at v5.0 90 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/mmdebug.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/atomic.h> 16#include <linux/debug_locks.h> 17#include <linux/mm_types.h> 18#include <linux/range.h> 19#include <linux/pfn.h> 20#include <linux/percpu-refcount.h> 21#include <linux/bit_spinlock.h> 22#include <linux/shrinker.h> 23#include <linux/resource.h> 24#include <linux/page_ext.h> 25#include <linux/err.h> 26#include <linux/page_ref.h> 27#include <linux/memremap.h> 28#include <linux/overflow.h> 29 30struct mempolicy; 31struct anon_vma; 32struct anon_vma_chain; 33struct file_ra_state; 34struct user_struct; 35struct writeback_control; 36struct bdi_writeback; 37 38void init_mm_internals(void); 39 40#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 41extern unsigned long max_mapnr; 42 43static inline void set_max_mapnr(unsigned long limit) 44{ 45 max_mapnr = limit; 46} 47#else 48static inline void set_max_mapnr(unsigned long limit) { } 49#endif 50 51extern atomic_long_t _totalram_pages; 52static inline unsigned long totalram_pages(void) 53{ 54 return (unsigned long)atomic_long_read(&_totalram_pages); 55} 56 57static inline void totalram_pages_inc(void) 58{ 59 atomic_long_inc(&_totalram_pages); 60} 61 62static inline void totalram_pages_dec(void) 63{ 64 atomic_long_dec(&_totalram_pages); 65} 66 67static inline void totalram_pages_add(long count) 68{ 69 atomic_long_add(count, &_totalram_pages); 70} 71 72static inline void totalram_pages_set(long val) 73{ 74 atomic_long_set(&_totalram_pages, val); 75} 76 77extern void * high_memory; 78extern int page_cluster; 79 80#ifdef CONFIG_SYSCTL 81extern int sysctl_legacy_va_layout; 82#else 83#define sysctl_legacy_va_layout 0 84#endif 85 86#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 87extern const int mmap_rnd_bits_min; 88extern const int mmap_rnd_bits_max; 89extern int mmap_rnd_bits __read_mostly; 90#endif 91#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 92extern const int mmap_rnd_compat_bits_min; 93extern const int mmap_rnd_compat_bits_max; 94extern int mmap_rnd_compat_bits __read_mostly; 95#endif 96 97#include <asm/page.h> 98#include <asm/pgtable.h> 99#include <asm/processor.h> 100 101#ifndef __pa_symbol 102#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 103#endif 104 105#ifndef page_to_virt 106#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 107#endif 108 109#ifndef lm_alias 110#define lm_alias(x) __va(__pa_symbol(x)) 111#endif 112 113/* 114 * To prevent common memory management code establishing 115 * a zero page mapping on a read fault. 116 * This macro should be defined within <asm/pgtable.h>. 117 * s390 does this to prevent multiplexing of hardware bits 118 * related to the physical page in case of virtualization. 119 */ 120#ifndef mm_forbids_zeropage 121#define mm_forbids_zeropage(X) (0) 122#endif 123 124/* 125 * On some architectures it is expensive to call memset() for small sizes. 126 * Those architectures should provide their own implementation of "struct page" 127 * zeroing by defining this macro in <asm/pgtable.h>. 128 */ 129#ifndef mm_zero_struct_page 130#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 131#endif 132 133/* 134 * Default maximum number of active map areas, this limits the number of vmas 135 * per mm struct. Users can overwrite this number by sysctl but there is a 136 * problem. 137 * 138 * When a program's coredump is generated as ELF format, a section is created 139 * per a vma. In ELF, the number of sections is represented in unsigned short. 140 * This means the number of sections should be smaller than 65535 at coredump. 141 * Because the kernel adds some informative sections to a image of program at 142 * generating coredump, we need some margin. The number of extra sections is 143 * 1-3 now and depends on arch. We use "5" as safe margin, here. 144 * 145 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 146 * not a hard limit any more. Although some userspace tools can be surprised by 147 * that. 148 */ 149#define MAPCOUNT_ELF_CORE_MARGIN (5) 150#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 151 152extern int sysctl_max_map_count; 153 154extern unsigned long sysctl_user_reserve_kbytes; 155extern unsigned long sysctl_admin_reserve_kbytes; 156 157extern int sysctl_overcommit_memory; 158extern int sysctl_overcommit_ratio; 159extern unsigned long sysctl_overcommit_kbytes; 160 161extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 162 size_t *, loff_t *); 163extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 164 size_t *, loff_t *); 165 166#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 167 168/* to align the pointer to the (next) page boundary */ 169#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 170 171/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 172#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 173 174#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 175 176/* 177 * Linux kernel virtual memory manager primitives. 178 * The idea being to have a "virtual" mm in the same way 179 * we have a virtual fs - giving a cleaner interface to the 180 * mm details, and allowing different kinds of memory mappings 181 * (from shared memory to executable loading to arbitrary 182 * mmap() functions). 183 */ 184 185struct vm_area_struct *vm_area_alloc(struct mm_struct *); 186struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 187void vm_area_free(struct vm_area_struct *); 188 189#ifndef CONFIG_MMU 190extern struct rb_root nommu_region_tree; 191extern struct rw_semaphore nommu_region_sem; 192 193extern unsigned int kobjsize(const void *objp); 194#endif 195 196/* 197 * vm_flags in vm_area_struct, see mm_types.h. 198 * When changing, update also include/trace/events/mmflags.h 199 */ 200#define VM_NONE 0x00000000 201 202#define VM_READ 0x00000001 /* currently active flags */ 203#define VM_WRITE 0x00000002 204#define VM_EXEC 0x00000004 205#define VM_SHARED 0x00000008 206 207/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 208#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 209#define VM_MAYWRITE 0x00000020 210#define VM_MAYEXEC 0x00000040 211#define VM_MAYSHARE 0x00000080 212 213#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 214#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 215#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 216#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 217#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 218 219#define VM_LOCKED 0x00002000 220#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 221 222 /* Used by sys_madvise() */ 223#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 224#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 225 226#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 227#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 228#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 229#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 230#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 231#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 232#define VM_SYNC 0x00800000 /* Synchronous page faults */ 233#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 234#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 235#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 236 237#ifdef CONFIG_MEM_SOFT_DIRTY 238# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 239#else 240# define VM_SOFTDIRTY 0 241#endif 242 243#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 244#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 245#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 246#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 247 248#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 249#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 250#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 251#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 252#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 253#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 254#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 255#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 256#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 257#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 258#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 259#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 260 261#ifdef CONFIG_ARCH_HAS_PKEYS 262# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 263# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 264# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 265# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 266# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 267#ifdef CONFIG_PPC 268# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 269#else 270# define VM_PKEY_BIT4 0 271#endif 272#endif /* CONFIG_ARCH_HAS_PKEYS */ 273 274#if defined(CONFIG_X86) 275# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 276#elif defined(CONFIG_PPC) 277# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 278#elif defined(CONFIG_PARISC) 279# define VM_GROWSUP VM_ARCH_1 280#elif defined(CONFIG_IA64) 281# define VM_GROWSUP VM_ARCH_1 282#elif defined(CONFIG_SPARC64) 283# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 284# define VM_ARCH_CLEAR VM_SPARC_ADI 285#elif !defined(CONFIG_MMU) 286# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 287#endif 288 289#if defined(CONFIG_X86_INTEL_MPX) 290/* MPX specific bounds table or bounds directory */ 291# define VM_MPX VM_HIGH_ARCH_4 292#else 293# define VM_MPX VM_NONE 294#endif 295 296#ifndef VM_GROWSUP 297# define VM_GROWSUP VM_NONE 298#endif 299 300/* Bits set in the VMA until the stack is in its final location */ 301#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 302 303#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 304#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 305#endif 306 307#ifdef CONFIG_STACK_GROWSUP 308#define VM_STACK VM_GROWSUP 309#else 310#define VM_STACK VM_GROWSDOWN 311#endif 312 313#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 314 315/* 316 * Special vmas that are non-mergable, non-mlock()able. 317 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 318 */ 319#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 320 321/* This mask defines which mm->def_flags a process can inherit its parent */ 322#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 323 324/* This mask is used to clear all the VMA flags used by mlock */ 325#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 326 327/* Arch-specific flags to clear when updating VM flags on protection change */ 328#ifndef VM_ARCH_CLEAR 329# define VM_ARCH_CLEAR VM_NONE 330#endif 331#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 332 333/* 334 * mapping from the currently active vm_flags protection bits (the 335 * low four bits) to a page protection mask.. 336 */ 337extern pgprot_t protection_map[16]; 338 339#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 340#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 341#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 342#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 343#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 344#define FAULT_FLAG_TRIED 0x20 /* Second try */ 345#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 346#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 347#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 348 349#define FAULT_FLAG_TRACE \ 350 { FAULT_FLAG_WRITE, "WRITE" }, \ 351 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 352 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 353 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 354 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 355 { FAULT_FLAG_TRIED, "TRIED" }, \ 356 { FAULT_FLAG_USER, "USER" }, \ 357 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 358 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 359 360/* 361 * vm_fault is filled by the the pagefault handler and passed to the vma's 362 * ->fault function. The vma's ->fault is responsible for returning a bitmask 363 * of VM_FAULT_xxx flags that give details about how the fault was handled. 