at v5.0 20 kB view raw
1/* 2 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 * 18 */ 19 20#ifndef __MTD_MTD_H__ 21#define __MTD_MTD_H__ 22 23#include <linux/types.h> 24#include <linux/uio.h> 25#include <linux/notifier.h> 26#include <linux/device.h> 27#include <linux/of.h> 28#include <linux/nvmem-provider.h> 29 30#include <mtd/mtd-abi.h> 31 32#include <asm/div64.h> 33 34#define MTD_FAIL_ADDR_UNKNOWN -1LL 35 36struct mtd_info; 37 38/* 39 * If the erase fails, fail_addr might indicate exactly which block failed. If 40 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level 41 * or was not specific to any particular block. 42 */ 43struct erase_info { 44 uint64_t addr; 45 uint64_t len; 46 uint64_t fail_addr; 47}; 48 49struct mtd_erase_region_info { 50 uint64_t offset; /* At which this region starts, from the beginning of the MTD */ 51 uint32_t erasesize; /* For this region */ 52 uint32_t numblocks; /* Number of blocks of erasesize in this region */ 53 unsigned long *lockmap; /* If keeping bitmap of locks */ 54}; 55 56/** 57 * struct mtd_oob_ops - oob operation operands 58 * @mode: operation mode 59 * 60 * @len: number of data bytes to write/read 61 * 62 * @retlen: number of data bytes written/read 63 * 64 * @ooblen: number of oob bytes to write/read 65 * @oobretlen: number of oob bytes written/read 66 * @ooboffs: offset of oob data in the oob area (only relevant when 67 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW) 68 * @datbuf: data buffer - if NULL only oob data are read/written 69 * @oobbuf: oob data buffer 70 * 71 * Note, some MTD drivers do not allow you to write more than one OOB area at 72 * one go. If you try to do that on such an MTD device, -EINVAL will be 73 * returned. If you want to make your implementation portable on all kind of MTD 74 * devices you should split the write request into several sub-requests when the 75 * request crosses a page boundary. 76 */ 77struct mtd_oob_ops { 78 unsigned int mode; 79 size_t len; 80 size_t retlen; 81 size_t ooblen; 82 size_t oobretlen; 83 uint32_t ooboffs; 84 uint8_t *datbuf; 85 uint8_t *oobbuf; 86}; 87 88#define MTD_MAX_OOBFREE_ENTRIES_LARGE 32 89#define MTD_MAX_ECCPOS_ENTRIES_LARGE 640 90/** 91 * struct mtd_oob_region - oob region definition 92 * @offset: region offset 93 * @length: region length 94 * 95 * This structure describes a region of the OOB area, and is used 96 * to retrieve ECC or free bytes sections. 97 * Each section is defined by an offset within the OOB area and a 98 * length. 99 */ 100struct mtd_oob_region { 101 u32 offset; 102 u32 length; 103}; 104 105/* 106 * struct mtd_ooblayout_ops - NAND OOB layout operations 107 * @ecc: function returning an ECC region in the OOB area. 108 * Should return -ERANGE if %section exceeds the total number of 109 * ECC sections. 110 * @free: function returning a free region in the OOB area. 111 * Should return -ERANGE if %section exceeds the total number of 112 * free sections. 113 */ 114struct mtd_ooblayout_ops { 115 int (*ecc)(struct mtd_info *mtd, int section, 116 struct mtd_oob_region *oobecc); 117 int (*free)(struct mtd_info *mtd, int section, 118 struct mtd_oob_region *oobfree); 119}; 120 121/** 122 * struct mtd_pairing_info - page pairing information 123 * 124 * @pair: pair id 125 * @group: group id 126 * 127 * The term "pair" is used here, even though TLC NANDs might group pages by 3 128 * (3 bits in a single cell). A pair should regroup all pages that are sharing 129 * the same cell. Pairs are then indexed in ascending order. 130 * 131 * @group is defining the position of a page in a given pair. It can also be 132 * seen as the bit position in the cell: page attached to bit 0 belongs to 133 * group 0, page attached to bit 1 belongs to group 1, etc. 134 * 135 * Example: 136 * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme: 137 * 138 * group-0 group-1 139 * 140 * pair-0 page-0 page-4 141 * pair-1 page-1 page-5 142 * pair-2 page-2 page-8 143 * ... 144 * pair-127 page-251 page-255 145 * 146 * 147 * Note that the "group" and "pair" terms were extracted from Samsung and 148 * Hynix datasheets, and might be referenced under other names in other 149 * datasheets (Micron is describing this concept as "shared pages"). 150 */ 151struct mtd_pairing_info { 152 int pair; 153 int group; 154}; 155 156/** 157 * struct mtd_pairing_scheme - page pairing scheme description 158 * 159 * @ngroups: number of groups. Should be related to the number of bits 160 * per cell. 161 * @get_info: converts a write-unit (page number within an erase block) into 162 * mtd_pairing information (pair + group). This function should 163 * fill the info parameter based on the wunit index or return 164 * -EINVAL if the wunit parameter is invalid. 165 * @get_wunit: converts pairing information into a write-unit (page) number. 166 * This function should return the wunit index pointed by the 167 * pairing information described in the info argument. It should 168 * return -EINVAL, if there's no wunit corresponding to the 169 * passed pairing information. 