Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
9#include <linux/mmdebug.h>
10#include <linux/gfp.h>
11#include <linux/bug.h>
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
15#include <linux/atomic.h>
16#include <linux/debug_locks.h>
17#include <linux/mm_types.h>
18#include <linux/range.h>
19#include <linux/pfn.h>
20#include <linux/percpu-refcount.h>
21#include <linux/bit_spinlock.h>
22#include <linux/shrinker.h>
23#include <linux/resource.h>
24#include <linux/page_ext.h>
25#include <linux/err.h>
26#include <linux/page_ref.h>
27#include <linux/memremap.h>
28#include <linux/overflow.h>
29
30struct mempolicy;
31struct anon_vma;
32struct anon_vma_chain;
33struct file_ra_state;
34struct user_struct;
35struct writeback_control;
36struct bdi_writeback;
37
38void init_mm_internals(void);
39
40#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
41extern unsigned long max_mapnr;
42
43static inline void set_max_mapnr(unsigned long limit)
44{
45 max_mapnr = limit;
46}
47#else
48static inline void set_max_mapnr(unsigned long limit) { }
49#endif
50
51extern atomic_long_t _totalram_pages;
52static inline unsigned long totalram_pages(void)
53{
54 return (unsigned long)atomic_long_read(&_totalram_pages);
55}
56
57static inline void totalram_pages_inc(void)
58{
59 atomic_long_inc(&_totalram_pages);
60}
61
62static inline void totalram_pages_dec(void)
63{
64 atomic_long_dec(&_totalram_pages);
65}
66
67static inline void totalram_pages_add(long count)
68{
69 atomic_long_add(count, &_totalram_pages);
70}
71
72static inline void totalram_pages_set(long val)
73{
74 atomic_long_set(&_totalram_pages, val);
75}
76
77extern void * high_memory;
78extern int page_cluster;
79
80#ifdef CONFIG_SYSCTL
81extern int sysctl_legacy_va_layout;
82#else
83#define sysctl_legacy_va_layout 0
84#endif
85
86#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
87extern const int mmap_rnd_bits_min;
88extern const int mmap_rnd_bits_max;
89extern int mmap_rnd_bits __read_mostly;
90#endif
91#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
92extern const int mmap_rnd_compat_bits_min;
93extern const int mmap_rnd_compat_bits_max;
94extern int mmap_rnd_compat_bits __read_mostly;
95#endif
96
97#include <asm/page.h>
98#include <asm/pgtable.h>
99#include <asm/processor.h>
100
101#ifndef __pa_symbol
102#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
103#endif
104
105#ifndef page_to_virt
106#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
107#endif
108
109#ifndef lm_alias
110#define lm_alias(x) __va(__pa_symbol(x))
111#endif
112
113/*
114 * To prevent common memory management code establishing
115 * a zero page mapping on a read fault.
116 * This macro should be defined within <asm/pgtable.h>.
117 * s390 does this to prevent multiplexing of hardware bits
118 * related to the physical page in case of virtualization.
119 */
120#ifndef mm_forbids_zeropage
121#define mm_forbids_zeropage(X) (0)
122#endif
123
124/*
125 * On some architectures it is expensive to call memset() for small sizes.
126 * Those architectures should provide their own implementation of "struct page"
127 * zeroing by defining this macro in <asm/pgtable.h>.
128 */
129#ifndef mm_zero_struct_page
130#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
131#endif
132
133/*
134 * Default maximum number of active map areas, this limits the number of vmas
135 * per mm struct. Users can overwrite this number by sysctl but there is a
136 * problem.
137 *
138 * When a program's coredump is generated as ELF format, a section is created
139 * per a vma. In ELF, the number of sections is represented in unsigned short.
140 * This means the number of sections should be smaller than 65535 at coredump.
141 * Because the kernel adds some informative sections to a image of program at
142 * generating coredump, we need some margin. The number of extra sections is
143 * 1-3 now and depends on arch. We use "5" as safe margin, here.
144 *
145 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
146 * not a hard limit any more. Although some userspace tools can be surprised by
147 * that.
148 */
149#define MAPCOUNT_ELF_CORE_MARGIN (5)
150#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
151
152extern int sysctl_max_map_count;
153
154extern unsigned long sysctl_user_reserve_kbytes;
155extern unsigned long sysctl_admin_reserve_kbytes;
156
157extern int sysctl_overcommit_memory;
158extern int sysctl_overcommit_ratio;
159extern unsigned long sysctl_overcommit_kbytes;
160
161extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
162 size_t *, loff_t *);
163extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
164 size_t *, loff_t *);
165
166#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
167
168/* to align the pointer to the (next) page boundary */
169#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
170
171/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
172#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
173
174#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
175
176/*
177 * Linux kernel virtual memory manager primitives.
178 * The idea being to have a "virtual" mm in the same way
179 * we have a virtual fs - giving a cleaner interface to the
180 * mm details, and allowing different kinds of memory mappings
181 * (from shared memory to executable loading to arbitrary
182 * mmap() functions).
183 */
184
185struct vm_area_struct *vm_area_alloc(struct mm_struct *);
186struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
187void vm_area_free(struct vm_area_struct *);
188
189#ifndef CONFIG_MMU
190extern struct rb_root nommu_region_tree;
191extern struct rw_semaphore nommu_region_sem;
192
193extern unsigned int kobjsize(const void *objp);
194#endif
195
196/*
197 * vm_flags in vm_area_struct, see mm_types.h.
198 * When changing, update also include/trace/events/mmflags.h
199 */
200#define VM_NONE 0x00000000
201
202#define VM_READ 0x00000001 /* currently active flags */
203#define VM_WRITE 0x00000002
204#define VM_EXEC 0x00000004
205#define VM_SHARED 0x00000008
206
207/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
208#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
209#define VM_MAYWRITE 0x00000020
210#define VM_MAYEXEC 0x00000040
211#define VM_MAYSHARE 0x00000080
212
213#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
214#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
215#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
216#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
217#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
218
219#define VM_LOCKED 0x00002000
220#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
221
222 /* Used by sys_madvise() */
223#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
224#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
225
226#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
227#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
228#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
229#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
230#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
231#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
232#define VM_SYNC 0x00800000 /* Synchronous page faults */
233#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
234#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
235#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
236
237#ifdef CONFIG_MEM_SOFT_DIRTY
238# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
239#else
240# define VM_SOFTDIRTY 0
241#endif
242
243#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
244#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
245#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
246#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
247
248#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
249#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
250#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
251#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
252#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
253#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
254#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
255#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
256#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
257#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
258#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
259#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
260
261#ifdef CONFIG_ARCH_HAS_PKEYS
262# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
263# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
264# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
265# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
266# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
267#ifdef CONFIG_PPC
268# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
269#else
270# define VM_PKEY_BIT4 0
271#endif
272#endif /* CONFIG_ARCH_HAS_PKEYS */
273
274#if defined(CONFIG_X86)
275# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
276#elif defined(CONFIG_PPC)
277# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
278#elif defined(CONFIG_PARISC)
279# define VM_GROWSUP VM_ARCH_1
280#elif defined(CONFIG_IA64)
281# define VM_GROWSUP VM_ARCH_1
282#elif defined(CONFIG_SPARC64)
283# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
284# define VM_ARCH_CLEAR VM_SPARC_ADI
285#elif !defined(CONFIG_MMU)
286# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
287#endif
288
289#if defined(CONFIG_X86_INTEL_MPX)
290/* MPX specific bounds table or bounds directory */
291# define VM_MPX VM_HIGH_ARCH_4
292#else
293# define VM_MPX VM_NONE
294#endif
295
296#ifndef VM_GROWSUP
297# define VM_GROWSUP VM_NONE
298#endif
299
300/* Bits set in the VMA until the stack is in its final location */
301#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
302
303#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
304#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
305#endif
306
307#ifdef CONFIG_STACK_GROWSUP
308#define VM_STACK VM_GROWSUP
309#else
310#define VM_STACK VM_GROWSDOWN
311#endif
312
313#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
314
315/*
316 * Special vmas that are non-mergable, non-mlock()able.
317 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
318 */
319#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
320
321/* This mask defines which mm->def_flags a process can inherit its parent */
322#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
323
324/* This mask is used to clear all the VMA flags used by mlock */
325#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
326
327/* Arch-specific flags to clear when updating VM flags on protection change */
328#ifndef VM_ARCH_CLEAR
329# define VM_ARCH_CLEAR VM_NONE
330#endif
331#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
332
333/*
334 * mapping from the currently active vm_flags protection bits (the
335 * low four bits) to a page protection mask..
336 */
337extern pgprot_t protection_map[16];
338
339#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
340#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
341#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
342#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
343#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
344#define FAULT_FLAG_TRIED 0x20 /* Second try */
345#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
346#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
347#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
348
349#define FAULT_FLAG_TRACE \
350 { FAULT_FLAG_WRITE, "WRITE" }, \
351 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
352 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
353 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
354 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
355 { FAULT_FLAG_TRIED, "TRIED" }, \
356 { FAULT_FLAG_USER, "USER" }, \
357 { FAULT_FLAG_REMOTE, "REMOTE" }, \
358 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
359
360/*
361 * vm_fault is filled by the the pagefault handler and passed to the vma's
362 * ->fault function. The vma's ->fault is responsible for returning a bitmask
363 * of VM_FAULT_xxx flags that give details about how the fault was handled.
364 *
365 * MM layer fills up gfp_mask for page allocations but fault handler might
366 * alter it if its implementation requires a different allocation context.
367 *
368 * pgoff should be used in favour of virtual_address, if possible.
369 */
370struct vm_fault {
371 struct vm_area_struct *vma; /* Target VMA */
372 unsigned int flags; /* FAULT_FLAG_xxx flags */
373 gfp_t gfp_mask; /* gfp mask to be used for allocations */
374 pgoff_t pgoff; /* Logical page offset based on vma */
375 unsigned long address; /* Faulting virtual address */
376 pmd_t *pmd; /* Pointer to pmd entry matching
377 * the 'address' */
378 pud_t *pud; /* Pointer to pud entry matching
379 * the 'address'
380 */
381 pte_t orig_pte; /* Value of PTE at the time of fault */
382
383 struct page *cow_page; /* Page handler may use for COW fault */
384 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
385 struct page *page; /* ->fault handlers should return a
386 * page here, unless VM_FAULT_NOPAGE
387 * is set (which is also implied by
388 * VM_FAULT_ERROR).
