at v5.0 1359 lines 45 kB view raw
1/* 2 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> 3 * Steven J. Hill <sjhill@realitydiluted.com> 4 * Thomas Gleixner <tglx@linutronix.de> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * Info: 11 * Contains standard defines and IDs for NAND flash devices 12 * 13 * Changelog: 14 * See git changelog. 15 */ 16#ifndef __LINUX_MTD_RAWNAND_H 17#define __LINUX_MTD_RAWNAND_H 18 19#include <linux/wait.h> 20#include <linux/spinlock.h> 21#include <linux/mtd/mtd.h> 22#include <linux/mtd/flashchip.h> 23#include <linux/mtd/bbm.h> 24#include <linux/mtd/jedec.h> 25#include <linux/mtd/onfi.h> 26#include <linux/of.h> 27#include <linux/types.h> 28 29struct nand_chip; 30 31/* The maximum number of NAND chips in an array */ 32#define NAND_MAX_CHIPS 8 33 34/* 35 * Constants for hardware specific CLE/ALE/NCE function 36 * 37 * These are bits which can be or'ed to set/clear multiple 38 * bits in one go. 39 */ 40/* Select the chip by setting nCE to low */ 41#define NAND_NCE 0x01 42/* Select the command latch by setting CLE to high */ 43#define NAND_CLE 0x02 44/* Select the address latch by setting ALE to high */ 45#define NAND_ALE 0x04 46 47#define NAND_CTRL_CLE (NAND_NCE | NAND_CLE) 48#define NAND_CTRL_ALE (NAND_NCE | NAND_ALE) 49#define NAND_CTRL_CHANGE 0x80 50 51/* 52 * Standard NAND flash commands 53 */ 54#define NAND_CMD_READ0 0 55#define NAND_CMD_READ1 1 56#define NAND_CMD_RNDOUT 5 57#define NAND_CMD_PAGEPROG 0x10 58#define NAND_CMD_READOOB 0x50 59#define NAND_CMD_ERASE1 0x60 60#define NAND_CMD_STATUS 0x70 61#define NAND_CMD_SEQIN 0x80 62#define NAND_CMD_RNDIN 0x85 63#define NAND_CMD_READID 0x90 64#define NAND_CMD_ERASE2 0xd0 65#define NAND_CMD_PARAM 0xec 66#define NAND_CMD_GET_FEATURES 0xee 67#define NAND_CMD_SET_FEATURES 0xef 68#define NAND_CMD_RESET 0xff 69 70/* Extended commands for large page devices */ 71#define NAND_CMD_READSTART 0x30 72#define NAND_CMD_RNDOUTSTART 0xE0 73#define NAND_CMD_CACHEDPROG 0x15 74 75#define NAND_CMD_NONE -1 76 77/* Status bits */ 78#define NAND_STATUS_FAIL 0x01 79#define NAND_STATUS_FAIL_N1 0x02 80#define NAND_STATUS_TRUE_READY 0x20 81#define NAND_STATUS_READY 0x40 82#define NAND_STATUS_WP 0x80 83 84#define NAND_DATA_IFACE_CHECK_ONLY -1 85 86/* 87 * Constants for ECC_MODES 88 */ 89typedef enum { 90 NAND_ECC_NONE, 91 NAND_ECC_SOFT, 92 NAND_ECC_HW, 93 NAND_ECC_HW_SYNDROME, 94 NAND_ECC_HW_OOB_FIRST, 95 NAND_ECC_ON_DIE, 96} nand_ecc_modes_t; 97 98enum nand_ecc_algo { 99 NAND_ECC_UNKNOWN, 100 NAND_ECC_HAMMING, 101 NAND_ECC_BCH, 102 NAND_ECC_RS, 103}; 104 105/* 106 * Constants for Hardware ECC 107 */ 108/* Reset Hardware ECC for read */ 109#define NAND_ECC_READ 0 110/* Reset Hardware ECC for write */ 111#define NAND_ECC_WRITE 1 112/* Enable Hardware ECC before syndrome is read back from flash */ 113#define NAND_ECC_READSYN 2 114 115/* 116 * Enable generic NAND 'page erased' check. This check is only done when 117 * ecc.correct() returns -EBADMSG. 118 * Set this flag if your implementation does not fix bitflips in erased 119 * pages and you want to rely on the default implementation. 120 */ 121#define NAND_ECC_GENERIC_ERASED_CHECK BIT(0) 122#define NAND_ECC_MAXIMIZE BIT(1) 123 124/* 125 * When using software implementation of Hamming, we can specify which byte 126 * ordering should be used. 127 */ 128#define NAND_ECC_SOFT_HAMMING_SM_ORDER BIT(2) 129 130/* 131 * Option constants for bizarre disfunctionality and real 132 * features. 133 */ 134/* Buswidth is 16 bit */ 135#define NAND_BUSWIDTH_16 0x00000002 136/* Chip has cache program function */ 137#define NAND_CACHEPRG 0x00000008 138/* 139 * Chip requires ready check on read (for auto-incremented sequential read). 140 * True only for small page devices; large page devices do not support 141 * autoincrement. 142 */ 143#define NAND_NEED_READRDY 0x00000100 144 145/* Chip does not allow subpage writes */ 146#define NAND_NO_SUBPAGE_WRITE 0x00000200 147 148/* Device is one of 'new' xD cards that expose fake nand command set */ 149#define NAND_BROKEN_XD 0x00000400 150 151/* Device behaves just like nand, but is readonly */ 152#define NAND_ROM 0x00000800 153 154/* Device supports subpage reads */ 155#define NAND_SUBPAGE_READ 0x00001000 156 157/* 158 * Some MLC NANDs need data scrambling to limit bitflips caused by repeated 159 * patterns. 160 */ 161#define NAND_NEED_SCRAMBLING 0x00002000 162 163/* Device needs 3rd row address cycle */ 164#define NAND_ROW_ADDR_3 0x00004000 165 166/* Options valid for Samsung large page devices */ 167#define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG 168 169/* Macros to identify the above */ 170#define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ)) 171 172/* Non chip related options */ 173/* This option skips the bbt scan during initialization. */ 174#define NAND_SKIP_BBTSCAN 0x00010000 175/* Chip may not exist, so silence any errors in scan */ 176#define NAND_SCAN_SILENT_NODEV 0x00040000 177/* 178 * Autodetect nand buswidth with readid/onfi. 179 * This suppose the driver will configure the hardware in 8 bits mode 180 * when calling nand_scan_ident, and update its configuration 181 * before calling nand_scan_tail. 182 */ 183#define NAND_BUSWIDTH_AUTO 0x00080000 184/* 185 * This option could be defined by controller drivers to protect against 186 * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers 187 */ 188#define NAND_USE_BOUNCE_BUFFER 0x00100000 189 190/* 191 * In case your controller is implementing ->legacy.cmd_ctrl() and is relying 192 * on the default ->cmdfunc() implementation, you may want to let the core 193 * handle the tCCS delay which is required when a column change (RNDIN or 194 * RNDOUT) is requested. 195 * If your controller already takes care of this delay, you don't need to set 196 * this flag. 197 */ 198#define NAND_WAIT_TCCS 0x00200000 199 200/* 201 * Whether the NAND chip is a boot medium. Drivers might use this information 202 * to select ECC algorithms supported by the boot ROM or similar restrictions. 