364 * 365 * MM layer fills up gfp_mask for page allocations but fault handler might 366 * alter it if its implementation requires a different allocation context. 367 * 368 * pgoff should be used in favour of virtual_address, if possible. 369 */ 370struct vm_fault { 371 struct vm_area_struct *vma; /* Target VMA */ 372 unsigned int flags; /* FAULT_FLAG_xxx flags */ 373 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 374 pgoff_t pgoff; /* Logical page offset based on vma */ 375 unsigned long address; /* Faulting virtual address */ 376 pmd_t *pmd; /* Pointer to pmd entry matching 377 * the 'address' */ 378 pud_t *pud; /* Pointer to pud entry matching 379 * the 'address' 380 */ 381 pte_t orig_pte; /* Value of PTE at the time of fault */ 382 383 struct page *cow_page; /* Page handler may use for COW fault */ 384 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 385 struct page *page; /* ->fault handlers should return a 386 * page here, unless VM_FAULT_NOPAGE 387 * is set (which is also implied by 388 * VM_FAULT_ERROR). 389 */ 390 /* These three entries are valid only while holding ptl lock */ 391 pte_t *pte; /* Pointer to pte entry matching 392 * the 'address'. NULL if the page 393 * table hasn't been allocated. 394 */ 395 spinlock_t *ptl; /* Page table lock. 396 * Protects pte page table if 'pte' 397 * is not NULL, otherwise pmd. 398 */ 399 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 400 * vm_ops->map_pages() calls 401 * alloc_set_pte() from atomic context. 402 * do_fault_around() pre-allocates 403 * page table to avoid allocation from 404 * atomic context. 405 */ 406}; 407 408/* page entry size for vm->huge_fault() */ 409enum page_entry_size { 410 PE_SIZE_PTE = 0, 411 PE_SIZE_PMD, 412 PE_SIZE_PUD, 413}; 414 415/* 416 * These are the virtual MM functions - opening of an area, closing and 417 * unmapping it (needed to keep files on disk up-to-date etc), pointer 418 * to the functions called when a no-page or a wp-page exception occurs. 419 */ 420struct vm_operations_struct { 421 void (*open)(struct vm_area_struct * area); 422 void (*close)(struct vm_area_struct * area); 423 int (*split)(struct vm_area_struct * area, unsigned long addr); 424 int (*mremap)(struct vm_area_struct * area); 425 vm_fault_t (*fault)(struct vm_fault *vmf); 426 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 427 enum page_entry_size pe_size); 428 void (*map_pages)(struct vm_fault *vmf, 429 pgoff_t start_pgoff, pgoff_t end_pgoff); 430 unsigned long (*pagesize)(struct vm_area_struct * area); 431 432 /* notification that a previously read-only page is about to become 433 * writable, if an error is returned it will cause a SIGBUS */ 434 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 435 436 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 437 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 438 439 /* called by access_process_vm when get_user_pages() fails, typically 440 * for use by special VMAs that can switch between memory and hardware 441 */ 442 int (*access)(struct vm_area_struct *vma, unsigned long addr, 443 void *buf, int len, int write); 444 445 /* Called by the /proc/PID/maps code to ask the vma whether it 446 * has a special name. Returning non-NULL will also cause this 447 * vma to be dumped unconditionally. */ 448 const char *(*name)(struct vm_area_struct *vma); 449 450#ifdef CONFIG_NUMA 451 /* 452 * set_policy() op must add a reference to any non-NULL @new mempolicy 453 * to hold the policy upon return. Caller should pass NULL @new to 454 * remove a policy and fall back to surrounding context--i.e. do not 455 * install a MPOL_DEFAULT policy, nor the task or system default 456 * mempolicy. 457 */ 458 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 459 460 /* 461 * get_policy() op must add reference [mpol_get()] to any policy at 462 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 463 * in mm/mempolicy.c will do this automatically. 464 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 465 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 466 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 467 * must return NULL--i.e., do not "fallback" to task or system default 468 * policy. 469 */ 470 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 471 unsigned long addr); 472#endif 473 /* 474 * Called by vm_normal_page() for special PTEs to find the 475 * page for @addr. This is useful if the default behavior 476 * (using pte_page()) would not find the correct page. 477 */ 478 struct page *(*find_special_page)(struct vm_area_struct *vma, 479 unsigned long addr); 480}; 481 482static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 483{ 484 static const struct vm_operations_struct dummy_vm_ops = {}; 485 486 memset(vma, 0, sizeof(*vma)); 487 vma->vm_mm = mm; 488 vma->vm_ops = &dummy_vm_ops; 489 INIT_LIST_HEAD(&vma->anon_vma_chain); 490} 491 492static inline void vma_set_anonymous(struct vm_area_struct *vma) 493{ 494 vma->vm_ops = NULL; 495} 496 497/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 498#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 499 500struct mmu_gather; 501struct inode; 502 503#define page_private(page) ((page)->private) 504#define set_page_private(page, v) ((page)->private = (v)) 505 506#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 507static inline int pmd_devmap(pmd_t pmd) 508{ 509 return 0; 510} 511static inline int pud_devmap(pud_t pud) 512{ 513 return 0; 514} 515static inline int pgd_devmap(pgd_t pgd) 516{ 517 return 0; 518} 519#endif 520 521/* 522 * FIXME: take this include out, include page-flags.h in 523 * files which need it (119 of them) 524 */ 525#include <linux/page-flags.h> 526#include <linux/huge_mm.h> 527 528/* 529 * Methods to modify the page usage count. 530 * 531 * What counts for a page usage: 532 * - cache mapping (page->mapping) 533 * - private data (page->private) 534 * - page mapped in a task's page tables, each mapping 535 * is counted separately 536 * 537 * Also, many kernel routines increase the page count before a critical 538 * routine so they can be sure the page doesn't go away from under them. 539 */ 540 541/* 542 * Drop a ref, return true if the refcount fell to zero (the page has no users) 543 */ 544static inline int put_page_testzero(struct page *page) 545{ 546 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 547 return page_ref_dec_and_test(page); 548} 549 550/* 551 * Try to grab a ref unless the page has a refcount of zero, return false if 552 * that is the case. 553 * This can be called when MMU is off so it must not access 554 * any of the virtual mappings. 555 */ 556static inline int get_page_unless_zero(struct page *page) 557{ 558 return page_ref_add_unless(page, 1, 0); 559} 560 561extern int page_is_ram(unsigned long pfn); 562 563enum { 564 REGION_INTERSECTS, 565 REGION_DISJOINT, 566 REGION_MIXED, 567}; 568 569int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 570 unsigned long desc); 571 572/* Support for virtually mapped pages */ 573struct page *vmalloc_to_page(const void *addr); 574unsigned long vmalloc_to_pfn(const void *addr); 575 576/* 577 * Determine if an address is within the vmalloc range 578 * 579 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 580 * is no special casing required. 581 */ 582static inline bool is_vmalloc_addr(const void *x) 583{ 584#ifdef CONFIG_MMU 585 unsigned long addr = (unsigned long)x; 586 587 return addr >= VMALLOC_START && addr < VMALLOC_END; 588#else 589 return false; 590#endif 591} 592#ifdef CONFIG_MMU 593extern int is_vmalloc_or_module_addr(const void *x); 594#else 595static inline int is_vmalloc_or_module_addr(const void *x) 596{ 597 return 0; 598} 599#endif 600 601extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 602static inline void *kvmalloc(size_t size, gfp_t flags) 603{ 604 return kvmalloc_node(size, flags, NUMA_NO_NODE); 605} 606static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 607{ 608 return kvmalloc_node(size, flags | __GFP_ZERO, node); 609} 610static inline void *kvzalloc(size_t size, gfp_t flags) 611{ 612 return kvmalloc(size, flags | __GFP_ZERO); 613} 614 615static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 616{ 617 size_t bytes; 618 619 if (unlikely(check_mul_overflow(n, size, &bytes))) 620 return NULL; 621 622 return kvmalloc(bytes, flags); 623} 624 625static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 626{ 627 return kvmalloc_array(n, size, flags | __GFP_ZERO); 628} 629 630extern void kvfree(const void *addr); 631 632static inline atomic_t *compound_mapcount_ptr(struct page *page) 633{ 634 return &page[1].compound_mapcount; 635} 636 637static inline int compound_mapcount(struct page *page) 638{ 639 VM_BUG_ON_PAGE(!PageCompound(page), page); 640 page = compound_head(page); 641 return atomic_read(compound_mapcount_ptr(page)) + 1; 642} 643 644/* 645 * The atomic page->_mapcount, starts from -1: so that transitions 646 * both from it and to it can be tracked, using atomic_inc_and_test 647 * and atomic_add_negative(-1). 648 */ 649static inline void page_mapcount_reset(struct page *page) 650{ 651 atomic_set(&(page)->_mapcount, -1); 652} 653 654int __page_mapcount(struct page *page); 655 656static inline int page_mapcount(struct page *page) 657{ 658 VM_BUG_ON_PAGE(PageSlab(page), page); 659 660 if (unlikely(PageCompound(page))) 661 return __page_mapcount(page); 662 return atomic_read(&page->_mapcount) + 1; 663} 664 665#ifdef CONFIG_TRANSPARENT_HUGEPAGE 666int total_mapcount(struct page *page); 667int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 668#else 669static inline int total_mapcount(struct page *page) 670{ 671 return page_mapcount(page); 672} 673static inline int page_trans_huge_mapcount(struct page *page, 674 int *total_mapcount) 675{ 676 int mapcount = page_mapcount(page); 677 if (total_mapcount) 678 *total_mapcount = mapcount; 679 return mapcount; 680} 681#endif 682 683static inline struct page *virt_to_head_page(const void *x) 684{ 685 struct page *page = virt_to_page(x); 686 687 return compound_head(page); 688} 689 690void __put_page(struct page *page); 691 692void put_pages_list(struct list_head *pages); 693 694void split_page(struct page *page, unsigned int order); 695 696/* 697 * Compound pages have a destructor function. Provide a 698 * prototype for that function and accessor functions. 