389 */
390 /* These three entries are valid only while holding ptl lock */
391 pte_t *pte; /* Pointer to pte entry matching
392 * the 'address'. NULL if the page
393 * table hasn't been allocated.
394 */
395 spinlock_t *ptl; /* Page table lock.
396 * Protects pte page table if 'pte'
397 * is not NULL, otherwise pmd.
398 */
399 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
400 * vm_ops->map_pages() calls
401 * alloc_set_pte() from atomic context.
402 * do_fault_around() pre-allocates
403 * page table to avoid allocation from
404 * atomic context.
405 */
406};
407
408/* page entry size for vm->huge_fault() */
409enum page_entry_size {
410 PE_SIZE_PTE = 0,
411 PE_SIZE_PMD,
412 PE_SIZE_PUD,
413};
414
415/*
416 * These are the virtual MM functions - opening of an area, closing and
417 * unmapping it (needed to keep files on disk up-to-date etc), pointer
418 * to the functions called when a no-page or a wp-page exception occurs.
419 */
420struct vm_operations_struct {
421 void (*open)(struct vm_area_struct * area);
422 void (*close)(struct vm_area_struct * area);
423 int (*split)(struct vm_area_struct * area, unsigned long addr);
424 int (*mremap)(struct vm_area_struct * area);
425 vm_fault_t (*fault)(struct vm_fault *vmf);
426 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
427 enum page_entry_size pe_size);
428 void (*map_pages)(struct vm_fault *vmf,
429 pgoff_t start_pgoff, pgoff_t end_pgoff);
430 unsigned long (*pagesize)(struct vm_area_struct * area);
431
432 /* notification that a previously read-only page is about to become
433 * writable, if an error is returned it will cause a SIGBUS */
434 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
435
436 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
437 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
438
439 /* called by access_process_vm when get_user_pages() fails, typically
440 * for use by special VMAs that can switch between memory and hardware
441 */
442 int (*access)(struct vm_area_struct *vma, unsigned long addr,
443 void *buf, int len, int write);
444
445 /* Called by the /proc/PID/maps code to ask the vma whether it
446 * has a special name. Returning non-NULL will also cause this
447 * vma to be dumped unconditionally. */
448 const char *(*name)(struct vm_area_struct *vma);
449
450#ifdef CONFIG_NUMA
451 /*
452 * set_policy() op must add a reference to any non-NULL @new mempolicy
453 * to hold the policy upon return. Caller should pass NULL @new to
454 * remove a policy and fall back to surrounding context--i.e. do not
455 * install a MPOL_DEFAULT policy, nor the task or system default
456 * mempolicy.
457 */
458 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
459
460 /*
461 * get_policy() op must add reference [mpol_get()] to any policy at
462 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
463 * in mm/mempolicy.c will do this automatically.
464 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
465 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
466 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
467 * must return NULL--i.e., do not "fallback" to task or system default
468 * policy.
469 */
470 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
471 unsigned long addr);
472#endif
473 /*
474 * Called by vm_normal_page() for special PTEs to find the
475 * page for @addr. This is useful if the default behavior
476 * (using pte_page()) would not find the correct page.
477 */
478 struct page *(*find_special_page)(struct vm_area_struct *vma,
479 unsigned long addr);
480};
481
482static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
483{
484 static const struct vm_operations_struct dummy_vm_ops = {};
485
486 memset(vma, 0, sizeof(*vma));
487 vma->vm_mm = mm;
488 vma->vm_ops = &dummy_vm_ops;
489 INIT_LIST_HEAD(&vma->anon_vma_chain);
490}
491
492static inline void vma_set_anonymous(struct vm_area_struct *vma)
493{
494 vma->vm_ops = NULL;
495}
496
497/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
498#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
499
500struct mmu_gather;
501struct inode;
502
503#define page_private(page) ((page)->private)
504#define set_page_private(page, v) ((page)->private = (v))
505
506#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
507static inline int pmd_devmap(pmd_t pmd)
508{
509 return 0;
510}
511static inline int pud_devmap(pud_t pud)
512{
513 return 0;
514}
515static inline int pgd_devmap(pgd_t pgd)
516{
517 return 0;
518}
519#endif
520
521/*
522 * FIXME: take this include out, include page-flags.h in
523 * files which need it (119 of them)
524 */
525#include <linux/page-flags.h>
526#include <linux/huge_mm.h>
527
528/*
529 * Methods to modify the page usage count.
530 *
531 * What counts for a page usage:
532 * - cache mapping (page->mapping)
533 * - private data (page->private)
534 * - page mapped in a task's page tables, each mapping
535 * is counted separately
536 *
537 * Also, many kernel routines increase the page count before a critical
538 * routine so they can be sure the page doesn't go away from under them.
539 */
540
541/*
542 * Drop a ref, return true if the refcount fell to zero (the page has no users)
543 */
544static inline int put_page_testzero(struct page *page)
545{
546 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
547 return page_ref_dec_and_test(page);
548}
549
550/*
551 * Try to grab a ref unless the page has a refcount of zero, return false if
552 * that is the case.
553 * This can be called when MMU is off so it must not access
554 * any of the virtual mappings.
555 */
556static inline int get_page_unless_zero(struct page *page)
557{
558 return page_ref_add_unless(page, 1, 0);
559}
560
561extern int page_is_ram(unsigned long pfn);
562
563enum {
564 REGION_INTERSECTS,
565 REGION_DISJOINT,
566 REGION_MIXED,
567};
568
569int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
570 unsigned long desc);
571
572/* Support for virtually mapped pages */
573struct page *vmalloc_to_page(const void *addr);
574unsigned long vmalloc_to_pfn(const void *addr);
575
576/*
577 * Determine if an address is within the vmalloc range
578 *
579 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
580 * is no special casing required.
581 */
582static inline bool is_vmalloc_addr(const void *x)
583{
584#ifdef CONFIG_MMU
585 unsigned long addr = (unsigned long)x;
586
587 return addr >= VMALLOC_START && addr < VMALLOC_END;
588#else
589 return false;
590#endif
591}
592#ifdef CONFIG_MMU
593extern int is_vmalloc_or_module_addr(const void *x);
594#else
595static inline int is_vmalloc_or_module_addr(const void *x)
596{
597 return 0;
598}
599#endif
600
601extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
602static inline void *kvmalloc(size_t size, gfp_t flags)
603{
604 return kvmalloc_node(size, flags, NUMA_NO_NODE);
605}
606static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
607{
608 return kvmalloc_node(size, flags | __GFP_ZERO, node);
609}
610static inline void *kvzalloc(size_t size, gfp_t flags)
611{
612 return kvmalloc(size, flags | __GFP_ZERO);
613}
614
615static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
616{
617 size_t bytes;
618
619 if (unlikely(check_mul_overflow(n, size, &bytes)))
620 return NULL;
621
622 return kvmalloc(bytes, flags);
623}
624
625static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
626{
627 return kvmalloc_array(n, size, flags | __GFP_ZERO);
628}
629
630extern void kvfree(const void *addr);
631
632static inline atomic_t *compound_mapcount_ptr(struct page *page)
633{
634 return &page[1].compound_mapcount;
635}
636
637static inline int compound_mapcount(struct page *page)
638{
639 VM_BUG_ON_PAGE(!PageCompound(page), page);
640 page = compound_head(page);
641 return atomic_read(compound_mapcount_ptr(page)) + 1;
642}
643
644/*
645 * The atomic page->_mapcount, starts from -1: so that transitions
646 * both from it and to it can be tracked, using atomic_inc_and_test
647 * and atomic_add_negative(-1).
648 */
649static inline void page_mapcount_reset(struct page *page)
650{
651 atomic_set(&(page)->_mapcount, -1);
652}
653
654int __page_mapcount(struct page *page);
655
656static inline int page_mapcount(struct page *page)
657{
658 VM_BUG_ON_PAGE(PageSlab(page), page);
659
660 if (unlikely(PageCompound(page)))
661 return __page_mapcount(page);
662 return atomic_read(&page->_mapcount) + 1;
663}
664
665#ifdef CONFIG_TRANSPARENT_HUGEPAGE
666int total_mapcount(struct page *page);
667int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
668#else
669static inline int total_mapcount(struct page *page)
670{
671 return page_mapcount(page);
672}
673static inline int page_trans_huge_mapcount(struct page *page,
674 int *total_mapcount)
675{
676 int mapcount = page_mapcount(page);
677 if (total_mapcount)
678 *total_mapcount = mapcount;
679 return mapcount;
680}
681#endif
682
683static inline struct page *virt_to_head_page(const void *x)
684{
685 struct page *page = virt_to_page(x);
686
687 return compound_head(page);
688}
689
690void __put_page(struct page *page);
691
692void put_pages_list(struct list_head *pages);
693
694void split_page(struct page *page, unsigned int order);
695
696/*
697 * Compound pages have a destructor function. Provide a
698 * prototype for that function and accessor functions.
699 * These are _only_ valid on the head of a compound page.
700 */
701typedef void compound_page_dtor(struct page *);
702
703/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
704enum compound_dtor_id {
705 NULL_COMPOUND_DTOR,
706 COMPOUND_PAGE_DTOR,
707#ifdef CONFIG_HUGETLB_PAGE
708 HUGETLB_PAGE_DTOR,
709#endif
710#ifdef CONFIG_TRANSPARENT_HUGEPAGE
711 TRANSHUGE_PAGE_DTOR,
712#endif
713 NR_COMPOUND_DTORS,
714};
715extern compound_page_dtor * const compound_page_dtors[];
716
717static inline void set_compound_page_dtor(struct page *page,
718 enum compound_dtor_id compound_dtor)
719{
720 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
721 page[1].compound_dtor = compound_dtor;
722}
723
724static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
725{
726 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
727 return compound_page_dtors[page[1].compound_dtor];
728}
729
730static inline unsigned int compound_order(struct page *page)
731{
732 if (!PageHead(page))
733 return 0;
734 return page[1].compound_order;
735}
736
737static inline void set_compound_order(struct page *page, unsigned int order)
738{
739 page[1].compound_order = order;
740}
741
742void free_compound_page(struct page *page);
743
744#ifdef CONFIG_MMU
745/*
746 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
747 * servicing faults for write access. In the normal case, do always want
748 * pte_mkwrite. But get_user_pages can cause write faults for mappings
749 * that do not have writing enabled, when used by access_process_vm.
