at v5.0 19 kB view raw
1/* 2 * linux/percpu-defs.h - basic definitions for percpu areas 3 * 4 * DO NOT INCLUDE DIRECTLY OUTSIDE PERCPU IMPLEMENTATION PROPER. 5 * 6 * This file is separate from linux/percpu.h to avoid cyclic inclusion 7 * dependency from arch header files. Only to be included from 8 * asm/percpu.h. 9 * 10 * This file includes macros necessary to declare percpu sections and 11 * variables, and definitions of percpu accessors and operations. It 12 * should provide enough percpu features to arch header files even when 13 * they can only include asm/percpu.h to avoid cyclic inclusion dependency. 14 */ 15 16#ifndef _LINUX_PERCPU_DEFS_H 17#define _LINUX_PERCPU_DEFS_H 18 19#ifdef CONFIG_SMP 20 21#ifdef MODULE 22#define PER_CPU_SHARED_ALIGNED_SECTION "" 23#define PER_CPU_ALIGNED_SECTION "" 24#else 25#define PER_CPU_SHARED_ALIGNED_SECTION "..shared_aligned" 26#define PER_CPU_ALIGNED_SECTION "..shared_aligned" 27#endif 28#define PER_CPU_FIRST_SECTION "..first" 29 30#else 31 32#define PER_CPU_SHARED_ALIGNED_SECTION "" 33#define PER_CPU_ALIGNED_SECTION "..shared_aligned" 34#define PER_CPU_FIRST_SECTION "" 35 36#endif 37 38/* 39 * Base implementations of per-CPU variable declarations and definitions, where 40 * the section in which the variable is to be placed is provided by the 41 * 'sec' argument. This may be used to affect the parameters governing the 42 * variable's storage. 43 * 44 * NOTE! The sections for the DECLARE and for the DEFINE must match, lest 45 * linkage errors occur due the compiler generating the wrong code to access 46 * that section. 47 */ 48#define __PCPU_ATTRS(sec) \ 49 __percpu __attribute__((section(PER_CPU_BASE_SECTION sec))) \ 50 PER_CPU_ATTRIBUTES 51 52#define __PCPU_DUMMY_ATTRS \ 53 __attribute__((section(".discard"), unused)) 54 55/* 56 * s390 and alpha modules require percpu variables to be defined as 57 * weak to force the compiler to generate GOT based external 58 * references for them. This is necessary because percpu sections 59 * will be located outside of the usually addressable area. 60 * 61 * This definition puts the following two extra restrictions when 62 * defining percpu variables. 63 * 64 * 1. The symbol must be globally unique, even the static ones. 65 * 2. Static percpu variables cannot be defined inside a function. 66 * 67 * Archs which need weak percpu definitions should define 68 * ARCH_NEEDS_WEAK_PER_CPU in asm/percpu.h when necessary. 69 * 70 * To ensure that the generic code observes the above two 71 * restrictions, if CONFIG_DEBUG_FORCE_WEAK_PER_CPU is set weak 72 * definition is used for all cases. 73 */ 74#if defined(ARCH_NEEDS_WEAK_PER_CPU) || defined(CONFIG_DEBUG_FORCE_WEAK_PER_CPU) 75/* 76 * __pcpu_scope_* dummy variable is used to enforce scope. It 77 * receives the static modifier when it's used in front of 78 * DEFINE_PER_CPU() and will trigger build failure if 79 * DECLARE_PER_CPU() is used for the same variable. 80 * 81 * __pcpu_unique_* dummy variable is used to enforce symbol uniqueness 82 * such that hidden weak symbol collision, which will cause unrelated 83 * variables to share the same address, can be detected during build. 84 */ 85#define DECLARE_PER_CPU_SECTION(type, name, sec) \ 86 extern __PCPU_DUMMY_ATTRS char __pcpu_scope_##name; \ 87 extern __PCPU_ATTRS(sec) __typeof__(type) name 88 89#define DEFINE_PER_CPU_SECTION(type, name, sec) \ 90 __PCPU_DUMMY_ATTRS char __pcpu_scope_##name; \ 91 extern __PCPU_DUMMY_ATTRS char __pcpu_unique_##name; \ 92 __PCPU_DUMMY_ATTRS char __pcpu_unique_##name; \ 93 extern __PCPU_ATTRS(sec) __typeof__(type) name; \ 94 __PCPU_ATTRS(sec) __weak __typeof__(type) name 95#else 96/* 97 * Normal declaration and definition macros. 