699 * These are _only_ valid on the head of a compound page. 700 */ 701typedef void compound_page_dtor(struct page *); 702 703/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 704enum compound_dtor_id { 705 NULL_COMPOUND_DTOR, 706 COMPOUND_PAGE_DTOR, 707#ifdef CONFIG_HUGETLB_PAGE 708 HUGETLB_PAGE_DTOR, 709#endif 710#ifdef CONFIG_TRANSPARENT_HUGEPAGE 711 TRANSHUGE_PAGE_DTOR, 712#endif 713 NR_COMPOUND_DTORS, 714}; 715extern compound_page_dtor * const compound_page_dtors[]; 716 717static inline void set_compound_page_dtor(struct page *page, 718 enum compound_dtor_id compound_dtor) 719{ 720 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 721 page[1].compound_dtor = compound_dtor; 722} 723 724static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 725{ 726 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 727 return compound_page_dtors[page[1].compound_dtor]; 728} 729 730static inline unsigned int compound_order(struct page *page) 731{ 732 if (!PageHead(page)) 733 return 0; 734 return page[1].compound_order; 735} 736 737static inline void set_compound_order(struct page *page, unsigned int order) 738{ 739 page[1].compound_order = order; 740} 741 742void free_compound_page(struct page *page); 743 744#ifdef CONFIG_MMU 745/* 746 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 747 * servicing faults for write access. In the normal case, do always want 748 * pte_mkwrite. But get_user_pages can cause write faults for mappings 749 * that do not have writing enabled, when used by access_process_vm. 750 */ 751static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 752{ 753 if (likely(vma->vm_flags & VM_WRITE)) 754 pte = pte_mkwrite(pte); 755 return pte; 756} 757 758vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 759 struct page *page); 760vm_fault_t finish_fault(struct vm_fault *vmf); 761vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 762#endif 763 764/* 765 * Multiple processes may "see" the same page. E.g. for untouched 766 * mappings of /dev/null, all processes see the same page full of 767 * zeroes, and text pages of executables and shared libraries have 768 * only one copy in memory, at most, normally. 769 * 770 * For the non-reserved pages, page_count(page) denotes a reference count. 771 * page_count() == 0 means the page is free. page->lru is then used for 772 * freelist management in the buddy allocator. 773 * page_count() > 0 means the page has been allocated. 774 * 775 * Pages are allocated by the slab allocator in order to provide memory 776 * to kmalloc and kmem_cache_alloc. In this case, the management of the 777 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 778 * unless a particular usage is carefully commented. (the responsibility of 779 * freeing the kmalloc memory is the caller's, of course). 780 * 781 * A page may be used by anyone else who does a __get_free_page(). 782 * In this case, page_count still tracks the references, and should only 783 * be used through the normal accessor functions. The top bits of page->flags 784 * and page->virtual store page management information, but all other fields 785 * are unused and could be used privately, carefully. The management of this 786 * page is the responsibility of the one who allocated it, and those who have 787 * subsequently been given references to it. 788 * 789 * The other pages (we may call them "pagecache pages") are completely 790 * managed by the Linux memory manager: I/O, buffers, swapping etc. 791 * The following discussion applies only to them. 792 * 793 * A pagecache page contains an opaque `private' member, which belongs to the 794 * page's address_space. Usually, this is the address of a circular list of 795 * the page's disk buffers. PG_private must be set to tell the VM to call 796 * into the filesystem to release these pages. 797 * 798 * A page may belong to an inode's memory mapping. In this case, page->mapping 799 * is the pointer to the inode, and page->index is the file offset of the page, 800 * in units of PAGE_SIZE. 801 * 802 * If pagecache pages are not associated with an inode, they are said to be 803 * anonymous pages. These may become associated with the swapcache, and in that 804 * case PG_swapcache is set, and page->private is an offset into the swapcache. 805 * 806 * In either case (swapcache or inode backed), the pagecache itself holds one 807 * reference to the page. Setting PG_private should also increment the 808 * refcount. The each user mapping also has a reference to the page. 809 * 810 * The pagecache pages are stored in a per-mapping radix tree, which is 811 * rooted at mapping->i_pages, and indexed by offset. 812 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 813 * lists, we instead now tag pages as dirty/writeback in the radix tree. 814 * 815 * All pagecache pages may be subject to I/O: 816 * - inode pages may need to be read from disk, 817 * - inode pages which have been modified and are MAP_SHARED may need 818 * to be written back to the inode on disk, 819 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 820 * modified may need to be swapped out to swap space and (later) to be read 821 * back into memory. 822 */ 823 824/* 825 * The zone field is never updated after free_area_init_core() 826 * sets it, so none of the operations on it need to be atomic. 827 */ 828 829/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 830#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 831#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 832#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 833#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 834#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 835 836/* 837 * Define the bit shifts to access each section. For non-existent 838 * sections we define the shift as 0; that plus a 0 mask ensures 839 * the compiler will optimise away reference to them. 840 */ 841#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 842#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 843#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 844#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 845#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 846 847/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 848#ifdef NODE_NOT_IN_PAGE_FLAGS 849#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 850#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 851 SECTIONS_PGOFF : ZONES_PGOFF) 852#else 853#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 854#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 855 NODES_PGOFF : ZONES_PGOFF) 856#endif 857 858#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 859 860#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 861#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 862#endif 863 864#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 865#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 866#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 867#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 868#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 869#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 870 871static inline enum zone_type page_zonenum(const struct page *page) 872{ 873 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 874} 875 876#ifdef CONFIG_ZONE_DEVICE 877static inline bool is_zone_device_page(const struct page *page) 878{ 879 return page_zonenum(page) == ZONE_DEVICE; 880} 881extern void memmap_init_zone_device(struct zone *, unsigned long, 882 unsigned long, struct dev_pagemap *); 883#else 884static inline bool is_zone_device_page(const struct page *page) 885{ 886 return false; 887} 888#endif 889 890#ifdef CONFIG_DEV_PAGEMAP_OPS 891void dev_pagemap_get_ops(void); 892void dev_pagemap_put_ops(void); 893void __put_devmap_managed_page(struct page *page); 894DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 895static inline bool put_devmap_managed_page(struct page *page) 896{ 897 if (!static_branch_unlikely(&devmap_managed_key)) 898 return false; 899 if (!is_zone_device_page(page)) 900 return false; 901 switch (page->pgmap->type) { 902 case MEMORY_DEVICE_PRIVATE: 903 case MEMORY_DEVICE_PUBLIC: 904 case MEMORY_DEVICE_FS_DAX: 905 __put_devmap_managed_page(page); 906 return true; 907 default: 908 break; 909 } 910 return false; 911} 912 913static inline bool is_device_private_page(const struct page *page) 914{ 915 return is_zone_device_page(page) && 916 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 917} 918 919static inline bool is_device_public_page(const struct page *page) 920{ 921 return is_zone_device_page(page) && 922 page->pgmap->type == MEMORY_DEVICE_PUBLIC; 923} 924 925#ifdef CONFIG_PCI_P2PDMA 926static inline bool is_pci_p2pdma_page(const struct page *page) 927{ 928 return is_zone_device_page(page) && 929 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 930} 931#else /* CONFIG_PCI_P2PDMA */ 932static inline bool is_pci_p2pdma_page(const struct page *page) 933{ 934 return false; 935} 936#endif /* CONFIG_PCI_P2PDMA */ 937 938#else /* CONFIG_DEV_PAGEMAP_OPS */ 939static inline void dev_pagemap_get_ops(void) 940{ 941} 942 943static inline void dev_pagemap_put_ops(void) 944{ 945} 946 947static inline bool put_devmap_managed_page(struct page *page) 948{ 949 return false; 950} 951 952static inline bool is_device_private_page(const struct page *page) 953{ 954 return false; 955} 956 957static inline bool is_device_public_page(const struct page *page) 958{ 959 return false; 960} 961 962static inline bool is_pci_p2pdma_page(const struct page *page) 963{ 964 return false; 965} 966#endif /* CONFIG_DEV_PAGEMAP_OPS */ 967 968static inline void get_page(struct page *page) 969{ 970 page = compound_head(page); 971 /* 972 * Getting a normal page or the head of a compound page 973 * requires to already have an elevated page->_refcount. 974 */ 975 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 976 page_ref_inc(page); 977} 978 979static inline void put_page(struct page *page) 980{ 981 page = compound_head(page); 982 983 /* 984 * For devmap managed pages we need to catch refcount transition from 985 * 2 to 1, when refcount reach one it means the page is free and we 986 * need to inform the device driver through callback. See 987 * include/linux/memremap.h and HMM for details. 988 */ 989 if (put_devmap_managed_page(page)) 990 return; 991 992 if (put_page_testzero(page)) 993 __put_page(page); 994} 995 996#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 997#define SECTION_IN_PAGE_FLAGS 998#endif 999 1000/* 1001 * The identification function is mainly used by the buddy allocator for 1002 * determining if two pages could be buddies. We are not really identifying 1003 * the zone since we could be using the section number id if we do not have 1004 * node id available in page flags. 1005 * We only guarantee that it will return the same value for two combinable 1006 * pages in a zone. 1007 */ 1008static inline int page_zone_id(struct page *page) 1009{ 1010 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1011} 1012 1013#ifdef NODE_NOT_IN_PAGE_FLAGS 1014extern int page_to_nid(const struct page *page); 1015#else 1016static inline int page_to_nid(const struct page *page) 1017{ 1018 struct page *p = (struct page *)page; 1019 1020 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1021} 1022#endif 1023 1024#ifdef CONFIG_NUMA_BALANCING 1025static inline int cpu_pid_to_cpupid(int cpu, int pid) 1026{ 1027 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1028} 1029 1030static inline int cpupid_to_pid(int cpupid) 1031{ 1032 return cpupid & LAST__PID_MASK; 1033} 1034 1035static inline int cpupid_to_cpu(int cpupid) 1036{ 1037 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1038} 1039 1040static inline int cpupid_to_nid(int cpupid) 1041{ 1042 return cpu_to_node(cpupid_to_cpu(cpupid)); 1043} 1044 1045static inline bool cpupid_pid_unset(int cpupid) 1046{ 1047 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1048} 1049 1050static inline bool cpupid_cpu_unset(int cpupid) 1051{ 1052 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1053} 1054 1055static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1056{ 1057 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1058} 1059 1060#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1061#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1062static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1063{ 1064 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1065} 1066 1067static inline int page_cpupid_last(struct page *page) 1068{ 1069 return page->_last_cpupid; 1070} 1071static inline void page_cpupid_reset_last(struct page *page) 1072{ 1073 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1074} 1075#else 1076static inline int page_cpupid_last(struct page *page) 1077{ 1078 