at v5.0 650 lines 19 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PAGEMAP_H 3#define _LINUX_PAGEMAP_H 4 5/* 6 * Copyright 1995 Linus Torvalds 7 */ 8#include <linux/mm.h> 9#include <linux/fs.h> 10#include <linux/list.h> 11#include <linux/highmem.h> 12#include <linux/compiler.h> 13#include <linux/uaccess.h> 14#include <linux/gfp.h> 15#include <linux/bitops.h> 16#include <linux/hardirq.h> /* for in_interrupt() */ 17#include <linux/hugetlb_inline.h> 18 19struct pagevec; 20 21/* 22 * Bits in mapping->flags. 23 */ 24enum mapping_flags { 25 AS_EIO = 0, /* IO error on async write */ 26 AS_ENOSPC = 1, /* ENOSPC on async write */ 27 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 28 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 29 AS_EXITING = 4, /* final truncate in progress */ 30 /* writeback related tags are not used */ 31 AS_NO_WRITEBACK_TAGS = 5, 32}; 33 34/** 35 * mapping_set_error - record a writeback error in the address_space 36 * @mapping - the mapping in which an error should be set 37 * @error - the error to set in the mapping 38 * 39 * When writeback fails in some way, we must record that error so that 40 * userspace can be informed when fsync and the like are called. We endeavor 41 * to report errors on any file that was open at the time of the error. Some 42 * internal callers also need to know when writeback errors have occurred. 43 * 44 * When a writeback error occurs, most filesystems will want to call 45 * mapping_set_error to record the error in the mapping so that it can be 46 * reported when the application calls fsync(2). 47 */ 48static inline void mapping_set_error(struct address_space *mapping, int error) 49{ 50 if (likely(!error)) 51 return; 52 53 /* Record in wb_err for checkers using errseq_t based tracking */ 54 filemap_set_wb_err(mapping, error); 55 56 /* Record it in flags for now, for legacy callers */ 57 if (error == -ENOSPC) 58 set_bit(AS_ENOSPC, &mapping->flags); 59 else 60 set_bit(AS_EIO, &mapping->flags); 61} 62 63static inline void mapping_set_unevictable(struct address_space *mapping) 64{ 65 set_bit(AS_UNEVICTABLE, &mapping->flags); 66} 67 68static inline void mapping_clear_unevictable(struct address_space *mapping) 69{ 70 clear_bit(AS_UNEVICTABLE, &mapping->flags); 71} 72 73static inline int mapping_unevictable(struct address_space *mapping) 74{ 75 if (mapping) 76 return test_bit(AS_UNEVICTABLE, &mapping->flags); 77 return !!mapping; 78} 79 80static inline void mapping_set_exiting(struct address_space *mapping) 81{ 82 set_bit(AS_EXITING, &mapping->flags); 83} 84 85static inline int mapping_exiting(struct address_space *mapping) 86{ 87 return test_bit(AS_EXITING, &mapping->flags); 88} 89 90static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 91{ 92 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 93} 94 95static inline int mapping_use_writeback_tags(struct address_space *mapping) 96{ 97 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 98} 99 100static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 101{ 102 return mapping->gfp_mask; 103} 104 105/* Restricts the given gfp_mask to what the mapping allows. */ 106static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 107 gfp_t gfp_mask) 108{ 109 return mapping_gfp_mask(mapping) & gfp_mask; 110} 111 112/* 113 * This is non-atomic. Only to be used before the mapping is activated. 114 * Probably needs a barrier... 115 */ 116static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 117{ 118 m->gfp_mask = mask; 119} 120 121void release_pages(struct page **pages, int nr); 122 123/* 124 * speculatively take a reference to a page. 125 * If the page is free (_refcount == 0), then _refcount is untouched, and 0 126 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned. 127 * 128 * This function must be called inside the same rcu_read_lock() section as has 129 * been used to lookup the page in the pagecache radix-tree (or page table): 130 * this allows allocators to use a synchronize_rcu() to stabilize _refcount. 