750 */
751static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
752{
753 if (likely(vma->vm_flags & VM_WRITE))
754 pte = pte_mkwrite(pte);
755 return pte;
756}
757
758vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
759 struct page *page);
760vm_fault_t finish_fault(struct vm_fault *vmf);
761vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
762#endif
763
764/*
765 * Multiple processes may "see" the same page. E.g. for untouched
766 * mappings of /dev/null, all processes see the same page full of
767 * zeroes, and text pages of executables and shared libraries have
768 * only one copy in memory, at most, normally.
769 *
770 * For the non-reserved pages, page_count(page) denotes a reference count.
771 * page_count() == 0 means the page is free. page->lru is then used for
772 * freelist management in the buddy allocator.
773 * page_count() > 0 means the page has been allocated.
774 *
775 * Pages are allocated by the slab allocator in order to provide memory
776 * to kmalloc and kmem_cache_alloc. In this case, the management of the
777 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
778 * unless a particular usage is carefully commented. (the responsibility of
779 * freeing the kmalloc memory is the caller's, of course).
780 *
781 * A page may be used by anyone else who does a __get_free_page().
782 * In this case, page_count still tracks the references, and should only
783 * be used through the normal accessor functions. The top bits of page->flags
784 * and page->virtual store page management information, but all other fields
785 * are unused and could be used privately, carefully. The management of this
786 * page is the responsibility of the one who allocated it, and those who have
787 * subsequently been given references to it.
788 *
789 * The other pages (we may call them "pagecache pages") are completely
790 * managed by the Linux memory manager: I/O, buffers, swapping etc.
791 * The following discussion applies only to them.
792 *
793 * A pagecache page contains an opaque `private' member, which belongs to the
794 * page's address_space. Usually, this is the address of a circular list of
795 * the page's disk buffers. PG_private must be set to tell the VM to call
796 * into the filesystem to release these pages.
797 *
798 * A page may belong to an inode's memory mapping. In this case, page->mapping
799 * is the pointer to the inode, and page->index is the file offset of the page,
800 * in units of PAGE_SIZE.
801 *
802 * If pagecache pages are not associated with an inode, they are said to be
803 * anonymous pages. These may become associated with the swapcache, and in that
804 * case PG_swapcache is set, and page->private is an offset into the swapcache.
805 *
806 * In either case (swapcache or inode backed), the pagecache itself holds one
807 * reference to the page. Setting PG_private should also increment the
808 * refcount. The each user mapping also has a reference to the page.
809 *
810 * The pagecache pages are stored in a per-mapping radix tree, which is
811 * rooted at mapping->i_pages, and indexed by offset.
812 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
813 * lists, we instead now tag pages as dirty/writeback in the radix tree.
814 *
815 * All pagecache pages may be subject to I/O:
816 * - inode pages may need to be read from disk,
817 * - inode pages which have been modified and are MAP_SHARED may need
818 * to be written back to the inode on disk,
819 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
820 * modified may need to be swapped out to swap space and (later) to be read
821 * back into memory.
822 */
823
824/*
825 * The zone field is never updated after free_area_init_core()
826 * sets it, so none of the operations on it need to be atomic.
827 */
828
829/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
830#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
831#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
832#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
833#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
834#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
835
836/*
837 * Define the bit shifts to access each section. For non-existent
838 * sections we define the shift as 0; that plus a 0 mask ensures
839 * the compiler will optimise away reference to them.
840 */
841#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
842#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
843#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
844#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
845#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
846
847/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
848#ifdef NODE_NOT_IN_PAGE_FLAGS
849#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
850#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
851 SECTIONS_PGOFF : ZONES_PGOFF)
852#else
853#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
854#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
855 NODES_PGOFF : ZONES_PGOFF)
856#endif
857
858#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
859
860#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
861#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
862#endif
863
864#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
865#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
866#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
867#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
868#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
869#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
870
871static inline enum zone_type page_zonenum(const struct page *page)
872{
873 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
874}
875
876#ifdef CONFIG_ZONE_DEVICE
877static inline bool is_zone_device_page(const struct page *page)
878{
879 return page_zonenum(page) == ZONE_DEVICE;
880}
881extern void memmap_init_zone_device(struct zone *, unsigned long,
882 unsigned long, struct dev_pagemap *);
883#else
884static inline bool is_zone_device_page(const struct page *page)
885{
886 return false;
887}
888#endif
889
890#ifdef CONFIG_DEV_PAGEMAP_OPS
891void dev_pagemap_get_ops(void);
892void dev_pagemap_put_ops(void);
893void __put_devmap_managed_page(struct page *page);
894DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
895static inline bool put_devmap_managed_page(struct page *page)
896{
897 if (!static_branch_unlikely(&devmap_managed_key))
898 return false;
899 if (!is_zone_device_page(page))
900 return false;
901 switch (page->pgmap->type) {
902 case MEMORY_DEVICE_PRIVATE:
903 case MEMORY_DEVICE_PUBLIC:
904 case MEMORY_DEVICE_FS_DAX:
905 __put_devmap_managed_page(page);
906 return true;
907 default:
908 break;
909 }
910 return false;
911}
912
913static inline bool is_device_private_page(const struct page *page)
914{
915 return is_zone_device_page(page) &&
916 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
917}
918
919static inline bool is_device_public_page(const struct page *page)
920{
921 return is_zone_device_page(page) &&
922 page->pgmap->type == MEMORY_DEVICE_PUBLIC;
923}
924
925#ifdef CONFIG_PCI_P2PDMA
926static inline bool is_pci_p2pdma_page(const struct page *page)
927{
928 return is_zone_device_page(page) &&
929 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
930}
931#else /* CONFIG_PCI_P2PDMA */
932static inline bool is_pci_p2pdma_page(const struct page *page)
933{
934 return false;
935}
936#endif /* CONFIG_PCI_P2PDMA */
937
938#else /* CONFIG_DEV_PAGEMAP_OPS */
939static inline void dev_pagemap_get_ops(void)
940{
941}
942
943static inline void dev_pagemap_put_ops(void)
944{
945}
946
947static inline bool put_devmap_managed_page(struct page *page)
948{
949 return false;
950}
951
952static inline bool is_device_private_page(const struct page *page)
953{
954 return false;
955}
956
957static inline bool is_device_public_page(const struct page *page)
958{
959 return false;
960}
961
962static inline bool is_pci_p2pdma_page(const struct page *page)
963{
964 return false;
965}
966#endif /* CONFIG_DEV_PAGEMAP_OPS */
967
968static inline void get_page(struct page *page)
969{
970 page = compound_head(page);
971 /*
972 * Getting a normal page or the head of a compound page
973 * requires to already have an elevated page->_refcount.
974 */
975 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
976 page_ref_inc(page);
977}
978
979static inline void put_page(struct page *page)
980{
981 page = compound_head(page);
982
983 /*
984 * For devmap managed pages we need to catch refcount transition from
985 * 2 to 1, when refcount reach one it means the page is free and we
986 * need to inform the device driver through callback. See
987 * include/linux/memremap.h and HMM for details.
988 */
989 if (put_devmap_managed_page(page))
990 return;
991
992 if (put_page_testzero(page))
993 __put_page(page);
994}
995
996#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
997#define SECTION_IN_PAGE_FLAGS
998#endif
999
1000/*
1001 * The identification function is mainly used by the buddy allocator for
1002 * determining if two pages could be buddies. We are not really identifying
1003 * the zone since we could be using the section number id if we do not have
1004 * node id available in page flags.
1005 * We only guarantee that it will return the same value for two combinable
1006 * pages in a zone.