203 */ 204#define NAND_IS_BOOT_MEDIUM 0x00400000 205 206/* 207 * Do not try to tweak the timings at runtime. This is needed when the 208 * controller initializes the timings on itself or when it relies on 209 * configuration done by the bootloader. 210 */ 211#define NAND_KEEP_TIMINGS 0x00800000 212 213/* Cell info constants */ 214#define NAND_CI_CHIPNR_MSK 0x03 215#define NAND_CI_CELLTYPE_MSK 0x0C 216#define NAND_CI_CELLTYPE_SHIFT 2 217 218/** 219 * struct nand_parameters - NAND generic parameters from the parameter page 220 * @model: Model name 221 * @supports_set_get_features: The NAND chip supports setting/getting features 222 * @set_feature_list: Bitmap of features that can be set 223 * @get_feature_list: Bitmap of features that can be get 224 * @onfi: ONFI specific parameters 225 */ 226struct nand_parameters { 227 /* Generic parameters */ 228 const char *model; 229 bool supports_set_get_features; 230 DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER); 231 DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER); 232 233 /* ONFI parameters */ 234 struct onfi_params *onfi; 235}; 236 237/* The maximum expected count of bytes in the NAND ID sequence */ 238#define NAND_MAX_ID_LEN 8 239 240/** 241 * struct nand_id - NAND id structure 242 * @data: buffer containing the id bytes. 243 * @len: ID length. 244 */ 245struct nand_id { 246 u8 data[NAND_MAX_ID_LEN]; 247 int len; 248}; 249 250/** 251 * struct nand_ecc_step_info - ECC step information of ECC engine 252 * @stepsize: data bytes per ECC step 253 * @strengths: array of supported strengths 254 * @nstrengths: number of supported strengths 255 */ 256struct nand_ecc_step_info { 257 int stepsize; 258 const int *strengths; 259 int nstrengths; 260}; 261 262/** 263 * struct nand_ecc_caps - capability of ECC engine 264 * @stepinfos: array of ECC step information 265 * @nstepinfos: number of ECC step information 266 * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step 267 */ 268struct nand_ecc_caps { 269 const struct nand_ecc_step_info *stepinfos; 270 int nstepinfos; 271 int (*calc_ecc_bytes)(int step_size, int strength); 272}; 273 274/* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */ 275#define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...) \ 276static const int __name##_strengths[] = { __VA_ARGS__ }; \ 277static const struct nand_ecc_step_info __name##_stepinfo = { \ 278 .stepsize = __step, \ 279 .strengths = __name##_strengths, \ 280 .nstrengths = ARRAY_SIZE(__name##_strengths), \ 281}; \ 282static const struct nand_ecc_caps __name = { \ 283 .stepinfos = &__name##_stepinfo, \ 284 .nstepinfos = 1, \ 285 .calc_ecc_bytes = __calc, \ 286} 287 288/** 289 * struct nand_ecc_ctrl - Control structure for ECC 290 * @mode: ECC mode 291 * @algo: ECC algorithm 292 * @steps: number of ECC steps per page 293 * @size: data bytes per ECC step 294 * @bytes: ECC bytes per step 295 * @strength: max number of correctible bits per ECC step 296 * @total: total number of ECC bytes per page 297 * @prepad: padding information for syndrome based ECC generators 298 * @postpad: padding information for syndrome based ECC generators 299 * @options: ECC specific options (see NAND_ECC_XXX flags defined above) 300 * @priv: pointer to private ECC control data 301 * @calc_buf: buffer for calculated ECC, size is oobsize. 302 * @code_buf: buffer for ECC read from flash, size is oobsize. 303 * @hwctl: function to control hardware ECC generator. Must only 304 * be provided if an hardware ECC is available 305 * @calculate: function for ECC calculation or readback from ECC hardware 306 * @correct: function for ECC correction, matching to ECC generator (sw/hw). 307 * Should return a positive number representing the number of 308 * corrected bitflips, -EBADMSG if the number of bitflips exceed 309 * ECC strength, or any other error code if the error is not 310 * directly related to correction. 311 * If -EBADMSG is returned the input buffers should be left 312 * untouched. 313 * @read_page_raw: function to read a raw page without ECC. This function 314 * should hide the specific layout used by the ECC 315 * controller and always return contiguous in-band and 316 * out-of-band data even if they're not stored 317 * contiguously on the NAND chip (e.g. 318 * NAND_ECC_HW_SYNDROME interleaves in-band and 319 * out-of-band data). 320 * @write_page_raw: function to write a raw page without ECC. This function 321 * should hide the specific layout used by the ECC 322 * controller and consider the passed data as contiguous 323 * in-band and out-of-band data. ECC controller is 324 * responsible for doing the appropriate transformations 325 * to adapt to its specific layout (e.g. 326 * NAND_ECC_HW_SYNDROME interleaves in-band and 327 * out-of-band data). 328 * @read_page: function to read a page according to the ECC generator 329 * requirements; returns maximum number of bitflips corrected in 330 * any single ECC step, -EIO hw error 331 * @read_subpage: function to read parts of the page covered by ECC; 332 * returns same as read_page() 333 * @write_subpage: function to write parts of the page covered by ECC. 334 * @write_page: function to write a page according to the ECC generator 335 * requirements. 