Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
3 * Steven J. Hill <sjhill@realitydiluted.com>
4 * Thomas Gleixner <tglx@linutronix.de>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * Info:
11 * Contains standard defines and IDs for NAND flash devices
12 *
13 * Changelog:
14 * See git changelog.
15 */
16#ifndef __LINUX_MTD_RAWNAND_H
17#define __LINUX_MTD_RAWNAND_H
18
19#include <linux/wait.h>
20#include <linux/spinlock.h>
21#include <linux/mtd/mtd.h>
22#include <linux/mtd/flashchip.h>
23#include <linux/mtd/bbm.h>
24#include <linux/mtd/jedec.h>
25#include <linux/mtd/onfi.h>
26#include <linux/of.h>
27#include <linux/types.h>
28
29struct nand_chip;
30
31/* The maximum number of NAND chips in an array */
32#define NAND_MAX_CHIPS 8
33
34/*
35 * Constants for hardware specific CLE/ALE/NCE function
36 *
37 * These are bits which can be or'ed to set/clear multiple
38 * bits in one go.
39 */
40/* Select the chip by setting nCE to low */
41#define NAND_NCE 0x01
42/* Select the command latch by setting CLE to high */
43#define NAND_CLE 0x02
44/* Select the address latch by setting ALE to high */
45#define NAND_ALE 0x04
46
47#define NAND_CTRL_CLE (NAND_NCE | NAND_CLE)
48#define NAND_CTRL_ALE (NAND_NCE | NAND_ALE)
49#define NAND_CTRL_CHANGE 0x80
50
51/*
52 * Standard NAND flash commands
53 */
54#define NAND_CMD_READ0 0
55#define NAND_CMD_READ1 1
56#define NAND_CMD_RNDOUT 5
57#define NAND_CMD_PAGEPROG 0x10
58#define NAND_CMD_READOOB 0x50
59#define NAND_CMD_ERASE1 0x60
60#define NAND_CMD_STATUS 0x70
61#define NAND_CMD_SEQIN 0x80
62#define NAND_CMD_RNDIN 0x85
63#define NAND_CMD_READID 0x90
64#define NAND_CMD_ERASE2 0xd0
65#define NAND_CMD_PARAM 0xec
66#define NAND_CMD_GET_FEATURES 0xee
67#define NAND_CMD_SET_FEATURES 0xef
68#define NAND_CMD_RESET 0xff
69
70/* Extended commands for large page devices */
71#define NAND_CMD_READSTART 0x30
72#define NAND_CMD_RNDOUTSTART 0xE0
73#define NAND_CMD_CACHEDPROG 0x15
74
75#define NAND_CMD_NONE -1
76
77/* Status bits */
78#define NAND_STATUS_FAIL 0x01
79#define NAND_STATUS_FAIL_N1 0x02
80#define NAND_STATUS_TRUE_READY 0x20
81#define NAND_STATUS_READY 0x40
82#define NAND_STATUS_WP 0x80
83
84#define NAND_DATA_IFACE_CHECK_ONLY -1
85
86/*
87 * Constants for ECC_MODES
88 */
89typedef enum {
90 NAND_ECC_NONE,
91 NAND_ECC_SOFT,
92 NAND_ECC_HW,
93 NAND_ECC_HW_SYNDROME,
94 NAND_ECC_HW_OOB_FIRST,
95 NAND_ECC_ON_DIE,
96} nand_ecc_modes_t;
97
98enum nand_ecc_algo {
99 NAND_ECC_UNKNOWN,
100 NAND_ECC_HAMMING,
101 NAND_ECC_BCH,
102 NAND_ECC_RS,
103};
104
105/*
106 * Constants for Hardware ECC
107 */
108/* Reset Hardware ECC for read */
109#define NAND_ECC_READ 0
110/* Reset Hardware ECC for write */
111#define NAND_ECC_WRITE 1
112/* Enable Hardware ECC before syndrome is read back from flash */
113#define NAND_ECC_READSYN 2
114
115/*
116 * Enable generic NAND 'page erased' check. This check is only done when
117 * ecc.correct() returns -EBADMSG.
118 * Set this flag if your implementation does not fix bitflips in erased
119 * pages and you want to rely on the default implementation.
120 */
121#define NAND_ECC_GENERIC_ERASED_CHECK BIT(0)
122#define NAND_ECC_MAXIMIZE BIT(1)
123
124/*
125 * When using software implementation of Hamming, we can specify which byte
126 * ordering should be used.
127 */
128#define NAND_ECC_SOFT_HAMMING_SM_ORDER BIT(2)
129
130/*
131 * Option constants for bizarre disfunctionality and real
132 * features.
133 */
134/* Buswidth is 16 bit */
135#define NAND_BUSWIDTH_16 0x00000002
136/* Chip has cache program function */
137#define NAND_CACHEPRG 0x00000008
138/*
139 * Chip requires ready check on read (for auto-incremented sequential read).
140 * True only for small page devices; large page devices do not support
141 * autoincrement.
142 */
143#define NAND_NEED_READRDY 0x00000100
144
145/* Chip does not allow subpage writes */
146#define NAND_NO_SUBPAGE_WRITE 0x00000200
147
148/* Device is one of 'new' xD cards that expose fake nand command set */
149#define NAND_BROKEN_XD 0x00000400
150
151/* Device behaves just like nand, but is readonly */
152#define NAND_ROM 0x00000800
153
154/* Device supports subpage reads */
155#define NAND_SUBPAGE_READ 0x00001000
156
157/*
158 * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
159 * patterns.
160 */
161#define NAND_NEED_SCRAMBLING 0x00002000
162
163/* Device needs 3rd row address cycle */
164#define NAND_ROW_ADDR_3 0x00004000
165
166/* Options valid for Samsung large page devices */
167#define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
168
169/* Macros to identify the above */
170#define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
171
172/* Non chip related options */
173/* This option skips the bbt scan during initialization. */
174#define NAND_SKIP_BBTSCAN 0x00010000
175/* Chip may not exist, so silence any errors in scan */
176#define NAND_SCAN_SILENT_NODEV 0x00040000
177/*
178 * Autodetect nand buswidth with readid/onfi.