131 * 132 * Unless an RCU grace period has passed, the count of all pages coming out 133 * of the allocator must be considered unstable. page_count may return higher 134 * than expected, and put_page must be able to do the right thing when the 135 * page has been finished with, no matter what it is subsequently allocated 136 * for (because put_page is what is used here to drop an invalid speculative 137 * reference). 138 * 139 * This is the interesting part of the lockless pagecache (and lockless 140 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) 141 * has the following pattern: 142 * 1. find page in radix tree 143 * 2. conditionally increment refcount 144 * 3. check the page is still in pagecache (if no, goto 1) 145 * 146 * Remove-side that cares about stability of _refcount (eg. reclaim) has the 147 * following (with the i_pages lock held): 148 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) 149 * B. remove page from pagecache 150 * C. free the page 151 * 152 * There are 2 critical interleavings that matter: 153 * - 2 runs before A: in this case, A sees elevated refcount and bails out 154 * - A runs before 2: in this case, 2 sees zero refcount and retries; 155 * subsequently, B will complete and 1 will find no page, causing the 156 * lookup to return NULL. 157 * 158 * It is possible that between 1 and 2, the page is removed then the exact same 159 * page is inserted into the same position in pagecache. That's OK: the 160 * old find_get_page using a lock could equally have run before or after 161 * such a re-insertion, depending on order that locks are granted. 162 * 163 * Lookups racing against pagecache insertion isn't a big problem: either 1 164 * will find the page or it will not. Likewise, the old find_get_page could run 165 * either before the insertion or afterwards, depending on timing. 166 */ 167static inline int page_cache_get_speculative(struct page *page) 168{ 169#ifdef CONFIG_TINY_RCU 170# ifdef CONFIG_PREEMPT_COUNT 171 VM_BUG_ON(!in_atomic() && !irqs_disabled()); 172# endif 173 /* 174 * Preempt must be disabled here - we rely on rcu_read_lock doing 175 * this for us. 176 * 177 * Pagecache won't be truncated from interrupt context, so if we have 178 * found a page in the radix tree here, we have pinned its refcount by 179 * disabling preempt, and hence no need for the "speculative get" that 180 * SMP requires. 181 */ 182 VM_BUG_ON_PAGE(page_count(page) == 0, page); 183 page_ref_inc(page); 184 185#else 186 if (unlikely(!get_page_unless_zero(page))) { 187 /* 188 * Either the page has been freed, or will be freed. 189 * In either case, retry here and the caller should 190 * do the right thing (see comments above). 191 */ 192 return 0; 193 } 194#endif 195 VM_BUG_ON_PAGE(PageTail(page), page); 196 197 return 1; 198} 199 200/* 201 * Same as above, but add instead of inc (could just be merged) 202 */ 203static inline int page_cache_add_speculative(struct page *page, int count) 204{ 205 VM_BUG_ON(in_interrupt()); 206 207#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU) 208# ifdef CONFIG_PREEMPT_COUNT 209 VM_BUG_ON(!in_atomic() && !irqs_disabled()); 210# endif 211 VM_BUG_ON_PAGE(page_count(page) == 0, page); 212 page_ref_add(page, count); 213 214#else 215 if (unlikely(!page_ref_add_unless(page, count, 0))) 216 return 0; 217#endif 218 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page); 219 220 return 1; 221} 222 223#ifdef CONFIG_NUMA 224extern struct page *__page_cache_alloc(gfp_t gfp); 225#else 226static inline struct page *__page_cache_alloc(gfp_t gfp) 227{ 228 return alloc_pages(gfp, 0); 229} 230#endif 231 232static inline struct page *page_cache_alloc(struct address_space *x) 233{ 234 return __page_cache_alloc(mapping_gfp_mask(x)); 235} 236 237static inline gfp_t readahead_gfp_mask(struct address_space *x) 238{ 239 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; 240} 241 242typedef int filler_t(void *, struct page *); 243 244pgoff_t page_cache_next_miss(struct address_space *mapping, 245 pgoff_t index, unsigned long max_scan); 246pgoff_t page_cache_prev_miss(struct address_space *mapping, 247 pgoff_t index, unsigned long max_scan); 248 249#define FGP_ACCESSED 0x00000001 250#define FGP_LOCK 0x00000002 251#define FGP_CREAT 0x00000004 252#define FGP_WRITE 0x00000008 253#define FGP_NOFS 0x00000010 254#define FGP_NOWAIT 0x00000020 255 256struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 257 int fgp_flags, gfp_t cache_gfp_mask); 258 259/** 260 * find_get_page - find and get a page reference 261 * @mapping: the address_space to search 262 * @offset: the page index 263 * 264 * Looks up the page cache slot at @mapping & @offset. If there is a 265 * page cache page, it is returned with an increased refcount. 