at v5.0 531 lines 17 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MMU_NOTIFIER_H 3#define _LINUX_MMU_NOTIFIER_H 4 5#include <linux/list.h> 6#include <linux/spinlock.h> 7#include <linux/mm_types.h> 8#include <linux/srcu.h> 9 10struct mmu_notifier; 11struct mmu_notifier_ops; 12 13#ifdef CONFIG_MMU_NOTIFIER 14 15/* 16 * The mmu notifier_mm structure is allocated and installed in 17 * mm->mmu_notifier_mm inside the mm_take_all_locks() protected 18 * critical section and it's released only when mm_count reaches zero 19 * in mmdrop(). 20 */ 21struct mmu_notifier_mm { 22 /* all mmu notifiers registerd in this mm are queued in this list */ 23 struct hlist_head list; 24 /* to serialize the list modifications and hlist_unhashed */ 25 spinlock_t lock; 26}; 27 28struct mmu_notifier_range { 29 struct mm_struct *mm; 30 unsigned long start; 31 unsigned long end; 32 bool blockable; 33}; 34 35struct mmu_notifier_ops { 36 /* 37 * Called either by mmu_notifier_unregister or when the mm is 38 * being destroyed by exit_mmap, always before all pages are 39 * freed. This can run concurrently with other mmu notifier 40 * methods (the ones invoked outside the mm context) and it 41 * should tear down all secondary mmu mappings and freeze the 42 * secondary mmu. If this method isn't implemented you've to 43 * be sure that nothing could possibly write to the pages 44 * through the secondary mmu by the time the last thread with 45 * tsk->mm == mm exits. 46 * 47 * As side note: the pages freed after ->release returns could 48 * be immediately reallocated by the gart at an alias physical 49 * address with a different cache model, so if ->release isn't 50 * implemented because all _software_ driven memory accesses 51 * through the secondary mmu are terminated by the time the 52 * last thread of this mm quits, you've also to be sure that 53 * speculative _hardware_ operations can't allocate dirty 54 * cachelines in the cpu that could not be snooped and made 55 * coherent with the other read and write operations happening 56 * through the gart alias address, so leading to memory 57 * corruption. 58 */ 59 void (*release)(struct mmu_notifier *mn, 60 struct mm_struct *mm); 61 62 /* 63 * clear_flush_young is called after the VM is 64 * test-and-clearing the young/accessed bitflag in the 65 * pte. This way the VM will provide proper aging to the 66 * accesses to the page through the secondary MMUs and not 67 * only to the ones through the Linux pte. 68 * Start-end is necessary in case the secondary MMU is mapping the page 69 * at a smaller granularity than the primary MMU. 70 */ 71 int (*clear_flush_young)(struct mmu_notifier *mn, 72 struct mm_struct *mm, 73 unsigned long start, 74 unsigned long end); 75 76 /* 77 * clear_young is a lightweight version of clear_flush_young. Like the 78 * latter, it is supposed to test-and-clear the young/accessed bitflag 79 * in the secondary pte, but it may omit flushing the secondary tlb. 80 */ 81 int (*clear_young)(struct mmu_notifier *mn, 82 struct mm_struct *mm, 83 unsigned long start, 84 unsigned long end); 85 86 /* 87 * test_young is called to check the young/accessed bitflag in 88 * the secondary pte. This is used to know if the page is 89 * frequently used without actually clearing the flag or tearing 90 * down the secondary mapping on the page. 91 */ 92 int (*test_young)(struct mmu_notifier *mn, 93 struct mm_struct *mm, 94 unsigned long address); 95 96 /* 97 * change_pte is called in cases that pte mapping to page is changed: 98 * for example, when ksm remaps pte to point to a new shared page. 99 */ 100 void (*change_pte)(struct mmu_notifier *mn, 101 struct mm_struct *mm, 102 unsigned long address, 103 pte_t pte); 104 105 /* 106 * invalidate_range_start() and invalidate_range_end() must be 107 * paired and are called only when the mmap_sem and/or the 108 * locks protecting the reverse maps are held. If the subsystem 109 * can't guarantee that no additional references are taken to 110 * the pages in the range, it has to implement the 111 * invalidate_range() notifier to remove any references taken 112 * after invalidate_range_start(). 113 * 114 * Invalidation of multiple concurrent ranges may be 115 * optionally permitted by the driver. Either way the 116 * establishment of sptes is forbidden in the range passed to 117 * invalidate_range_begin/end for the whole duration of the 118 * invalidate_range_begin/end critical section. 