179 * This suppose the driver will configure the hardware in 8 bits mode
180 * when calling nand_scan_ident, and update its configuration
181 * before calling nand_scan_tail.
182 */
183#define NAND_BUSWIDTH_AUTO 0x00080000
184/*
185 * This option could be defined by controller drivers to protect against
186 * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
187 */
188#define NAND_USE_BOUNCE_BUFFER 0x00100000
189
190/*
191 * In case your controller is implementing ->legacy.cmd_ctrl() and is relying
192 * on the default ->cmdfunc() implementation, you may want to let the core
193 * handle the tCCS delay which is required when a column change (RNDIN or
194 * RNDOUT) is requested.
195 * If your controller already takes care of this delay, you don't need to set
196 * this flag.
197 */
198#define NAND_WAIT_TCCS 0x00200000
199
200/*
201 * Whether the NAND chip is a boot medium. Drivers might use this information
202 * to select ECC algorithms supported by the boot ROM or similar restrictions.
203 */
204#define NAND_IS_BOOT_MEDIUM 0x00400000
205
206/*
207 * Do not try to tweak the timings at runtime. This is needed when the
208 * controller initializes the timings on itself or when it relies on
209 * configuration done by the bootloader.
210 */
211#define NAND_KEEP_TIMINGS 0x00800000
212
213/* Cell info constants */
214#define NAND_CI_CHIPNR_MSK 0x03
215#define NAND_CI_CELLTYPE_MSK 0x0C
216#define NAND_CI_CELLTYPE_SHIFT 2
217
218/**
219 * struct nand_parameters - NAND generic parameters from the parameter page
220 * @model: Model name
221 * @supports_set_get_features: The NAND chip supports setting/getting features
222 * @set_feature_list: Bitmap of features that can be set
223 * @get_feature_list: Bitmap of features that can be get
224 * @onfi: ONFI specific parameters
225 */
226struct nand_parameters {
227 /* Generic parameters */
228 const char *model;
229 bool supports_set_get_features;
230 DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
231 DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);
232
233 /* ONFI parameters */
234 struct onfi_params *onfi;
235};
236
237/* The maximum expected count of bytes in the NAND ID sequence */
238#define NAND_MAX_ID_LEN 8
239
240/**
241 * struct nand_id - NAND id structure
242 * @data: buffer containing the id bytes.
243 * @len: ID length.
244 */
245struct nand_id {
246 u8 data[NAND_MAX_ID_LEN];
247 int len;
248};
249
250/**
251 * struct nand_ecc_step_info - ECC step information of ECC engine
252 * @stepsize: data bytes per ECC step
253 * @strengths: array of supported strengths
254 * @nstrengths: number of supported strengths
255 */
256struct nand_ecc_step_info {
257 int stepsize;
258 const int *strengths;
259 int nstrengths;
260};
261
262/**
263 * struct nand_ecc_caps - capability of ECC engine
264 * @stepinfos: array of ECC step information
265 * @nstepinfos: number of ECC step information
266 * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
267 */
268struct nand_ecc_caps {
269 const struct nand_ecc_step_info *stepinfos;
270 int nstepinfos;
271 int (*calc_ecc_bytes)(int step_size, int strength);
272};
273
274/* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
275#define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...) \
276static const int __name##_strengths[] = { __VA_ARGS__ }; \
277static const struct nand_ecc_step_info __name##_stepinfo = { \
278 .stepsize = __step, \
279 .strengths = __name##_strengths, \
280 .nstrengths = ARRAY_SIZE(__name##_strengths), \
281}; \
282static const struct nand_ecc_caps __name = { \
283 .stepinfos = &__name##_stepinfo, \
284 .nstepinfos = 1, \
285 .calc_ecc_bytes = __calc, \
286}
287
288/**
289 * struct nand_ecc_ctrl - Control structure for ECC
290 * @mode: ECC mode
291 * @algo: ECC algorithm
292 * @steps: number of ECC steps per page
293 * @size: data bytes per ECC step
294 * @bytes: ECC bytes per step
295 * @strength: max number of correctible bits per ECC step
296 * @total: total number of ECC bytes per page
297 * @prepad: padding information for syndrome based ECC generators
298 * @postpad: padding information for syndrome based ECC generators
299 * @options: ECC specific options (see NAND_ECC_XXX flags defined above)
300 * @priv: pointer to private ECC control data
301 * @calc_buf: buffer for calculated ECC, size is oobsize.
302 * @code_buf: buffer for ECC read from flash, size is oobsize.
303 * @hwctl: function to control hardware ECC generator. Must only
304 * be provided if an hardware ECC is available
305 * @calculate: function for ECC calculation or readback from ECC hardware
306 * @correct: function for ECC correction, matching to ECC generator (sw/hw).
307 * Should return a positive number representing the number of
308 * corrected bitflips, -EBADMSG if the number of bitflips exceed
309 * ECC strength, or any other error code if the error is not
310 * directly related to correction.
311 * If -EBADMSG is returned the input buffers should be left
312 * untouched.
313 * @read_page_raw: function to read a raw page without ECC. This function
314 * should hide the specific layout used by the ECC
315 * controller and always return contiguous in-band and
316 * out-of-band data even if they're not stored
317 * contiguously on the NAND chip (e.g.
318 * NAND_ECC_HW_SYNDROME interleaves in-band and
319 * out-of-band data).
320 * @write_page_raw: function to write a raw page without ECC. This function
321 * should hide the specific layout used by the ECC
322 * controller and consider the passed data as contiguous
323 * in-band and out-of-band data. ECC controller is
324 * responsible for doing the appropriate transformations
325 * to adapt to its specific layout (e.g.
326 * NAND_ECC_HW_SYNDROME interleaves in-band and
327 * out-of-band data).
328 * @read_page: function to read a page according to the ECC generator
329 * requirements; returns maximum number of bitflips corrected in
330 * any single ECC step, -EIO hw error
331 * @read_subpage: function to read parts of the page covered by ECC;
332 * returns same as read_page()
333 * @write_subpage: function to write parts of the page covered by ECC.
334 * @write_page: function to write a page according to the ECC generator
335 * requirements.
