Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 *
18 */
19
20#ifndef __MTD_MTD_H__
21#define __MTD_MTD_H__
22
23#include <linux/types.h>
24#include <linux/uio.h>
25#include <linux/notifier.h>
26#include <linux/device.h>
27#include <linux/of.h>
28#include <linux/nvmem-provider.h>
29
30#include <mtd/mtd-abi.h>
31
32#include <asm/div64.h>
33
34#define MTD_FAIL_ADDR_UNKNOWN -1LL
35
36struct mtd_info;
37
38/*
39 * If the erase fails, fail_addr might indicate exactly which block failed. If
40 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level
41 * or was not specific to any particular block.
42 */
43struct erase_info {
44 uint64_t addr;
45 uint64_t len;
46 uint64_t fail_addr;
47};
48
49struct mtd_erase_region_info {
50 uint64_t offset; /* At which this region starts, from the beginning of the MTD */
51 uint32_t erasesize; /* For this region */
52 uint32_t numblocks; /* Number of blocks of erasesize in this region */
53 unsigned long *lockmap; /* If keeping bitmap of locks */
54};
55
56/**
57 * struct mtd_oob_ops - oob operation operands
58 * @mode: operation mode
59 *
60 * @len: number of data bytes to write/read
61 *
62 * @retlen: number of data bytes written/read
63 *
64 * @ooblen: number of oob bytes to write/read
65 * @oobretlen: number of oob bytes written/read
66 * @ooboffs: offset of oob data in the oob area (only relevant when
67 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW)
68 * @datbuf: data buffer - if NULL only oob data are read/written
69 * @oobbuf: oob data buffer
70 *
71 * Note, some MTD drivers do not allow you to write more than one OOB area at
72 * one go. If you try to do that on such an MTD device, -EINVAL will be
73 * returned. If you want to make your implementation portable on all kind of MTD
74 * devices you should split the write request into several sub-requests when the
75 * request crosses a page boundary.
76 */
77struct mtd_oob_ops {
78 unsigned int mode;
79 size_t len;
80 size_t retlen;
81 size_t ooblen;
82 size_t oobretlen;
83 uint32_t ooboffs;
84 uint8_t *datbuf;
85 uint8_t *oobbuf;
86};
87
88#define MTD_MAX_OOBFREE_ENTRIES_LARGE 32
89#define MTD_MAX_ECCPOS_ENTRIES_LARGE 640
90/**
91 * struct mtd_oob_region - oob region definition
92 * @offset: region offset
93 * @length: region length
94 *
95 * This structure describes a region of the OOB area, and is used
96 * to retrieve ECC or free bytes sections.
97 * Each section is defined by an offset within the OOB area and a
98 * length.
99 */
100struct mtd_oob_region {
101 u32 offset;
102 u32 length;
103};
104
105/*
106 * struct mtd_ooblayout_ops - NAND OOB layout operations
107 * @ecc: function returning an ECC region in the OOB area.
108 * Should return -ERANGE if %section exceeds the total number of
109 * ECC sections.
110 * @free: function returning a free region in the OOB area.
111 * Should return -ERANGE if %section exceeds the total number of
112 * free sections.
113 */
114struct mtd_ooblayout_ops {
115 int (*ecc)(struct mtd_info *mtd, int section,
116 struct mtd_oob_region *oobecc);
117 int (*free)(struct mtd_info *mtd, int section,
118 struct mtd_oob_region *oobfree);
119};
120
121/**
122 * struct mtd_pairing_info - page pairing information
123 *
124 * @pair: pair id
125 * @group: group id
126 *
127 * The term "pair" is used here, even though TLC NANDs might group pages by 3
128 * (3 bits in a single cell). A pair should regroup all pages that are sharing
129 * the same cell. Pairs are then indexed in ascending order.
130 *
131 * @group is defining the position of a page in a given pair. It can also be
132 * seen as the bit position in the cell: page attached to bit 0 belongs to
133 * group 0, page attached to bit 1 belongs to group 1, etc.
134 *
135 * Example:
136 * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme:
137 *
138 * group-0 group-1
139 *
140 * pair-0 page-0 page-4
141 * pair-1 page-1 page-5
142 * pair-2 page-2 page-8
143 * ...
144 * pair-127 page-251 page-255
145 *
146 *
147 * Note that the "group" and "pair" terms were extracted from Samsung and
148 * Hynix datasheets, and might be referenced under other names in other
149 * datasheets (Micron is describing this concept as "shared pages").
150 */
151struct mtd_pairing_info {
152 int pair;
153 int group;
154};
155
156/**
157 * struct mtd_pairing_scheme - page pairing scheme description
158 *
159 * @ngroups: number of groups. Should be related to the number of bits
160 * per cell.