170 * 171 * See mtd_pairing_info documentation for a detailed explanation of the 172 * pair and group concepts. 173 * 174 * The mtd_pairing_scheme structure provides a generic solution to represent 175 * NAND page pairing scheme. Instead of exposing two big tables to do the 176 * write-unit <-> (pair + group) conversions, we ask the MTD drivers to 177 * implement the ->get_info() and ->get_wunit() functions. 178 * 179 * MTD users will then be able to query these information by using the 180 * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers. 181 * 182 * @ngroups is here to help MTD users iterating over all the pages in a 183 * given pair. This value can be retrieved by MTD users using the 184 * mtd_pairing_groups() helper. 185 * 186 * Examples are given in the mtd_pairing_info_to_wunit() and 187 * mtd_wunit_to_pairing_info() documentation. 188 */ 189struct mtd_pairing_scheme { 190 int ngroups; 191 int (*get_info)(struct mtd_info *mtd, int wunit, 192 struct mtd_pairing_info *info); 193 int (*get_wunit)(struct mtd_info *mtd, 194 const struct mtd_pairing_info *info); 195}; 196 197struct module; /* only needed for owner field in mtd_info */ 198 199/** 200 * struct mtd_debug_info - debugging information for an MTD device. 201 * 202 * @dfs_dir: direntry object of the MTD device debugfs directory 203 */ 204struct mtd_debug_info { 205 struct dentry *dfs_dir; 206}; 207 208struct mtd_info { 209 u_char type; 210 uint32_t flags; 211 uint32_t orig_flags; /* Flags as before running mtd checks */ 212 uint64_t size; // Total size of the MTD 213 214 /* "Major" erase size for the device. Naïve users may take this 215 * to be the only erase size available, or may use the more detailed 216 * information below if they desire 217 */ 218 uint32_t erasesize; 219 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even 220 * though individual bits can be cleared), in case of NAND flash it is 221 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR 222 * it is of ECC block size, etc. It is illegal to have writesize = 0. 223 * Any driver registering a struct mtd_info must ensure a writesize of 224 * 1 or larger. 225 */ 226 uint32_t writesize; 227 228 /* 229 * Size of the write buffer used by the MTD. MTD devices having a write 230 * buffer can write multiple writesize chunks at a time. E.g. while 231 * writing 4 * writesize bytes to a device with 2 * writesize bytes 232 * buffer the MTD driver can (but doesn't have to) do 2 writesize 233 * operations, but not 4. Currently, all NANDs have writebufsize 234 * equivalent to writesize (NAND page size). Some NOR flashes do have 235 * writebufsize greater than writesize. 236 */ 237 uint32_t writebufsize; 238 239 uint32_t oobsize; // Amount of OOB data per block (e.g. 16) 240 uint32_t oobavail; // Available OOB bytes per block 241 242 /* 243 * If erasesize is a power of 2 then the shift is stored in 244 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize. 245 */ 246 unsigned int erasesize_shift; 247 unsigned int writesize_shift; 248 /* Masks based on erasesize_shift and writesize_shift */ 249 unsigned int erasesize_mask; 250 unsigned int writesize_mask; 251 252 /* 253 * read ops return -EUCLEAN if max number of bitflips corrected on any 254 * one region comprising an ecc step equals or exceeds this value. 255 * Settable by driver, else defaults to ecc_strength. User can override 256 * in sysfs. N.B. The meaning of the -EUCLEAN return code has changed; 257 * see Documentation/ABI/testing/sysfs-class-mtd for more detail. 258 */ 259 unsigned int bitflip_threshold; 260 261 /* Kernel-only stuff starts here. */ 262 const char *name; 263 int index; 264 265 /* OOB layout description */ 266 const struct mtd_ooblayout_ops *ooblayout; 267 268 /* NAND pairing scheme, only provided for MLC/TLC NANDs */ 269 const struct mtd_pairing_scheme *pairing; 270 271 /* the ecc step size. */ 272 unsigned int ecc_step_size; 273 274 /* max number of correctible bit errors per ecc step */ 275 unsigned int ecc_strength; 276 277 /* Data for variable erase regions. If numeraseregions is zero, 278 * it means that the whole device has erasesize as given above. 279 */ 280 int numeraseregions; 281 struct mtd_erase_region_info *eraseregions; 282 283 /* 284 * Do not call via these pointers, use corresponding mtd_*() 285 * wrappers instead. 