98 */ 99#define DECLARE_PER_CPU_SECTION(type, name, sec) \ 100 extern __PCPU_ATTRS(sec) __typeof__(type) name 101 102#define DEFINE_PER_CPU_SECTION(type, name, sec) \ 103 __PCPU_ATTRS(sec) __typeof__(type) name 104#endif 105 106/* 107 * Variant on the per-CPU variable declaration/definition theme used for 108 * ordinary per-CPU variables. 109 */ 110#define DECLARE_PER_CPU(type, name) \ 111 DECLARE_PER_CPU_SECTION(type, name, "") 112 113#define DEFINE_PER_CPU(type, name) \ 114 DEFINE_PER_CPU_SECTION(type, name, "") 115 116/* 117 * Declaration/definition used for per-CPU variables that must come first in 118 * the set of variables. 119 */ 120#define DECLARE_PER_CPU_FIRST(type, name) \ 121 DECLARE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION) 122 123#define DEFINE_PER_CPU_FIRST(type, name) \ 124 DEFINE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION) 125 126/* 127 * Declaration/definition used for per-CPU variables that must be cacheline 128 * aligned under SMP conditions so that, whilst a particular instance of the 129 * data corresponds to a particular CPU, inefficiencies due to direct access by 130 * other CPUs are reduced by preventing the data from unnecessarily spanning 131 * cachelines. 132 * 133 * An example of this would be statistical data, where each CPU's set of data 134 * is updated by that CPU alone, but the data from across all CPUs is collated 135 * by a CPU processing a read from a proc file. 136 */ 137#define DECLARE_PER_CPU_SHARED_ALIGNED(type, name) \ 138 DECLARE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \ 139 ____cacheline_aligned_in_smp 140 141#define DEFINE_PER_CPU_SHARED_ALIGNED(type, name) \ 142 DEFINE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \ 143 ____cacheline_aligned_in_smp 144 145#define DECLARE_PER_CPU_ALIGNED(type, name) \ 146 DECLARE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION) \ 147 ____cacheline_aligned 148 149#define DEFINE_PER_CPU_ALIGNED(type, name) \ 150 DEFINE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION) \ 151 ____cacheline_aligned 152 153/* 154 * Declaration/definition used for per-CPU variables that must be page aligned. 155 */ 156#define DECLARE_PER_CPU_PAGE_ALIGNED(type, name) \ 157 DECLARE_PER_CPU_SECTION(type, name, "..page_aligned") \ 158 __aligned(PAGE_SIZE) 159 160#define DEFINE_PER_CPU_PAGE_ALIGNED(type, name) \ 161 DEFINE_PER_CPU_SECTION(type, name, "..page_aligned") \ 162 __aligned(PAGE_SIZE) 163 164/* 165 * Declaration/definition used for per-CPU variables that must be read mostly. 166 */ 167#define DECLARE_PER_CPU_READ_MOSTLY(type, name) \ 168 DECLARE_PER_CPU_SECTION(type, name, "..read_mostly") 169 170#define DEFINE_PER_CPU_READ_MOSTLY(type, name) \ 171 DEFINE_PER_CPU_SECTION(type, name, "..read_mostly") 172 173/* 174 * Declaration/definition used for per-CPU variables that should be accessed 175 * as decrypted when memory encryption is enabled in the guest. 176 */ 177#if defined(CONFIG_VIRTUALIZATION) && defined(CONFIG_AMD_MEM_ENCRYPT) 178 179#define DECLARE_PER_CPU_DECRYPTED(type, name) \ 180 DECLARE_PER_CPU_SECTION(type, name, "..decrypted") 181 182#define DEFINE_PER_CPU_DECRYPTED(type, name) \ 183 DEFINE_PER_CPU_SECTION(type, name, "..decrypted") 184#else 185#define DEFINE_PER_CPU_DECRYPTED(type, name) DEFINE_PER_CPU(type, name) 186#endif 187 188/* 189 * Intermodule exports for per-CPU variables. sparse forgets about 190 * address space across EXPORT_SYMBOL(), change EXPORT_SYMBOL() to 191 * noop if __CHECKER__. 192 */ 193#ifndef __CHECKER__ 194#define EXPORT_PER_CPU_SYMBOL(var) EXPORT_SYMBOL(var) 195#define EXPORT_PER_CPU_SYMBOL_GPL(var) EXPORT_SYMBOL_GPL(var) 196#else 197#define EXPORT_PER_CPU_SYMBOL(var) 198#define EXPORT_PER_CPU_SYMBOL_GPL(var) 199#endif 200 201/* 202 * Accessors and operations. 