336 * @write_oob_raw: function to write chip OOB data without ECC
337 * @read_oob_raw: function to read chip OOB data without ECC
338 * @read_oob: function to read chip OOB data
339 * @write_oob: function to write chip OOB data
340 */
341struct nand_ecc_ctrl {
342 nand_ecc_modes_t mode;
343 enum nand_ecc_algo algo;
344 int steps;
345 int size;
346 int bytes;
347 int total;
348 int strength;
349 int prepad;
350 int postpad;
351 unsigned int options;
352 void *priv;
353 u8 *calc_buf;
354 u8 *code_buf;
355 void (*hwctl)(struct nand_chip *chip, int mode);
356 int (*calculate)(struct nand_chip *chip, const uint8_t *dat,
357 uint8_t *ecc_code);
358 int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc,
359 uint8_t *calc_ecc);
360 int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf,
361 int oob_required, int page);
362 int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf,
363 int oob_required, int page);
364 int (*read_page)(struct nand_chip *chip, uint8_t *buf,
365 int oob_required, int page);
366 int (*read_subpage)(struct nand_chip *chip, uint32_t offs,
367 uint32_t len, uint8_t *buf, int page);
368 int (*write_subpage)(struct nand_chip *chip, uint32_t offset,
369 uint32_t data_len, const uint8_t *data_buf,
370 int oob_required, int page);
371 int (*write_page)(struct nand_chip *chip, const uint8_t *buf,
372 int oob_required, int page);
373 int (*write_oob_raw)(struct nand_chip *chip, int page);
374 int (*read_oob_raw)(struct nand_chip *chip, int page);
375 int (*read_oob)(struct nand_chip *chip, int page);
376 int (*write_oob)(struct nand_chip *chip, int page);
377};
378
379/**
380 * struct nand_sdr_timings - SDR NAND chip timings
381 *
382 * This struct defines the timing requirements of a SDR NAND chip.
383 * These information can be found in every NAND datasheets and the timings
384 * meaning are described in the ONFI specifications:
385 * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing
386 * Parameters)
387 *
388 * All these timings are expressed in picoseconds.
389 *
390 * @tBERS_max: Block erase time
391 * @tCCS_min: Change column setup time
392 * @tPROG_max: Page program time
393 * @tR_max: Page read time
394 * @tALH_min: ALE hold time
395 * @tADL_min: ALE to data loading time
396 * @tALS_min: ALE setup time
397 * @tAR_min: ALE to RE# delay
398 * @tCEA_max: CE# access time
399 * @tCEH_min: CE# high hold time
400 * @tCH_min: CE# hold time
401 * @tCHZ_max: CE# high to output hi-Z
402 * @tCLH_min: CLE hold time
403 * @tCLR_min: CLE to RE# delay
404 * @tCLS_min: CLE setup time
405 * @tCOH_min: CE# high to output hold
406 * @tCS_min: CE# setup time
407 * @tDH_min: Data hold time
408 * @tDS_min: Data setup time
409 * @tFEAT_max: Busy time for Set Features and Get Features
410 * @tIR_min: Output hi-Z to RE# low
411 * @tITC_max: Interface and Timing Mode Change time
412 * @tRC_min: RE# cycle time
413 * @tREA_max: RE# access time
414 * @tREH_min: RE# high hold time
415 * @tRHOH_min: RE# high to output hold
416 * @tRHW_min: RE# high to WE# low
417 * @tRHZ_max: RE# high to output hi-Z
418 * @tRLOH_min: RE# low to output hold
419 * @tRP_min: RE# pulse width
420 * @tRR_min: Ready to RE# low (data only)
421 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
422 * rising edge of R/B#.
423 * @tWB_max: WE# high to SR[6] low
424 * @tWC_min: WE# cycle time
425 * @tWH_min: WE# high hold time
426 * @tWHR_min: WE# high to RE# low
427 * @tWP_min: WE# pulse width
428 * @tWW_min: WP# transition to WE# low
429 */
430struct nand_sdr_timings {
431 u64 tBERS_max;
432 u32 tCCS_min;
433 u64 tPROG_max;
434 u64 tR_max;
435 u32 tALH_min;
436 u32 tADL_min;
437 u32 tALS_min;
438 u32 tAR_min;
439 u32 tCEA_max;
440 u32 tCEH_min;
441 u32 tCH_min;
442 u32 tCHZ_max;
443 u32 tCLH_min;
444 u32 tCLR_min;
445 u32 tCLS_min;
446 u32 tCOH_min;
447 u32 tCS_min;
448 u32 tDH_min;
449 u32 tDS_min;
450 u32 tFEAT_max;
451 u32 tIR_min;
452 u32 tITC_max;
453 u32 tRC_min;
454 u32 tREA_max;
455 u32 tREH_min;
456 u32 tRHOH_min;
457 u32 tRHW_min;
458 u32 tRHZ_max;
459 u32 tRLOH_min;
460 u32 tRP_min;
461 u32 tRR_min;
462 u64 tRST_max;
463 u32 tWB_max;
464 u32 tWC_min;
465 u32 tWH_min;
466 u32 tWHR_min;
467 u32 tWP_min;
468 u32 tWW_min;
469};
470
471/**
472 * enum nand_data_interface_type - NAND interface timing type
473 * @NAND_SDR_IFACE: Single Data Rate interface
474 */
475enum nand_data_interface_type {
476 NAND_SDR_IFACE,
477};
478
479/**
480 * struct nand_data_interface - NAND interface timing
481 * @type: type of the timing
482 * @timings: The timing, type according to @type
483 * @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
484 */
485struct nand_data_interface {
486 enum nand_data_interface_type type;
487 union {
488 struct nand_sdr_timings sdr;
489 } timings;
490};
491
492/**
493 * nand_get_sdr_timings - get SDR timing from data interface
494 * @conf: The data interface
495 */
496static inline const struct nand_sdr_timings *
497nand_get_sdr_timings(const struct nand_data_interface *conf)
498{
499 if (conf->type != NAND_SDR_IFACE)
500 return ERR_PTR(-EINVAL);
501
502 return &conf->timings.sdr;
503}
504
505/**
506 * struct nand_op_cmd_instr - Definition of a command instruction
507 * @opcode: the command to issue in one cycle
508 */
509struct nand_op_cmd_instr {
510 u8 opcode;
511};
512
513/**
514 * struct nand_op_addr_instr - Definition of an address instruction
515 * @naddrs: length of the @addrs array
516 * @addrs: array containing the address cycles to issue
517 */
518struct nand_op_addr_instr {
519 unsigned int naddrs;
520 const u8 *addrs;
521};
522
523/**
524 * struct nand_op_data_instr - Definition of a data instruction
525 * @len: number of data bytes to move
526 * @buf: buffer to fill
527 * @buf.in: buffer to fill when reading from the NAND chip
528 * @buf.out: buffer to read from when writing to the NAND chip
529 * @force_8bit: force 8-bit access
530 *
531 * Please note that "in" and "out" are inverted from the ONFI specification
532 * and are from the controller perspective, so a "in" is a read from the NAND
533 * chip while a "out" is a write to the NAND chip.