336 * @write_oob_raw: function to write chip OOB data without ECC 337 * @read_oob_raw: function to read chip OOB data without ECC 338 * @read_oob: function to read chip OOB data 339 * @write_oob: function to write chip OOB data 340 */ 341struct nand_ecc_ctrl { 342 nand_ecc_modes_t mode; 343 enum nand_ecc_algo algo; 344 int steps; 345 int size; 346 int bytes; 347 int total; 348 int strength; 349 int prepad; 350 int postpad; 351 unsigned int options; 352 void *priv; 353 u8 *calc_buf; 354 u8 *code_buf; 355 void (*hwctl)(struct nand_chip *chip, int mode); 356 int (*calculate)(struct nand_chip *chip, const uint8_t *dat, 357 uint8_t *ecc_code); 358 int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc, 359 uint8_t *calc_ecc); 360 int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf, 361 int oob_required, int page); 362 int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf, 363 int oob_required, int page); 364 int (*read_page)(struct nand_chip *chip, uint8_t *buf, 365 int oob_required, int page); 366 int (*read_subpage)(struct nand_chip *chip, uint32_t offs, 367 uint32_t len, uint8_t *buf, int page); 368 int (*write_subpage)(struct nand_chip *chip, uint32_t offset, 369 uint32_t data_len, const uint8_t *data_buf, 370 int oob_required, int page); 371 int (*write_page)(struct nand_chip *chip, const uint8_t *buf, 372 int oob_required, int page); 373 int (*write_oob_raw)(struct nand_chip *chip, int page); 374 int (*read_oob_raw)(struct nand_chip *chip, int page); 375 int (*read_oob)(struct nand_chip *chip, int page); 376 int (*write_oob)(struct nand_chip *chip, int page); 377}; 378 379/** 380 * struct nand_sdr_timings - SDR NAND chip timings 381 * 382 * This struct defines the timing requirements of a SDR NAND chip. 383 * These information can be found in every NAND datasheets and the timings 384 * meaning are described in the ONFI specifications: 385 * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing 386 * Parameters) 387 * 388 * All these timings are expressed in picoseconds. 389 * 390 * @tBERS_max: Block erase time 391 * @tCCS_min: Change column setup time 392 * @tPROG_max: Page program time 393 * @tR_max: Page read time 394 * @tALH_min: ALE hold time 395 * @tADL_min: ALE to data loading time 396 * @tALS_min: ALE setup time 397 * @tAR_min: ALE to RE# delay 398 * @tCEA_max: CE# access time 399 * @tCEH_min: CE# high hold time 400 * @tCH_min: CE# hold time 401 * @tCHZ_max: CE# high to output hi-Z 402 * @tCLH_min: CLE hold time 403 * @tCLR_min: CLE to RE# delay 404 * @tCLS_min: CLE setup time 405 * @tCOH_min: CE# high to output hold 406 * @tCS_min: CE# setup time 407 * @tDH_min: Data hold time 408 * @tDS_min: Data setup time 409 * @tFEAT_max: Busy time for Set Features and Get Features 410 * @tIR_min: Output hi-Z to RE# low 411 * @tITC_max: Interface and Timing Mode Change time 412 * @tRC_min: RE# cycle time 413 * @tREA_max: RE# access time 414 * @tREH_min: RE# high hold time 415 * @tRHOH_min: RE# high to output hold 416 * @tRHW_min: RE# high to WE# low 417 * @tRHZ_max: RE# high to output hi-Z 418 * @tRLOH_min: RE# low to output hold 419 * @tRP_min: RE# pulse width 420 * @tRR_min: Ready to RE# low (data only) 421 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the 422 * rising edge of R/B#. 423 * @tWB_max: WE# high to SR[6] low 424 * @tWC_min: WE# cycle time 425 * @tWH_min: WE# high hold time 426 * @tWHR_min: WE# high to RE# low 427 * @tWP_min: WE# pulse width 428 * @tWW_min: WP# transition to WE# low 429 */ 430struct nand_sdr_timings { 431 u64 tBERS_max; 432 u32 tCCS_min; 433 u64 tPROG_max; 434 u64 tR_max; 435 u32 tALH_min; 436 u32 tADL_min; 437 u32 tALS_min; 438 u32 tAR_min; 439 u32 tCEA_max; 440 u32 tCEH_min; 441 u32 tCH_min; 442 u32 tCHZ_max; 443 u32 tCLH_min; 444 u32 tCLR_min; 445 u32 tCLS_min; 446 u32 tCOH_min; 447 u32 tCS_min; 448 u32 tDH_min; 449 u32 tDS_min; 450 u32 tFEAT_max; 451 u32 tIR_min; 452 u32 tITC_max; 453 u32 tRC_min; 454 u32 tREA_max; 455 u32 tREH_min; 456 u32 tRHOH_min; 457 u32 tRHW_min; 458 u32 tRHZ_max; 459 u32 tRLOH_min; 460 u32 tRP_min; 461 u32 tRR_min; 462 u64 tRST_max; 463 u32 tWB_max; 464 u32 tWC_min; 465 u32 tWH_min; 466 u32 tWHR_min; 467 u32 tWP_min; 468 u32 tWW_min; 469}; 470 471/** 472 * enum nand_data_interface_type - NAND interface timing type 473 * @NAND_SDR_IFACE: Single Data Rate interface 474 */ 475enum nand_data_interface_type { 476 NAND_SDR_IFACE, 477}; 478 479/** 480 * struct nand_data_interface - NAND interface timing 481 * @type: type of the timing 482 * @timings: The timing, type according to @type 483 * @timings.sdr: Use it when @type is %NAND_SDR_IFACE. 484 */ 485struct nand_data_interface { 486 enum nand_data_interface_type type; 487 union { 488 struct nand_sdr_timings sdr; 489 } timings; 490}; 491 492/** 493 * nand_get_sdr_timings - get SDR timing from data interface 494 * @conf: The data interface 495 */ 496static inline const struct nand_sdr_timings * 497nand_get_sdr_timings(const struct nand_data_interface *conf) 498{ 499 if (conf->type != NAND_SDR_IFACE) 500 return ERR_PTR(-EINVAL); 501 502 return &conf->timings.sdr; 503} 504 505/** 506 * struct nand_op_cmd_instr - Definition of a command instruction 507 * @opcode: the command to issue in one cycle 508 */ 509struct nand_op_cmd_instr { 510 u8 opcode; 511}; 512 513/** 514 * struct nand_op_addr_instr - Definition of an address instruction 515 * @naddrs: length of the @addrs array 516 * @addrs: array containing the address cycles to issue 517 */ 518struct nand_op_addr_instr { 519 unsigned int naddrs; 520 const u8 *addrs; 521}; 522 523/** 524 * struct nand_op_data_instr - Definition of a data instruction 525 * @len: number of data bytes to move 526 * @buf: buffer to fill 527 * @buf.in: buffer to fill when reading from the NAND chip 528 * @buf.out: buffer to read from when writing to the NAND chip 529 * @force_8bit: force 8-bit access 530 * 531 * Please note that "in" and "out" are inverted from the ONFI specification 532 * and are from the controller perspective, so a "in" is a read from the NAND 533 * chip while a "out" is a write to the NAND chip. 534 */ 535struct nand_op_data_instr { 536 unsigned int len; 537 union { 538 void *in; 539 const void *out; 540 } buf; 541 bool force_8bit; 542}; 543 544/** 545 * struct nand_op_waitrdy_instr - Definition of a wait ready instruction 546 * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms 547 */ 548struct nand_op_waitrdy_instr { 549 unsigned int timeout_ms; 