286 */ 287 int (*_erase) (struct mtd_info *mtd, struct erase_info *instr); 288 int (*_point) (struct mtd_info *mtd, loff_t from, size_t len, 289 size_t *retlen, void **virt, resource_size_t *phys); 290 int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len); 291 int (*_read) (struct mtd_info *mtd, loff_t from, size_t len, 292 size_t *retlen, u_char *buf); 293 int (*_write) (struct mtd_info *mtd, loff_t to, size_t len, 294 size_t *retlen, const u_char *buf); 295 int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len, 296 size_t *retlen, const u_char *buf); 297 int (*_read_oob) (struct mtd_info *mtd, loff_t from, 298 struct mtd_oob_ops *ops); 299 int (*_write_oob) (struct mtd_info *mtd, loff_t to, 300 struct mtd_oob_ops *ops); 301 int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len, 302 size_t *retlen, struct otp_info *buf); 303 int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, 304 size_t len, size_t *retlen, u_char *buf); 305 int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len, 306 size_t *retlen, struct otp_info *buf); 307 int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from, 308 size_t len, size_t *retlen, u_char *buf); 309 int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to, 310 size_t len, size_t *retlen, u_char *buf); 311 int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, 312 size_t len); 313 int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs, 314 unsigned long count, loff_t to, size_t *retlen); 315 void (*_sync) (struct mtd_info *mtd); 316 int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 317 int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 318 int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 319 int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs); 320 int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs); 321 int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs); 322 int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len); 323 int (*_suspend) (struct mtd_info *mtd); 324 void (*_resume) (struct mtd_info *mtd); 325 void (*_reboot) (struct mtd_info *mtd); 326 /* 327 * If the driver is something smart, like UBI, it may need to maintain 328 * its own reference counting. The below functions are only for driver. 329 */ 330 int (*_get_device) (struct mtd_info *mtd); 331 void (*_put_device) (struct mtd_info *mtd); 332 333 struct notifier_block reboot_notifier; /* default mode before reboot */ 334 335 /* ECC status information */ 336 struct mtd_ecc_stats ecc_stats; 337 /* Subpage shift (NAND) */ 338 int subpage_sft; 339 340 void *priv; 341 342 struct module *owner; 343 struct device dev; 344 int usecount; 345 struct mtd_debug_info dbg; 346 struct nvmem_device *nvmem; 347}; 348 349int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 350 struct mtd_oob_region *oobecc); 351int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 352 int *section, 353 struct mtd_oob_region *oobregion); 354int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 355 const u8 *oobbuf, int start, int nbytes); 356int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 357 u8 *oobbuf, int start, int nbytes); 358int mtd_ooblayout_free(struct mtd_info *mtd, int section, 359 struct mtd_oob_region *oobfree); 360int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 361 const u8 *oobbuf, int start, int nbytes); 362int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 363 u8 *oobbuf, int start, int nbytes); 364int mtd_ooblayout_count_freebytes(struct mtd_info *mtd); 365int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd); 366 367static inline void mtd_set_ooblayout(struct mtd_info *mtd, 368 const struct mtd_ooblayout_ops *ooblayout) 369{ 370 mtd->ooblayout = ooblayout; 371} 372 373static inline void mtd_set_pairing_scheme(struct mtd_info *mtd, 374 const struct mtd_pairing_scheme *pairing) 375{ 376 mtd->pairing = pairing; 377} 378 379static inline void mtd_set_of_node(struct mtd_info *mtd, 380 struct device_node *np) 381{ 382 mtd->dev.of_node = np; 383 if (!mtd->name) 384 of_property_read_string(np, "label", &mtd->name); 385} 386 387static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd) 388{ 389 return dev_of_node(&mtd->dev); 390} 391 392static inline u32 mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops) 393{ 394 return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize; 395} 396 397static inline int mtd_max_bad_blocks(struct mtd_info *mtd, 398 loff_t ofs, size_t len) 399{ 400 if (!mtd->_max_bad_blocks) 401 return -ENOTSUPP; 402 403 if (mtd->size < (len + ofs) || ofs < 0) 404 return -EINVAL; 405 406 return mtd->_max_bad_blocks(mtd, ofs, len); 407} 408 409int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 410 struct mtd_pairing_info *info); 411int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 412 const struct mtd_pairing_info *info); 413int mtd_pairing_groups(struct mtd_info *mtd); 414int mtd_erase(struct mtd_info *mtd, struct erase_info *instr); 415int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 416 void **virt, resource_size_t *phys); 417int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len); 418unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 419 unsigned long offset, unsigned long flags); 420int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 421 u_char *buf); 422int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 423 const u_char *buf); 424int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 425 const u_char *buf); 426 427int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops); 428int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops); 429 430int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 431 struct otp_info *buf); 432int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 