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1079} 1080 1081extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1082 1083static inline void page_cpupid_reset_last(struct page *page) 1084{ 1085 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1086} 1087#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1088#else /* !CONFIG_NUMA_BALANCING */ 1089static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1090{ 1091 return page_to_nid(page); /* XXX */ 1092} 1093 1094static inline int page_cpupid_last(struct page *page) 1095{ 1096 return page_to_nid(page); /* XXX */ 1097} 1098 1099static inline int cpupid_to_nid(int cpupid) 1100{ 1101 return -1; 1102} 1103 1104static inline int cpupid_to_pid(int cpupid) 1105{ 1106 return -1; 1107} 1108 1109static inline int cpupid_to_cpu(int cpupid) 1110{ 1111 return -1; 1112} 1113 1114static inline int cpu_pid_to_cpupid(int nid, int pid) 1115{ 1116 return -1; 1117} 1118 1119static inline bool cpupid_pid_unset(int cpupid) 1120{ 1121 return 1; 1122} 1123 1124static inline void page_cpupid_reset_last(struct page *page) 1125{ 1126} 1127 1128static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1129{ 1130 return false; 1131} 1132#endif /* CONFIG_NUMA_BALANCING */ 1133 1134#ifdef CONFIG_KASAN_SW_TAGS 1135static inline u8 page_kasan_tag(const struct page *page) 1136{ 1137 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1138} 1139 1140static inline void page_kasan_tag_set(struct page *page, u8 tag) 1141{ 1142 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1143 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1144} 1145 1146static inline void page_kasan_tag_reset(struct page *page) 1147{ 1148 page_kasan_tag_set(page, 0xff); 1149} 1150#else 1151static inline u8 page_kasan_tag(const struct page *page) 1152{ 1153 return 0xff; 1154} 1155 1156static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1157static inline void page_kasan_tag_reset(struct page *page) { } 1158#endif 1159 1160static inline struct zone *page_zone(const struct page *page) 1161{ 1162 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1163} 1164 1165static inline pg_data_t *page_pgdat(const struct page *page) 1166{ 1167 return NODE_DATA(page_to_nid(page)); 1168} 1169 1170#ifdef SECTION_IN_PAGE_FLAGS 1171static inline void set_page_section(struct page *page, unsigned long section) 1172{ 1173 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1174 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1175} 1176 1177static inline unsigned long page_to_section(const struct page *page) 1178{ 1179 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1180} 1181#endif 1182 1183static inline void set_page_zone(struct page *page, enum zone_type zone) 1184{ 1185 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1186 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1187} 1188 1189static inline void set_page_node(struct page *page, unsigned long node) 1190{ 1191 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1192 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1193} 1194 1195static inline void set_page_links(struct page *page, enum zone_type zone, 1196 unsigned long node, unsigned long pfn) 1197{ 1198 set_page_zone(page, zone); 1199 set_page_node(page, node); 1200#ifdef SECTION_IN_PAGE_FLAGS 1201 set_page_section(page, pfn_to_section_nr(pfn)); 1202#endif 1203} 1204 1205#ifdef CONFIG_MEMCG 1206static inline struct mem_cgroup *page_memcg(struct page *page) 1207{ 1208 return page->mem_cgroup; 1209} 1210static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1211{ 1212 WARN_ON_ONCE(!rcu_read_lock_held()); 1213 return READ_ONCE(page->mem_cgroup); 1214} 1215#else 1216static inline struct mem_cgroup *page_memcg(struct page *page) 1217{ 1218 return NULL; 1219} 1220static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1221{ 1222 WARN_ON_ONCE(!rcu_read_lock_held()); 1223 return NULL; 1224} 1225#endif 1226 1227/* 1228 * Some inline functions in vmstat.h depend on page_zone() 1229 */ 1230#include <linux/vmstat.h> 1231 1232static __always_inline void *lowmem_page_address(const struct page *page) 1233{ 1234 return page_to_virt(page); 1235} 1236 1237#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1238#define HASHED_PAGE_VIRTUAL 1239#endif 1240 1241#if defined(WANT_PAGE_VIRTUAL) 1242static inline void *page_address(const struct page *page) 1243{ 1244 return page->virtual; 1245} 1246static inline void set_page_address(struct page *page, void *address) 1247{ 1248 page->virtual = address; 1249} 1250#define page_address_init() do { } while(0) 1251#endif 1252 1253#if defined(HASHED_PAGE_VIRTUAL) 1254void *page_address(const struct page *page); 1255void set_page_address(struct page *page, void *virtual); 1256void page_address_init(void); 1257#endif 1258 1259#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1260#define page_address(page) lowmem_page_address(page) 1261#define set_page_address(page, address) do { } while(0) 1262#define page_address_init() do { } while(0) 1263#endif 1264 1265extern void *page_rmapping(struct page *page); 1266extern struct anon_vma *page_anon_vma(struct page *page); 1267extern struct address_space *page_mapping(struct page *page); 1268 1269extern struct address_space *__page_file_mapping(struct page *); 1270 1271static inline 1272struct address_space *page_file_mapping(struct page *page) 1273{ 1274 if (unlikely(PageSwapCache(page))) 1275 return __page_file_mapping(page); 1276 1277 return page->mapping; 1278} 1279 1280extern pgoff_t __page_file_index(struct page *page); 1281 1282/* 1283 * Return the pagecache index of the passed page. Regular pagecache pages 1284 * use ->index whereas swapcache pages use swp_offset(->private) 1285 */ 1286static inline pgoff_t page_index(struct page *page) 1287{ 1288 if (unlikely(PageSwapCache(page))) 1289 return __page_file_index(page); 1290 return page->index; 1291} 1292 1293bool page_mapped(struct page *page); 1294struct address_space *page_mapping(struct page *page); 1295struct address_space *page_mapping_file(struct page *page); 1296 1297/* 1298 * Return true only if the page has been allocated with 1299 * ALLOC_NO_WATERMARKS and the low watermark was not 1300 * met implying that the system is under some pressure. 1301 */ 1302static inline bool page_is_pfmemalloc(struct page *page) 1303{ 1304 /* 1305 * Page index cannot be this large so this must be 1306 * a pfmemalloc page. 1307 */ 1308 return page->index == -1UL; 1309} 1310 1311/* 1312 * Only to be called by the page allocator on a freshly allocated 1313 * page. 1314 */ 1315static inline void set_page_pfmemalloc(struct page *page) 1316{ 1317 page->index = -1UL; 1318} 1319 1320static inline void clear_page_pfmemalloc(struct page *page) 1321{ 1322 page->index = 0; 1323} 1324 1325/* 1326 * Different kinds of faults, as returned by handle_mm_fault(). 1327 * Used to decide whether a process gets delivered SIGBUS or 1328 * just gets major/minor fault counters bumped up. 1329 */ 1330 1331#define VM_FAULT_OOM 0x0001 1332#define VM_FAULT_SIGBUS 0x0002 1333#define VM_FAULT_MAJOR 0x0004 1334#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1335#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1336#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1337#define VM_FAULT_SIGSEGV 0x0040 1338 1339#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1340#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1341#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1342#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1343#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */ 1344#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables 1345 * and needs fsync() to complete (for 1346 * synchronous page faults in DAX) */ 1347 1348#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1349 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1350 VM_FAULT_FALLBACK) 1351 1352#define VM_FAULT_RESULT_TRACE \ 1353 { VM_FAULT_OOM, "OOM" }, \ 1354 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1355 { VM_FAULT_MAJOR, "MAJOR" }, \ 1356 { VM_FAULT_WRITE, "WRITE" }, \ 1357 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1358 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1359 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1360 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1361 { VM_FAULT_LOCKED, "LOCKED" }, \ 1362 { VM_FAULT_RETRY, "RETRY" }, \ 1363 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1364 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 1365 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 1366 1367/* Encode hstate index for a hwpoisoned large page */ 1368#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1369#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1370 1371/* 1372 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1373 */ 1374extern void pagefault_out_of_memory(void); 1375 1376#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1377 1378/* 1379 * Flags passed to show_mem() and show_free_areas() to suppress output in 1380 * various contexts. 1381 */ 1382#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1383 1384extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1385 1386extern bool can_do_mlock(void); 1387extern int user_shm_lock(size_t, struct user_struct *); 1388extern void user_shm_unlock(size_t, struct user_struct *); 1389 1390/* 1391 * Parameter block passed down to zap_pte_range in exceptional cases. 1392 */ 1393struct zap_details { 1394 struct address_space *check_mapping; /* Check page->mapping if set */ 1395 pgoff_t first_index; /* Lowest page->index to unmap */ 1396 pgoff_t last_index; /* Highest page->index to unmap */ 1397}; 1398 1399struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1400 pte_t pte, bool with_public_device); 1401#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false) 1402 1403struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1404 pmd_t pmd); 1405 1406void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1407 unsigned long size); 1408void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1409 unsigned long size); 1410void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1411 unsigned long start, unsigned long end); 1412 1413/** 1414 * mm_walk - callbacks for walk_page_range 1415 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1416 * this handler should only handle pud_trans_huge() puds. 1417 * the pmd_entry or pte_entry callbacks will be used for 1418 * regular PUDs. 1419 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1420 * this handler is required to be able to handle 1421 * pmd_trans_huge() pmds. They may simply choose to 1422 * split_huge_page() instead of handling it explicitly. 