550}; 551 552/** 553 * enum nand_op_instr_type - Definition of all instruction types 554 * @NAND_OP_CMD_INSTR: command instruction 555 * @NAND_OP_ADDR_INSTR: address instruction 556 * @NAND_OP_DATA_IN_INSTR: data in instruction 557 * @NAND_OP_DATA_OUT_INSTR: data out instruction 558 * @NAND_OP_WAITRDY_INSTR: wait ready instruction 559 */ 560enum nand_op_instr_type { 561 NAND_OP_CMD_INSTR, 562 NAND_OP_ADDR_INSTR, 563 NAND_OP_DATA_IN_INSTR, 564 NAND_OP_DATA_OUT_INSTR, 565 NAND_OP_WAITRDY_INSTR, 566}; 567 568/** 569 * struct nand_op_instr - Instruction object 570 * @type: the instruction type 571 * @ctx: extra data associated to the instruction. You'll have to use the 572 * appropriate element depending on @type 573 * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR 574 * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR 575 * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR 576 * or %NAND_OP_DATA_OUT_INSTR 577 * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR 578 * @delay_ns: delay the controller should apply after the instruction has been 579 * issued on the bus. Most modern controllers have internal timings 580 * control logic, and in this case, the controller driver can ignore 581 * this field. 582 */ 583struct nand_op_instr { 584 enum nand_op_instr_type type; 585 union { 586 struct nand_op_cmd_instr cmd; 587 struct nand_op_addr_instr addr; 588 struct nand_op_data_instr data; 589 struct nand_op_waitrdy_instr waitrdy; 590 } ctx; 591 unsigned int delay_ns; 592}; 593 594/* 595 * Special handling must be done for the WAITRDY timeout parameter as it usually 596 * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or 597 * tBERS (during an erase) which all of them are u64 values that cannot be 598 * divided by usual kernel macros and must be handled with the special 599 * DIV_ROUND_UP_ULL() macro. 600 * 601 * Cast to type of dividend is needed here to guarantee that the result won't 602 * be an unsigned long long when the dividend is an unsigned long (or smaller), 603 * which is what the compiler does when it sees ternary operator with 2 604 * different return types (picks the largest type to make sure there's no 605 * loss). 606 */ 607#define __DIVIDE(dividend, divisor) ({ \ 608 (__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ? \ 609 DIV_ROUND_UP(dividend, divisor) : \ 610 DIV_ROUND_UP_ULL(dividend, divisor)); \ 611 }) 612#define PSEC_TO_NSEC(x) __DIVIDE(x, 1000) 613#define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000) 614 615#define NAND_OP_CMD(id, ns) \ 616 { \ 617 .type = NAND_OP_CMD_INSTR, \ 618 .ctx.cmd.opcode = id, \ 619 .delay_ns = ns, \ 620 } 621 622#define NAND_OP_ADDR(ncycles, cycles, ns) \ 623 { \ 624 .type = NAND_OP_ADDR_INSTR, \ 625 .ctx.addr = { \ 626 .naddrs = ncycles, \ 627 .addrs = cycles, \ 628 }, \ 629 .delay_ns = ns, \ 630 } 631 632#define NAND_OP_DATA_IN(l, b, ns) \ 633 { \ 634 .type = NAND_OP_DATA_IN_INSTR, \ 635 .ctx.data = { \ 636 .len = l, \ 637 .buf.in = b, \ 638 .force_8bit = false, \ 639 }, \ 640 .delay_ns = ns, \ 641 } 642 643#define NAND_OP_DATA_OUT(l, b, ns) \ 644 { \ 645 .type = NAND_OP_DATA_OUT_INSTR, \ 646 .ctx.data = { \ 647 .len = l, \ 648 .buf.out = b, \ 649 .force_8bit = false, \ 650 }, \ 651 .delay_ns = ns, \ 652 } 653 654#define NAND_OP_8BIT_DATA_IN(l, b, ns) \ 655 { \ 656 .type = NAND_OP_DATA_IN_INSTR, \ 657 .ctx.data = { \ 658 .len = l, \ 659 .buf.in = b, \ 660 .force_8bit = true, \ 661 }, \ 662 .delay_ns = ns, \ 663 } 664 665#define NAND_OP_8BIT_DATA_OUT(l, b, ns) \ 666 { \ 667 .type = NAND_OP_DATA_OUT_INSTR, \ 668 .ctx.data = { \ 669 .len = l, \ 670 .buf.out = b, \ 671 .force_8bit = true, \ 672 }, \ 673 .delay_ns = ns, \ 674 } 675 676#define NAND_OP_WAIT_RDY(tout_ms, ns) \ 677 { \ 678 .type = NAND_OP_WAITRDY_INSTR, \ 679 .ctx.waitrdy.timeout_ms = tout_ms, \ 680 .delay_ns = ns, \ 681 } 682 683/** 684 * struct nand_subop - a sub operation 685 * @instrs: array of instructions 686 * @ninstrs: length of the @instrs array 687 * @first_instr_start_off: offset to start from for the first instruction 688 * of the sub-operation 689 * @last_instr_end_off: offset to end at (excluded) for the last instruction 690 * of the sub-operation 691 * 692 * Both @first_instr_start_off and @last_instr_end_off only apply to data or 693 * address instructions. 694 * 695 * When an operation cannot be handled as is by the NAND controller, it will 696 * be split by the parser into sub-operations which will be passed to the 697 * controller driver. 698 */ 699struct nand_subop { 700 const struct nand_op_instr *instrs; 701 unsigned int ninstrs; 702 unsigned int first_instr_start_off; 703 unsigned int last_instr_end_off; 704}; 705 706unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, 707 unsigned int op_id); 708unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, 709 unsigned int op_id); 710unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, 711 unsigned int op_id); 712unsigned int nand_subop_get_data_len(const struct nand_subop *subop, 713 unsigned int op_id); 714 715/** 716 * struct nand_op_parser_addr_constraints - Constraints for address instructions 717 * @maxcycles: maximum number of address cycles the controller can issue in a 718 * single step 719 */ 720struct nand_op_parser_addr_constraints { 721 unsigned int maxcycles; 722}; 723 724/** 725 * struct nand_op_parser_data_constraints - Constraints for data instructions 726 * @maxlen: maximum data length that the controller can handle in a single step 727 */ 728struct nand_op_parser_data_constraints { 729 unsigned int maxlen; 730}; 731 732/** 733 * struct nand_op_parser_pattern_elem - One element of a pattern 734 * @type: the instructuction type 735 * @optional: whether this element of the pattern is optional or mandatory 736 * @ctx: address or data constraint 737 * @ctx.addr: address constraint (number of cycles) 738 * @ctx.data: data constraint (data