589 * find a task by one of its numerical ids
1590 *
1591 * find_task_by_pid_ns():
1592 * finds a task by its pid in the specified namespace
1593 * find_task_by_vpid():
1594 * finds a task by its virtual pid
1595 *
1596 * see also find_vpid() etc in include/linux/pid.h
1597 */
1598
1599extern struct task_struct *find_task_by_vpid(pid_t nr);
1600extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1601
1602/*
1603 * find a task by its virtual pid and get the task struct
1604 */
1605extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1606
1607extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1608extern int wake_up_process(struct task_struct *tsk);
1609extern void wake_up_new_task(struct task_struct *tsk);
1610
1611#ifdef CONFIG_SMP
1612extern void kick_process(struct task_struct *tsk);
1613#else
1614static inline void kick_process(struct task_struct *tsk) { }
1615#endif
1616
1617extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1618
1619static inline void set_task_comm(struct task_struct *tsk, const char *from)
1620{
1621 __set_task_comm(tsk, from, false);
1622}
1623
1624extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1625#define get_task_comm(buf, tsk) ({ \
1626 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1627 __get_task_comm(buf, sizeof(buf), tsk); \
1628})
1629
1630#ifdef CONFIG_SMP
1631void scheduler_ipi(void);
1632extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1633#else
1634static inline void scheduler_ipi(void) { }
1635static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1636{
1637 return 1;
1638}
1639#endif
1640
1641/*
1642 * Set thread flags in other task's structures.
1643 * See asm/thread_info.h for TIF_xxxx flags available:
1644 */
1645static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1646{
1647 set_ti_thread_flag(task_thread_info(tsk), flag);
1648}
1649
1650static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1651{
1652 clear_ti_thread_flag(task_thread_info(tsk), flag);
1653}
1654
1655static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1656 bool value)
1657{
1658 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1659}
1660
1661static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1662{
1663 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1664}
1665
1666static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1667{
1668 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1669}
1670
1671static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1672{
1673 return test_ti_thread_flag(task_thread_info(tsk), flag);
1674}
1675
1676static inline void set_tsk_need_resched(struct task_struct *tsk)
1677{
1678 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1679}
1680
1681static inline void clear_tsk_need_resched(struct task_struct *tsk)
1682{
1683 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1684}
1685
1686static inline int test_tsk_need_resched(struct task_struct *tsk)
1687{
1688 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1689}
1690
1691/*
1692 * cond_resched() and cond_resched_lock(): latency reduction via
1693 * explicit rescheduling in places that are safe. The return
1694 * value indicates whether a reschedule was done in fact.
1695 * cond_resched_lock() will drop the spinlock before scheduling,
1696 */
1697#ifndef CONFIG_PREEMPT
1698extern int _cond_resched(void);
1699#else
1700static inline int _cond_resched(void) { return 0; }
1701#endif
1702
1703#define cond_resched() ({ \
1704 ___might_sleep(__FILE__, __LINE__, 0); \
1705 _cond_resched(); \
1706})
1707
1708extern int __cond_resched_lock(spinlock_t *lock);
1709
1710#define cond_resched_lock(lock) ({ \
1711 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1712 __cond_resched_lock(lock); \
1713})
1714
1715static inline void cond_resched_rcu(void)
1716{
1717#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1718 rcu_read_unlock();
1719 cond_resched();
1720 rcu_read_lock();
1721#endif
1722}
1723
1724/*
1725 * Does a critical section need to be broken due to another
1726 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1727 * but a general need for low latency)
1728 */
1729static inline int spin_needbreak(spinlock_t *lock)
1730{
1731#ifdef CONFIG_PREEMPT
1732 return spin_is_contended(lock);
1733#else
1734 return 0;
1735#endif
1736}
1737
1738static __always_inline bool need_resched(void)
1739{
1740 return unlikely(tif_need_resched());
1741}
1742
1743/*
1744 * Wrappers for p->thread_info->cpu access. No-op on UP.