203 */ 204#ifndef __ASSEMBLY__ 205 206/* 207 * __verify_pcpu_ptr() verifies @ptr is a percpu pointer without evaluating 208 * @ptr and is invoked once before a percpu area is accessed by all 209 * accessors and operations. This is performed in the generic part of 210 * percpu and arch overrides don't need to worry about it; however, if an 211 * arch wants to implement an arch-specific percpu accessor or operation, 212 * it may use __verify_pcpu_ptr() to verify the parameters. 213 * 214 * + 0 is required in order to convert the pointer type from a 215 * potential array type to a pointer to a single item of the array. 216 */ 217#define __verify_pcpu_ptr(ptr) \ 218do { \ 219 const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL; \ 220 (void)__vpp_verify; \ 221} while (0) 222 223#ifdef CONFIG_SMP 224 225/* 226 * Add an offset to a pointer but keep the pointer as-is. Use RELOC_HIDE() 227 * to prevent the compiler from making incorrect assumptions about the 228 * pointer value. The weird cast keeps both GCC and sparse happy. 229 */ 230#define SHIFT_PERCPU_PTR(__p, __offset) \ 231 RELOC_HIDE((typeof(*(__p)) __kernel __force *)(__p), (__offset)) 232 233#define per_cpu_ptr(ptr, cpu) \ 234({ \ 235 __verify_pcpu_ptr(ptr); \ 236 SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))); \ 237}) 238 239#define raw_cpu_ptr(ptr) \ 240({ \ 241 __verify_pcpu_ptr(ptr); \ 242 arch_raw_cpu_ptr(ptr); \ 243}) 244 245#ifdef CONFIG_DEBUG_PREEMPT 246#define this_cpu_ptr(ptr) \ 247({ \ 248 __verify_pcpu_ptr(ptr); \ 249 SHIFT_PERCPU_PTR(ptr, my_cpu_offset); \ 250}) 251#else 252#define this_cpu_ptr(ptr) raw_cpu_ptr(ptr) 253#endif 254 255#else /* CONFIG_SMP */ 256 257#define VERIFY_PERCPU_PTR(__p) \ 258({ \ 259 __verify_pcpu_ptr(__p); \ 260 (typeof(*(__p)) __kernel __force *)(__p); \ 261}) 262 263#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); }) 264#define raw_cpu_ptr(ptr) per_cpu_ptr(ptr, 0) 265#define this_cpu_ptr(ptr) raw_cpu_ptr(ptr) 266 267#endif /* CONFIG_SMP */ 268 269#define per_cpu(var, cpu) (*per_cpu_ptr(&(var), cpu)) 270 271/* 272 * Must be an lvalue. Since @var must be a simple identifier, 273 * we force a syntax error here if it isn't. 274 */ 275#define get_cpu_var(var) \ 276(*({ \ 277 preempt_disable(); \ 278 this_cpu_ptr(&var); \ 279})) 280 281/* 282 * The weird & is necessary because sparse considers (void)(var) to be 283 * a direct dereference of percpu variable (var). 284 */ 285#define put_cpu_var(var) \ 286do { \ 287 (void)&(var); \ 288 preempt_enable(); \ 289} while (0) 290 291#define get_cpu_ptr(var) \ 292({ \ 293 preempt_disable(); \ 294 this_cpu_ptr(var); \ 295}) 296 297#define put_cpu_ptr(var) \ 298do { \ 299 (void)(var); \ 300 preempt_enable(); \ 301} while (0) 302 303/* 304 * Branching function to split up a function into a set of functions that 305 * are called for different scalar sizes of the objects handled. 306 */ 307 308extern void __bad_size_call_parameter(void); 309 310#ifdef CONFIG_DEBUG_PREEMPT 311extern void __this_cpu_preempt_check(const char *op); 312#else 313static inline void __this_cpu_preempt_check(const char *op) { } 314#endif 315 316#define __pcpu_size_call_return(stem, variable) \ 317({ \ 318 typeof(variable) pscr_ret__; \ 319 __verify_pcpu_ptr(&(variable)); \ 320 switch(sizeof(variable)) { \ 321 case 1: pscr_ret__ = stem##1(variable); break; \ 322 case 2: pscr_ret__ = stem##2(variable); break; \ 323 case 4: pscr_ret__ = stem##4(variable); break; \ 324 case 8: pscr_ret__ = stem##8(variable); break; \ 325 default: \ 326 __bad_size_call_parameter(); break; \ 327 } \ 328 pscr_ret__; \ 329}) 330 331#define __pcpu_size_call_return2(stem, variable, ...) \ 332({ \ 333 typeof(variable) pscr2_ret__; \ 334 __verify_pcpu_ptr(&(variable)); \ 335 switch(sizeof(variable)) { \ 336 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \ 337 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \ 338 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \ 339 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \ 340 default: \ 341 __bad_size_call_parameter(); break; \ 342 } \ 343 pscr2_ret__; \ 344}) 345 346/* 347 * Special handling for cmpxchg_double. cmpxchg_double is passed two 348 * percpu variables. The first has to be aligned to a double word 349 * boundary and the second has to follow directly thereafter. 