534 */
535struct nand_op_data_instr {
536 unsigned int len;
537 union {
538 void *in;
539 const void *out;
540 } buf;
541 bool force_8bit;
542};
543
544/**
545 * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
546 * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
547 */
548struct nand_op_waitrdy_instr {
549 unsigned int timeout_ms;
550};
551
552/**
553 * enum nand_op_instr_type - Definition of all instruction types
554 * @NAND_OP_CMD_INSTR: command instruction
555 * @NAND_OP_ADDR_INSTR: address instruction
556 * @NAND_OP_DATA_IN_INSTR: data in instruction
557 * @NAND_OP_DATA_OUT_INSTR: data out instruction
558 * @NAND_OP_WAITRDY_INSTR: wait ready instruction
559 */
560enum nand_op_instr_type {
561 NAND_OP_CMD_INSTR,
562 NAND_OP_ADDR_INSTR,
563 NAND_OP_DATA_IN_INSTR,
564 NAND_OP_DATA_OUT_INSTR,
565 NAND_OP_WAITRDY_INSTR,
566};
567
568/**
569 * struct nand_op_instr - Instruction object
570 * @type: the instruction type
571 * @ctx: extra data associated to the instruction. You'll have to use the
572 * appropriate element depending on @type
573 * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
574 * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
575 * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
576 * or %NAND_OP_DATA_OUT_INSTR
577 * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
578 * @delay_ns: delay the controller should apply after the instruction has been
579 * issued on the bus. Most modern controllers have internal timings
580 * control logic, and in this case, the controller driver can ignore
581 * this field.
582 */
583struct nand_op_instr {
584 enum nand_op_instr_type type;
585 union {
586 struct nand_op_cmd_instr cmd;
587 struct nand_op_addr_instr addr;
588 struct nand_op_data_instr data;
589 struct nand_op_waitrdy_instr waitrdy;
590 } ctx;
591 unsigned int delay_ns;
592};
593
594/*
595 * Special handling must be done for the WAITRDY timeout parameter as it usually
596 * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
597 * tBERS (during an erase) which all of them are u64 values that cannot be
598 * divided by usual kernel macros and must be handled with the special
599 * DIV_ROUND_UP_ULL() macro.
600 *
601 * Cast to type of dividend is needed here to guarantee that the result won't
602 * be an unsigned long long when the dividend is an unsigned long (or smaller),
603 * which is what the compiler does when it sees ternary operator with 2
604 * different return types (picks the largest type to make sure there's no
605 * loss).
606 */
607#define __DIVIDE(dividend, divisor) ({ \
608 (__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ? \
609 DIV_ROUND_UP(dividend, divisor) : \
610 DIV_ROUND_UP_ULL(dividend, divisor)); \
611 })
612#define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
613#define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)
614
615#define NAND_OP_CMD(id, ns) \
616 { \
617 .type = NAND_OP_CMD_INSTR, \
618 .ctx.cmd.opcode = id, \
619 .delay_ns = ns, \
620 }
621
622#define NAND_OP_ADDR(ncycles, cycles, ns) \
623 { \
624 .type = NAND_OP_ADDR_INSTR, \
625 .ctx.addr = { \
626 .naddrs = ncycles, \
627 .addrs = cycles, \
628 }, \
629 .delay_ns = ns, \
630 }
631
632#define NAND_OP_DATA_IN(l, b, ns) \
633 { \
634 .type = NAND_OP_DATA_IN_INSTR, \
635 .ctx.data = { \
636 .len = l, \
637 .buf.in = b, \
638 .force_8bit = false, \
639 }, \
640 .delay_ns = ns, \
641 }
642
643#define NAND_OP_DATA_OUT(l, b, ns) \
644 { \
645 .type = NAND_OP_DATA_OUT_INSTR, \
646 .ctx.data = { \
647 .len = l, \
648 .buf.out = b, \
649 .force_8bit = false, \
650 }, \
651 .delay_ns = ns, \
652 }
653
654#define NAND_OP_8BIT_DATA_IN(l, b, ns) \
655 { \
656 .type = NAND_OP_DATA_IN_INSTR, \
657 .ctx.data = { \
658 .len = l, \
659 .buf.in = b, \
660 .force_8bit = true, \
661 }, \
662 .delay_ns = ns, \
663 }
664
665#define NAND_OP_8BIT_DATA_OUT(l, b, ns) \
666 { \
667 .type = NAND_OP_DATA_OUT_INSTR, \
668 .ctx.data = { \
669 .len = l, \
670 .buf.out = b, \
671 .force_8bit = true, \
672 }, \
673 .delay_ns = ns, \
674 }
675
676#define NAND_OP_WAIT_RDY(tout_ms, ns) \
677 { \
678 .type = NAND_OP_WAITRDY_INSTR, \
679 .ctx.waitrdy.timeout_ms = tout_ms, \
680 .delay_ns = ns, \
681 }
682
683/**
684 * struct nand_subop - a sub operation
685 * @instrs: array of instructions
686 * @ninstrs: length of the @instrs array
687 * @first_instr_start_off: offset to start from for the first instruction
688 * of the sub-operation
689 * @last_instr_end_off: offset to end at (excluded) for the last instruction
690 * of the sub-operation
691 *
692 * Both @first_instr_start_off and @last_instr_end_off only apply to data or
693 * address instructions.
694 *
695 * When an operation cannot be handled as is by the NAND controller, it will
696 * be split by the parser into sub-operations which will be passed to the
697 * controller driver.