1423 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1424 * @pte_hole: if set, called for each hole at all levels 1425 * @hugetlb_entry: if set, called for each hugetlb entry 1426 * @test_walk: caller specific callback function to determine whether 1427 * we walk over the current vma or not. Returning 0 1428 * value means "do page table walk over the current vma," 1429 * and a negative one means "abort current page table walk 1430 * right now." 1 means "skip the current vma." 1431 * @mm: mm_struct representing the target process of page table walk 1432 * @vma: vma currently walked (NULL if walking outside vmas) 1433 * @private: private data for callbacks' usage 1434 * 1435 * (see the comment on walk_page_range() for more details) 1436 */ 1437struct mm_walk { 1438 int (*pud_entry)(pud_t *pud, unsigned long addr, 1439 unsigned long next, struct mm_walk *walk); 1440 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1441 unsigned long next, struct mm_walk *walk); 1442 int (*pte_entry)(pte_t *pte, unsigned long addr, 1443 unsigned long next, struct mm_walk *walk); 1444 int (*pte_hole)(unsigned long addr, unsigned long next, 1445 struct mm_walk *walk); 1446 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1447 unsigned long addr, unsigned long next, 1448 struct mm_walk *walk); 1449 int (*test_walk)(unsigned long addr, unsigned long next, 1450 struct mm_walk *walk); 1451 struct mm_struct *mm; 1452 struct vm_area_struct *vma; 1453 void *private; 1454}; 1455 1456struct mmu_notifier_range; 1457 1458int walk_page_range(unsigned long addr, unsigned long end, 1459 struct mm_walk *walk); 1460int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1461void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1462 unsigned long end, unsigned long floor, unsigned long ceiling); 1463int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1464 struct vm_area_struct *vma); 1465int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1466 struct mmu_notifier_range *range, 1467 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1468int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1469 unsigned long *pfn); 1470int follow_phys(struct vm_area_struct *vma, unsigned long address, 1471 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1472int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1473 void *buf, int len, int write); 1474 1475extern void truncate_pagecache(struct inode *inode, loff_t new); 1476extern void truncate_setsize(struct inode *inode, loff_t newsize); 1477void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1478void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1479int truncate_inode_page(struct address_space *mapping, struct page *page); 1480int generic_error_remove_page(struct address_space *mapping, struct page *page); 1481int invalidate_inode_page(struct page *page); 1482 1483#ifdef CONFIG_MMU 1484extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1485 unsigned long address, unsigned int flags); 1486extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1487 unsigned long address, unsigned int fault_flags, 1488 bool *unlocked); 1489void unmap_mapping_pages(struct address_space *mapping, 1490 pgoff_t start, pgoff_t nr, bool even_cows); 1491void unmap_mapping_range(struct address_space *mapping, 1492 loff_t const holebegin, loff_t const holelen, int even_cows); 1493#else 1494static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1495 unsigned long address, unsigned int flags) 1496{ 1497 /* should never happen if there's no MMU */ 1498 BUG(); 1499 return VM_FAULT_SIGBUS; 1500} 1501static inline int fixup_user_fault(struct task_struct *tsk, 1502 struct mm_struct *mm, unsigned long address, 1503 unsigned int fault_flags, bool *unlocked) 1504{ 1505 /* should never happen if there's no MMU */ 1506 BUG(); 1507 return -EFAULT; 1508} 1509static inline void unmap_mapping_pages(struct address_space *mapping, 1510 pgoff_t start, pgoff_t nr, bool even_cows) { } 1511static inline void unmap_mapping_range(struct address_space *mapping, 1512 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1513#endif 1514 1515static inline void unmap_shared_mapping_range(struct address_space *mapping, 1516 loff_t const holebegin, loff_t const holelen) 1517{ 1518 unmap_mapping_range(mapping, holebegin, holelen, 0); 1519} 1520 1521extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1522 void *buf, int len, unsigned int gup_flags); 1523extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1524 void *buf, int len, unsigned int gup_flags); 1525extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1526 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1527 1528long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1529 unsigned long start, unsigned long nr_pages, 1530 unsigned int gup_flags, struct page **pages, 1531 struct vm_area_struct **vmas, int *locked); 1532long get_user_pages(unsigned long start, unsigned long nr_pages, 1533 unsigned int gup_flags, struct page **pages, 1534 struct vm_area_struct **vmas); 1535long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1536 unsigned int gup_flags, struct page **pages, int *locked); 1537long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1538 struct page **pages, unsigned int gup_flags); 1539#ifdef CONFIG_FS_DAX 1540long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, 1541 unsigned int gup_flags, struct page **pages, 1542 struct vm_area_struct **vmas); 1543#else 1544static inline long get_user_pages_longterm(unsigned long start, 1545 unsigned long nr_pages, unsigned int gup_flags, 1546 struct page **pages, struct vm_area_struct **vmas) 1547{ 1548 return get_user_pages(start, nr_pages, gup_flags, pages, vmas); 1549} 1550#endif /* CONFIG_FS_DAX */ 1551 1552int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1553 struct page **pages); 1554 1555/* Container for pinned pfns / pages */ 1556struct frame_vector { 1557 unsigned int nr_allocated; /* Number of frames we have space for */ 1558 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1559 bool got_ref; /* Did we pin pages by getting page ref? */ 1560 bool is_pfns; /* Does array contain pages or pfns? */ 1561 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1562 * pfns_vector_pages() or pfns_vector_pfns() 1563 * for access */ 1564}; 1565 1566struct frame_vector *frame_vector_create(unsigned int nr_frames); 1567void frame_vector_destroy(struct frame_vector *vec); 1568int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1569 unsigned int gup_flags, struct frame_vector *vec); 1570void put_vaddr_frames(struct frame_vector *vec); 1571int frame_vector_to_pages(struct frame_vector *vec); 1572void frame_vector_to_pfns(struct frame_vector *vec); 1573 1574static inline unsigned int frame_vector_count(struct frame_vector *vec) 1575{ 1576 return vec->nr_frames; 1577} 1578 1579static inline struct page **frame_vector_pages(struct frame_vector *vec) 1580{ 1581 if (vec->is_pfns) { 1582 int err = frame_vector_to_pages(vec); 1583 1584 if (err) 1585 return ERR_PTR(err); 1586 } 1587 return (struct page **)(vec->ptrs); 1588} 1589 1590static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1591{ 1592 if (!vec->is_pfns) 1593 frame_vector_to_pfns(vec); 1594 return (unsigned long *)(vec->ptrs); 1595} 1596 1597struct kvec; 1598int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1599 struct page **pages); 1600int get_kernel_page(unsigned long start, int write, struct page **pages); 1601struct page *get_dump_page(unsigned long addr); 1602 1603extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1604extern void do_invalidatepage(struct page *page, unsigned int offset, 1605 unsigned int length); 1606 1607void __set_page_dirty(struct page *, struct address_space *, int warn); 1608int __set_page_dirty_nobuffers(struct page *page); 1609int __set_page_dirty_no_writeback(struct page *page); 1610int redirty_page_for_writepage(struct writeback_control *wbc, 1611 struct page *page); 1612void account_page_dirtied(struct page *page, struct address_space *mapping); 1613void account_page_cleaned(struct page *page, struct address_space *mapping, 1614 struct bdi_writeback *wb); 1615int set_page_dirty(struct page *page); 1616int set_page_dirty_lock(struct page *page); 1617void __cancel_dirty_page(struct page *page); 1618static inline void cancel_dirty_page(struct page *page) 1619{ 1620 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1621 if (PageDirty(page)) 1622 __cancel_dirty_page(page); 1623} 1624int clear_page_dirty_for_io(struct page *page); 1625 1626int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1627 1628static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1629{ 1630 return !vma->vm_ops; 1631} 1632 1633#ifdef CONFIG_SHMEM 1634/* 1635 * The vma_is_shmem is not inline because it is used only by slow 1636 * paths in userfault. 1637 */ 1638bool vma_is_shmem(struct vm_area_struct *vma); 1639#else 1640static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1641#endif 1642 1643int vma_is_stack_for_current(struct vm_area_struct *vma); 1644 1645extern unsigned long move_page_tables(struct vm_area_struct *vma, 1646 unsigned long old_addr, struct vm_area_struct *new_vma, 1647 unsigned long new_addr, unsigned long len, 1648 bool need_rmap_locks); 1649extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1650 unsigned long end, pgprot_t newprot, 1651 int dirty_accountable, int prot_numa); 1652extern int mprotect_fixup(struct vm_area_struct *vma, 1653 struct vm_area_struct **pprev, unsigned long start, 1654 unsigned long end, unsigned long newflags); 1655 1656/* 1657 * doesn't attempt to fault and will return short. 1658 */ 1659int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1660 struct page **pages); 1661/* 1662 * per-process(per-mm_struct) statistics. 1663 */ 1664static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1665{ 1666 long val = atomic_long_read(&mm->rss_stat.count[member]); 1667 1668#ifdef SPLIT_RSS_COUNTING 1669 /* 1670 * counter is updated in asynchronous manner and may go to minus. 1671 * But it's never be expected number for users. 1672 */ 1673 if (val < 0) 1674 val = 0; 1675#endif 1676 return (unsigned long)val; 1677} 1678 1679static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1680{ 1681 atomic_long_add(value, &mm->rss_stat.count[member]); 1682} 1683 1684static inline void inc_mm_counter(struct mm_struct *mm, int member) 1685{ 1686 atomic_long_inc(&mm->rss_stat.count[member]); 1687} 1688 1689static inline void dec_mm_counter(struct mm_struct *mm, int member) 1690{ 1691 atomic_long_dec(&mm->rss_stat.count[member]); 1692} 1693 1694/* Optimized variant when page is already known not to be PageAnon */ 1695static inline int mm_counter_file(struct page *page) 1696{ 1697 if (PageSwapBacked(page)) 1698 return MM_SHMEMPAGES; 1699 return MM_FILEPAGES; 1700} 1701 1702static inline int mm_counter(struct page *page) 1703{ 1704 if (PageAnon(page)) 1705 return MM_ANONPAGES; 1706 return mm_counter_file(page); 1707} 1708 1709static inline unsigned long get_mm_rss(struct mm_struct *mm) 1710{ 1711 return get_mm_counter(mm, MM_FILEPAGES) + 1712 get_mm_counter(mm, MM_ANONPAGES) + 1713 get_mm_counter(mm, MM_SHMEMPAGES); 1714} 1715 1716static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1717{ 1718 return max(mm->hiwater_rss, get_mm_rss(mm)); 1719} 1720 1721static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1722{ 1723 return max(mm->hiwater_vm, mm->total_vm); 1724} 1725 1726static inline void update_hiwater_rss(struct mm_struct *mm) 1727{ 1728 unsigned long _rss = get_mm_rss(mm); 1729 1730 if ((mm)->hiwater_rss < _rss) 1731 (mm)->hiwater_rss = _rss; 1732} 1733 1734static inline void update_hiwater_vm(struct mm_struct *mm) 1735{ 1736 if (mm->hiwater_vm < mm->total_vm) 1737 mm->hiwater_vm = mm->total_vm; 1738} 1739 1740static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1741{ 1742 mm->hiwater_rss = get_mm_rss(mm); 1743} 1744 1745static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1746 struct mm_struct *mm) 1747{ 1748 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1749 1750 if (*maxrss < hiwater_rss) 1751 *maxrss = hiwater_rss; 1752} 1753 1754#if defined(SPLIT_RSS_COUNTING) 1755void sync_mm_rss(struct mm_struct *mm); 1756#else 1757static inline void sync_mm_rss(struct mm_struct *mm) 1758{ 1759} 1760#endif 1761 1762#ifndef __HAVE_ARCH_PTE_DEVMAP 1763static inline int pte_devmap(pte_t pte) 1764{ 1765 return 0; 1766} 1767#endif 1768 1769int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1770 1771extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1772 spinlock_t **ptl); 1773static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1774 spinlock_t **ptl) 1775{ 1776 pte_t *ptep; 1777 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1778 return ptep; 1779} 1780 1781#ifdef __PAGETABLE_P4D_FOLDED 1782static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1783 