119 * 120 * invalidate_range_start() is called when all pages in the 121 * range are still mapped and have at least a refcount of one. 122 * 123 * invalidate_range_end() is called when all pages in the 124 * range have been unmapped and the pages have been freed by 125 * the VM. 126 * 127 * The VM will remove the page table entries and potentially 128 * the page between invalidate_range_start() and 129 * invalidate_range_end(). If the page must not be freed 130 * because of pending I/O or other circumstances then the 131 * invalidate_range_start() callback (or the initial mapping 132 * by the driver) must make sure that the refcount is kept 133 * elevated. 134 * 135 * If the driver increases the refcount when the pages are 136 * initially mapped into an address space then either 137 * invalidate_range_start() or invalidate_range_end() may 138 * decrease the refcount. If the refcount is decreased on 139 * invalidate_range_start() then the VM can free pages as page 140 * table entries are removed. If the refcount is only 141 * droppped on invalidate_range_end() then the driver itself 142 * will drop the last refcount but it must take care to flush 143 * any secondary tlb before doing the final free on the 144 * page. Pages will no longer be referenced by the linux 145 * address space but may still be referenced by sptes until 146 * the last refcount is dropped. 147 * 148 * If blockable argument is set to false then the callback cannot 149 * sleep and has to return with -EAGAIN. 0 should be returned 150 * otherwise. Please note that if invalidate_range_start approves 151 * a non-blocking behavior then the same applies to 152 * invalidate_range_end. 153 * 154 */ 155 int (*invalidate_range_start)(struct mmu_notifier *mn, 156 const struct mmu_notifier_range *range); 157 void (*invalidate_range_end)(struct mmu_notifier *mn, 158 const struct mmu_notifier_range *range); 159 160 /* 161 * invalidate_range() is either called between 162 * invalidate_range_start() and invalidate_range_end() when the 163 * VM has to free pages that where unmapped, but before the 164 * pages are actually freed, or outside of _start()/_end() when 165 * a (remote) TLB is necessary. 166 * 167 * If invalidate_range() is used to manage a non-CPU TLB with 168 * shared page-tables, it not necessary to implement the 169 * invalidate_range_start()/end() notifiers, as 170 * invalidate_range() alread catches the points in time when an 171 * external TLB range needs to be flushed. For more in depth 172 * discussion on this see Documentation/vm/mmu_notifier.rst 173 * 174 * Note that this function might be called with just a sub-range 175 * of what was passed to invalidate_range_start()/end(), if 176 * called between those functions. 177 */ 178 void (*invalidate_range)(struct mmu_notifier *mn, struct mm_struct *mm, 179 unsigned long start, unsigned long end); 180}; 181 182/* 183 * The notifier chains are protected by mmap_sem and/or the reverse map 184 * semaphores. Notifier chains are only changed when all reverse maps and 185 * the mmap_sem locks are taken. 186 * 187 * Therefore notifier chains can only be traversed when either 188 * 189 * 1. mmap_sem is held. 190 * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem). 191 * 3. No other concurrent thread can access the list (release) 192 */ 193struct mmu_notifier { 194 struct hlist_node hlist; 195 const struct mmu_notifier_ops *ops; 196}; 197 198static inline int mm_has_notifiers(struct mm_struct *mm) 199{ 200 return unlikely(mm->mmu_notifier_mm); 201} 202 203extern int mmu_notifier_register(struct mmu_notifier *mn, 204 struct mm_struct *mm); 205extern int __mmu_notifier_register(struct mmu_notifier *mn, 206 struct mm_struct *mm); 207extern void mmu_notifier_unregister(struct mmu_notifier *mn, 208 struct mm_struct *mm); 209extern void mmu_notifier_unregister_no_release(struct mmu_notifier *mn, 210 struct mm_struct *mm); 211extern void __mmu_notifier_mm_destroy(struct mm_struct *mm); 212extern void __mmu_notifier_release(struct mm_struct *mm); 213extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm, 214 unsigned long start, 215 unsigned long end); 216extern int __mmu_notifier_clear_young(struct mm_struct *mm, 217 unsigned long start, 218 unsigned long end); 219extern int __mmu_notifier_test_young(struct mm_struct *mm, 220 unsigned long address); 221extern void __mmu_notifier_change_pte(struct mm_struct *mm, 222 unsigned long address, pte_t pte); 223extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r); 224extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r, 225 bool only_end); 226extern void __mmu_notifier_invalidate_range(struct mm_struct *mm, 227 unsigned long start, unsigned long end); 228 229static inline void mmu_notifier_release(struct mm_struct *mm) 230{ 231 if (mm_has_notifiers(mm)) 232 __mmu_notifier_release(mm); 233} 234 235static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, 236 unsigned long start, 237 unsigned long end) 238{ 239 if (mm_has_notifiers(mm)) 240 return __mmu_notifier_clear_flush_young(mm, start, end); 241 return 0; 242} 243 244static inline int mmu_notifier_clear_young(struct mm_struct *mm, 245 unsigned long start, 246 unsigned long end) 247{ 248 if (mm_has_notifiers(mm)) 249 return __mmu_notifier_clear_young(mm, start, end); 250 return 0; 251} 252 253static inline int mmu_notifier_test_young(struct mm_struct *mm, 254 unsigned long address) 255{ 256 if (mm_has_notifiers(mm)) 257 return __mmu_notifier_test_young(mm, address); 258 return 0; 259} 260 261static inline void mmu_notifier_change_pte(struct mm_struct *mm, 262 unsigned long address, pte_t pte) 263{ 264 if (mm_has_notifiers(mm)) 265 __mmu_notifier_change_pte(mm, address, pte); 266} 267 268static inline void 269mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) 270{ 271 if (mm_has_notifiers(range->mm)) { 272 range->blockable = true; 273 __mmu_notifier_invalidate_range_start(range); 274 } 275} 276 277static inline int 278mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range) 279{ 280 if (mm_has_notifiers(range->mm)) { 281 range->blockable = false; 282 return __mmu_notifier_invalidate_range_start(range); 283 } 284 return 0; 285} 286 287static inline void 288mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range) 289{ 290 if (mm_has_notifiers(range->mm)) 291 __mmu_notifier_invalidate_range_end(range, false); 292} 293 294static inline void 295mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range) 296{ 297 if (mm_has_notifiers(range->mm)) 298 __mmu_notifier_invalidate_range_end(range, true); 299} 300 301static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, 302 unsigned long start, unsigned long end) 303{ 304 if (mm_has_notifiers(mm)) 305 __mmu_notifier_invalidate_range(mm, start, end); 306} 307 308static inline void mmu_notifier_mm_init(struct mm_struct *mm) 309{ 310 mm->mmu_notifier_mm = NULL; 311} 312 313static inline void mmu_notifier_mm_destroy(struct mm_struct *mm) 314{ 315 if (mm_has_notifiers(mm)) 316 __mmu_notifier_mm_destroy(mm); 317} 318 319 320static inline void mmu_notifier_range_init(struct mmu_notifier_range *range, 321 struct mm_struct *mm, 322 unsigned long start, 323 unsigned long end) 324{ 325 range->mm = mm; 326 range->start = start; 327 range->end = end; 328} 329 330#define ptep_clear_flush_young_notify(__vma, __address, __ptep) \ 331({ \ 332 int __young; \ 333 struct vm_area_struct *___vma = __vma; \ 334 unsigned long ___address = __address; \ 335 __young = ptep_clear_flush_young(___vma, ___address, __ptep); \ 336 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ 337 ___address, \ 338 ___address + \ 339 PAGE_SIZE); \ 340 __young; \ 341}) 342 343#define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \ 344({ \ 345 int __young; \ 346 struct vm_area_struct *___vma = __vma; \ 347 unsigned long ___address = __address; \ 348 __young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \ 349 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ 350 ___address, \ 351 ___address + \ 352 PMD_SIZE); \ 353 __young; \ 354}) 355 356#define ptep_clear_young_notify(__vma, __address, __ptep) \ 357({ \ 358 int __young; \ 359 struct vm_area_struct *___vma = __vma; \ 360 unsigned long ___address = __address; \ 361 __young = ptep_test_and_clear_young(___vma, ___address, __ptep);\ 362 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ 363 ___address + PAGE_SIZE); \ 364 __young; \ 365}) 366 367#define pmdp_clear_young_notify(__vma, __address, __pmdp) \ 368({ \ 369 int __young; \ 370 struct vm_area_struct *___vma = __vma; \ 371 unsigned long ___address = __address; \ 372 __young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\ 373 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ 374 ___address + PMD_SIZE); \ 375 __young; \ 376}) 377 378#define