length) 739 */ 740struct nand_op_parser_pattern_elem { 741 enum nand_op_instr_type type; 742 bool optional; 743 union { 744 struct nand_op_parser_addr_constraints addr; 745 struct nand_op_parser_data_constraints data; 746 } ctx; 747}; 748 749#define NAND_OP_PARSER_PAT_CMD_ELEM(_opt) \ 750 { \ 751 .type = NAND_OP_CMD_INSTR, \ 752 .optional = _opt, \ 753 } 754 755#define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles) \ 756 { \ 757 .type = NAND_OP_ADDR_INSTR, \ 758 .optional = _opt, \ 759 .ctx.addr.maxcycles = _maxcycles, \ 760 } 761 762#define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen) \ 763 { \ 764 .type = NAND_OP_DATA_IN_INSTR, \ 765 .optional = _opt, \ 766 .ctx.data.maxlen = _maxlen, \ 767 } 768 769#define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen) \ 770 { \ 771 .type = NAND_OP_DATA_OUT_INSTR, \ 772 .optional = _opt, \ 773 .ctx.data.maxlen = _maxlen, \ 774 } 775 776#define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt) \ 777 { \ 778 .type = NAND_OP_WAITRDY_INSTR, \ 779 .optional = _opt, \ 780 } 781 782/** 783 * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor 784 * @elems: array of pattern elements 785 * @nelems: number of pattern elements in @elems array 786 * @exec: the function that will issue a sub-operation 787 * 788 * A pattern is a list of elements, each element reprensenting one instruction 789 * with its constraints. The pattern itself is used by the core to match NAND 790 * chip operation with NAND controller operations. 791 * Once a match between a NAND controller operation pattern and a NAND chip 792 * operation (or a sub-set of a NAND operation) is found, the pattern ->exec() 793 * hook is called so that the controller driver can issue the operation on the 794 * bus. 795 * 796 * Controller drivers should declare as many patterns as they support and pass 797 * this list of patterns (created with the help of the following macro) to 798 * the nand_op_parser_exec_op() helper. 799 */ 800struct nand_op_parser_pattern { 801 const struct nand_op_parser_pattern_elem *elems; 802 unsigned int nelems; 803 int (*exec)(struct nand_chip *chip, const struct nand_subop *subop); 804}; 805 806#define NAND_OP_PARSER_PATTERN(_exec, ...) \ 807 { \ 808 .exec = _exec, \ 809 .elems = (struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }, \ 810 .nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) / \ 811 sizeof(struct nand_op_parser_pattern_elem), \ 812 } 813 814/** 815 * struct nand_op_parser - NAND controller operation parser descriptor 816 * @patterns: array of supported patterns 817 * @npatterns: length of the @patterns array 818 * 819 * The parser descriptor is just an array of supported patterns which will be 820 * iterated by nand_op_parser_exec_op() everytime it tries to execute an 821 * NAND operation (or tries to determine if a specific operation is supported). 822 * 823 * It is worth mentioning that patterns will be tested in their declaration 824 * order, and the first match will be taken, so it's important to order patterns 825 * appropriately so that simple/inefficient patterns are placed at the end of 826 * the list. Usually, this is where you put single instruction patterns. 827 */ 828struct nand_op_parser { 829 const struct nand_op_parser_pattern *patterns; 830 unsigned int npatterns; 831}; 832 833#define NAND_OP_PARSER(...) \ 834 { \ 835 .patterns = (struct nand_op_parser_pattern[]) { __VA_ARGS__ }, \ 836 .npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) / \ 837 sizeof(struct nand_op_parser_pattern), \ 838 } 839 840/** 841 * struct nand_operation - NAND operation descriptor 842 * @cs: the CS line to select for this NAND operation 843 * @instrs: array of instructions to execute 844 * @ninstrs: length of the @instrs array 845 * 846 * The actual operation structure that will be passed to chip->exec_op(). 847 */ 848struct nand_operation { 849 unsigned int cs; 850 const struct nand_op_instr *instrs; 851 unsigned int ninstrs; 852}; 853 854#define NAND_OPERATION(_cs, _instrs) \ 855 { \ 856 .cs = _cs, \ 857 .instrs = _instrs, \ 858 .ninstrs = ARRAY_SIZE(_instrs), \ 859 } 860 861int nand_op_parser_exec_op(struct nand_chip *chip, 862 const struct nand_op_parser *parser, 863 const struct nand_operation *op, bool check_only); 864/** 865 * struct nand_controller_ops - Controller operations 866 * 867 * @attach_chip: this method is called after the NAND detection phase after 868 * flash ID and MTD fields such as erase size, page size and OOB 869 * size have been set up. ECC requirements are available if 870 * provided by the NAND chip or device tree. Typically used to 871 * choose the appropriate ECC configuration and allocate 872 * associated resources. 873 * This hook is optional. 874 * @detach_chip: free all resources allocated/claimed in 875 * nand_controller_ops->attach_chip(). 876 * This hook is optional. 877 * @exec_op: controller specific method to execute NAND operations. 878 * This method replaces chip->legacy.cmdfunc(), 879 * chip->legacy.{read,write}_{buf,byte,word}(), 880 * chip->legacy.dev_ready() and chip->legacy.waifunc(). 881 * @setup_data_interface: setup the data interface and timing. If 882 * chipnr is set to %NAND_DATA_IFACE_CHECK_ONLY this 883 * means the configuration should not be applied but 884 * only checked. 885 * This hook is optional. 886 */ 887struct nand_controller_ops { 888 int (*attach_chip)(struct nand_chip *chip); 889 void (*detach_chip)(struct nand_chip *chip); 890 int (*exec_op)(struct nand_chip *chip, 891 const struct nand_operation *op, 892 bool check_only); 893 int (*setup_data_interface)(struct nand_chip *chip, int chipnr, 894 const struct nand_data_interface *conf); 895}; 896 897/** 898 * struct nand_controller - Structure used to describe a NAND controller 899 * 900 * @lock: protection lock 901 * @active: the mtd device which holds the controller currently 902 * @wq: wait queue to sleep on if a NAND operation is in 903 * progress used instead of the per chip wait queue 904 * when a hw controller is available. 