698 */
699struct nand_subop {
700 const struct nand_op_instr *instrs;
701 unsigned int ninstrs;
702 unsigned int first_instr_start_off;
703 unsigned int last_instr_end_off;
704};
705
706unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
707 unsigned int op_id);
708unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
709 unsigned int op_id);
710unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
711 unsigned int op_id);
712unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
713 unsigned int op_id);
714
715/**
716 * struct nand_op_parser_addr_constraints - Constraints for address instructions
717 * @maxcycles: maximum number of address cycles the controller can issue in a
718 * single step
719 */
720struct nand_op_parser_addr_constraints {
721 unsigned int maxcycles;
722};
723
724/**
725 * struct nand_op_parser_data_constraints - Constraints for data instructions
726 * @maxlen: maximum data length that the controller can handle in a single step
727 */
728struct nand_op_parser_data_constraints {
729 unsigned int maxlen;
730};
731
732/**
733 * struct nand_op_parser_pattern_elem - One element of a pattern
734 * @type: the instructuction type
735 * @optional: whether this element of the pattern is optional or mandatory
736 * @ctx: address or data constraint
737 * @ctx.addr: address constraint (number of cycles)
738 * @ctx.data: data constraint (data length)
739 */
740struct nand_op_parser_pattern_elem {
741 enum nand_op_instr_type type;
742 bool optional;
743 union {
744 struct nand_op_parser_addr_constraints addr;
745 struct nand_op_parser_data_constraints data;
746 } ctx;
747};
748
749#define NAND_OP_PARSER_PAT_CMD_ELEM(_opt) \
750 { \
751 .type = NAND_OP_CMD_INSTR, \
752 .optional = _opt, \
753 }
754
755#define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles) \
756 { \
757 .type = NAND_OP_ADDR_INSTR, \
758 .optional = _opt, \
759 .ctx.addr.maxcycles = _maxcycles, \
760 }
761
762#define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen) \
763 { \
764 .type = NAND_OP_DATA_IN_INSTR, \
765 .optional = _opt, \
766 .ctx.data.maxlen = _maxlen, \
767 }
768
769#define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen) \
770 { \
771 .type = NAND_OP_DATA_OUT_INSTR, \
772 .optional = _opt, \
773 .ctx.data.maxlen = _maxlen, \
774 }
775
776#define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt) \
777 { \
778 .type = NAND_OP_WAITRDY_INSTR, \
779 .optional = _opt, \
780 }
781
782/**
783 * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
784 * @elems: array of pattern elements
785 * @nelems: number of pattern elements in @elems array
786 * @exec: the function that will issue a sub-operation
787 *
788 * A pattern is a list of elements, each element reprensenting one instruction
789 * with its constraints. The pattern itself is used by the core to match NAND
790 * chip operation with NAND controller operations.
791 * Once a match between a NAND controller operation pattern and a NAND chip
792 * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
793 * hook is called so that the controller driver can issue the operation on the
794 * bus.
795 *
796 * Controller drivers should declare as many patterns as they support and pass
797 * this list of patterns (created with the help of the following macro) to
798 * the nand_op_parser_exec_op() helper.
799 */
800struct nand_op_parser_pattern {
801 const struct nand_op_parser_pattern_elem *elems;
802 unsigned int nelems;
803 int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
804};
805
806#define NAND_OP_PARSER_PATTERN(_exec, ...) \
807 { \
808 .exec = _exec, \
809 .elems = (struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }, \
810 .nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) / \
811 sizeof(struct nand_op_parser_pattern_elem), \
812 }
813
814/**
815 * struct nand_op_parser - NAND controller operation parser descriptor
816 * @patterns: array of supported patterns
817 * @npatterns: length of the @patterns array
818 *
819 * The parser descriptor is just an array of supported patterns which will be
820 * iterated by nand_op_parser_exec_op() everytime it tries to execute an
821 * NAND operation (or tries to determine if a specific operation is supported).
822 *
823 * It is worth mentioning that patterns will be tested in their declaration
824 * order, and the first match will be taken, so it's important to order patterns
825 * appropriately so that simple/inefficient patterns are placed at the end of
826 * the list. Usually, this is where you put single instruction patterns.
827 */
828struct nand_op_parser {
829 const struct nand_op_parser_pattern *patterns;
830 unsigned int npatterns;
831};
832
833#define NAND_OP_PARSER(...) \
834 { \
835 .patterns = (struct nand_op_parser_pattern[]) { __VA_ARGS__ }, \
836 .npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) / \
837 sizeof(struct nand_op_parser_pattern), \
838 }
839
840/**
841 * struct nand_operation - NAND operation descriptor
842 * @cs: the CS line to select for this NAND operation
843 * @instrs: array of instructions to execute
844 * @ninstrs: length of the @instrs array
845 *
846 * The actual operation structure that will be passed to chip->exec_op().
847 */
848struct nand_operation {
849 unsigned int cs;
850 const struct nand_op_instr *instrs;
851 unsigned int ninstrs;
852};
853
854#define NAND_OPERATION(_cs, _instrs) \
855 { \
856 .cs = _cs, \
857 .instrs = _instrs, \
858 .ninstrs = ARRAY_SIZE(_instrs), \
859 }
860
861int nand_op_parser_exec_op(struct nand_chip *chip,
862 const struct nand_op_parser *parser,
863 const struct nand_operation *op, bool check_only);
864/**
865 * struct nand_controller_ops - Controller operations
866 *
867 * @attach_chip: this method is called after the NAND detection phase after
868 * flash ID and MTD fields such as erase size, page size and OOB
869 * size have been set up. ECC requirements are available if
870 * provided by the NAND chip or device tree. Typically used to
871 * choose the appropriate ECC configuration and allocate
872 * associated resources.
873 * This hook is optional.
874 * @detach_chip: free all resources allocated/claimed in
875 * nand_controller_ops->attach_chip().
876 * This hook is optional.
877 * @exec_op: controller specific method to execute NAND operations.
878 * This method replaces chip->legacy.cmdfunc(),
879 * chip->legacy.{read,write}_{buf,byte,word}(),
880 * chip->legacy.dev_ready() and chip->legacy.waifunc().