unsigned long address) 1784{ 1785 return 0; 1786} 1787#else 1788int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1789#endif 1790 1791#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1792static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1793 unsigned long address) 1794{ 1795 return 0; 1796} 1797static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1798static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1799 1800#else 1801int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1802 1803static inline void mm_inc_nr_puds(struct mm_struct *mm) 1804{ 1805 if (mm_pud_folded(mm)) 1806 return; 1807 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1808} 1809 1810static inline void mm_dec_nr_puds(struct mm_struct *mm) 1811{ 1812 if (mm_pud_folded(mm)) 1813 return; 1814 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1815} 1816#endif 1817 1818#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1819static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1820 unsigned long address) 1821{ 1822 return 0; 1823} 1824 1825static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1826static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1827 1828#else 1829int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1830 1831static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1832{ 1833 if (mm_pmd_folded(mm)) 1834 return; 1835 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1836} 1837 1838static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1839{ 1840 if (mm_pmd_folded(mm)) 1841 return; 1842 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1843} 1844#endif 1845 1846#ifdef CONFIG_MMU 1847static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1848{ 1849 atomic_long_set(&mm->pgtables_bytes, 0); 1850} 1851 1852static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1853{ 1854 return atomic_long_read(&mm->pgtables_bytes); 1855} 1856 1857static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1858{ 1859 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1860} 1861 1862static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1863{ 1864 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1865} 1866#else 1867 1868static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1869static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1870{ 1871 return 0; 1872} 1873 1874static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1875static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1876#endif 1877 1878int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 1879int __pte_alloc_kernel(pmd_t *pmd); 1880 1881/* 1882 * The following ifdef needed to get the 4level-fixup.h header to work. 1883 * Remove it when 4level-fixup.h has been removed. 1884 */ 1885#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1886 1887#ifndef __ARCH_HAS_5LEVEL_HACK 1888static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1889 unsigned long address) 1890{ 1891 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1892 NULL : p4d_offset(pgd, address); 1893} 1894 1895static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1896 unsigned long address) 1897{ 1898 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1899 NULL : pud_offset(p4d, address); 1900} 1901#endif /* !__ARCH_HAS_5LEVEL_HACK */ 1902 1903static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1904{ 1905 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1906 NULL: pmd_offset(pud, address); 1907} 1908#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1909 1910#if USE_SPLIT_PTE_PTLOCKS 1911#if ALLOC_SPLIT_PTLOCKS 1912void __init ptlock_cache_init(void); 1913extern bool ptlock_alloc(struct page *page); 1914extern void ptlock_free(struct page *page); 1915 1916static inline spinlock_t *ptlock_ptr(struct page *page) 1917{ 1918 return page->ptl; 1919} 1920#else /* ALLOC_SPLIT_PTLOCKS */ 1921static inline void ptlock_cache_init(void) 1922{ 1923} 1924 1925static inline bool ptlock_alloc(struct page *page) 1926{ 1927 return true; 1928} 1929 1930static inline void ptlock_free(struct page *page) 1931{ 1932} 1933 1934static inline spinlock_t *ptlock_ptr(struct page *page) 1935{ 1936 return &page->ptl; 1937} 1938#endif /* ALLOC_SPLIT_PTLOCKS */ 1939 1940static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1941{ 1942 return ptlock_ptr(pmd_page(*pmd)); 1943} 1944 1945static inline bool ptlock_init(struct page *page) 1946{ 1947 /* 1948 * prep_new_page() initialize page->private (and therefore page->ptl) 1949 * with 0. Make sure nobody took it in use in between. 1950 * 1951 * It can happen if arch try to use slab for page table allocation: 1952 * slab code uses page->slab_cache, which share storage with page->ptl. 1953 */ 1954 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1955 if (!ptlock_alloc(page)) 1956 return false; 1957 spin_lock_init(ptlock_ptr(page)); 1958 return true; 1959} 1960 1961#else /* !USE_SPLIT_PTE_PTLOCKS */ 1962/* 1963 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1964 */ 1965static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1966{ 1967 return &mm->page_table_lock; 1968} 1969static inline void ptlock_cache_init(void) {} 1970static inline bool ptlock_init(struct page *page) { return true; } 1971static inline void ptlock_free(struct page *page) {} 1972#endif /* USE_SPLIT_PTE_PTLOCKS */ 1973 1974static inline void pgtable_init(void) 1975{ 1976 ptlock_cache_init(); 1977 pgtable_cache_init(); 1978} 1979 1980static inline bool pgtable_page_ctor(struct page *page) 1981{ 1982 if (!ptlock_init(page)) 1983 return false; 1984 __SetPageTable(page); 1985 inc_zone_page_state(page, NR_PAGETABLE); 1986 return true; 1987} 1988 1989static inline void pgtable_page_dtor(struct page *page) 1990{ 1991 ptlock_free(page); 1992 __ClearPageTable(page); 1993 dec_zone_page_state(page, NR_PAGETABLE); 1994} 1995 1996#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1997({ \ 1998 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1999 pte_t *__pte = pte_offset_map(pmd, address); \ 2000 *(ptlp) = __ptl; \ 2001 spin_lock(__ptl); \ 2002 __pte; \ 2003}) 2004 2005#define pte_unmap_unlock(pte, ptl) do { \ 2006 spin_unlock(ptl); \ 2007 pte_unmap(pte); \ 2008} while (0) 2009 2010#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2011 2012#define pte_alloc_map(mm, pmd, address) \ 2013 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2014 2015#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2016 (pte_alloc(mm, pmd) ? \ 2017 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2018 2019#define pte_alloc_kernel(pmd, address) \ 2020 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2021 NULL: pte_offset_kernel(pmd, address)) 2022 2023#if USE_SPLIT_PMD_PTLOCKS 2024 2025static struct page *pmd_to_page(pmd_t *pmd) 2026{ 2027 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2028 return virt_to_page((void *)((unsigned long) pmd & mask)); 2029} 2030 2031static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2032{ 2033 return ptlock_ptr(pmd_to_page(pmd)); 2034} 2035 2036static inline bool pgtable_pmd_page_ctor(struct page *page) 2037{ 2038#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2039 page->pmd_huge_pte = NULL; 2040#endif 2041 return ptlock_init(page); 2042} 2043 2044static inline void pgtable_pmd_page_dtor(struct page *page) 2045{ 2046#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2047 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2048#endif 2049 ptlock_free(page); 2050} 2051 2052#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2053 2054#else 2055 2056static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2057{ 2058 return &mm->page_table_lock; 2059} 2060 2061static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2062static inline void pgtable_pmd_page_dtor(struct page *page) {} 2063 2064#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2065 2066#endif 2067 2068static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2069{ 2070 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2071 spin_lock(ptl); 2072 return ptl; 2073} 2074 2075/* 2076 * No scalability reason to split PUD locks yet, but follow the same pattern 2077 * as the PMD locks to make it easier if we decide to. The VM should not be 2078 * considered ready to switch to split PUD locks yet; there may be places 2079 * which need to be converted from page_table_lock. 2080 */ 2081static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2082{ 2083 return &mm->page_table_lock; 2084} 2085 2086static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2087{ 2088 spinlock_t *ptl = pud_lockptr(mm, pud); 2089 2090 spin_lock(ptl); 2091 return ptl; 2092} 2093 2094extern void __init pagecache_init(void); 2095extern void free_area_init(unsigned long * zones_size); 2096extern void __init free_area_init_node(int nid, unsigned long * zones_size, 2097 unsigned long zone_start_pfn, unsigned long *zholes_size); 2098extern void free_initmem(void); 2099 2100/* 2101 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2102 * into the buddy system. The freed pages will be poisoned with pattern 2103 * "poison" if it's within range [0, UCHAR_MAX]. 2104 * Return pages freed into the buddy system. 2105 */ 2106extern unsigned long free_reserved_area(void *start, void *end, 2107 int poison, const char *s); 2108 2109#ifdef CONFIG_HIGHMEM 2110/* 2111 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2112 * and totalram_pages. 2113 */ 2114extern void free_highmem_page(struct page *page); 2115#endif 2116 2117extern void adjust_managed_page_count(struct page *page, long count); 2118extern void mem_init_print_info(const char *str); 2119 2120extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2121 2122/* Free the reserved page into the buddy system, so it gets managed. */ 2123static inline void __free_reserved_page(struct page *page) 2124{ 2125 ClearPageReserved(page); 2126 init_page_count(page); 2127 __free_page(page); 2128} 2129 2130static inline void free_reserved_page(struct page *page) 2131{ 2132 __free_reserved_page(page); 2133 adjust_managed_page_count(page, 1); 2134} 2135 2136static inline void mark_page_reserved(struct page *page) 2137{ 2138 SetPageReserved(page); 2139 adjust_managed_page_count(page, -1); 2140} 2141 2142/* 2143 * Default method to free all the __init memory into the buddy system. 2144 * The freed pages will be poisoned with pattern "poison" if it's within 2145 * range [0, UCHAR_MAX]. 2146 * Return pages freed into the buddy system. 2147 */ 2148static inline unsigned long free_initmem_default(int poison) 2149{ 2150 extern char __init_begin[], __init_end[]; 2151 2152 return free_reserved_area(&__init_begin, &__init_end, 2153 poison, "unused kernel"); 2154} 2155 2156static inline unsigned long get_num_physpages(void) 2157{ 2158 int nid; 2159 unsigned long phys_pages = 0; 2160 2161 for_each_online_node(nid) 2162 phys_pages += node_present_pages(nid); 2163 2164 return phys_pages; 2165} 2166 2167#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2168/* 2169 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2170 * zones, allocate the backing mem_map and account for memory holes in a more 2171 * architecture independent manner. This is a substitute for creating the 2172 * zone_sizes[] and zholes_size[] arrays and passing them to 2173 * free_area_init_node() 2174 * 2175 * An architecture is expected to register range of page frames backed by 2176 * physical memory with memblock_add[_node]() before calling 2177 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2178 * usage, an architecture is expected to do something like 2179 * 2180 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2181 * max_highmem_pfn}; 2182 * for_each_valid_physical_page_range() 2183 * memblock_add_node(base, size, nid) 2184 * free_area_init_nodes(max_zone_pfns); 2185 * 2186 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2187 * registered physical page range. Similarly 2188 * sparse_memory_present_with_active_regions() calls memory_present() for 2189 * each range when SPARSEMEM is enabled. 