905 * @ops: NAND controller operations. 906 */ 907struct nand_controller { 908 spinlock_t lock; 909 struct nand_chip *active; 910 wait_queue_head_t wq; 911 const struct nand_controller_ops *ops; 912}; 913 914static inline void nand_controller_init(struct nand_controller *nfc) 915{ 916 nfc->active = NULL; 917 spin_lock_init(&nfc->lock); 918 init_waitqueue_head(&nfc->wq); 919} 920 921/** 922 * struct nand_legacy - NAND chip legacy fields/hooks 923 * @IO_ADDR_R: address to read the 8 I/O lines of the flash device 924 * @IO_ADDR_W: address to write the 8 I/O lines of the flash device 925 * @select_chip: select/deselect a specific target/die 926 * @read_byte: read one byte from the chip 927 * @write_byte: write a single byte to the chip on the low 8 I/O lines 928 * @write_buf: write data from the buffer to the chip 929 * @read_buf: read data from the chip into the buffer 930 * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used 931 * to write command and address 932 * @cmdfunc: hardware specific function for writing commands to the chip. 933 * @dev_ready: hardware specific function for accessing device ready/busy line. 934 * If set to NULL no access to ready/busy is available and the 935 * ready/busy information is read from the chip status register. 936 * @waitfunc: hardware specific function for wait on ready. 937 * @block_bad: check if a block is bad, using OOB markers 938 * @block_markbad: mark a block bad 939 * @erase: erase function 940 * @set_features: set the NAND chip features 941 * @get_features: get the NAND chip features 942 * @chip_delay: chip dependent delay for transferring data from array to read 943 * regs (tR). 944 * @dummy_controller: dummy controller implementation for drivers that can 945 * only control a single chip 946 * 947 * If you look at this structure you're already wrong. These fields/hooks are 948 * all deprecated. 949 */ 950struct nand_legacy { 951 void __iomem *IO_ADDR_R; 952 void __iomem *IO_ADDR_W; 953 void (*select_chip)(struct nand_chip *chip, int cs); 954 u8 (*read_byte)(struct nand_chip *chip); 955 void (*write_byte)(struct nand_chip *chip, u8 byte); 956 void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len); 957 void (*read_buf)(struct nand_chip *chip, u8 *buf, int len); 958 void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl); 959 void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column, 960 int page_addr); 961 int (*dev_ready)(struct nand_chip *chip); 962 int (*waitfunc)(struct nand_chip *chip); 963 int (*block_bad)(struct nand_chip *chip, loff_t ofs); 964 int (*block_markbad)(struct nand_chip *chip, loff_t ofs); 965 int (*erase)(struct nand_chip *chip, int page); 966 int (*set_features)(struct nand_chip *chip, int feature_addr, 967 u8 *subfeature_para); 968 int (*get_features)(struct nand_chip *chip, int feature_addr, 969 u8 *subfeature_para); 970 int chip_delay; 971 struct nand_controller dummy_controller; 972}; 973 974/** 975 * struct nand_chip - NAND Private Flash Chip Data 976 * @mtd: MTD device registered to the MTD framework 977 * @legacy: All legacy fields/hooks. If you develop a new driver, 978 * don't even try to use any of these fields/hooks, and if 979 * you're modifying an existing driver that is using those 980 * fields/hooks, you should consider reworking the driver 981 * avoid using them. 982 * @setup_read_retry: [FLASHSPECIFIC] flash (vendor) specific function for 983 * setting the read-retry mode. Mostly needed for MLC NAND. 984 * @ecc: [BOARDSPECIFIC] ECC control structure 985 * @buf_align: minimum buffer alignment required by a platform 986 * @state: [INTERN] the current state of the NAND device 987 * @oob_poi: "poison value buffer," used for laying out OOB data 988 * before writing 989 * @page_shift: [INTERN] number of address bits in a page (column 990 * address bits). 991 * @phys_erase_shift: [INTERN] number of address bits in a physical eraseblock 992 * @bbt_erase_shift: [INTERN] number of address bits in a bbt entry 993 * @chip_shift: [INTERN] number of address bits in one chip 994 * @options: [BOARDSPECIFIC] various chip options. They can partly 995 * be set to inform nand_scan about special functionality. 996 * See the defines for further explanation. 997 * @bbt_options: [INTERN] bad block specific options. All options used 998 * here must come from bbm.h. By default, these options 999 * will be copied to the appropriate nand_bbt_descr's. 1000 * @badblockpos: [INTERN] position of the bad block marker in the oob 1001 * area. 1002 * @badblockbits: [INTERN] minimum number of set bits in a good block's 1003 * bad block marker position; i.e., BBM == 11110111b is 1004 * not bad when badblockbits == 7 1005 * @bits_per_cell: [INTERN] number of bits per cell. i.e., 1 means SLC. 1006 * @ecc_strength_ds: [INTERN] ECC correctability from the datasheet. 1007 * Minimum amount of bit errors per @ecc_step_ds guaranteed 1008 * to be correctable. If unknown, set to zero. 1009 * @ecc_step_ds: [INTERN] ECC step required by the @ecc_strength_ds, 1010 * also from the datasheet. It is the recommended ECC step 1011 * size, if known; if unknown, set to zero. 1012 * @onfi_timing_mode_default: [INTERN] default ONFI timing mode. This field is 1013 * set to the actually used ONFI mode if the chip is 1014 * ONFI compliant or deduced from the datasheet if 1015 * the NAND chip is not ONFI compliant. 1016 * @numchips: [INTERN] number of physical chips 1017 * @chipsize: [INTERN] the size of one chip for multichip arrays 1018 * @pagemask: [INTERN] page number mask = number of (pages / chip) - 1 1019 * @data_buf: [INTERN] buffer for data, size is (page size + oobsize). 