266 * 267 * Otherwise, %NULL is returned. 268 */ 269static inline struct page *find_get_page(struct address_space *mapping, 270 pgoff_t offset) 271{ 272 return pagecache_get_page(mapping, offset, 0, 0); 273} 274 275static inline struct page *find_get_page_flags(struct address_space *mapping, 276 pgoff_t offset, int fgp_flags) 277{ 278 return pagecache_get_page(mapping, offset, fgp_flags, 0); 279} 280 281/** 282 * find_lock_page - locate, pin and lock a pagecache page 283 * @mapping: the address_space to search 284 * @offset: the page index 285 * 286 * Looks up the page cache slot at @mapping & @offset. If there is a 287 * page cache page, it is returned locked and with an increased 288 * refcount. 289 * 290 * Otherwise, %NULL is returned. 291 * 292 * find_lock_page() may sleep. 293 */ 294static inline struct page *find_lock_page(struct address_space *mapping, 295 pgoff_t offset) 296{ 297 return pagecache_get_page(mapping, offset, FGP_LOCK, 0); 298} 299 300/** 301 * find_or_create_page - locate or add a pagecache page 302 * @mapping: the page's address_space 303 * @index: the page's index into the mapping 304 * @gfp_mask: page allocation mode 305 * 306 * Looks up the page cache slot at @mapping & @offset. If there is a 307 * page cache page, it is returned locked and with an increased 308 * refcount. 309 * 310 * If the page is not present, a new page is allocated using @gfp_mask 311 * and added to the page cache and the VM's LRU list. The page is 312 * returned locked and with an increased refcount. 313 * 314 * On memory exhaustion, %NULL is returned. 315 * 316 * find_or_create_page() may sleep, even if @gfp_flags specifies an 317 * atomic allocation! 318 */ 319static inline struct page *find_or_create_page(struct address_space *mapping, 320 pgoff_t offset, gfp_t gfp_mask) 321{ 322 return pagecache_get_page(mapping, offset, 323 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 324 gfp_mask); 325} 326 327/** 328 * grab_cache_page_nowait - returns locked page at given index in given cache 329 * @mapping: target address_space 330 * @index: the page index 331 * 332 * Same as grab_cache_page(), but do not wait if the page is unavailable. 333 * This is intended for speculative data generators, where the data can 334 * be regenerated if the page couldn't be grabbed. This routine should 335 * be safe to call while holding the lock for another page. 336 * 337 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 338 * and deadlock against the caller's locked page. 339 */ 340static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 341 pgoff_t index) 342{ 343 return pagecache_get_page(mapping, index, 344 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 345 mapping_gfp_mask(mapping)); 346} 347 348struct page *find_get_entry(struct address_space *mapping, pgoff_t offset); 349struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset); 350unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 351 unsigned int nr_entries, struct page **entries, 352 pgoff_t *indices); 353unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 354 pgoff_t end, unsigned int nr_pages, 355 struct page **pages); 356static inline unsigned find_get_pages(struct address_space *mapping, 357 pgoff_t *start, unsigned int nr_pages, 358 struct page **pages) 359{ 360 return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages, 361 pages); 362} 363unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 364 unsigned int nr_pages, struct page **pages); 365unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 366 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 