2190 * 2191 * See mm/page_alloc.c for more information on each function exposed by 2192 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2193 */ 2194extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2195unsigned long node_map_pfn_alignment(void); 2196unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2197 unsigned long end_pfn); 2198extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2199 unsigned long end_pfn); 2200extern void get_pfn_range_for_nid(unsigned int nid, 2201 unsigned long *start_pfn, unsigned long *end_pfn); 2202extern unsigned long find_min_pfn_with_active_regions(void); 2203extern void free_bootmem_with_active_regions(int nid, 2204 unsigned long max_low_pfn); 2205extern void sparse_memory_present_with_active_regions(int nid); 2206 2207#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2208 2209#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2210 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2211static inline int __early_pfn_to_nid(unsigned long pfn, 2212 struct mminit_pfnnid_cache *state) 2213{ 2214 return 0; 2215} 2216#else 2217/* please see mm/page_alloc.c */ 2218extern int __meminit early_pfn_to_nid(unsigned long pfn); 2219/* there is a per-arch backend function. */ 2220extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2221 struct mminit_pfnnid_cache *state); 2222#endif 2223 2224#if !defined(CONFIG_FLAT_NODE_MEM_MAP) 2225void zero_resv_unavail(void); 2226#else 2227static inline void zero_resv_unavail(void) {} 2228#endif 2229 2230extern void set_dma_reserve(unsigned long new_dma_reserve); 2231extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2232 enum memmap_context, struct vmem_altmap *); 2233extern void setup_per_zone_wmarks(void); 2234extern int __meminit init_per_zone_wmark_min(void); 2235extern void mem_init(void); 2236extern void __init mmap_init(void); 2237extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2238extern long si_mem_available(void); 2239extern void si_meminfo(struct sysinfo * val); 2240extern void si_meminfo_node(struct sysinfo *val, int nid); 2241#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2242extern unsigned long arch_reserved_kernel_pages(void); 2243#endif 2244 2245extern __printf(3, 4) 2246void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2247 2248extern void setup_per_cpu_pageset(void); 2249 2250extern void zone_pcp_update(struct zone *zone); 2251extern void zone_pcp_reset(struct zone *zone); 2252 2253/* page_alloc.c */ 2254extern int min_free_kbytes; 2255extern int watermark_boost_factor; 2256extern int watermark_scale_factor; 2257 2258/* nommu.c */ 2259extern atomic_long_t mmap_pages_allocated; 2260extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2261 2262/* interval_tree.c */ 2263void vma_interval_tree_insert(struct vm_area_struct *node, 2264 struct rb_root_cached *root); 2265void vma_interval_tree_insert_after(struct vm_area_struct *node, 2266 struct vm_area_struct *prev, 2267 struct rb_root_cached *root); 2268void vma_interval_tree_remove(struct vm_area_struct *node, 2269 struct rb_root_cached *root); 2270struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2271 unsigned long start, unsigned long last); 2272struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2273 unsigned long start, unsigned long last); 2274 2275#define vma_interval_tree_foreach(vma, root, start, last) \ 2276 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2277 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2278 2279void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2280 struct rb_root_cached *root); 2281void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2282 struct rb_root_cached *root); 2283struct anon_vma_chain * 2284anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2285 unsigned long start, unsigned long last); 2286struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2287 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2288#ifdef CONFIG_DEBUG_VM_RB 2289void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2290#endif 2291 2292#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2293 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2294 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2295 2296/* mmap.c */ 2297extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2298extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2299 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2300 struct vm_area_struct *expand); 2301static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2302 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2303{ 2304 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2305} 2306extern struct vm_area_struct *vma_merge(struct mm_struct *, 2307 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2308 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2309 struct mempolicy *, struct vm_userfaultfd_ctx); 2310extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2311extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2312 unsigned long addr, int new_below); 2313extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2314 unsigned long addr, int new_below); 2315extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2316extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2317 struct rb_node **, struct rb_node *); 2318extern void unlink_file_vma(struct vm_area_struct *); 2319extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2320 unsigned long addr, unsigned long len, pgoff_t pgoff, 2321 bool *need_rmap_locks); 2322extern void exit_mmap(struct mm_struct *); 2323 2324static inline int check_data_rlimit(unsigned long rlim, 2325 unsigned long new, 2326 unsigned long start, 2327 unsigned long end_data, 2328 unsigned long start_data) 2329{ 2330 if (rlim < RLIM_INFINITY) { 2331 if (((new - start) + (end_data - start_data)) > rlim) 2332 return -ENOSPC; 2333 } 2334 2335 return 0; 2336} 2337 2338extern int mm_take_all_locks(struct mm_struct *mm); 2339extern void mm_drop_all_locks(struct mm_struct *mm); 2340 2341extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2342extern struct file *get_mm_exe_file(struct mm_struct *mm); 2343extern struct file *get_task_exe_file(struct task_struct *task); 2344 2345extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2346extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2347 2348extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2349 const struct vm_special_mapping *sm); 2350extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2351 unsigned long addr, unsigned long len, 2352 unsigned long flags, 2353 const struct vm_special_mapping *spec); 2354/* This is an obsolete alternative to _install_special_mapping. */ 2355extern int install_special_mapping(struct mm_struct *mm, 2356 unsigned long addr, unsigned long len, 2357 unsigned long flags, struct page **pages); 2358 2359extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2360 2361extern unsigned long mmap_region(struct file *file, unsigned long addr, 2362 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2363 struct list_head *uf); 2364extern unsigned long do_mmap(struct file *file, unsigned long addr, 2365 unsigned long len, unsigned long prot, unsigned long flags, 2366 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2367 struct list_head *uf); 2368extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2369 struct list_head *uf, bool downgrade); 2370extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2371 struct list_head *uf); 2372 2373static inline unsigned long 2374do_mmap_pgoff(struct file *file, unsigned long addr, 2375 unsigned long len, unsigned long prot, unsigned long flags, 2376 unsigned long pgoff, unsigned long *populate, 2377 struct list_head *uf) 2378{ 2379 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2380} 2381 2382#ifdef CONFIG_MMU 2383extern int __mm_populate(unsigned long addr, unsigned long len, 2384 int ignore_errors); 2385static inline void mm_populate(unsigned long addr, unsigned long len) 2386{ 2387 /* Ignore errors */ 2388 (void) __mm_populate(addr, len, 1); 2389} 2390#else 2391static inline void mm_populate(unsigned long addr, unsigned long len) {} 2392#endif 2393 2394/* These take the mm semaphore themselves */ 2395extern int __must_check vm_brk(unsigned long, unsigned long); 2396extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2397extern int vm_munmap(unsigned long, size_t); 2398extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2399 unsigned long, unsigned long, 2400 unsigned long, unsigned long); 2401 2402struct vm_unmapped_area_info { 2403#define VM_UNMAPPED_AREA_TOPDOWN 1 2404 unsigned long flags; 2405 unsigned long length; 2406 unsigned long low_limit; 2407 unsigned long high_limit; 2408 unsigned long align_mask; 2409 unsigned long align_offset; 2410}; 2411 2412extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2413extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2414 2415/* 2416 * Search for an unmapped address range. 2417 * 2418 * We are looking for a range that: 2419 * - does not intersect with any VMA; 2420 * - is contained within the [low_limit, high_limit) interval; 2421 * - is at least the desired size. 2422 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2423 */ 2424static inline unsigned long 2425vm_unmapped_area(struct vm_unmapped_area_info *info) 2426{ 2427 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2428 return unmapped_area_topdown(info); 2429 else 2430 return unmapped_area(info); 2431} 2432 2433/* truncate.c */ 2434extern void truncate_inode_pages(struct address_space *, loff_t); 2435extern void truncate_inode_pages_range(struct address_space *, 2436 loff_t lstart, loff_t lend); 2437extern void truncate_inode_pages_final(struct address_space *); 2438 2439/* generic vm_area_ops exported for stackable file systems */ 2440extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2441extern void filemap_map_pages(struct vm_fault *vmf, 2442 pgoff_t start_pgoff, pgoff_t end_pgoff); 2443extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2444 2445/* mm/page-writeback.c */ 2446int __must_check write_one_page(struct page *page); 2447void task_dirty_inc(struct task_struct *tsk); 2448 2449/* readahead.c */ 2450#define VM_MAX_READAHEAD 128 /* kbytes */ 2451#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2452 2453int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2454 pgoff_t offset, unsigned long nr_to_read); 2455 2456void page_cache_sync_readahead(struct address_space *mapping, 2457 struct file_ra_state *ra, 2458 struct file *filp, 2459 pgoff_t offset, 2460 unsigned long size); 2461 2462void page_cache_async_readahead(struct address_space *mapping, 2463 struct file_ra_state *ra, 2464 struct file *filp, 2465 struct page *pg, 2466 pgoff_t offset, 2467 unsigned long size); 2468 2469extern unsigned long stack_guard_gap; 2470/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2471extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2472 2473/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2474extern int expand_downwards(struct vm_area_struct *vma, 2475 unsigned long address); 2476#if VM_GROWSUP 2477extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2478#else 2479 #define expand_upwards(vma, address) (0) 2480#endif 2481 2482/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2483extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2484extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2485 struct vm_area_struct **pprev); 2486 2487/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2488 NULL