881 * @setup_data_interface: setup the data interface and timing. If
882 * chipnr is set to %NAND_DATA_IFACE_CHECK_ONLY this
883 * means the configuration should not be applied but
884 * only checked.
885 * This hook is optional.
886 */
887struct nand_controller_ops {
888 int (*attach_chip)(struct nand_chip *chip);
889 void (*detach_chip)(struct nand_chip *chip);
890 int (*exec_op)(struct nand_chip *chip,
891 const struct nand_operation *op,
892 bool check_only);
893 int (*setup_data_interface)(struct nand_chip *chip, int chipnr,
894 const struct nand_data_interface *conf);
895};
896
897/**
898 * struct nand_controller - Structure used to describe a NAND controller
899 *
900 * @lock: protection lock
901 * @active: the mtd device which holds the controller currently
902 * @wq: wait queue to sleep on if a NAND operation is in
903 * progress used instead of the per chip wait queue
904 * when a hw controller is available.
905 * @ops: NAND controller operations.
906 */
907struct nand_controller {
908 spinlock_t lock;
909 struct nand_chip *active;
910 wait_queue_head_t wq;
911 const struct nand_controller_ops *ops;
912};
913
914static inline void nand_controller_init(struct nand_controller *nfc)
915{
916 nfc->active = NULL;
917 spin_lock_init(&nfc->lock);
918 init_waitqueue_head(&nfc->wq);
919}
920
921/**
922 * struct nand_legacy - NAND chip legacy fields/hooks
923 * @IO_ADDR_R: address to read the 8 I/O lines of the flash device
924 * @IO_ADDR_W: address to write the 8 I/O lines of the flash device
925 * @select_chip: select/deselect a specific target/die
926 * @read_byte: read one byte from the chip
927 * @write_byte: write a single byte to the chip on the low 8 I/O lines
928 * @write_buf: write data from the buffer to the chip
929 * @read_buf: read data from the chip into the buffer
930 * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used
931 * to write command and address
932 * @cmdfunc: hardware specific function for writing commands to the chip.
933 * @dev_ready: hardware specific function for accessing device ready/busy line.
934 * If set to NULL no access to ready/busy is available and the
935 * ready/busy information is read from the chip status register.
936 * @waitfunc: hardware specific function for wait on ready.
937 * @block_bad: check if a block is bad, using OOB markers
938 * @block_markbad: mark a block bad
939 * @erase: erase function
940 * @set_features: set the NAND chip features
941 * @get_features: get the NAND chip features
942 * @chip_delay: chip dependent delay for transferring data from array to read
943 * regs (tR).
944 * @dummy_controller: dummy controller implementation for drivers that can
945 * only control a single chip
946 *
947 * If you look at this structure you're already wrong. These fields/hooks are
948 * all deprecated.
949 */
950struct nand_legacy {
951 void __iomem *IO_ADDR_R;
952 void __iomem *IO_ADDR_W;
953 void (*select_chip)(struct nand_chip *chip, int cs);
954 u8 (*read_byte)(struct nand_chip *chip);
955 void (*write_byte)(struct nand_chip *chip, u8 byte);
956 void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len);
957 void (*read_buf)(struct nand_chip *chip, u8 *buf, int len);
958 void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl);
959 void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column,
960 int page_addr);
961 int (*dev_ready)(struct nand_chip *chip);
962 int (*waitfunc)(struct nand_chip *chip);
963 int (*block_bad)(struct nand_chip *chip, loff_t ofs);
964 int (*block_markbad)(struct nand_chip *chip, loff_t ofs);
965 int (*erase)(struct nand_chip *chip, int page);
966 int (*set_features)(struct nand_chip *chip, int feature_addr,
967 u8 *subfeature_para);
968 int (*get_features)(struct nand_chip *chip, int feature_addr,
969 u8 *subfeature_para);
970 int chip_delay;
971 struct nand_controller dummy_controller;
972};
973
974/**
975 * struct nand_chip - NAND Private Flash Chip Data
976 * @mtd: MTD device registered to the MTD framework
977 * @legacy: All legacy fields/hooks. If you develop a new driver,
978 * don't even try to use any of these fields/hooks, and if
979 * you're modifying an existing driver that is using those
980 * fields/hooks, you should consider reworking the driver
981 * avoid using them.
982 * @setup_read_retry: [FLASHSPECIFIC] flash (vendor) specific function for
983 * setting the read-retry mode. Mostly needed for MLC NAND.
984 * @ecc: [BOARDSPECIFIC] ECC control structure
985 * @buf_align: minimum buffer alignment required by a platform
986 * @state: [INTERN] the current state of the NAND device
987 * @oob_poi: "poison value buffer," used for laying out OOB data
988 * before writing
989 * @page_shift: [INTERN] number of address bits in a page (column
990 * address bits).
991 * @phys_erase_shift: [INTERN] number of address bits in a physical eraseblock
992 * @bbt_erase_shift: [INTERN] number of address bits in a bbt entry
993 * @chip_shift: [INTERN] number of address bits in one chip
994 * @options: [BOARDSPECIFIC] various chip options. They can partly
995 * be set to inform nand_scan about special functionality.
996 * See the defines for further explanation.
997 * @bbt_options: [INTERN] bad block specific options. All options used
998 * here must come from bbm.h. By default, these options
999 * will be copied to the appropriate nand_bbt_descr's.
1000 * @badblockpos: [INTERN] position of the bad block marker in the oob
1001 * area.
1002 * @badblockbits: [INTERN] minimum number of set bits in a good block's
1003 * bad block marker position; i.e., BBM == 11110111b is
1004 * not bad when badblockbits == 7
1005 * @bits_per_cell: [INTERN] number of bits per cell. i.e., 1 means SLC.
1006 * @ecc_strength_ds: [INTERN] ECC correctability from the datasheet.
1007 * Minimum amount of bit errors per @ecc_step_ds guaranteed
1008 * to be correctable. If unknown, set to zero.
1009 * @ecc_step_ds: [INTERN] ECC step required by the @ecc_strength_ds,
1010 * also from the datasheet. It is the recommended ECC step
1011 * size, if known; if unknown, set to zero.