1007 */
1008static inline int page_zone_id(struct page *page)
1009{
1010 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1011}
1012
1013#ifdef NODE_NOT_IN_PAGE_FLAGS
1014extern int page_to_nid(const struct page *page);
1015#else
1016static inline int page_to_nid(const struct page *page)
1017{
1018 struct page *p = (struct page *)page;
1019
1020 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1021}
1022#endif
1023
1024#ifdef CONFIG_NUMA_BALANCING
1025static inline int cpu_pid_to_cpupid(int cpu, int pid)
1026{
1027 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1028}
1029
1030static inline int cpupid_to_pid(int cpupid)
1031{
1032 return cpupid & LAST__PID_MASK;
1033}
1034
1035static inline int cpupid_to_cpu(int cpupid)
1036{
1037 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1038}
1039
1040static inline int cpupid_to_nid(int cpupid)
1041{
1042 return cpu_to_node(cpupid_to_cpu(cpupid));
1043}
1044
1045static inline bool cpupid_pid_unset(int cpupid)
1046{
1047 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1048}
1049
1050static inline bool cpupid_cpu_unset(int cpupid)
1051{
1052 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1053}
1054
1055static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1056{
1057 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1058}
1059
1060#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1061#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1062static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1063{
1064 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1065}
1066
1067static inline int page_cpupid_last(struct page *page)
1068{
1069 return page->_last_cpupid;
1070}
1071static inline void page_cpupid_reset_last(struct page *page)
1072{
1073 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1074}
1075#else
1076static inline int page_cpupid_last(struct page *page)
1077{
1078 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1079}
1080
1081extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1082
1083static inline void page_cpupid_reset_last(struct page *page)
1084{
1085 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1086}
1087#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1088#else /* !CONFIG_NUMA_BALANCING */
1089static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1090{
1091 return page_to_nid(page); /* XXX */
1092}
1093
1094static inline int page_cpupid_last(struct page *page)
1095{
1096 return page_to_nid(page); /* XXX */
1097}
1098
1099static inline int cpupid_to_nid(int cpupid)
1100{
1101 return -1;
1102}
1103
1104static inline int cpupid_to_pid(int cpupid)
1105{
1106 return -1;
1107}
1108
1109static inline int cpupid_to_cpu(int cpupid)
1110{
1111 return -1;
1112}
1113
1114static inline int cpu_pid_to_cpupid(int nid, int pid)
1115{
1116 return -1;
1117}
1118
1119static inline bool cpupid_pid_unset(int cpupid)
1120{
1121 return 1;
1122}
1123
1124static inline void page_cpupid_reset_last(struct page *page)
1125{
1126}
1127
1128static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1129{
1130 return false;
1131}
1132#endif /* CONFIG_NUMA_BALANCING */
1133
1134#ifdef CONFIG_KASAN_SW_TAGS
1135static inline u8 page_kasan_tag(const struct page *page)
1136{
1137 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1138}
1139
1140static inline void page_kasan_tag_set(struct page *page, u8 tag)
1141{
1142 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1143 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1144}
1145
1146static inline void page_kasan_tag_reset(struct page *page)
1147{
1148 page_kasan_tag_set(page, 0xff);
1149}
1150#else
1151static inline u8 page_kasan_tag(const struct page *page)
1152{
1153 return 0xff;
1154}
1155
1156static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1157static inline void page_kasan_tag_reset(struct page *page) { }
1158#endif
1159
1160static inline struct zone *page_zone(const struct page *page)
1161{
1162 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1163}
1164
1165static inline pg_data_t *page_pgdat(const struct page *page)
1166{
1167 return NODE_DATA(page_to_nid(page));
1168}
1169
1170#ifdef SECTION_IN_PAGE_FLAGS
1171static inline void set_page_section(struct page *page, unsigned long section)
1172{
1173 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1174 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1175}
1176
1177static inline unsigned long page_to_section(const struct page *page)
1178{
1179 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1180}
1181#endif
1182
1183static inline void set_page_zone(struct page *page, enum zone_type zone)
1184{
1185 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1186 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1187}
1188
1189static inline void set_page_node(struct page *page, unsigned long node)
1190{
1191 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1192 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1193}
1194
1195static inline void set_page_links(struct page *page, enum zone_type zone,
1196 unsigned long node, unsigned long pfn)
1197{
1198 set_page_zone(page, zone);
1199 set_page_node(page, node);
1200#ifdef SECTION_IN_PAGE_FLAGS
1201 set_page_section(page, pfn_to_section_nr(pfn));
1202#endif
1203}
1204
1205#ifdef CONFIG_MEMCG
1206static inline struct mem_cgroup *page_memcg(struct page *page)
1207{
1208 return page->mem_cgroup;
1209}
1210static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1211{
1212 WARN_ON_ONCE(!rcu_read_lock_held());
1213 return READ_ONCE(page->mem_cgroup);
1214}
1215#else
1216static inline struct mem_cgroup *page_memcg(struct page *page)
1217{
1218 return NULL;
1219}
1220static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1221{
1222 WARN_ON_ONCE(!rcu_read_lock_held());
1223 return NULL;
1224}
1225#endif
1226
1227/*
1228 * Some inline functions in vmstat.h depend on page_zone()
1229 */
1230#include <linux/vmstat.h>
1231
1232static __always_inline void *lowmem_page_address(const struct page *page)
1233{
1234 return page_to_virt(page);
1235}
1236
1237#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1238#define HASHED_PAGE_VIRTUAL
1239#endif
1240
1241#if defined(WANT_PAGE_VIRTUAL)
1242static inline void *page_address(const struct page *page)
1243{
1244 return page->virtual;
1245}
1246static inline void set_page_address(struct page *page, void *address)
1247{
1248 page->virtual = address;
1249}
1250#define page_address_init() do { } while(0)
1251#endif
1252
1253#if defined(HASHED_PAGE_VIRTUAL)
1254void *page_address(const struct page *page);
1255void set_page_address(struct page *page, void *virtual);
1256void page_address_init(void);
1257#endif
1258
1259#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1260#define page_address(page) lowmem_page_address(page)
1261#define set_page_address(page, address) do { } while(0)
1262#define page_address_init() do { } while(0)
1263#endif
1264
1265extern void *page_rmapping(struct page *page);
1266extern struct anon_vma *page_anon_vma(struct page *page);
1267extern struct address_space *page_mapping(struct page *page);
1268
1269extern struct address_space *__page_file_mapping(struct page *);
1270
1271static inline
1272struct address_space *page_file_mapping(struct page *page)
1273{
1274 if (unlikely(PageSwapCache(page)))
1275 return __page_file_mapping(page);
1276
1277 return page->mapping;
1278}
1279
1280extern pgoff_t __page_file_index(struct page *page);
1281
1282/*
1283 * Return the pagecache index of the passed page. Regular pagecache pages
1284 * use ->index whereas swapcache pages use swp_offset(->private)
1285 */
1286static inline pgoff_t page_index(struct page *page)
1287{
1288 if (unlikely(PageSwapCache(page)))
1289 return __page_file_index(page);
1290 return page->index;
1291}
1292
1293bool page_mapped(struct page *page);
1294struct address_space *page_mapping(struct page *page);
1295struct address_space *page_mapping_file(struct page *page);
1296
1297/*
1298 * Return true only if the page has been allocated with
1299 * ALLOC_NO_WATERMARKS and the low watermark was not
1300 * met implying that the system is under some pressure.
1301 */
1302static inline bool page_is_pfmemalloc(struct page *page)
1303{
1304 /*
1305 * Page index cannot be this large so this must be
1306 * a pfmemalloc page.
1307 */
1308 return page->index == -1UL;
1309}
1310
1311/*
1312 * Only to be called by the page allocator on a freshly allocated
1313 * page.
1314 */
1315static inline void set_page_pfmemalloc(struct page *page)
1316{
1317 page->index = -1UL;
1318}
1319
1320static inline void clear_page_pfmemalloc(struct page *page)
1321{
1322 page->index = 0;
1323}
1324
1325/*
1326 * Different kinds of faults, as returned by handle_mm_fault().
1327 * Used to decide whether a process gets delivered SIGBUS or
1328 * just gets major/minor fault counters bumped up.
1329 */
1330
1331#define VM_FAULT_OOM 0x0001
1332#define VM_FAULT_SIGBUS 0x0002
1333#define VM_FAULT_MAJOR 0x0004
1334#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1335#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1336#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1337#define VM_FAULT_SIGSEGV 0x0040
1338
1339#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1340#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1341#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1342#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1343#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1344#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1345 * and needs fsync() to complete (for
1346 * synchronous page faults in DAX) */
1347
1348#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1349 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1350 VM_FAULT_FALLBACK)
1351
1352#define VM_FAULT_RESULT_TRACE \
1353 { VM_FAULT_OOM, "OOM" }, \
1354 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1355 { VM_FAULT_MAJOR, "MAJOR" }, \
1356 { VM_FAULT_WRITE, "WRITE" }, \
1357 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1358 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1359 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1360 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1361 { VM_FAULT_LOCKED, "LOCKED" }, \
1362 { VM_FAULT_RETRY, "RETRY" }, \
1363 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1364 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1365 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
1366
1367/* Encode hstate index for a hwpoisoned large page */
1368#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1369#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1370
1371/*
1372 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1373 */
1374extern void pagefault_out_of_memory(void);
1375
1376#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1377
1378/*
1379 * Flags passed to show_mem() and show_free_areas() to suppress output in
1380 * various contexts.
1381 */
1382#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1383
1384extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1385
1386extern bool can_do_mlock(void);
1387extern int user_shm_lock(size_t, struct user_struct *);
1388extern void user_shm_unlock(size_t, struct user_struct *);
1389
1390/*
1391 * Parameter block passed down to zap_pte_range in exceptional cases.
1392 */
1393struct zap_details {
1394 struct address_space *check_mapping; /* Check page->mapping if set */
1395 pgoff_t first_index; /* Lowest page->index to unmap */
1396 pgoff_t last_index; /* Highest page->index to unmap */
1397};
1398
1399struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1400 pte_t pte, bool with_public_device);
1401#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1402
1403struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1404 pmd_t pmd);
1405
1406void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1407 unsigned long size);
1408void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1409 unsigned long size);
1410void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1411 unsigned long start, unsigned long end);
1412
1413/**
1414 * mm_walk - callbacks for walk_page_range
1415 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1416 * this handler should only handle pud_trans_huge() puds.
1417 * the pmd_entry or pte_entry callbacks will be used for
1418 * regular PUDs.
1419 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1420 * this handler is required to be able to handle
1421 * pmd_trans_huge() pmds. They may simply choose to
1422 * split_huge_page() instead of handling it explicitly.
1423 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1424 * @pte_hole: if set, called for each hole at all levels
1425 * @hugetlb_entry: if set, called for each hugetlb entry
1426 * @test_walk: caller specific callback function to determine whether
1427 * we walk over the current vma or not. Returning 0
1428 * value means "do page table walk over the current vma,"
1429 * and a negative one means "abort current page table walk
1430 * right now." 1 means "skip the current vma."