367 struct page **pages); 368static inline unsigned find_get_pages_tag(struct address_space *mapping, 369 pgoff_t *index, xa_mark_t tag, unsigned int nr_pages, 370 struct page **pages) 371{ 372 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag, 373 nr_pages, pages); 374} 375unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 376 xa_mark_t tag, unsigned int nr_entries, 377 struct page **entries, pgoff_t *indices); 378 379struct page *grab_cache_page_write_begin(struct address_space *mapping, 380 pgoff_t index, unsigned flags); 381 382/* 383 * Returns locked page at given index in given cache, creating it if needed. 384 */ 385static inline struct page *grab_cache_page(struct address_space *mapping, 386 pgoff_t index) 387{ 388 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 389} 390 391extern struct page * read_cache_page(struct address_space *mapping, 392 pgoff_t index, filler_t *filler, void *data); 393extern struct page * read_cache_page_gfp(struct address_space *mapping, 394 pgoff_t index, gfp_t gfp_mask); 395extern int read_cache_pages(struct address_space *mapping, 396 struct list_head *pages, filler_t *filler, void *data); 397 398static inline struct page *read_mapping_page(struct address_space *mapping, 399 pgoff_t index, void *data) 400{ 401 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 402 return read_cache_page(mapping, index, filler, data); 403} 404 405/* 406 * Get index of the page with in radix-tree 407 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE) 408 */ 409static inline pgoff_t page_to_index(struct page *page) 410{ 411 pgoff_t pgoff; 412 413 if (likely(!PageTransTail(page))) 414 return page->index; 415 416 /* 417 * We don't initialize ->index for tail pages: calculate based on 418 * head page 419 */ 420 pgoff = compound_head(page)->index; 421 pgoff += page - compound_head(page); 422 return pgoff; 423} 424 425/* 426 * Get the offset in PAGE_SIZE. 427 * (TODO: hugepage should have ->index in PAGE_SIZE) 428 */ 429static inline pgoff_t page_to_pgoff(struct page *page) 430{ 431 if (unlikely(PageHeadHuge(page))) 432 return page->index << compound_order(page); 433 434 return page_to_index(page); 435} 436 437/* 438 * Return byte-offset into filesystem object for page. 439 */ 440static inline loff_t page_offset(struct page *page) 441{ 442 return ((loff_t)page->index) << PAGE_SHIFT; 443} 444 445static inline loff_t page_file_offset(struct page *page) 446{ 447 return ((loff_t)page_index(page)) << PAGE_SHIFT; 448} 449 450extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 451 unsigned long address); 452 453static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 454 unsigned long address) 455{ 456 pgoff_t pgoff; 457 if (unlikely(is_vm_hugetlb_page(vma))) 458 return linear_hugepage_index(vma, address); 459 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 460 pgoff += vma->vm_pgoff; 461 return pgoff; 462} 463 464extern void __lock_page(struct page *page); 465extern int __lock_page_killable(struct page *page); 466extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 467 unsigned int flags); 468extern void unlock_page(struct page *page); 469 470static inline int trylock_page(struct page *page) 471{ 472 page = compound_head(page); 473 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); 474} 475 476/* 477 * lock_page may only be called if we have the page's inode pinned. 478 */ 479static inline void lock_page(struct page *page) 480{ 481 might_sleep(); 482 if (!trylock_page(page)) 483 __lock_page(page); 484} 485 486/* 487 * lock_page_killable is like lock_page but can be interrupted by fatal 488 * signals. It returns 0 if it locked the page and -EINTR if it was 489 * killed while waiting. 490 */ 491static inline int lock_page_killable(struct page *page) 492{ 493 might_sleep(); 494 if (!trylock_page(page)) 495 return __lock_page_killable(page); 496 return 0; 497} 498 499/* 500 * lock_page_or_retry - Lock the page, unless this would block and the 501 * caller indicated that it can handle a retry. 502 * 503 * Return value and mmap_sem implications depend on flags; see 504 * __lock_page_or_retry(). 