1012 * @onfi_timing_mode_default: [INTERN] default ONFI timing mode. This field is
1013 * set to the actually used ONFI mode if the chip is
1014 * ONFI compliant or deduced from the datasheet if
1015 * the NAND chip is not ONFI compliant.
1016 * @numchips: [INTERN] number of physical chips
1017 * @chipsize: [INTERN] the size of one chip for multichip arrays
1018 * @pagemask: [INTERN] page number mask = number of (pages / chip) - 1
1019 * @data_buf: [INTERN] buffer for data, size is (page size + oobsize).
1020 * @pagebuf: [INTERN] holds the pagenumber which is currently in
1021 * data_buf.
1022 * @pagebuf_bitflips: [INTERN] holds the bitflip count for the page which is
1023 * currently in data_buf.
1024 * @subpagesize: [INTERN] holds the subpagesize
1025 * @id: [INTERN] holds NAND ID
1026 * @parameters: [INTERN] holds generic parameters under an easily
1027 * readable form.
1028 * @max_bb_per_die: [INTERN] the max number of bad blocks each die of a
1029 * this nand device will encounter their life times.
1030 * @blocks_per_die: [INTERN] The number of PEBs in a die
1031 * @data_interface: [INTERN] NAND interface timing information
1032 * @cur_cs: currently selected target. -1 means no target selected,
1033 * otherwise we should always have cur_cs >= 0 &&
1034 * cur_cs < numchips. NAND Controller drivers should not
1035 * modify this value, but they're allowed to read it.
1036 * @read_retries: [INTERN] the number of read retry modes supported
1037 * @bbt: [INTERN] bad block table pointer
1038 * @bbt_td: [REPLACEABLE] bad block table descriptor for flash
1039 * lookup.
1040 * @bbt_md: [REPLACEABLE] bad block table mirror descriptor
1041 * @badblock_pattern: [REPLACEABLE] bad block scan pattern used for initial
1042 * bad block scan.
1043 * @controller: [REPLACEABLE] a pointer to a hardware controller
1044 * structure which is shared among multiple independent
1045 * devices.
1046 * @priv: [OPTIONAL] pointer to private chip data
1047 * @manufacturer: [INTERN] Contains manufacturer information
1048 * @manufacturer.desc: [INTERN] Contains manufacturer's description
1049 * @manufacturer.priv: [INTERN] Contains manufacturer private information
1050 */
1051
1052struct nand_chip {
1053 struct mtd_info mtd;
1054
1055 struct nand_legacy legacy;
1056
1057 int (*setup_read_retry)(struct nand_chip *chip, int retry_mode);
1058
1059 unsigned int options;
1060 unsigned int bbt_options;
1061
1062 int page_shift;
1063 int phys_erase_shift;
1064 int bbt_erase_shift;
1065 int chip_shift;
1066 int numchips;
1067 uint64_t chipsize;
1068 int pagemask;
1069 u8 *data_buf;
1070 int pagebuf;
1071 unsigned int pagebuf_bitflips;
1072 int subpagesize;
1073 uint8_t bits_per_cell;
1074 uint16_t ecc_strength_ds;
1075 uint16_t ecc_step_ds;
1076 int onfi_timing_mode_default;
1077 int badblockpos;
1078 int badblockbits;
1079
1080 struct nand_id id;
1081 struct nand_parameters parameters;
1082 u16 max_bb_per_die;
1083 u32 blocks_per_die;
1084
1085 struct nand_data_interface data_interface;
1086
1087 int cur_cs;
1088
1089 int read_retries;
1090
1091 flstate_t state;
1092
1093 uint8_t *oob_poi;
1094 struct nand_controller *controller;
1095
1096 struct nand_ecc_ctrl ecc;
1097 unsigned long buf_align;
1098
1099 uint8_t *bbt;
1100 struct nand_bbt_descr *bbt_td;
1101 struct nand_bbt_descr *bbt_md;
1102
1103 struct nand_bbt_descr *badblock_pattern;
1104
1105 void *priv;
1106
1107 struct {
1108 const struct nand_manufacturer *desc;
1109 void *priv;
1110 } manufacturer;
1111};
1112
1113extern const struct mtd_ooblayout_ops nand_ooblayout_sp_ops;
1114extern const struct mtd_ooblayout_ops nand_ooblayout_lp_ops;
1115
1116static inline void nand_set_flash_node(struct nand_chip *chip,
1117 struct device_node *np)
1118{
1119 mtd_set_of_node(&chip->mtd, np);
1120}
1121
1122static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
1123{
1124 return mtd_get_of_node(&chip->mtd);
1125}
1126
1127static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
1128{
1129 return container_of(mtd, struct nand_chip, mtd);
1130}
1131
1132static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
1133{
1134 return &chip->mtd;
1135}
1136
1137static inline void *nand_get_controller_data(struct nand_chip *chip)
1138{
1139 return chip->priv;
1140}
1141
1142static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
1143{
1144 chip->priv = priv;
1145}
1146
1147static inline void nand_set_manufacturer_data(struct nand_chip *chip,
1148 void *priv)
1149{
1150 chip->manufacturer.priv = priv;
1151}
1152
1153static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
1154{
1155 return chip->manufacturer.priv;
1156}
1157
1158/*
1159 * A helper for defining older NAND chips where the second ID byte fully
1160 * defined the chip, including the geometry (chip size, eraseblock size, page
1161 * size). All these chips have 512 bytes NAND page size.
1162 */
1163#define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts) \
1164 { .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
1165 .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }
1166
1167/*
1168 * A helper for defining newer chips which report their page size and
1169 * eraseblock size via the extended ID bytes.
1170 *
1171 * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
1172 * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
1173 * device ID now only represented a particular total chip size (and voltage,
1174 * buswidth), and the page size, eraseblock size, and OOB size could vary while
1175 * using the same device ID.