1431 * @mm: mm_struct representing the target process of page table walk
1432 * @vma: vma currently walked (NULL if walking outside vmas)
1433 * @private: private data for callbacks' usage
1434 *
1435 * (see the comment on walk_page_range() for more details)
1436 */
1437struct mm_walk {
1438 int (*pud_entry)(pud_t *pud, unsigned long addr,
1439 unsigned long next, struct mm_walk *walk);
1440 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1441 unsigned long next, struct mm_walk *walk);
1442 int (*pte_entry)(pte_t *pte, unsigned long addr,
1443 unsigned long next, struct mm_walk *walk);
1444 int (*pte_hole)(unsigned long addr, unsigned long next,
1445 struct mm_walk *walk);
1446 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1447 unsigned long addr, unsigned long next,
1448 struct mm_walk *walk);
1449 int (*test_walk)(unsigned long addr, unsigned long next,
1450 struct mm_walk *walk);
1451 struct mm_struct *mm;
1452 struct vm_area_struct *vma;
1453 void *private;
1454};
1455
1456struct mmu_notifier_range;
1457
1458int walk_page_range(unsigned long addr, unsigned long end,
1459 struct mm_walk *walk);
1460int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1461void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1462 unsigned long end, unsigned long floor, unsigned long ceiling);
1463int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1464 struct vm_area_struct *vma);
1465int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1466 struct mmu_notifier_range *range,
1467 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1468int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1469 unsigned long *pfn);
1470int follow_phys(struct vm_area_struct *vma, unsigned long address,
1471 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1472int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1473 void *buf, int len, int write);
1474
1475extern void truncate_pagecache(struct inode *inode, loff_t new);
1476extern void truncate_setsize(struct inode *inode, loff_t newsize);
1477void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1478void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1479int truncate_inode_page(struct address_space *mapping, struct page *page);
1480int generic_error_remove_page(struct address_space *mapping, struct page *page);
1481int invalidate_inode_page(struct page *page);
1482
1483#ifdef CONFIG_MMU
1484extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1485 unsigned long address, unsigned int flags);
1486extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1487 unsigned long address, unsigned int fault_flags,
1488 bool *unlocked);
1489void unmap_mapping_pages(struct address_space *mapping,
1490 pgoff_t start, pgoff_t nr, bool even_cows);
1491void unmap_mapping_range(struct address_space *mapping,
1492 loff_t const holebegin, loff_t const holelen, int even_cows);
1493#else
1494static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1495 unsigned long address, unsigned int flags)
1496{
1497 /* should never happen if there's no MMU */
1498 BUG();
1499 return VM_FAULT_SIGBUS;
1500}
1501static inline int fixup_user_fault(struct task_struct *tsk,
1502 struct mm_struct *mm, unsigned long address,
1503 unsigned int fault_flags, bool *unlocked)
1504{
1505 /* should never happen if there's no MMU */
1506 BUG();
1507 return -EFAULT;
1508}
1509static inline void unmap_mapping_pages(struct address_space *mapping,
1510 pgoff_t start, pgoff_t nr, bool even_cows) { }
1511static inline void unmap_mapping_range(struct address_space *mapping,
1512 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1513#endif
1514
1515static inline void unmap_shared_mapping_range(struct address_space *mapping,
1516 loff_t const holebegin, loff_t const holelen)
1517{
1518 unmap_mapping_range(mapping, holebegin, holelen, 0);
1519}
1520
1521extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1522 void *buf, int len, unsigned int gup_flags);
1523extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1524 void *buf, int len, unsigned int gup_flags);
1525extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1526 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1527
1528long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1529 unsigned long start, unsigned long nr_pages,
1530 unsigned int gup_flags, struct page **pages,
1531 struct vm_area_struct **vmas, int *locked);
1532long get_user_pages(unsigned long start, unsigned long nr_pages,
1533 unsigned int gup_flags, struct page **pages,
1534 struct vm_area_struct **vmas);
1535long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1536 unsigned int gup_flags, struct page **pages, int *locked);
1537long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1538 struct page **pages, unsigned int gup_flags);
1539#ifdef CONFIG_FS_DAX
1540long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1541 unsigned int gup_flags, struct page **pages,
1542 struct vm_area_struct **vmas);
1543#else
1544static inline long get_user_pages_longterm(unsigned long start,
1545 unsigned long nr_pages, unsigned int gup_flags,
1546 struct page **pages, struct vm_area_struct **vmas)
1547{
1548 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1549}
1550#endif /* CONFIG_FS_DAX */
1551
1552int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1553 struct page **pages);
1554
1555/* Container for pinned pfns / pages */
1556struct frame_vector {
1557 unsigned int nr_allocated; /* Number of frames we have space for */
1558 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1559 bool got_ref; /* Did we pin pages by getting page ref? */
1560 bool is_pfns; /* Does array contain pages or pfns? */
1561 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1562 * pfns_vector_pages() or pfns_vector_pfns()
1563 * for access */
1564};
1565
1566struct frame_vector *frame_vector_create(unsigned int nr_frames);
1567void frame_vector_destroy(struct frame_vector *vec);
1568int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1569 unsigned int gup_flags, struct frame_vector *vec);
1570void put_vaddr_frames(struct frame_vector *vec);
1571int frame_vector_to_pages(struct frame_vector *vec);
1572void frame_vector_to_pfns(struct frame_vector *vec);
1573
1574static inline unsigned int frame_vector_count(struct frame_vector *vec)
1575{
1576 return vec->nr_frames;
1577}
1578
1579static inline struct page **frame_vector_pages(struct frame_vector *vec)
1580{
1581 if (vec->is_pfns) {
1582 int err = frame_vector_to_pages(vec);
1583
1584 if (err)
1585 return ERR_PTR(err);
1586 }
1587 return (struct page **)(vec->ptrs);
1588}
1589
1590static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1591{
1592 if (!vec->is_pfns)
1593 frame_vector_to_pfns(vec);
1594 return (unsigned long *)(vec->ptrs);
1595}
1596
1597struct kvec;
1598int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1599 struct page **pages);
1600int get_kernel_page(unsigned long start, int write, struct page **pages);
1601struct page *get_dump_page(unsigned long addr);
1602
1603extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1604extern void do_invalidatepage(struct page *page, unsigned int offset,
1605 unsigned int length);
1606
1607void __set_page_dirty(struct page *, struct address_space *, int warn);
1608int __set_page_dirty_nobuffers(struct page *page);
1609int __set_page_dirty_no_writeback(struct page *page);
1610int redirty_page_for_writepage(struct writeback_control *wbc,
1611 struct page *page);
1612void account_page_dirtied(struct page *page, struct address_space *mapping);
1613void account_page_cleaned(struct page *page, struct address_space *mapping,
1614 struct bdi_writeback *wb);
1615int set_page_dirty(struct page *page);
1616int set_page_dirty_lock(struct page *page);
1617void __cancel_dirty_page(struct page *page);
1618static inline void cancel_dirty_page(struct page *page)
1619{
1620 /* Avoid atomic ops, locking, etc. when not actually needed. */
1621 if (PageDirty(page))
1622 __cancel_dirty_page(page);
1623}
1624int clear_page_dirty_for_io(struct page *page);
1625
1626int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1627
1628static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1629{
1630 return !vma->vm_ops;
1631}
1632
1633#ifdef CONFIG_SHMEM
1634/*
1635 * The vma_is_shmem is not inline because it is used only by slow
1636 * paths in userfault.
1637 */
1638bool vma_is_shmem(struct vm_area_struct *vma);
1639#else
1640static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1641#endif
1642
1643int vma_is_stack_for_current(struct vm_area_struct *vma);
1644
1645extern unsigned long move_page_tables(struct vm_area_struct *vma,
1646 unsigned long old_addr, struct vm_area_struct *new_vma,
1647 unsigned long new_addr, unsigned long len,
1648 bool need_rmap_locks);
1649extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1650 unsigned long end, pgprot_t newprot,
1651 int dirty_accountable, int prot_numa);
1652extern int mprotect_fixup(struct vm_area_struct *vma,
1653 struct vm_area_struct **pprev, unsigned long start,
1654 unsigned long end, unsigned long newflags);
1655
1656/*
1657 * doesn't attempt to fault and will return short.
1658 */
1659int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1660 struct page **pages);
1661/*
1662 * per-process(per-mm_struct) statistics.
1663 */
1664static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1665{
1666 long val = atomic_long_read(&mm->rss_stat.count[member]);
1667
1668#ifdef SPLIT_RSS_COUNTING
1669 /*
1670 * counter is updated in asynchronous manner and may go to minus.
1671 * But it's never be expected number for users.
1672 */
1673 if (val < 0)
1674 val = 0;
1675#endif
1676 return (unsigned long)val;
1677}
1678
1679static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1680{
1681 atomic_long_add(value, &mm->rss_stat.count[member]);
1682}
1683
1684static inline void inc_mm_counter(struct mm_struct *mm, int member)
1685{
1686 atomic_long_inc(&mm->rss_stat.count[member]);
1687}
1688
1689static inline void dec_mm_counter(struct mm_struct *mm, int member)
1690{
1691 atomic_long_dec(&mm->rss_stat.count[member]);
1692}
1693
1694/* Optimized variant when page is already known not to be PageAnon */
1695static inline int mm_counter_file(struct page *page)
1696{
1697 if (PageSwapBacked(page))
1698 return MM_SHMEMPAGES;
1699 return MM_FILEPAGES;
1700}
1701
1702static inline int mm_counter(struct page *page)
1703{
1704 if (PageAnon(page))
1705 return MM_ANONPAGES;
1706 return mm_counter_file(page);
1707}
1708
1709static inline unsigned long get_mm_rss(struct mm_struct *mm)
1710{
1711 return get_mm_counter(mm, MM_FILEPAGES) +
1712 get_mm_counter(mm, MM_ANONPAGES) +
1713 get_mm_counter(mm, MM_SHMEMPAGES);
1714}
1715
1716static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1717{
1718 return max(mm->hiwater_rss, get_mm_rss(mm));
1719}
1720
1721static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1722{
1723 return max(mm->hiwater_vm, mm->total_vm);
1724}
1725
1726static inline void update_hiwater_rss(struct mm_struct *mm)
1727{
1728 unsigned long _rss = get_mm_rss(mm);
1729
1730 if ((mm)->hiwater_rss < _rss)
1731 (mm)->hiwater_rss = _rss;
1732}
1733
1734static inline void update_hiwater_vm(struct mm_struct *mm)
1735{
1736 if (mm->hiwater_vm < mm->total_vm)
1737 mm->hiwater_vm = mm->total_vm;
1738}
1739
1740static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1741{
1742 mm->hiwater_rss = get_mm_rss(mm);
1743}
1744
1745static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1746 struct mm_struct *mm)
1747{
1748 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1749
1750 if (*maxrss < hiwater_rss)
1751 *maxrss = hiwater_rss;
1752}
1753
1754#if defined(SPLIT_RSS_COUNTING)
1755void sync_mm_rss(struct mm_struct *mm);
1756#else
1757static inline void sync_mm_rss(struct mm_struct *mm)
1758{
1759}
1760#endif
1761
1762#ifndef __HAVE_ARCH_PTE_DEVMAP
1763static inline int pte_devmap(pte_t pte)
1764{
1765 return 0;
1766}
1767#endif
1768
1769int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1770
1771extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1772 spinlock_t **ptl);
1773static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1774 spinlock_t **ptl)
1775{
1776 pte_t *ptep;
1777 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1778 return ptep;
1779}
1780
1781#ifdef __PAGETABLE_P4D_FOLDED
1782static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1783 unsigned long address)
1784{
1785 return 0;
1786}
1787#else
1788int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1789#endif
1790
1791#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1792static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1793 unsigned long address)
1794{
1795 return 0;
1796}
1797static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1798static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1799
1800#else
1801int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1802
1803static inline void mm_inc_nr_puds(struct mm_struct *mm)
1804{
1805 if (mm_pud_folded(mm))
1806 return;
1807 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1808}
1809
1810static inline void mm_dec_nr_puds(struct mm_struct *mm)
1811{
1812 if (mm_pud_folded(mm))
1813 return;
1814 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1815}
1816#endif
1817
1818#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1819static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1820 unsigned long address)
1821{
1822 return 0;
1823}
1824
1825static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1826static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1827
1828#else
1829int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1830
1831static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1832{
1833 if (mm_pmd_folded(mm))
1834 return;
1835 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1836}
1837
1838static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1839{
1840 if (mm_pmd_folded(mm))
1841 return;
1842 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1843}
1844#endif
1845
1846#ifdef CONFIG_MMU
1847static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1848{
1849 atomic_long_set(&mm->pgtables_bytes, 0);
1850}
1851
1852static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1853{
1854 return atomic_long_read(&mm->pgtables_bytes);
1855}
1856
1857static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1858{
1859 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1860}
1861
1862static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1863{
1864 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1865}
1866#else
1867
1868static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1869static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1870{
1871 return 0;
1872}
1873
1874static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1875static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1876#endif
1877
1878int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1879int __pte_alloc_kernel(pmd_t *pmd);
1880
1881/*
1882 * The following ifdef needed to get the 4level-fixup.h header to work.