1020 * @pagebuf: [INTERN] holds the pagenumber which is currently in 1021 * data_buf. 1022 * @pagebuf_bitflips: [INTERN] holds the bitflip count for the page which is 1023 * currently in data_buf. 1024 * @subpagesize: [INTERN] holds the subpagesize 1025 * @id: [INTERN] holds NAND ID 1026 * @parameters: [INTERN] holds generic parameters under an easily 1027 * readable form. 1028 * @max_bb_per_die: [INTERN] the max number of bad blocks each die of a 1029 * this nand device will encounter their life times. 1030 * @blocks_per_die: [INTERN] The number of PEBs in a die 1031 * @data_interface: [INTERN] NAND interface timing information 1032 * @cur_cs: currently selected target. -1 means no target selected, 1033 * otherwise we should always have cur_cs >= 0 && 1034 * cur_cs < numchips. NAND Controller drivers should not 1035 * modify this value, but they're allowed to read it. 1036 * @read_retries: [INTERN] the number of read retry modes supported 1037 * @bbt: [INTERN] bad block table pointer 1038 * @bbt_td: [REPLACEABLE] bad block table descriptor for flash 1039 * lookup. 1040 * @bbt_md: [REPLACEABLE] bad block table mirror descriptor 1041 * @badblock_pattern: [REPLACEABLE] bad block scan pattern used for initial 1042 * bad block scan. 1043 * @controller: [REPLACEABLE] a pointer to a hardware controller 1044 * structure which is shared among multiple independent 1045 * devices. 1046 * @priv: [OPTIONAL] pointer to private chip data 1047 * @manufacturer: [INTERN] Contains manufacturer information 1048 * @manufacturer.desc: [INTERN] Contains manufacturer's description 1049 * @manufacturer.priv: [INTERN] Contains manufacturer private information 1050 */ 1051 1052struct nand_chip { 1053 struct mtd_info mtd; 1054 1055 struct nand_legacy legacy; 1056 1057 int (*setup_read_retry)(struct nand_chip *chip, int retry_mode); 1058 1059 unsigned int options; 1060 unsigned int bbt_options; 1061 1062 int page_shift; 1063 int phys_erase_shift; 1064 int bbt_erase_shift; 1065 int chip_shift; 1066 int numchips; 1067 uint64_t chipsize; 1068 int pagemask; 1069 u8 *data_buf; 1070 int pagebuf; 1071 unsigned int pagebuf_bitflips; 1072 int subpagesize; 1073 uint8_t bits_per_cell; 1074 uint16_t ecc_strength_ds; 1075 uint16_t ecc_step_ds; 1076 int onfi_timing_mode_default; 1077 int badblockpos; 1078 int badblockbits; 1079 1080 struct nand_id id; 1081 struct nand_parameters parameters; 1082 u16 max_bb_per_die; 1083 u32 blocks_per_die; 1084 1085 struct nand_data_interface data_interface; 1086 1087 int cur_cs; 1088 1089 int read_retries; 1090 1091 flstate_t state; 1092 1093 uint8_t *oob_poi; 1094 struct nand_controller *controller; 1095 1096 struct nand_ecc_ctrl ecc; 1097 unsigned long buf_align; 1098 1099 uint8_t *bbt; 1100 struct nand_bbt_descr *bbt_td; 1101 struct nand_bbt_descr *bbt_md; 1102 1103 struct nand_bbt_descr *badblock_pattern; 1104 1105 void *priv; 1106 1107 struct { 1108 const struct nand_manufacturer *desc; 1109 void *priv; 1110 } manufacturer; 1111}; 1112 1113extern const struct mtd_ooblayout_ops nand_ooblayout_sp_ops; 1114extern const struct mtd_ooblayout_ops nand_ooblayout_lp_ops; 1115 1116static inline void nand_set_flash_node(struct nand_chip *chip, 1117 struct device_node *np) 1118{ 1119 mtd_set_of_node(&chip->mtd, np); 1120} 1121 1122static inline struct device_node *nand_get_flash_node(struct nand_chip *chip) 1123{ 1124 return mtd_get_of_node(&chip->mtd); 1125} 1126 1127static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd) 1128{ 1129 return container_of(mtd, struct nand_chip, mtd); 1130} 1131 1132static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip) 1133{ 1134 return &chip->mtd; 1135} 1136 1137static inline void *nand_get_controller_data(struct nand_chip *chip) 1138{ 1139 return chip->priv; 1140} 1141 1142static inline void nand_set_controller_data(struct nand_chip *chip, void *priv) 1143{ 1144 chip->priv = priv; 1145} 1146 1147static inline void nand_set_manufacturer_data(struct nand_chip *chip, 1148 void *priv) 1149{ 1150 chip->manufacturer.priv = priv; 1151} 1152 1153static inline void *nand_get_manufacturer_data(struct nand_chip *chip) 1154{ 1155 return chip->manufacturer.priv; 1156} 1157 1158/* 1159 * A helper for defining older NAND chips where the second ID byte fully 1160 * defined the chip, including the geometry (chip size, eraseblock size, page 1161 * size). All these chips have 512 bytes NAND page size. 1162 */ 1163#define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts) \ 1164 { .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \ 1165 .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) } 1166 1167/* 1168 * A helper for defining newer chips which report their page size and 1169 * eraseblock size via the extended ID bytes. 1170 * 1171 * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with 1172 * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the 1173 * device ID now only represented a particular total chip size (and voltage, 1174 * buswidth), and the page size, eraseblock size, and OOB size could vary while 1175 * using the same device ID. 1176 */ 1177#define EXTENDED_ID_NAND(nm, devid, chipsz, opts) \ 1178 { .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \ 1179 .options = (opts) } 1180 1181#define NAND_ECC_INFO(_strength, _step) \ 1182 { .strength_ds = (_strength), .step_ds = (_step) } 1183#define NAND_ECC_STRENGTH(type) ((type)->ecc.strength_ds) 1184#define NAND_ECC_STEP(type) ((type)->ecc.step_ds) 1185 1186/** 1187 * struct nand_flash_dev - NAND Flash Device ID Structure 1188 * @name: a human-readable name of the NAND chip 1189 * @dev_id: the device ID (the second byte of the full chip ID array) 1190 * @mfr_id: manufecturer ID part of the full chip ID array (refers the same 1191 * memory address as @id[0]) 1192 * @dev_id: device ID part of the full chip ID array (refers the same memory 1193 * address as @id[1]) 1194 * @id: full device ID array 1195 * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as 1196 * well as the eraseblock size) is determined from the extended NAND 1197 * chip ID array) 1198 * @chipsize: total chip size in MiB 1199 * @erasesize: eraseblock size in bytes (determined from the extended ID if 0) 1200 * @options: stores various chip bit options 1201 * @id_len: The valid length of the @id. 1202 * @oobsize: OOB size 1203 * @ecc: ECC correctability and step information from the datasheet. 