505 */ 506static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, 507 unsigned int flags) 508{ 509 might_sleep(); 510 return trylock_page(page) || __lock_page_or_retry(page, mm, flags); 511} 512 513/* 514 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc., 515 * and should not be used directly. 516 */ 517extern void wait_on_page_bit(struct page *page, int bit_nr); 518extern int wait_on_page_bit_killable(struct page *page, int bit_nr); 519 520/* 521 * Wait for a page to be unlocked. 522 * 523 * This must be called with the caller "holding" the page, 524 * ie with increased "page->count" so that the page won't 525 * go away during the wait.. 526 */ 527static inline void wait_on_page_locked(struct page *page) 528{ 529 if (PageLocked(page)) 530 wait_on_page_bit(compound_head(page), PG_locked); 531} 532 533static inline int wait_on_page_locked_killable(struct page *page) 534{ 535 if (!PageLocked(page)) 536 return 0; 537 return wait_on_page_bit_killable(compound_head(page), PG_locked); 538} 539 540extern void put_and_wait_on_page_locked(struct page *page); 541 542/* 543 * Wait for a page to complete writeback 544 */ 545static inline void wait_on_page_writeback(struct page *page) 546{ 547 if (PageWriteback(page)) 548 wait_on_page_bit(page, PG_writeback); 549} 550 551extern void end_page_writeback(struct page *page); 552void wait_for_stable_page(struct page *page); 553 554void page_endio(struct page *page, bool is_write, int err); 555 556/* 557 * Add an arbitrary waiter to a page's wait queue 558 */ 559extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter); 560 561/* 562 * Fault everything in given userspace address range in. 563 */ 564static inline int fault_in_pages_writeable(char __user *uaddr, int size) 565{ 566 char __user *end = uaddr + size - 1; 567 568 if (unlikely(size == 0)) 569 return 0; 570 571 if (unlikely(uaddr > end)) 572 return -EFAULT; 573 /* 574 * Writing zeroes into userspace here is OK, because we know that if 575 * the zero gets there, we'll be overwriting it. 576 */ 577 do { 578 if (unlikely(__put_user(0, uaddr) != 0)) 579 return -EFAULT; 580 uaddr += PAGE_SIZE; 581 } while (uaddr <= end); 582 583 /* Check whether the range spilled into the next page. */ 584 if (((unsigned long)uaddr & PAGE_MASK) == 585 ((unsigned long)end & PAGE_MASK)) 586 return __put_user(0, end); 587 588 return 0; 589} 590 591static inline int fault_in_pages_readable(const char __user *uaddr, int size) 592{ 593 volatile char c; 594 const char __user *end = uaddr + size - 1; 595 596 if (unlikely(size == 0)) 597 return 0; 598 599 if (unlikely(uaddr > end)) 600 return -EFAULT; 601 602 do { 603 if (unlikely(__get_user(c, uaddr) != 0)) 604 return -EFAULT; 605 uaddr += PAGE_SIZE; 606 } while (uaddr <= end); 607 608 /* Check whether the range spilled into the next page. */ 609 if (((unsigned long)uaddr & PAGE_MASK) == 610 ((unsigned long)end & PAGE_MASK)) { 611 return __get_user(c, end); 612 } 613 614 (void)c; 615 return 0; 616} 617 618int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 619 pgoff_t index, gfp_t gfp_mask); 620int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 621 pgoff_t index, gfp_t gfp_mask); 622extern void delete_from_page_cache(struct page *page); 623extern void __delete_from_page_cache(struct page *page, void *shadow); 624int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); 625void delete_from_page_cache_batch(struct address_space *mapping, 626 struct pagevec *pvec); 627 628/* 629 * Like add_to_page_cache_locked, but used to add newly allocated pages: 630 * the page is new, so we can just run __SetPageLocked() against it. 631 */ 632static inline int add_to_page_cache(struct page *page, 633 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 634{ 635 int error; 636 637 __SetPageLocked(page); 638 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 639 if (unlikely(error)) 640 __ClearPageLocked(page); 641 return error; 642} 643 644static inline unsigned long dir_pages(struct inode *inode) 645{ 646 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 647 PAGE_SHIFT; 648} 649 650#endif /* _LINUX_PAGEMAP_H */