1883 * Remove it when 4level-fixup.h has been removed.
1884 */
1885#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1886
1887#ifndef __ARCH_HAS_5LEVEL_HACK
1888static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1889 unsigned long address)
1890{
1891 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1892 NULL : p4d_offset(pgd, address);
1893}
1894
1895static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1896 unsigned long address)
1897{
1898 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1899 NULL : pud_offset(p4d, address);
1900}
1901#endif /* !__ARCH_HAS_5LEVEL_HACK */
1902
1903static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1904{
1905 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1906 NULL: pmd_offset(pud, address);
1907}
1908#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1909
1910#if USE_SPLIT_PTE_PTLOCKS
1911#if ALLOC_SPLIT_PTLOCKS
1912void __init ptlock_cache_init(void);
1913extern bool ptlock_alloc(struct page *page);
1914extern void ptlock_free(struct page *page);
1915
1916static inline spinlock_t *ptlock_ptr(struct page *page)
1917{
1918 return page->ptl;
1919}
1920#else /* ALLOC_SPLIT_PTLOCKS */
1921static inline void ptlock_cache_init(void)
1922{
1923}
1924
1925static inline bool ptlock_alloc(struct page *page)
1926{
1927 return true;
1928}
1929
1930static inline void ptlock_free(struct page *page)
1931{
1932}
1933
1934static inline spinlock_t *ptlock_ptr(struct page *page)
1935{
1936 return &page->ptl;
1937}
1938#endif /* ALLOC_SPLIT_PTLOCKS */
1939
1940static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1941{
1942 return ptlock_ptr(pmd_page(*pmd));
1943}
1944
1945static inline bool ptlock_init(struct page *page)
1946{
1947 /*
1948 * prep_new_page() initialize page->private (and therefore page->ptl)
1949 * with 0. Make sure nobody took it in use in between.
1950 *
1951 * It can happen if arch try to use slab for page table allocation:
1952 * slab code uses page->slab_cache, which share storage with page->ptl.
1953 */
1954 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1955 if (!ptlock_alloc(page))
1956 return false;
1957 spin_lock_init(ptlock_ptr(page));
1958 return true;
1959}
1960
1961#else /* !USE_SPLIT_PTE_PTLOCKS */
1962/*
1963 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1964 */
1965static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1966{
1967 return &mm->page_table_lock;
1968}
1969static inline void ptlock_cache_init(void) {}
1970static inline bool ptlock_init(struct page *page) { return true; }
1971static inline void ptlock_free(struct page *page) {}
1972#endif /* USE_SPLIT_PTE_PTLOCKS */
1973
1974static inline void pgtable_init(void)
1975{
1976 ptlock_cache_init();
1977 pgtable_cache_init();
1978}
1979
1980static inline bool pgtable_page_ctor(struct page *page)
1981{
1982 if (!ptlock_init(page))
1983 return false;
1984 __SetPageTable(page);
1985 inc_zone_page_state(page, NR_PAGETABLE);
1986 return true;
1987}
1988
1989static inline void pgtable_page_dtor(struct page *page)
1990{
1991 ptlock_free(page);
1992 __ClearPageTable(page);
1993 dec_zone_page_state(page, NR_PAGETABLE);
1994}
1995
1996#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1997({ \
1998 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1999 pte_t *__pte = pte_offset_map(pmd, address); \
2000 *(ptlp) = __ptl; \
2001 spin_lock(__ptl); \
2002 __pte; \
2003})
2004
2005#define pte_unmap_unlock(pte, ptl) do { \
2006 spin_unlock(ptl); \
2007 pte_unmap(pte); \
2008} while (0)
2009
2010#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2011
2012#define pte_alloc_map(mm, pmd, address) \
2013 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2014
2015#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2016 (pte_alloc(mm, pmd) ? \
2017 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2018
2019#define pte_alloc_kernel(pmd, address) \
2020 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2021 NULL: pte_offset_kernel(pmd, address))
2022
2023#if USE_SPLIT_PMD_PTLOCKS
2024
2025static struct page *pmd_to_page(pmd_t *pmd)
2026{
2027 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2028 return virt_to_page((void *)((unsigned long) pmd & mask));
2029}
2030
2031static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2032{
2033 return ptlock_ptr(pmd_to_page(pmd));
2034}
2035
2036static inline bool pgtable_pmd_page_ctor(struct page *page)
2037{
2038#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2039 page->pmd_huge_pte = NULL;
2040#endif
2041 return ptlock_init(page);
2042}
2043
2044static inline void pgtable_pmd_page_dtor(struct page *page)
2045{
2046#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2047 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2048#endif
2049 ptlock_free(page);
2050}
2051
2052#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2053
2054#else
2055
2056static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2057{
2058 return &mm->page_table_lock;
2059}
2060
2061static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2062static inline void pgtable_pmd_page_dtor(struct page *page) {}
2063
2064#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2065
2066#endif
2067
2068static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2069{
2070 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2071 spin_lock(ptl);
2072 return ptl;
2073}
2074
2075/*
2076 * No scalability reason to split PUD locks yet, but follow the same pattern
2077 * as the PMD locks to make it easier if we decide to. The VM should not be
2078 * considered ready to switch to split PUD locks yet; there may be places
2079 * which need to be converted from page_table_lock.
2080 */
2081static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2082{
2083 return &mm->page_table_lock;
2084}
2085
2086static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2087{
2088 spinlock_t *ptl = pud_lockptr(mm, pud);
2089
2090 spin_lock(ptl);
2091 return ptl;
2092}
2093
2094extern void __init pagecache_init(void);
2095extern void free_area_init(unsigned long * zones_size);
2096extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2097 unsigned long zone_start_pfn, unsigned long *zholes_size);
2098extern void free_initmem(void);
2099
2100/*
2101 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2102 * into the buddy system. The freed pages will be poisoned with pattern
2103 * "poison" if it's within range [0, UCHAR_MAX].
2104 * Return pages freed into the buddy system.
2105 */
2106extern unsigned long free_reserved_area(void *start, void *end,
2107 int poison, const char *s);
2108
2109#ifdef CONFIG_HIGHMEM
2110/*
2111 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2112 * and totalram_pages.
2113 */
2114extern void free_highmem_page(struct page *page);
2115#endif
2116
2117extern void adjust_managed_page_count(struct page *page, long count);
2118extern void mem_init_print_info(const char *str);
2119
2120extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2121
2122/* Free the reserved page into the buddy system, so it gets managed. */
2123static inline void __free_reserved_page(struct page *page)
2124{
2125 ClearPageReserved(page);
2126 init_page_count(page);
2127 __free_page(page);
2128}
2129
2130static inline void free_reserved_page(struct page *page)
2131{
2132 __free_reserved_page(page);
2133 adjust_managed_page_count(page, 1);
2134}
2135
2136static inline void mark_page_reserved(struct page *page)
2137{
2138 SetPageReserved(page);
2139 adjust_managed_page_count(page, -1);
2140}
2141
2142/*
2143 * Default method to free all the __init memory into the buddy system.
2144 * The freed pages will be poisoned with pattern "poison" if it's within
2145 * range [0, UCHAR_MAX].
2146 * Return pages freed into the buddy system.
2147 */
2148static inline unsigned long free_initmem_default(int poison)
2149{
2150 extern char __init_begin[], __init_end[];
2151
2152 return free_reserved_area(&__init_begin, &__init_end,
2153 poison, "unused kernel");
2154}
2155
2156static inline unsigned long get_num_physpages(void)
2157{
2158 int nid;
2159 unsigned long phys_pages = 0;
2160
2161 for_each_online_node(nid)
2162 phys_pages += node_present_pages(nid);
2163
2164 return phys_pages;
2165}
2166
2167#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2168/*
2169 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2170 * zones, allocate the backing mem_map and account for memory holes in a more
2171 * architecture independent manner. This is a substitute for creating the
2172 * zone_sizes[] and zholes_size[] arrays and passing them to
2173 * free_area_init_node()
2174 *
2175 * An architecture is expected to register range of page frames backed by
2176 * physical memory with memblock_add[_node]() before calling
2177 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2178 * usage, an architecture is expected to do something like
2179 *
2180 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2181 * max_highmem_pfn};
2182 * for_each_valid_physical_page_range()
2183 * memblock_add_node(base, size, nid)
2184 * free_area_init_nodes(max_zone_pfns);
2185 *
2186 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2187 * registered physical page range. Similarly
2188 * sparse_memory_present_with_active_regions() calls memory_present() for
2189 * each range when SPARSEMEM is enabled.