350 * We enforce this on all architectures even if they don't support 351 * a double cmpxchg instruction, since it's a cheap requirement, and it 352 * avoids breaking the requirement for architectures with the instruction. 353 */ 354#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \ 355({ \ 356 bool pdcrb_ret__; \ 357 __verify_pcpu_ptr(&(pcp1)); \ 358 BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \ 359 VM_BUG_ON((unsigned long)(&(pcp1)) % (2 * sizeof(pcp1))); \ 360 VM_BUG_ON((unsigned long)(&(pcp2)) != \ 361 (unsigned long)(&(pcp1)) + sizeof(pcp1)); \ 362 switch(sizeof(pcp1)) { \ 363 case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \ 364 case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \ 365 case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \ 366 case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \ 367 default: \ 368 __bad_size_call_parameter(); break; \ 369 } \ 370 pdcrb_ret__; \ 371}) 372 373#define __pcpu_size_call(stem, variable, ...) \ 374do { \ 375 __verify_pcpu_ptr(&(variable)); \ 376 switch(sizeof(variable)) { \ 377 case 1: stem##1(variable, __VA_ARGS__);break; \ 378 case 2: stem##2(variable, __VA_ARGS__);break; \ 379 case 4: stem##4(variable, __VA_ARGS__);break; \ 380 case 8: stem##8(variable, __VA_ARGS__);break; \ 381 default: \ 382 __bad_size_call_parameter();break; \ 383 } \ 384} while (0) 385 386/* 387 * this_cpu operations (C) 2008-2013 Christoph Lameter <cl@linux.com> 388 * 389 * Optimized manipulation for memory allocated through the per cpu 390 * allocator or for addresses of per cpu variables. 391 * 392 * These operation guarantee exclusivity of access for other operations 393 * on the *same* processor. The assumption is that per cpu data is only 394 * accessed by a single processor instance (the current one). 395 * 396 * The arch code can provide optimized implementation by defining macros 397 * for certain scalar sizes. F.e. provide this_cpu_add_2() to provide per 398 * cpu atomic operations for 2 byte sized RMW actions. If arch code does 399 * not provide operations for a scalar size then the fallback in the 400 * generic code will be used. 401 * 402 * cmpxchg_double replaces two adjacent scalars at once. The first two 403 * parameters are per cpu variables which have to be of the same size. A 404 * truth value is returned to indicate success or failure (since a double 405 * register result is difficult to handle). There is very limited hardware 406 * support for these operations, so only certain sizes may work. 407 */ 408 409/* 410 * Operations for contexts where we do not want to do any checks for 411 * preemptions. Unless strictly necessary, always use [__]this_cpu_*() 412 * instead. 413 * 414 * If there is no other protection through preempt disable and/or disabling 415 * interupts then one of these RMW operations can show unexpected behavior 416 * because the execution thread was rescheduled on another processor or an 417 * interrupt occurred and the same percpu variable was modified from the 418 * interrupt context. 