161 * @get_info: converts a write-unit (page number within an erase block) into
162 * mtd_pairing information (pair + group). This function should
163 * fill the info parameter based on the wunit index or return
164 * -EINVAL if the wunit parameter is invalid.
165 * @get_wunit: converts pairing information into a write-unit (page) number.
166 * This function should return the wunit index pointed by the
167 * pairing information described in the info argument. It should
168 * return -EINVAL, if there's no wunit corresponding to the
169 * passed pairing information.
170 *
171 * See mtd_pairing_info documentation for a detailed explanation of the
172 * pair and group concepts.
173 *
174 * The mtd_pairing_scheme structure provides a generic solution to represent
175 * NAND page pairing scheme. Instead of exposing two big tables to do the
176 * write-unit <-> (pair + group) conversions, we ask the MTD drivers to
177 * implement the ->get_info() and ->get_wunit() functions.
178 *
179 * MTD users will then be able to query these information by using the
180 * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers.
181 *
182 * @ngroups is here to help MTD users iterating over all the pages in a
183 * given pair. This value can be retrieved by MTD users using the
184 * mtd_pairing_groups() helper.
185 *
186 * Examples are given in the mtd_pairing_info_to_wunit() and
187 * mtd_wunit_to_pairing_info() documentation.
188 */
189struct mtd_pairing_scheme {
190 int ngroups;
191 int (*get_info)(struct mtd_info *mtd, int wunit,
192 struct mtd_pairing_info *info);
193 int (*get_wunit)(struct mtd_info *mtd,
194 const struct mtd_pairing_info *info);
195};
196
197struct module; /* only needed for owner field in mtd_info */
198
199/**
200 * struct mtd_debug_info - debugging information for an MTD device.
201 *
202 * @dfs_dir: direntry object of the MTD device debugfs directory
203 */
204struct mtd_debug_info {
205 struct dentry *dfs_dir;
206};
207
208struct mtd_info {
209 u_char type;
210 uint32_t flags;
211 uint32_t orig_flags; /* Flags as before running mtd checks */
212 uint64_t size; // Total size of the MTD
213
214 /* "Major" erase size for the device. Naïve users may take this
215 * to be the only erase size available, or may use the more detailed
216 * information below if they desire
217 */
218 uint32_t erasesize;
219 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even
220 * though individual bits can be cleared), in case of NAND flash it is
221 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR
222 * it is of ECC block size, etc. It is illegal to have writesize = 0.
223 * Any driver registering a struct mtd_info must ensure a writesize of
224 * 1 or larger.
225 */
226 uint32_t writesize;
227
228 /*
229 * Size of the write buffer used by the MTD. MTD devices having a write
230 * buffer can write multiple writesize chunks at a time. E.g. while
231 * writing 4 * writesize bytes to a device with 2 * writesize bytes
232 * buffer the MTD driver can (but doesn't have to) do 2 writesize
233 * operations, but not 4. Currently, all NANDs have writebufsize
234 * equivalent to writesize (NAND page size). Some NOR flashes do have
235 * writebufsize greater than writesize.
236 */
237 uint32_t writebufsize;
238
239 uint32_t oobsize; // Amount of OOB data per block (e.g. 16)
240 uint32_t oobavail; // Available OOB bytes per block
241
242 /*
243 * If erasesize is a power of 2 then the shift is stored in
244 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.
245 */
246 unsigned int erasesize_shift;
247 unsigned int writesize_shift;
248 /* Masks based on erasesize_shift and writesize_shift */
249 unsigned int erasesize_mask;
250 unsigned int writesize_mask;
251
252 /*
253 * read ops return -EUCLEAN if max number of bitflips corrected on any
254 * one region comprising an ecc step equals or exceeds this value.
255 * Settable by driver, else defaults to ecc_strength. User can override
256 * in sysfs. N.B. The meaning of the -EUCLEAN return code has changed;
257 * see Documentation/ABI/testing/sysfs-class-mtd for more detail.
258 */
259 unsigned int bitflip_threshold;
260
261 /* Kernel-only stuff starts here. */
262 const char *name;
263 int index;
264
265 /* OOB layout description */
266 const struct mtd_ooblayout_ops *ooblayout;
267
268 /* NAND pairing scheme, only provided for MLC/TLC NANDs */
269 const struct mtd_pairing_scheme *pairing;
270
271 /* the ecc step size. */
272 unsigned int ecc_step_size;
273
274 /* max number of correctible bit errors per ecc step */
275 unsigned int ecc_strength;
276
277 /* Data for variable erase regions. If numeraseregions is zero,
278 * it means that the whole device has erasesize as given above.
279 */
280 int numeraseregions;
281 struct mtd_erase_region_info *eraseregions;
282
283 /*
284 * Do not call via these pointers, use corresponding mtd_*()
285 * wrappers instead.