2190 *
2191 * See mm/page_alloc.c for more information on each function exposed by
2192 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2193 */
2194extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2195unsigned long node_map_pfn_alignment(void);
2196unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2197 unsigned long end_pfn);
2198extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2199 unsigned long end_pfn);
2200extern void get_pfn_range_for_nid(unsigned int nid,
2201 unsigned long *start_pfn, unsigned long *end_pfn);
2202extern unsigned long find_min_pfn_with_active_regions(void);
2203extern void free_bootmem_with_active_regions(int nid,
2204 unsigned long max_low_pfn);
2205extern void sparse_memory_present_with_active_regions(int nid);
2206
2207#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2208
2209#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2210 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2211static inline int __early_pfn_to_nid(unsigned long pfn,
2212 struct mminit_pfnnid_cache *state)
2213{
2214 return 0;
2215}
2216#else
2217/* please see mm/page_alloc.c */
2218extern int __meminit early_pfn_to_nid(unsigned long pfn);
2219/* there is a per-arch backend function. */
2220extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2221 struct mminit_pfnnid_cache *state);
2222#endif
2223
2224#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2225void zero_resv_unavail(void);
2226#else
2227static inline void zero_resv_unavail(void) {}
2228#endif
2229
2230extern void set_dma_reserve(unsigned long new_dma_reserve);
2231extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2232 enum memmap_context, struct vmem_altmap *);
2233extern void setup_per_zone_wmarks(void);
2234extern int __meminit init_per_zone_wmark_min(void);
2235extern void mem_init(void);
2236extern void __init mmap_init(void);
2237extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2238extern long si_mem_available(void);
2239extern void si_meminfo(struct sysinfo * val);
2240extern void si_meminfo_node(struct sysinfo *val, int nid);
2241#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2242extern unsigned long arch_reserved_kernel_pages(void);
2243#endif
2244
2245extern __printf(3, 4)
2246void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2247
2248extern void setup_per_cpu_pageset(void);
2249
2250extern void zone_pcp_update(struct zone *zone);
2251extern void zone_pcp_reset(struct zone *zone);
2252
2253/* page_alloc.c */
2254extern int min_free_kbytes;
2255extern int watermark_boost_factor;
2256extern int watermark_scale_factor;
2257
2258/* nommu.c */
2259extern atomic_long_t mmap_pages_allocated;
2260extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2261
2262/* interval_tree.c */
2263void vma_interval_tree_insert(struct vm_area_struct *node,
2264 struct rb_root_cached *root);
2265void vma_interval_tree_insert_after(struct vm_area_struct *node,
2266 struct vm_area_struct *prev,
2267 struct rb_root_cached *root);
2268void vma_interval_tree_remove(struct vm_area_struct *node,
2269 struct rb_root_cached *root);
2270struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2271 unsigned long start, unsigned long last);
2272struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2273 unsigned long start, unsigned long last);
2274
2275#define vma_interval_tree_foreach(vma, root, start, last) \
2276 for (vma = vma_interval_tree_iter_first(root, start, last); \
2277 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2278
2279void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2280 struct rb_root_cached *root);
2281void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2282 struct rb_root_cached *root);
2283struct anon_vma_chain *
2284anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2285 unsigned long start, unsigned long last);
2286struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2287 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2288#ifdef CONFIG_DEBUG_VM_RB
2289void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2290#endif
2291
2292#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2293 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2294 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2295
2296/* mmap.c */
2297extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2298extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2299 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2300 struct vm_area_struct *expand);
2301static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2302 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2303{
2304 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2305}
2306extern struct vm_area_struct *vma_merge(struct mm_struct *,
2307 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2308 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2309 struct mempolicy *, struct vm_userfaultfd_ctx);
2310extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2311extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2312 unsigned long addr, int new_below);
2313extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2314 unsigned long addr, int new_below);
2315extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2316extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2317 struct rb_node **, struct rb_node *);
2318extern void unlink_file_vma(struct vm_area_struct *);
2319extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2320 unsigned long addr, unsigned long len, pgoff_t pgoff,
2321 bool *need_rmap_locks);
2322extern void exit_mmap(struct mm_struct *);
2323
2324static inline int check_data_rlimit(unsigned long rlim,
2325 unsigned long new,
2326 unsigned long start,
2327 unsigned long end_data,
2328 unsigned long start_data)
2329{
2330 if (rlim < RLIM_INFINITY) {
2331 if (((new - start) + (end_data - start_data)) > rlim)
2332 return -ENOSPC;
2333 }
2334
2335 return 0;
2336}
2337
2338extern int mm_take_all_locks(struct mm_struct *mm);
2339extern void mm_drop_all_locks(struct mm_struct *mm);
2340
2341extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2342extern struct file *get_mm_exe_file(struct mm_struct *mm);
2343extern struct file *get_task_exe_file(struct task_struct *task);
2344
2345extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2346extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2347
2348extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2349 const struct vm_special_mapping *sm);
2350extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2351 unsigned long addr, unsigned long len,
2352 unsigned long flags,
2353 const struct vm_special_mapping *spec);
2354/* This is an obsolete alternative to _install_special_mapping. */
2355extern int install_special_mapping(struct mm_struct *mm,
2356 unsigned long addr, unsigned long len,
2357 unsigned long flags, struct page **pages);
2358
2359extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2360
2361extern unsigned long mmap_region(struct file *file, unsigned long addr,
2362 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2363 struct list_head *uf);
2364extern unsigned long do_mmap(struct file *file, unsigned long addr,
2365 unsigned long len, unsigned long prot, unsigned long flags,
2366 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2367 struct list_head *uf);
2368extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2369 struct list_head *uf, bool downgrade);
2370extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2371 struct list_head *uf);
2372
2373static inline unsigned long
2374do_mmap_pgoff(struct file *file, unsigned long addr,
2375 unsigned long len, unsigned long prot, unsigned long flags,
2376 unsigned long pgoff, unsigned long *populate,
2377 struct list_head *uf)
2378{
2379 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2380}
2381
2382#ifdef CONFIG_MMU
2383extern int __mm_populate(unsigned long addr, unsigned long len,
2384 int ignore_errors);
2385static inline void mm_populate(unsigned long addr, unsigned long len)
2386{
2387 /* Ignore errors */
2388 (void) __mm_populate(addr, len, 1);
2389}
2390#else
2391static inline void mm_populate(unsigned long addr, unsigned long len) {}
2392#endif
2393
2394/* These take the mm semaphore themselves */
2395extern int __must_check vm_brk(unsigned long, unsigned long);
2396extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2397extern int vm_munmap(unsigned long, size_t);
2398extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2399 unsigned long, unsigned long,
2400 unsigned long, unsigned long);
2401
2402struct vm_unmapped_area_info {
2403#define VM_UNMAPPED_AREA_TOPDOWN 1
2404 unsigned long flags;
2405 unsigned long length;
2406 unsigned long low_limit;
2407 unsigned long high_limit;
2408 unsigned long align_mask;
2409 unsigned long align_offset;
2410};
2411
2412extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2413extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2414
2415/*
2416 * Search for an unmapped address range.
2417 *
2418 * We are looking for a range that:
2419 * - does not intersect with any VMA;
2420 * - is contained within the [low_limit, high_limit) interval;
2421 * - is at least the desired size.
2422 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2423 */
2424static inline unsigned long
2425vm_unmapped_area(struct vm_unmapped_area_info *info)
2426{
2427 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2428 return unmapped_area_topdown(info);
2429 else
2430 return unmapped_area(info);
2431}
2432
2433/* truncate.c */
2434extern void truncate_inode_pages(struct address_space *, loff_t);
2435extern void truncate_inode_pages_range(struct address_space *,
2436 loff_t lstart, loff_t lend);
2437extern void truncate_inode_pages_final(struct address_space *);
2438
2439/* generic vm_area_ops exported for stackable file systems */
2440extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2441extern void filemap_map_pages(struct vm_fault *vmf,
2442 pgoff_t start_pgoff, pgoff_t end_pgoff);
2443extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2444
2445/* mm/page-writeback.c */
2446int __must_check write_one_page(struct page *page);
2447void task_dirty_inc(struct task_struct *tsk);
2448
2449/* readahead.c */
2450#define VM_MAX_READAHEAD 128 /* kbytes */
2451#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2452
2453int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2454 pgoff_t offset, unsigned long nr_to_read);
2455
2456void page_cache_sync_readahead(struct address_space *mapping,
2457 struct file_ra_state *ra,
2458 struct file *filp,
2459 pgoff_t offset,
2460 unsigned long size);
2461
2462void page_cache_async_readahead(struct address_space *mapping,
2463 struct file_ra_state *ra,
2464 struct file *filp,
2465 struct page *pg,
2466 pgoff_t offset,
2467 unsigned long size);
2468
2469extern unsigned long stack_guard_gap;
2470/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2471extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2472
2473/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2474extern int expand_downwards(struct vm_area_struct *vma,
2475 unsigned long address);
2476#if VM_GROWSUP
2477extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2478#else
2479 #define expand_upwards(vma, address) (0)
2480#endif
2481
2482/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2483extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2484extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2485 struct vm_area_struct **pprev);
2486
2487/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2488 NULL if none. Assume start_addr < end_addr. */
2489static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2490{