1204 * @ecc.strength_ds: The ECC correctability from the datasheet, same as the 1205 * @ecc_strength_ds in nand_chip{}. 1206 * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the 1207 * @ecc_step_ds in nand_chip{}, also from the datasheet. 1208 * For example, the "4bit ECC for each 512Byte" can be set with 1209 * NAND_ECC_INFO(4, 512). 1210 * @onfi_timing_mode_default: the default ONFI timing mode entered after a NAND 1211 * reset. Should be deduced from timings described 1212 * in the datasheet. 1213 * 1214 */ 1215struct nand_flash_dev { 1216 char *name; 1217 union { 1218 struct { 1219 uint8_t mfr_id; 1220 uint8_t dev_id; 1221 }; 1222 uint8_t id[NAND_MAX_ID_LEN]; 1223 }; 1224 unsigned int pagesize; 1225 unsigned int chipsize; 1226 unsigned int erasesize; 1227 unsigned int options; 1228 uint16_t id_len; 1229 uint16_t oobsize; 1230 struct { 1231 uint16_t strength_ds; 1232 uint16_t step_ds; 1233 } ecc; 1234 int onfi_timing_mode_default; 1235}; 1236 1237int nand_create_bbt(struct nand_chip *chip); 1238 1239/* 1240 * Check if it is a SLC nand. 1241 * The !nand_is_slc() can be used to check the MLC/TLC nand chips. 1242 * We do not distinguish the MLC and TLC now. 1243 */ 1244static inline bool nand_is_slc(struct nand_chip *chip) 1245{ 1246 WARN(chip->bits_per_cell == 0, 1247 "chip->bits_per_cell is used uninitialized\n"); 1248 return chip->bits_per_cell == 1; 1249} 1250 1251/** 1252 * Check if the opcode's address should be sent only on the lower 8 bits 1253 * @command: opcode to check 1254 */ 1255static inline int nand_opcode_8bits(unsigned int command) 1256{ 1257 switch (command) { 1258 case NAND_CMD_READID: 1259 case NAND_CMD_PARAM: 1260 case NAND_CMD_GET_FEATURES: 1261 case NAND_CMD_SET_FEATURES: 1262 return 1; 1263 default: 1264 break; 1265 } 1266 return 0; 1267} 1268 1269int nand_check_erased_ecc_chunk(void *data, int datalen, 1270 void *ecc, int ecclen, 1271 void *extraoob, int extraooblen, 1272 int threshold); 1273 1274int nand_ecc_choose_conf(struct nand_chip *chip, 1275 const struct nand_ecc_caps *caps, int oobavail); 1276 1277/* Default write_oob implementation */ 1278int nand_write_oob_std(struct nand_chip *chip, int page); 1279 1280/* Default read_oob implementation */ 1281int nand_read_oob_std(struct nand_chip *chip, int page); 1282 1283/* Stub used by drivers that do not support GET/SET FEATURES operations */ 1284int nand_get_set_features_notsupp(struct nand_chip *chip, int addr, 1285 u8 *subfeature_param); 1286 1287/* Default read_page_raw implementation */ 1288int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, 1289 int page); 1290 1291/* Default write_page_raw implementation */ 1292int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 1293 int oob_required, int page); 1294 1295/* Reset and initialize a NAND device */ 1296int nand_reset(struct nand_chip *chip, int chipnr); 1297 1298/* NAND operation helpers */ 1299int nand_reset_op(struct nand_chip *chip); 1300int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, 1301 unsigned int len); 1302int nand_status_op(struct nand_chip *chip, u8 *status); 1303int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock); 1304int nand_read_page_op(struct nand_chip *chip, unsigned int page, 1305 unsigned int offset_in_page, void *buf, unsigned int len); 1306int nand_change_read_column_op(struct nand_chip *chip, 1307 unsigned int offset_in_page, void *buf, 1308 unsigned int len, bool force_8bit); 1309int nand_read_oob_op(struct nand_chip *chip, unsigned int page, 1310 unsigned int offset_in_page, void *buf, unsigned int len); 1311int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, 1312 unsigned int offset_in_page, const void *buf, 1313 unsigned int len); 1314int nand_prog_page_end_op(struct nand_chip *chip); 1315int nand_prog_page_op(struct nand_chip *chip, unsigned int page, 1316 unsigned int offset_in_page, const void *buf, 1317 unsigned int len); 1318int nand_change_write_column_op(struct nand_chip *chip, 1319 unsigned int offset_in_page, const void *buf, 1320 unsigned int len, bool force_8bit); 1321int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, 1322 bool force_8bit); 1323int nand_write_data_op(struct nand_chip *chip, const void *buf, 1324 unsigned int len, bool force_8bit); 1325 1326/* Scan and identify a NAND device */ 1327int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips, 1328 struct nand_flash_dev *ids); 1329 1330static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips) 1331{ 1332 return nand_scan_with_ids(chip, max_chips, NULL); 1333} 1334 1335/* Internal helper for board drivers which need to override command function */ 1336void nand_wait_ready(struct nand_chip *chip); 1337 1338/* 1339 * Free resources held by the NAND device, must be called on error after a 1340 * sucessful nand_scan(). 1341 */ 1342void nand_cleanup(struct nand_chip *chip); 1343/* Unregister the MTD device and calls nand_cleanup() */ 1344void nand_release(struct nand_chip *chip); 1345 1346/* 1347 * External helper for controller drivers that have to implement the WAITRDY 1348 * instruction and have no physical pin to check it. 1349 */ 1350int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms); 1351struct gpio_desc; 1352int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod, 1353 unsigned long timeout_ms); 1354 1355/* Select/deselect a NAND target. */ 1356void nand_select_target(struct nand_chip *chip, unsigned int cs); 1357void nand_deselect_target(struct nand_chip *chip); 1358 1359#endif /* __LINUX_MTD_RAWNAND_H */