286 */
287 int (*_erase) (struct mtd_info *mtd, struct erase_info *instr);
288 int (*_point) (struct mtd_info *mtd, loff_t from, size_t len,
289 size_t *retlen, void **virt, resource_size_t *phys);
290 int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
291 int (*_read) (struct mtd_info *mtd, loff_t from, size_t len,
292 size_t *retlen, u_char *buf);
293 int (*_write) (struct mtd_info *mtd, loff_t to, size_t len,
294 size_t *retlen, const u_char *buf);
295 int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len,
296 size_t *retlen, const u_char *buf);
297 int (*_read_oob) (struct mtd_info *mtd, loff_t from,
298 struct mtd_oob_ops *ops);
299 int (*_write_oob) (struct mtd_info *mtd, loff_t to,
300 struct mtd_oob_ops *ops);
301 int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len,
302 size_t *retlen, struct otp_info *buf);
303 int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from,
304 size_t len, size_t *retlen, u_char *buf);
305 int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len,
306 size_t *retlen, struct otp_info *buf);
307 int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from,
308 size_t len, size_t *retlen, u_char *buf);
309 int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to,
310 size_t len, size_t *retlen, u_char *buf);
311 int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from,
312 size_t len);
313 int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs,
314 unsigned long count, loff_t to, size_t *retlen);
315 void (*_sync) (struct mtd_info *mtd);
316 int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
317 int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
318 int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
319 int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs);
320 int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs);
321 int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs);
322 int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len);
323 int (*_suspend) (struct mtd_info *mtd);
324 void (*_resume) (struct mtd_info *mtd);
325 void (*_reboot) (struct mtd_info *mtd);
326 /*
327 * If the driver is something smart, like UBI, it may need to maintain
328 * its own reference counting. The below functions are only for driver.
329 */
330 int (*_get_device) (struct mtd_info *mtd);
331 void (*_put_device) (struct mtd_info *mtd);
332
333 struct notifier_block reboot_notifier; /* default mode before reboot */
334
335 /* ECC status information */
336 struct mtd_ecc_stats ecc_stats;
337 /* Subpage shift (NAND) */
338 int subpage_sft;
339
340 void *priv;
341
342 struct module *owner;
343 struct device dev;
344 int usecount;
345 struct mtd_debug_info dbg;
346 struct nvmem_device *nvmem;
347};
348
349int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
350 struct mtd_oob_region *oobecc);
351int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
352 int *section,
353 struct mtd_oob_region *oobregion);
354int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
355 const u8 *oobbuf, int start, int nbytes);
356int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
357 u8 *oobbuf, int start, int nbytes);
358int mtd_ooblayout_free(struct mtd_info *mtd, int section,
359 struct mtd_oob_region *oobfree);
360int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
361 const u8 *oobbuf, int start, int nbytes);
362int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
363 u8 *oobbuf, int start, int nbytes);
364int mtd_ooblayout_count_freebytes(struct mtd_info *mtd);
365int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd);
366
367static inline void mtd_set_ooblayout(struct mtd_info *mtd,
368 const struct mtd_ooblayout_ops *ooblayout)
369{
370 mtd->ooblayout = ooblayout;
371}
372
373static inline void mtd_set_pairing_scheme(struct mtd_info *mtd,
374 const struct mtd_pairing_scheme *pairing)
375{
376 mtd->pairing = pairing;
377}
378
379static inline void mtd_set_of_node(struct mtd_info *mtd,
380 struct device_node *np)
381{
382 mtd->dev.of_node = np;
383 if (!mtd->name)
384 of_property_read_string(np, "label", &mtd->name);
385}
386
387static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd)
388{
389 return dev_of_node(&mtd->dev);
390}
391
392static inline u32 mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops)
393{
394 return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize;
395}
396
397static inline int mtd_max_bad_blocks(struct mtd_info *mtd,
398 loff_t ofs, size_t len)
399{
400 if (!mtd->_max_bad_blocks)
401 return -ENOTSUPP;
402
403 if (mtd->size < (len + ofs) || ofs < 0)
404 return -EINVAL;
405
406 return mtd->_max_bad_blocks(mtd, ofs, len);
407}
408
409int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
410 struct mtd_pairing_info *info);
411int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
412 const struct mtd_pairing_info *info);
413int mtd_pairing_groups(struct mtd_info *mtd);
414int mtd_erase(struct mtd_info *mtd, struct erase_info *instr);
415int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
416 void **virt, resource_size_t *phys);
417int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
418unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
419 unsigned long offset, unsigned long flags);
420int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
421 u_char *buf);
422int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
423 const u_char *buf);
424int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
425 const u_char *buf);
426
427int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops);
428int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops);
429
430int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
431 struct otp_info *buf);
432int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
433 size_t *retlen, u_char *buf);
434int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
435 struct otp_info *buf);
436int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
437 size_t *retlen, u_char *buf);
438int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
439 size_t *retlen, u_char *buf);
440int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len);
441
442int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
443 unsigned long count, loff_t to, size_t *retlen);
444
445static inline void mtd_sync(struct mtd_info *mtd)
446{
447 if (mtd->_sync)
448 mtd->_sync(mtd);
449}
450
451int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
452int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
453int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
454int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs);
455int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs);
456int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs);
457
458static inline int mtd_suspend(struct mtd_info *mtd)
459{
460 return mtd->_suspend ? mtd->_suspend(mtd) : 0;
461}
462
463static inline void mtd_resume(struct mtd_info *mtd)
464{
465 if (mtd->_resume)
466 mtd->_resume(mtd);
467}
468
469static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
470{
471 if (mtd->erasesize_shift)
472 return sz >> mtd->erasesize_shift;
473 do_div(sz, mtd->erasesize);
474 return sz;
475}
476
477static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd)
478{
479 if (mtd->erasesize_shift)
480 return sz & mtd->erasesize_mask;
481 return do_div(sz, mtd->erasesize);
482}
483
484/**
485 * mtd_align_erase_req - Adjust an erase request to align things on eraseblock
486 * boundaries.