if none. Assume start_addr < end_addr. */ 2489static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2490{ 2491 struct vm_area_struct * vma = find_vma(mm,start_addr); 2492 2493 if (vma && end_addr <= vma->vm_start) 2494 vma = NULL; 2495 return vma; 2496} 2497 2498static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2499{ 2500 unsigned long vm_start = vma->vm_start; 2501 2502 if (vma->vm_flags & VM_GROWSDOWN) { 2503 vm_start -= stack_guard_gap; 2504 if (vm_start > vma->vm_start) 2505 vm_start = 0; 2506 } 2507 return vm_start; 2508} 2509 2510static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2511{ 2512 unsigned long vm_end = vma->vm_end; 2513 2514 if (vma->vm_flags & VM_GROWSUP) { 2515 vm_end += stack_guard_gap; 2516 if (vm_end < vma->vm_end) 2517 vm_end = -PAGE_SIZE; 2518 } 2519 return vm_end; 2520} 2521 2522static inline unsigned long vma_pages(struct vm_area_struct *vma) 2523{ 2524 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2525} 2526 2527/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2528static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2529 unsigned long vm_start, unsigned long vm_end) 2530{ 2531 struct vm_area_struct *vma = find_vma(mm, vm_start); 2532 2533 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2534 vma = NULL; 2535 2536 return vma; 2537} 2538 2539static inline bool range_in_vma(struct vm_area_struct *vma, 2540 unsigned long start, unsigned long end) 2541{ 2542 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2543} 2544 2545#ifdef CONFIG_MMU 2546pgprot_t vm_get_page_prot(unsigned long vm_flags); 2547void vma_set_page_prot(struct vm_area_struct *vma); 2548#else 2549static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2550{ 2551 return __pgprot(0); 2552} 2553static inline void vma_set_page_prot(struct vm_area_struct *vma) 2554{ 2555 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2556} 2557#endif 2558 2559#ifdef CONFIG_NUMA_BALANCING 2560unsigned long change_prot_numa(struct vm_area_struct *vma, 2561 unsigned long start, unsigned long end); 2562#endif 2563 2564struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2565int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2566 unsigned long pfn, unsigned long size, pgprot_t); 2567int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2568vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2569 unsigned long pfn); 2570vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2571 unsigned long pfn, pgprot_t pgprot); 2572vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2573 pfn_t pfn); 2574vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2575 unsigned long addr, pfn_t pfn); 2576int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2577 2578static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2579 unsigned long addr, struct page *page) 2580{ 2581 int err = vm_insert_page(vma, addr, page); 2582 2583 if (err == -ENOMEM) 2584 return VM_FAULT_OOM; 2585 if (err < 0 && err != -EBUSY) 2586 return VM_FAULT_SIGBUS; 2587 2588 return VM_FAULT_NOPAGE; 2589} 2590 2591static inline vm_fault_t vmf_error(int err) 2592{ 2593 if (err == -ENOMEM) 2594 return VM_FAULT_OOM; 2595 return VM_FAULT_SIGBUS; 2596} 2597 2598struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2599 unsigned int foll_flags); 2600 2601#define FOLL_WRITE 0x01 /* check pte is writable */ 2602#define FOLL_TOUCH 0x02 /* mark page accessed */ 2603#define FOLL_GET 0x04 /* do get_page on page */ 2604#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2605#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2606#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2607 * and return without waiting upon it */ 2608#define FOLL_POPULATE 0x40 /* fault in page */ 2609#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2610#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2611#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2612#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2613#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2614#define FOLL_MLOCK 0x1000 /* lock present pages */ 2615#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2616#define FOLL_COW 0x4000 /* internal GUP flag */ 2617#define FOLL_ANON 0x8000 /* don't do file mappings */ 2618 2619static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2620{ 2621 if (vm_fault & VM_FAULT_OOM) 2622 return -ENOMEM; 2623 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2624 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2625 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2626 return -EFAULT; 2627 return 0; 2628} 2629 2630typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2631 void *data); 2632extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2633 unsigned long size, pte_fn_t fn, void *data); 2634 2635 2636#ifdef CONFIG_PAGE_POISONING 2637extern bool page_poisoning_enabled(void); 2638extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2639#else 2640static inline bool page_poisoning_enabled(void) { return false; } 2641static inline void kernel_poison_pages(struct page *page, int numpages, 2642 int enable) { } 2643#endif 2644 2645#ifdef CONFIG_DEBUG_PAGEALLOC 2646extern bool _debug_pagealloc_enabled; 2647extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2648 2649static inline bool debug_pagealloc_enabled(void) 2650{ 2651 return _debug_pagealloc_enabled; 2652} 2653 2654static inline void 2655kernel_map_pages(struct page *page, int numpages, int enable) 2656{ 2657 if (!debug_pagealloc_enabled()) 2658 return; 2659 2660 __kernel_map_pages(page, numpages, enable); 2661} 2662#ifdef CONFIG_HIBERNATION 2663extern bool kernel_page_present(struct page *page); 2664#endif /* CONFIG_HIBERNATION */ 2665#else /* CONFIG_DEBUG_PAGEALLOC */ 2666static inline void 2667kernel_map_pages(struct page *page, int numpages, int enable) {} 2668#ifdef CONFIG_HIBERNATION 2669static inline bool kernel_page_present(struct page *page) { return true; } 2670#endif /* CONFIG_HIBERNATION */ 2671static inline bool debug_pagealloc_enabled(void) 2672{ 2673 return false; 2674} 2675#endif /* CONFIG_DEBUG_PAGEALLOC */ 2676 2677#ifdef __HAVE_ARCH_GATE_AREA 2678extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2679extern int in_gate_area_no_mm(unsigned long addr); 2680extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2681#else 2682static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2683{ 2684 return NULL; 2685} 2686static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2687static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2688{ 2689 return 0; 2690} 2691#endif /* __HAVE_ARCH_GATE_AREA */ 2692 2693extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2694 2695#ifdef CONFIG_SYSCTL 2696extern int sysctl_drop_caches; 2697int drop_caches_sysctl_handler(struct ctl_table *, int, 2698 void __user *, size_t *, loff_t *); 2699#endif 2700 2701void drop_slab(void); 2702void drop_slab_node(int nid); 2703 2704#ifndef CONFIG_MMU 2705#define randomize_va_space 0 2706#else 2707extern int randomize_va_space; 2708#endif 2709 2710const char * arch_vma_name(struct vm_area_struct *vma); 2711void print_vma_addr(char *prefix, unsigned long rip); 2712 2713void *sparse_buffer_alloc(unsigned long size); 2714struct page *sparse_mem_map_populate(unsigned long pnum, int nid, 2715 struct vmem_altmap *altmap); 2716pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2717p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2718pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2719pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2720pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2721void *vmemmap_alloc_block(unsigned long size, int node); 2722struct vmem_altmap; 2723void *vmemmap_alloc_block_buf(unsigned long size, int node); 2724void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2725void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2726int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2727 int node); 2728int vmemmap_populate(unsigned long start, unsigned long end, int node, 2729 struct vmem_altmap *altmap); 2730void vmemmap_populate_print_last(void); 2731#ifdef CONFIG_MEMORY_HOTPLUG 2732void vmemmap_free(unsigned long start, unsigned long end, 2733 struct vmem_altmap *altmap); 2734#endif 2735void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2736 unsigned long nr_pages); 2737 2738enum mf_flags { 2739 MF_COUNT_INCREASED = 1 << 0, 2740 MF_ACTION_REQUIRED = 1 << 1, 2741 MF_MUST_KILL = 1 << 2, 2742 MF_SOFT_OFFLINE = 1 << 3, 2743}; 2744extern int memory_failure(unsigned long pfn, int flags); 2745extern void memory_failure_queue(unsigned long pfn, int flags); 2746extern int unpoison_memory(unsigned long pfn); 2747extern int get_hwpoison_page(struct page *page); 2748#define put_hwpoison_page(page) put_page(page) 2749extern int sysctl_memory_failure_early_kill; 2750extern int sysctl_memory_failure_recovery; 2751extern void shake_page(struct page *p, int access); 2752extern atomic_long_t num_poisoned_pages __read_mostly; 2753extern int soft_offline_page(struct page *page, int flags); 2754 2755 2756/* 2757 * Error handlers for various types of pages. 2758 */ 2759enum mf_result { 2760 MF_IGNORED, /* Error: cannot be handled */ 2761 MF_FAILED, /* Error: handling failed */ 2762 MF_DELAYED, /* Will be handled later */ 2763 MF_RECOVERED, /* Successfully recovered */ 2764}; 2765 2766enum mf_action_page_type { 2767 MF_MSG_KERNEL, 2768 MF_MSG_KERNEL_HIGH_ORDER, 2769 MF_MSG_SLAB, 2770 MF_MSG_DIFFERENT_COMPOUND, 2771 MF_MSG_POISONED_HUGE, 2772 MF_MSG_HUGE, 2773 MF_MSG_FREE_HUGE, 2774 MF_MSG_NON_PMD_HUGE, 2775 MF_MSG_UNMAP_FAILED, 2776 MF_MSG_DIRTY_SWAPCACHE, 2777 MF_MSG_CLEAN_SWAPCACHE, 2778 MF_MSG_DIRTY_MLOCKED_LRU, 2779 MF_MSG_CLEAN_MLOCKED_LRU, 2780 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2781 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2782 MF_MSG_DIRTY_LRU, 2783 MF_MSG_CLEAN_LRU, 2784 MF_MSG_TRUNCATED_LRU, 2785 MF_MSG_BUDDY, 2786 MF_MSG_BUDDY_2ND, 2787 MF_MSG_DAX, 2788 MF_MSG_UNKNOWN, 2789}; 2790 2791#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2792extern void clear_huge_page(struct page *page, 2793 unsigned long addr_hint, 2794 unsigned int pages_per_huge_page); 2795extern void copy_user_huge_page(struct page *dst, struct page *src, 2796 unsigned long addr_hint, 2797 struct vm_area_struct *vma, 2798 unsigned int pages_per_huge_page); 2799extern long copy_huge_page_from_user(struct page *dst_page, 2800 const void __user *usr_src, 2801 unsigned int pages_per_huge_page, 2802 bool allow_pagefault); 2803#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2804 2805extern struct page_ext_operations debug_guardpage_ops; 2806 2807#ifdef CONFIG_DEBUG_PAGEALLOC 2808extern unsigned int _debug_guardpage_minorder; 2809extern bool _debug_guardpage_enabled; 2810 2811static inline unsigned int debug_guardpage_minorder(void) 2812{ 2813 return _debug_guardpage_minorder; 2814} 2815 2816static inline bool debug_guardpage_enabled(void) 2817{ 2818 return _debug_guardpage_enabled; 2819} 2820 2821static inline bool page_is_guard(struct page *page) 2822{ 2823 struct page_ext *page_ext; 2824 2825 if (!debug_guardpage_enabled()) 2826 return false; 2827 2828 page_ext = lookup_page_ext(page); 2829 if (unlikely(!page_ext)) 2830 return false; 2831 2832 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2833} 2834#else 2835static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2836static inline bool debug_guardpage_enabled(void) { return false; } 2837static inline bool page_is_guard(struct page *page) { return false; } 2838#endif /* CONFIG_DEBUG_PAGEALLOC */ 2839 2840#if MAX_NUMNODES > 1 2841void __init setup_nr_node_ids(void); 2842#else 2843static inline void setup_nr_node_ids(void) {} 2844#endif 2845 2846#endif /* __KERNEL__ */ 2847#endif /* _LINUX_MM_H */