433 size_t *retlen, u_char *buf); 434int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 435 struct otp_info *buf); 436int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 437 size_t *retlen, u_char *buf); 438int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 439 size_t *retlen, u_char *buf); 440int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len); 441 442int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 443 unsigned long count, loff_t to, size_t *retlen); 444 445static inline void mtd_sync(struct mtd_info *mtd) 446{ 447 if (mtd->_sync) 448 mtd->_sync(mtd); 449} 450 451int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 452int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 453int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len); 454int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs); 455int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs); 456int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs); 457 458static inline int mtd_suspend(struct mtd_info *mtd) 459{ 460 return mtd->_suspend ? mtd->_suspend(mtd) : 0; 461} 462 463static inline void mtd_resume(struct mtd_info *mtd) 464{ 465 if (mtd->_resume) 466 mtd->_resume(mtd); 467} 468 469static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd) 470{ 471 if (mtd->erasesize_shift) 472 return sz >> mtd->erasesize_shift; 473 do_div(sz, mtd->erasesize); 474 return sz; 475} 476 477static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd) 478{ 479 if (mtd->erasesize_shift) 480 return sz & mtd->erasesize_mask; 481 return do_div(sz, mtd->erasesize); 482} 483 484/** 485 * mtd_align_erase_req - Adjust an erase request to align things on eraseblock 486 * boundaries. 487 * @mtd: the MTD device this erase request applies on 488 * @req: the erase request to adjust 489 * 490 * This function will adjust @req->addr and @req->len to align them on 491 * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0. 492 */ 493static inline void mtd_align_erase_req(struct mtd_info *mtd, 494 struct erase_info *req) 495{ 496 u32 mod; 497 498 if (WARN_ON(!mtd->erasesize)) 499 return; 500 501 mod = mtd_mod_by_eb(req->addr, mtd); 502 if (mod) { 503 req->addr -= mod; 504 req->len += mod; 505 } 506 507 mod = mtd_mod_by_eb(req->addr + req->len, mtd); 508 if (mod) 509 req->len += mtd->erasesize - mod; 510} 511 512static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd) 513{ 514 if (mtd->writesize_shift) 515 return sz >> mtd->writesize_shift; 516 do_div(sz, mtd->writesize); 517 return sz; 518} 519 520static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd) 521{ 522 if (mtd->writesize_shift) 523 return sz & mtd->writesize_mask; 524 return do_div(sz, mtd->writesize); 525} 526 527static inline int mtd_wunit_per_eb(struct mtd_info *mtd) 528{ 529 return mtd->erasesize / mtd->writesize; 530} 531 532static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs) 533{ 534 return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd); 535} 536 537static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base, 538 int wunit) 539{ 540 return base + (wunit * mtd->writesize); 541} 542 543 544static inline int mtd_has_oob(const struct mtd_info *mtd) 545{ 546 return mtd->_read_oob && mtd->_write_oob; 547} 548 549static inline int mtd_type_is_nand(const struct mtd_info *mtd) 550{ 551 return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH; 552} 553 554static inline int mtd_can_have_bb(const struct mtd_info *mtd) 555{ 556 return !!mtd->_block_isbad; 557} 558 559 /* Kernel-side ioctl definitions */ 560 561struct mtd_partition; 562struct mtd_part_parser_data; 563 564extern int mtd_device_parse_register(struct mtd_info *mtd, 565 const char * const *part_probe_types, 566 struct mtd_part_parser_data *parser_data, 567 const struct mtd_partition *defparts, 568 int defnr_parts); 569#define mtd_device_register(master, parts, nr_parts) \ 570 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts) 571extern int mtd_device_unregister(struct mtd_info *master); 572extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num); 573extern int __get_mtd_device(struct mtd_info *mtd); 574extern void __put_mtd_device(struct mtd_info *mtd); 575extern struct mtd_info *get_mtd_device_nm(const char *name); 576extern void put_mtd_device(struct mtd_info *mtd); 577 578 579struct mtd_notifier { 580 void (*add)(struct mtd_info *mtd); 581 void (*remove)(struct mtd_info *mtd); 582 struct list_head list; 583}; 584 585 586extern void register_mtd_user (struct mtd_notifier *new); 587extern int unregister_mtd_user (struct mtd_notifier *old); 588void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size); 589 590static inline int mtd_is_bitflip(int err) { 591 return err == -EUCLEAN; 592} 593 594static inline int mtd_is_eccerr(int err) { 595 return err == -EBADMSG; 596} 597 598static inline int mtd_is_bitflip_or_eccerr(int err) { 599 return mtd_is_bitflip(err) || mtd_is_eccerr(err); 600} 601 602unsigned mtd_mmap_capabilities(struct mtd_info *mtd); 603 604#endif /* __MTD_MTD_H__ */