487 * @mtd: the MTD device this erase request applies on
488 * @req: the erase request to adjust
489 *
490 * This function will adjust @req->addr and @req->len to align them on
491 * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0.
492 */
493static inline void mtd_align_erase_req(struct mtd_info *mtd,
494 struct erase_info *req)
495{
496 u32 mod;
497
498 if (WARN_ON(!mtd->erasesize))
499 return;
500
501 mod = mtd_mod_by_eb(req->addr, mtd);
502 if (mod) {
503 req->addr -= mod;
504 req->len += mod;
505 }
506
507 mod = mtd_mod_by_eb(req->addr + req->len, mtd);
508 if (mod)
509 req->len += mtd->erasesize - mod;
510}
511
512static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd)
513{
514 if (mtd->writesize_shift)
515 return sz >> mtd->writesize_shift;
516 do_div(sz, mtd->writesize);
517 return sz;
518}
519
520static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
521{
522 if (mtd->writesize_shift)
523 return sz & mtd->writesize_mask;
524 return do_div(sz, mtd->writesize);
525}
526
527static inline int mtd_wunit_per_eb(struct mtd_info *mtd)
528{
529 return mtd->erasesize / mtd->writesize;
530}
531
532static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs)
533{
534 return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd);
535}
536
537static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base,
538 int wunit)
539{
540 return base + (wunit * mtd->writesize);
541}
542
543
544static inline int mtd_has_oob(const struct mtd_info *mtd)
545{
546 return mtd->_read_oob && mtd->_write_oob;
547}
548
549static inline int mtd_type_is_nand(const struct mtd_info *mtd)
550{
551 return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH;
552}
553
554static inline int mtd_can_have_bb(const struct mtd_info *mtd)
555{
556 return !!mtd->_block_isbad;
557}
558
559 /* Kernel-side ioctl definitions */
560
561struct mtd_partition;
562struct mtd_part_parser_data;
563
564extern int mtd_device_parse_register(struct mtd_info *mtd,
565 const char * const *part_probe_types,
566 struct mtd_part_parser_data *parser_data,
567 const struct mtd_partition *defparts,
568 int defnr_parts);
569#define mtd_device_register(master, parts, nr_parts) \
570 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts)
571extern int mtd_device_unregister(struct mtd_info *master);
572extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
573extern int __get_mtd_device(struct mtd_info *mtd);
574extern void __put_mtd_device(struct mtd_info *mtd);
575extern struct mtd_info *get_mtd_device_nm(const char *name);
576extern void put_mtd_device(struct mtd_info *mtd);
577
578
579struct mtd_notifier {
580 void (*add)(struct mtd_info *mtd);
581 void (*remove)(struct mtd_info *mtd);
582 struct list_head list;
583};
584
585
586extern void register_mtd_user (struct mtd_notifier *new);
587extern int unregister_mtd_user (struct mtd_notifier *old);
588void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size);
589
590static inline int mtd_is_bitflip(int err) {
591 return err == -EUCLEAN;
592}
593
594static inline int mtd_is_eccerr(int err) {
595 return err == -EBADMSG;
596}
597
598static inline int mtd_is_bitflip_or_eccerr(int err) {
599 return mtd_is_bitflip(err) || mtd_is_eccerr(err);
600}
601
602unsigned mtd_mmap_capabilities(struct mtd_info *mtd);
603
604#endif /* __MTD_MTD_H__ */