ptep_clear_flush_notify(__vma, __address, __ptep) \ 379({ \ 380 unsigned long ___addr = __address & PAGE_MASK; \ 381 struct mm_struct *___mm = (__vma)->vm_mm; \ 382 pte_t ___pte; \ 383 \ 384 ___pte = ptep_clear_flush(__vma, __address, __ptep); \ 385 mmu_notifier_invalidate_range(___mm, ___addr, \ 386 ___addr + PAGE_SIZE); \ 387 \ 388 ___pte; \ 389}) 390 391#define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd) \ 392({ \ 393 unsigned long ___haddr = __haddr & HPAGE_PMD_MASK; \ 394 struct mm_struct *___mm = (__vma)->vm_mm; \ 395 pmd_t ___pmd; \ 396 \ 397 ___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd); \ 398 mmu_notifier_invalidate_range(___mm, ___haddr, \ 399 ___haddr + HPAGE_PMD_SIZE); \ 400 \ 401 ___pmd; \ 402}) 403 404#define pudp_huge_clear_flush_notify(__vma, __haddr, __pud) \ 405({ \ 406 unsigned long ___haddr = __haddr & HPAGE_PUD_MASK; \ 407 struct mm_struct *___mm = (__vma)->vm_mm; \ 408 pud_t ___pud; \ 409 \ 410 ___pud = pudp_huge_clear_flush(__vma, __haddr, __pud); \ 411 mmu_notifier_invalidate_range(___mm, ___haddr, \ 412 ___haddr + HPAGE_PUD_SIZE); \ 413 \ 414 ___pud; \ 415}) 416 417/* 418 * set_pte_at_notify() sets the pte _after_ running the notifier. 419 * This is safe to start by updating the secondary MMUs, because the primary MMU 420 * pte invalidate must have already happened with a ptep_clear_flush() before 421 * set_pte_at_notify() has been invoked. Updating the secondary MMUs first is 422 * required when we change both the protection of the mapping from read-only to 423 * read-write and the pfn (like during copy on write page faults). Otherwise the 424 * old page would remain mapped readonly in the secondary MMUs after the new 425 * page is already writable by some CPU through the primary MMU. 426 */ 427#define set_pte_at_notify(__mm, __address, __ptep, __pte) \ 428({ \ 429 struct mm_struct *___mm = __mm; \ 430 unsigned long ___address = __address; \ 431 pte_t ___pte = __pte; \ 432 \ 433 mmu_notifier_change_pte(___mm, ___address, ___pte); \ 434 set_pte_at(___mm, ___address, __ptep, ___pte); \ 435}) 436 437extern void mmu_notifier_call_srcu(struct rcu_head *rcu, 438 void (*func)(struct rcu_head *rcu)); 439 440#else /* CONFIG_MMU_NOTIFIER */ 441 442struct mmu_notifier_range { 443 unsigned long start; 444 unsigned long end; 445}; 446 447static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range, 448 unsigned long start, 449 unsigned long end) 450{ 451 range->start = start; 452 range->end = end; 453} 454 455#define mmu_notifier_range_init(range, mm, start, end) \ 456 _mmu_notifier_range_init(range, start, end) 457 458 459static inline int mm_has_notifiers(struct mm_struct *mm) 460{ 461 return 0; 462} 463 464static inline void mmu_notifier_release(struct mm_struct *mm) 465{ 466} 467 468static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, 469 unsigned long start, 470 unsigned long end) 471{ 472 return 0; 473} 474 475static inline int mmu_notifier_test_young(struct mm_struct *mm, 476 unsigned long address) 477{ 478 return 0; 479} 480 481static inline void mmu_notifier_change_pte(struct mm_struct *mm, 482 unsigned long address, pte_t pte) 483{ 484} 485 486static inline void 487mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) 488{ 489} 490 491static inline int 492mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range) 493{ 494 return 0; 495} 496 497static inline 498void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range) 499{ 500} 501 502static inline void 503mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range) 504{ 505} 506 507static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, 508 unsigned long start, unsigned long end) 509{ 510} 511 512static inline void mmu_notifier_mm_init(struct mm_struct *mm) 513{ 514} 515 516static inline void mmu_notifier_mm_destroy(struct mm_struct *mm) 517{ 518} 519 520#define ptep_clear_flush_young_notify ptep_clear_flush_young 521#define pmdp_clear_flush_young_notify pmdp_clear_flush_young 522#define ptep_clear_young_notify ptep_test_and_clear_young 523#define pmdp_clear_young_notify pmdp_test_and_clear_young 524#define ptep_clear_flush_notify ptep_clear_flush 525#define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush 526#define pudp_huge_clear_flush_notify pudp_huge_clear_flush 527#define set_pte_at_notify set_pte_at 528 529#endif /* CONFIG_MMU_NOTIFIER */ 530 531#endif /* _LINUX_MMU_NOTIFIER_H */