1745 */
1746#ifdef CONFIG_SMP
1747
1748static inline unsigned int task_cpu(const struct task_struct *p)
1749{
1750#ifdef CONFIG_THREAD_INFO_IN_TASK
1751 return p->cpu;
1752#else
1753 return task_thread_info(p)->cpu;
1754#endif
1755}
1756
1757extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1758
1759#else
1760
1761static inline unsigned int task_cpu(const struct task_struct *p)
1762{
1763 return 0;
1764}
1765
1766static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1767{
1768}
1769
1770#endif /* CONFIG_SMP */
1771
1772/*
1773 * In order to reduce various lock holder preemption latencies provide an
1774 * interface to see if a vCPU is currently running or not.
1775 *
1776 * This allows us to terminate optimistic spin loops and block, analogous to
1777 * the native optimistic spin heuristic of testing if the lock owner task is
1778 * running or not.
1779 */
1780#ifndef vcpu_is_preempted
1781# define vcpu_is_preempted(cpu) false
1782#endif
1783
1784extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1785extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1786
1787#ifndef TASK_SIZE_OF
1788#define TASK_SIZE_OF(tsk) TASK_SIZE
1789#endif
1790
1791#ifdef CONFIG_RSEQ
1792
1793/*
1794 * Map the event mask on the user-space ABI enum rseq_cs_flags
1795 * for direct mask checks.
1796 */
1797enum rseq_event_mask_bits {
1798 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1799 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1800 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1801};
1802
1803enum rseq_event_mask {
1804 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1805 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1806 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1807};
1808
1809static inline void rseq_set_notify_resume(struct task_struct *t)
1810{
1811 if (t->rseq)
1812 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1813}
1814
1815void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1816
1817static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1818 struct pt_regs *regs)
1819{
1820 if (current->rseq)
1821 __rseq_handle_notify_resume(ksig, regs);
1822}
1823
1824static inline void rseq_signal_deliver(struct ksignal *ksig,
1825 struct pt_regs *regs)
1826{
1827 preempt_disable();
1828 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
1829 preempt_enable();
1830 rseq_handle_notify_resume(ksig, regs);
1831}
1832
1833/* rseq_preempt() requires preemption to be disabled. */
1834static inline void rseq_preempt(struct task_struct *t)
1835{
1836 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1837 rseq_set_notify_resume(t);
1838}
1839
1840/* rseq_migrate() requires preemption to be disabled. */
1841static inline void rseq_migrate(struct task_struct *t)
1842{
1843 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1844 rseq_set_notify_resume(t);
1845}
1846
1847/*
1848 * If parent process has a registered restartable sequences area, the
1849 * child inherits. Only applies when forking a process, not a thread.
1850 */
1851static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1852{
1853 if (clone_flags & CLONE_THREAD) {
1854 t->rseq = NULL;
1855 t->rseq_len = 0;
1856 t->rseq_sig = 0;
1857 t->rseq_event_mask = 0;
1858 } else {
1859 t->rseq = current->rseq;
1860 t->rseq_len = current->rseq_len;
1861 t->rseq_sig = current->rseq_sig;
1862 t->rseq_event_mask = current->rseq_event_mask;
1863 }
1864}
1865
1866static inline void rseq_execve(struct task_struct *t)
1867{
1868 t->rseq = NULL;
1869 t->rseq_len = 0;
1870 t->rseq_sig = 0;
1871 t->rseq_event_mask = 0;
1872}
1873
1874#else
1875
1876static inline void rseq_set_notify_resume(struct task_struct *t)
1877{
1878}
1879static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1880 struct pt_regs *regs)
1881{
1882}
1883static inline void rseq_signal_deliver(struct ksignal *ksig,
1884 struct pt_regs *regs)
1885{
1886}
1887static inline void rseq_preempt(struct task_struct *t)
1888{
1889}
1890static inline void rseq_migrate(struct task_struct *t)
1891{
1892}
1893static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1894{
1895}
1896static inline void rseq_execve(struct task_struct *t)
1897{
1898}
1899
1900#endif
1901
1902void __exit_umh(struct task_struct *tsk);
1903
1904static inline void exit_umh(struct task_struct *tsk)
1905{
1906 if (unlikely(tsk->flags & PF_UMH))
1907 __exit_umh(tsk);
1908}
1909
1910#ifdef CONFIG_DEBUG_RSEQ
1911
1912void rseq_syscall(struct pt_regs *regs);
1913
1914#else
1915
1916static inline void rseq_syscall(struct pt_regs *regs)
1917{
1918}
1919
1920#endif
1921
1922#endif