1176 */
1177#define EXTENDED_ID_NAND(nm, devid, chipsz, opts) \
1178 { .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
1179 .options = (opts) }
1180
1181#define NAND_ECC_INFO(_strength, _step) \
1182 { .strength_ds = (_strength), .step_ds = (_step) }
1183#define NAND_ECC_STRENGTH(type) ((type)->ecc.strength_ds)
1184#define NAND_ECC_STEP(type) ((type)->ecc.step_ds)
1185
1186/**
1187 * struct nand_flash_dev - NAND Flash Device ID Structure
1188 * @name: a human-readable name of the NAND chip
1189 * @dev_id: the device ID (the second byte of the full chip ID array)
1190 * @mfr_id: manufecturer ID part of the full chip ID array (refers the same
1191 * memory address as @id[0])
1192 * @dev_id: device ID part of the full chip ID array (refers the same memory
1193 * address as @id[1])
1194 * @id: full device ID array
1195 * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
1196 * well as the eraseblock size) is determined from the extended NAND
1197 * chip ID array)
1198 * @chipsize: total chip size in MiB
1199 * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
1200 * @options: stores various chip bit options
1201 * @id_len: The valid length of the @id.
1202 * @oobsize: OOB size
1203 * @ecc: ECC correctability and step information from the datasheet.
1204 * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
1205 * @ecc_strength_ds in nand_chip{}.
1206 * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
1207 * @ecc_step_ds in nand_chip{}, also from the datasheet.
1208 * For example, the "4bit ECC for each 512Byte" can be set with
1209 * NAND_ECC_INFO(4, 512).
1210 * @onfi_timing_mode_default: the default ONFI timing mode entered after a NAND
1211 * reset. Should be deduced from timings described
1212 * in the datasheet.
1213 *
1214 */
1215struct nand_flash_dev {
1216 char *name;
1217 union {
1218 struct {
1219 uint8_t mfr_id;
1220 uint8_t dev_id;
1221 };
1222 uint8_t id[NAND_MAX_ID_LEN];
1223 };
1224 unsigned int pagesize;
1225 unsigned int chipsize;
1226 unsigned int erasesize;
1227 unsigned int options;
1228 uint16_t id_len;
1229 uint16_t oobsize;
1230 struct {
1231 uint16_t strength_ds;
1232 uint16_t step_ds;
1233 } ecc;
1234 int onfi_timing_mode_default;
1235};
1236
1237int nand_create_bbt(struct nand_chip *chip);
1238
1239/*
1240 * Check if it is a SLC nand.
1241 * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
1242 * We do not distinguish the MLC and TLC now.
1243 */
1244static inline bool nand_is_slc(struct nand_chip *chip)
1245{
1246 WARN(chip->bits_per_cell == 0,
1247 "chip->bits_per_cell is used uninitialized\n");
1248 return chip->bits_per_cell == 1;
1249}
1250
1251/**
1252 * Check if the opcode's address should be sent only on the lower 8 bits
1253 * @command: opcode to check
1254 */
1255static inline int nand_opcode_8bits(unsigned int command)
1256{
1257 switch (command) {
1258 case NAND_CMD_READID:
1259 case NAND_CMD_PARAM:
1260 case NAND_CMD_GET_FEATURES:
1261 case NAND_CMD_SET_FEATURES:
1262 return 1;
1263 default:
1264 break;
1265 }
1266 return 0;
1267}
1268
1269int nand_check_erased_ecc_chunk(void *data, int datalen,
1270 void *ecc, int ecclen,
1271 void *extraoob, int extraooblen,
1272 int threshold);
1273
1274int nand_ecc_choose_conf(struct nand_chip *chip,
1275 const struct nand_ecc_caps *caps, int oobavail);
1276
1277/* Default write_oob implementation */
1278int nand_write_oob_std(struct nand_chip *chip, int page);
1279
1280/* Default read_oob implementation */
1281int nand_read_oob_std(struct nand_chip *chip, int page);
1282
1283/* Stub used by drivers that do not support GET/SET FEATURES operations */
1284int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
1285 u8 *subfeature_param);
1286
1287/* Default read_page_raw implementation */
1288int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
1289 int page);
1290
1291/* Default write_page_raw implementation */
1292int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1293 int oob_required, int page);
1294
1295/* Reset and initialize a NAND device */
1296int nand_reset(struct nand_chip *chip, int chipnr);
1297
1298/* NAND operation helpers */
1299int nand_reset_op(struct nand_chip *chip);
1300int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1301 unsigned int len);
1302int nand_status_op(struct nand_chip *chip, u8 *status);
1303int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
1304int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1305 unsigned int offset_in_page, void *buf, unsigned int len);
1306int nand_change_read_column_op(struct nand_chip *chip,
1307 unsigned int offset_in_page, void *buf,
1308 unsigned int len, bool force_8bit);
1309int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1310 unsigned int offset_in_page, void *buf, unsigned int len);
1311int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1312 unsigned int offset_in_page, const void *buf,
1313 unsigned int len);
1314int nand_prog_page_end_op(struct nand_chip *chip);
1315int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1316 unsigned int offset_in_page, const void *buf,
1317 unsigned int len);
1318int nand_change_write_column_op(struct nand_chip *chip,
1319 unsigned int offset_in_page, const void *buf,
1320 unsigned int len, bool force_8bit);
1321int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1322 bool force_8bit);
1323int nand_write_data_op(struct nand_chip *chip, const void *buf,
1324 unsigned int len, bool force_8bit);
1325
1326/* Scan and identify a NAND device */
1327int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips,
1328 struct nand_flash_dev *ids);
1329
1330static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips)
1331{
1332 return nand_scan_with_ids(chip, max_chips, NULL);
1333}
1334
1335/* Internal helper for board drivers which need to override command function */
1336void nand_wait_ready(struct nand_chip *chip);
1337
1338/*
1339 * Free resources held by the NAND device, must be called on error after a
1340 * sucessful nand_scan().
1341 */
1342void nand_cleanup(struct nand_chip *chip);
1343/* Unregister the MTD device and calls nand_cleanup() */
1344void nand_release(struct nand_chip *chip);
1345
1346/*
1347 * External helper for controller drivers that have to implement the WAITRDY
1348 * instruction and have no physical pin to check it.
1349 */
1350int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
1351struct gpio_desc;
1352int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
1353 unsigned long timeout_ms);
1354
1355/* Select/deselect a NAND target. */
1356void nand_select_target(struct nand_chip *chip, unsigned int cs);
1357void nand_deselect_target(struct nand_chip *chip);
1358
1359#endif /* __LINUX_MTD_RAWNAND_H */