419 */ 420#define raw_cpu_read(pcp) __pcpu_size_call_return(raw_cpu_read_, pcp) 421#define raw_cpu_write(pcp, val) __pcpu_size_call(raw_cpu_write_, pcp, val) 422#define raw_cpu_add(pcp, val) __pcpu_size_call(raw_cpu_add_, pcp, val) 423#define raw_cpu_and(pcp, val) __pcpu_size_call(raw_cpu_and_, pcp, val) 424#define raw_cpu_or(pcp, val) __pcpu_size_call(raw_cpu_or_, pcp, val) 425#define raw_cpu_add_return(pcp, val) __pcpu_size_call_return2(raw_cpu_add_return_, pcp, val) 426#define raw_cpu_xchg(pcp, nval) __pcpu_size_call_return2(raw_cpu_xchg_, pcp, nval) 427#define raw_cpu_cmpxchg(pcp, oval, nval) \ 428 __pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval) 429#define raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 430 __pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, pcp1, pcp2, oval1, oval2, nval1, nval2) 431 432#define raw_cpu_sub(pcp, val) raw_cpu_add(pcp, -(val)) 433#define raw_cpu_inc(pcp) raw_cpu_add(pcp, 1) 434#define raw_cpu_dec(pcp) raw_cpu_sub(pcp, 1) 435#define raw_cpu_sub_return(pcp, val) raw_cpu_add_return(pcp, -(typeof(pcp))(val)) 436#define raw_cpu_inc_return(pcp) raw_cpu_add_return(pcp, 1) 437#define raw_cpu_dec_return(pcp) raw_cpu_add_return(pcp, -1) 438 439/* 440 * Operations for contexts that are safe from preemption/interrupts. These 441 * operations verify that preemption is disabled. 442 */ 443#define __this_cpu_read(pcp) \ 444({ \ 445 __this_cpu_preempt_check("read"); \ 446 raw_cpu_read(pcp); \ 447}) 448 449#define __this_cpu_write(pcp, val) \ 450({ \ 451 __this_cpu_preempt_check("write"); \ 452 raw_cpu_write(pcp, val); \ 453}) 454 455#define __this_cpu_add(pcp, val) \ 456({ \ 457 __this_cpu_preempt_check("add"); \ 458 raw_cpu_add(pcp, val); \ 459}) 460 461#define __this_cpu_and(pcp, val) \ 462({ \ 463 __this_cpu_preempt_check("and"); \ 464 raw_cpu_and(pcp, val); \ 465}) 466 467#define __this_cpu_or(pcp, val) \ 468({ \ 469 __this_cpu_preempt_check("or"); \ 470 raw_cpu_or(pcp, val); \ 471}) 472 473#define __this_cpu_add_return(pcp, val) \ 474({ \ 475 __this_cpu_preempt_check("add_return"); \ 476 raw_cpu_add_return(pcp, val); \ 477}) 478 479#define __this_cpu_xchg(pcp, nval) \ 480({ \ 481 __this_cpu_preempt_check("xchg"); \ 482 raw_cpu_xchg(pcp, nval); \ 483}) 484 485#define __this_cpu_cmpxchg(pcp, oval, nval) \ 486({ \ 487 __this_cpu_preempt_check("cmpxchg"); \ 488 raw_cpu_cmpxchg(pcp, oval, nval); \ 489}) 490 491#define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 492({ __this_cpu_preempt_check("cmpxchg_double"); \ 493 raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2); \ 494}) 495 496#define __this_cpu_sub(pcp, val) __this_cpu_add(pcp, -(typeof(pcp))(val)) 497#define __this_cpu_inc(pcp) __this_cpu_add(pcp, 1) 498#define __this_cpu_dec(pcp) __this_cpu_sub(pcp, 1) 499#define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(typeof(pcp))(val)) 500#define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1) 501#define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1) 502 503/* 504 * Operations with implied preemption/interrupt protection. These 505 * operations can be used without worrying about preemption or interrupt. 506 */ 507#define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, pcp) 508#define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, pcp, val) 509#define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, pcp, val) 510#define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, pcp, val) 511#define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, pcp, val) 512#define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val) 513#define this_cpu_xchg(pcp, nval) __pcpu_size_call_return2(this_cpu_xchg_, pcp, nval) 514#define this_cpu_cmpxchg(pcp, oval, nval) \ 515 __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval) 516#define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 517 __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, pcp1, pcp2, oval1, oval2, nval1, nval2) 518 519#define this_cpu_sub(pcp, val) this_cpu_add(pcp, -(typeof(pcp))(val)) 520#define this_cpu_inc(pcp) this_cpu_add(pcp, 1) 521#define this_cpu_dec(pcp) this_cpu_sub(pcp, 1) 522#define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(typeof(pcp))(val)) 523#define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1) 524#define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1) 525 526#endif /* __ASSEMBLY__ */ 527#endif /* _LINUX_PERCPU_DEFS_H */