2491 struct vm_area_struct * vma = find_vma(mm,start_addr);
2492
2493 if (vma && end_addr <= vma->vm_start)
2494 vma = NULL;
2495 return vma;
2496}
2497
2498static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2499{
2500 unsigned long vm_start = vma->vm_start;
2501
2502 if (vma->vm_flags & VM_GROWSDOWN) {
2503 vm_start -= stack_guard_gap;
2504 if (vm_start > vma->vm_start)
2505 vm_start = 0;
2506 }
2507 return vm_start;
2508}
2509
2510static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2511{
2512 unsigned long vm_end = vma->vm_end;
2513
2514 if (vma->vm_flags & VM_GROWSUP) {
2515 vm_end += stack_guard_gap;
2516 if (vm_end < vma->vm_end)
2517 vm_end = -PAGE_SIZE;
2518 }
2519 return vm_end;
2520}
2521
2522static inline unsigned long vma_pages(struct vm_area_struct *vma)
2523{
2524 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2525}
2526
2527/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2528static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2529 unsigned long vm_start, unsigned long vm_end)
2530{
2531 struct vm_area_struct *vma = find_vma(mm, vm_start);
2532
2533 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2534 vma = NULL;
2535
2536 return vma;
2537}
2538
2539static inline bool range_in_vma(struct vm_area_struct *vma,
2540 unsigned long start, unsigned long end)
2541{
2542 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2543}
2544
2545#ifdef CONFIG_MMU
2546pgprot_t vm_get_page_prot(unsigned long vm_flags);
2547void vma_set_page_prot(struct vm_area_struct *vma);
2548#else
2549static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2550{
2551 return __pgprot(0);
2552}
2553static inline void vma_set_page_prot(struct vm_area_struct *vma)
2554{
2555 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2556}
2557#endif
2558
2559#ifdef CONFIG_NUMA_BALANCING
2560unsigned long change_prot_numa(struct vm_area_struct *vma,
2561 unsigned long start, unsigned long end);
2562#endif
2563
2564struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2565int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2566 unsigned long pfn, unsigned long size, pgprot_t);
2567int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2568vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2569 unsigned long pfn);
2570vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2571 unsigned long pfn, pgprot_t pgprot);
2572vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2573 pfn_t pfn);
2574vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2575 unsigned long addr, pfn_t pfn);
2576int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2577
2578static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2579 unsigned long addr, struct page *page)
2580{
2581 int err = vm_insert_page(vma, addr, page);
2582
2583 if (err == -ENOMEM)
2584 return VM_FAULT_OOM;
2585 if (err < 0 && err != -EBUSY)
2586 return VM_FAULT_SIGBUS;
2587
2588 return VM_FAULT_NOPAGE;
2589}
2590
2591static inline vm_fault_t vmf_error(int err)
2592{
2593 if (err == -ENOMEM)
2594 return VM_FAULT_OOM;
2595 return VM_FAULT_SIGBUS;
2596}
2597
2598struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2599 unsigned int foll_flags);
2600
2601#define FOLL_WRITE 0x01 /* check pte is writable */
2602#define FOLL_TOUCH 0x02 /* mark page accessed */
2603#define FOLL_GET 0x04 /* do get_page on page */
2604#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2605#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2606#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2607 * and return without waiting upon it */
2608#define FOLL_POPULATE 0x40 /* fault in page */
2609#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2610#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2611#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2612#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2613#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2614#define FOLL_MLOCK 0x1000 /* lock present pages */
2615#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2616#define FOLL_COW 0x4000 /* internal GUP flag */
2617#define FOLL_ANON 0x8000 /* don't do file mappings */
2618
2619static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2620{
2621 if (vm_fault & VM_FAULT_OOM)
2622 return -ENOMEM;
2623 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2624 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2625 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2626 return -EFAULT;
2627 return 0;
2628}
2629
2630typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2631 void *data);
2632extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2633 unsigned long size, pte_fn_t fn, void *data);
2634
2635
2636#ifdef CONFIG_PAGE_POISONING
2637extern bool page_poisoning_enabled(void);
2638extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2639#else
2640static inline bool page_poisoning_enabled(void) { return false; }
2641static inline void kernel_poison_pages(struct page *page, int numpages,
2642 int enable) { }
2643#endif
2644
2645#ifdef CONFIG_DEBUG_PAGEALLOC
2646extern bool _debug_pagealloc_enabled;
2647extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2648
2649static inline bool debug_pagealloc_enabled(void)
2650{
2651 return _debug_pagealloc_enabled;
2652}
2653
2654static inline void
2655kernel_map_pages(struct page *page, int numpages, int enable)
2656{
2657 if (!debug_pagealloc_enabled())
2658 return;
2659
2660 __kernel_map_pages(page, numpages, enable);
2661}
2662#ifdef CONFIG_HIBERNATION
2663extern bool kernel_page_present(struct page *page);
2664#endif /* CONFIG_HIBERNATION */
2665#else /* CONFIG_DEBUG_PAGEALLOC */
2666static inline void
2667kernel_map_pages(struct page *page, int numpages, int enable) {}
2668#ifdef CONFIG_HIBERNATION
2669static inline bool kernel_page_present(struct page *page) { return true; }
2670#endif /* CONFIG_HIBERNATION */
2671static inline bool debug_pagealloc_enabled(void)
2672{
2673 return false;
2674}
2675#endif /* CONFIG_DEBUG_PAGEALLOC */
2676
2677#ifdef __HAVE_ARCH_GATE_AREA
2678extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2679extern int in_gate_area_no_mm(unsigned long addr);
2680extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2681#else
2682static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2683{
2684 return NULL;
2685}
2686static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2687static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2688{
2689 return 0;
2690}
2691#endif /* __HAVE_ARCH_GATE_AREA */
2692
2693extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2694
2695#ifdef CONFIG_SYSCTL
2696extern int sysctl_drop_caches;
2697int drop_caches_sysctl_handler(struct ctl_table *, int,
2698 void __user *, size_t *, loff_t *);
2699#endif
2700
2701void drop_slab(void);
2702void drop_slab_node(int nid);
2703
2704#ifndef CONFIG_MMU
2705#define randomize_va_space 0
2706#else
2707extern int randomize_va_space;
2708#endif
2709
2710const char * arch_vma_name(struct vm_area_struct *vma);
2711void print_vma_addr(char *prefix, unsigned long rip);
2712
2713void *sparse_buffer_alloc(unsigned long size);
2714struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2715 struct vmem_altmap *altmap);
2716pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2717p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2718pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2719pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2720pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2721void *vmemmap_alloc_block(unsigned long size, int node);
2722struct vmem_altmap;
2723void *vmemmap_alloc_block_buf(unsigned long size, int node);
2724void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2725void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2726int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2727 int node);
2728int vmemmap_populate(unsigned long start, unsigned long end, int node,
2729 struct vmem_altmap *altmap);
2730void vmemmap_populate_print_last(void);
2731#ifdef CONFIG_MEMORY_HOTPLUG
2732void vmemmap_free(unsigned long start, unsigned long end,
2733 struct vmem_altmap *altmap);
2734#endif
2735void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2736 unsigned long nr_pages);
2737
2738enum mf_flags {
2739 MF_COUNT_INCREASED = 1 << 0,
2740 MF_ACTION_REQUIRED = 1 << 1,
2741 MF_MUST_KILL = 1 << 2,
2742 MF_SOFT_OFFLINE = 1 << 3,
2743};
2744extern int memory_failure(unsigned long pfn, int flags);
2745extern void memory_failure_queue(unsigned long pfn, int flags);
2746extern int unpoison_memory(unsigned long pfn);
2747extern int get_hwpoison_page(struct page *page);
2748#define put_hwpoison_page(page) put_page(page)
2749extern int sysctl_memory_failure_early_kill;
2750extern int sysctl_memory_failure_recovery;
2751extern void shake_page(struct page *p, int access);
2752extern atomic_long_t num_poisoned_pages __read_mostly;
2753extern int soft_offline_page(struct page *page, int flags);
2754
2755
2756/*
2757 * Error handlers for various types of pages.
2758 */
2759enum mf_result {
2760 MF_IGNORED, /* Error: cannot be handled */
2761 MF_FAILED, /* Error: handling failed */
2762 MF_DELAYED, /* Will be handled later */
2763 MF_RECOVERED, /* Successfully recovered */
2764};
2765
2766enum mf_action_page_type {
2767 MF_MSG_KERNEL,
2768 MF_MSG_KERNEL_HIGH_ORDER,
2769 MF_MSG_SLAB,
2770 MF_MSG_DIFFERENT_COMPOUND,
2771 MF_MSG_POISONED_HUGE,
2772 MF_MSG_HUGE,
2773 MF_MSG_FREE_HUGE,
2774 MF_MSG_NON_PMD_HUGE,
2775 MF_MSG_UNMAP_FAILED,
2776 MF_MSG_DIRTY_SWAPCACHE,
2777 MF_MSG_CLEAN_SWAPCACHE,
2778 MF_MSG_DIRTY_MLOCKED_LRU,
2779 MF_MSG_CLEAN_MLOCKED_LRU,
2780 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2781 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2782 MF_MSG_DIRTY_LRU,
2783 MF_MSG_CLEAN_LRU,
2784 MF_MSG_TRUNCATED_LRU,
2785 MF_MSG_BUDDY,
2786 MF_MSG_BUDDY_2ND,
2787 MF_MSG_DAX,
2788 MF_MSG_UNKNOWN,
2789};
2790
2791#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2792extern void clear_huge_page(struct page *page,
2793 unsigned long addr_hint,
2794 unsigned int pages_per_huge_page);
2795extern void copy_user_huge_page(struct page *dst, struct page *src,
2796 unsigned long addr_hint,
2797 struct vm_area_struct *vma,
2798 unsigned int pages_per_huge_page);
2799extern long copy_huge_page_from_user(struct page *dst_page,
2800 const void __user *usr_src,
2801 unsigned int pages_per_huge_page,
2802 bool allow_pagefault);
2803#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2804
2805extern struct page_ext_operations debug_guardpage_ops;
2806
2807#ifdef CONFIG_DEBUG_PAGEALLOC
2808extern unsigned int _debug_guardpage_minorder;
2809extern bool _debug_guardpage_enabled;
2810
2811static inline unsigned int debug_guardpage_minorder(void)
2812{
2813 return _debug_guardpage_minorder;
2814}
2815
2816static inline bool debug_guardpage_enabled(void)
2817{
2818 return _debug_guardpage_enabled;
2819}
2820
2821static inline bool page_is_guard(struct page *page)
2822{
2823 struct page_ext *page_ext;
2824
2825 if (!debug_guardpage_enabled())
2826 return false;
2827
2828 page_ext = lookup_page_ext(page);
2829 if (unlikely(!page_ext))
2830 return false;
2831
2832 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2833}
2834#else
2835static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2836static inline bool debug_guardpage_enabled(void) { return false; }
2837static inline bool page_is_guard(struct page *page) { return false; }
2838#endif /* CONFIG_DEBUG_PAGEALLOC */
2839
2840#if MAX_NUMNODES > 1
2841void __init setup_nr_node_ids(void);
2842#else
2843static inline void setup_nr_node_ids(void) {}
2844#endif
2845
2846#endif /* __KERNEL__ */
2847#endif /* _LINUX_MM_H */