Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* memcontrol.h - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#ifndef _LINUX_MEMCONTROL_H
21#define _LINUX_MEMCONTROL_H
22#include <linux/cgroup.h>
23#include <linux/vm_event_item.h>
24#include <linux/hardirq.h>
25#include <linux/jump_label.h>
26#include <linux/page_counter.h>
27#include <linux/vmpressure.h>
28#include <linux/eventfd.h>
29#include <linux/mm.h>
30#include <linux/vmstat.h>
31#include <linux/writeback.h>
32#include <linux/page-flags.h>
33
34struct mem_cgroup;
35struct page;
36struct mm_struct;
37struct kmem_cache;
38
39/* Cgroup-specific page state, on top of universal node page state */
40enum memcg_stat_item {
41 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
42 MEMCG_RSS,
43 MEMCG_RSS_HUGE,
44 MEMCG_SWAP,
45 MEMCG_SOCK,
46 /* XXX: why are these zone and not node counters? */
47 MEMCG_KERNEL_STACK_KB,
48 MEMCG_NR_STAT,
49};
50
51enum memcg_memory_event {
52 MEMCG_LOW,
53 MEMCG_HIGH,
54 MEMCG_MAX,
55 MEMCG_OOM,
56 MEMCG_OOM_KILL,
57 MEMCG_SWAP_MAX,
58 MEMCG_SWAP_FAIL,
59 MEMCG_NR_MEMORY_EVENTS,
60};
61
62enum mem_cgroup_protection {
63 MEMCG_PROT_NONE,
64 MEMCG_PROT_LOW,
65 MEMCG_PROT_MIN,
66};
67
68struct mem_cgroup_reclaim_cookie {
69 pg_data_t *pgdat;
70 int priority;
71 unsigned int generation;
72};
73
74#ifdef CONFIG_MEMCG
75
76#define MEM_CGROUP_ID_SHIFT 16
77#define MEM_CGROUP_ID_MAX USHRT_MAX
78
79struct mem_cgroup_id {
80 int id;
81 refcount_t ref;
82};
83
84/*
85 * Per memcg event counter is incremented at every pagein/pageout. With THP,
86 * it will be incremated by the number of pages. This counter is used for
87 * for trigger some periodic events. This is straightforward and better
88 * than using jiffies etc. to handle periodic memcg event.
89 */
90enum mem_cgroup_events_target {
91 MEM_CGROUP_TARGET_THRESH,
92 MEM_CGROUP_TARGET_SOFTLIMIT,
93 MEM_CGROUP_TARGET_NUMAINFO,
94 MEM_CGROUP_NTARGETS,
95};
96
97struct mem_cgroup_stat_cpu {
98 long count[MEMCG_NR_STAT];
99 unsigned long events[NR_VM_EVENT_ITEMS];
100 unsigned long nr_page_events;
101 unsigned long targets[MEM_CGROUP_NTARGETS];
102};
103
104struct mem_cgroup_reclaim_iter {
105 struct mem_cgroup *position;
106 /* scan generation, increased every round-trip */
107 unsigned int generation;
108};
109
110struct lruvec_stat {
111 long count[NR_VM_NODE_STAT_ITEMS];
112};
113
114/*
115 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
116 * which have elements charged to this memcg.
117 */
118struct memcg_shrinker_map {
119 struct rcu_head rcu;
120 unsigned long map[0];
121};
122
123/*
124 * per-zone information in memory controller.
125 */
126struct mem_cgroup_per_node {
127 struct lruvec lruvec;
128
129 struct lruvec_stat __percpu *lruvec_stat_cpu;
130 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
131
132 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
133
134 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
135
136#ifdef CONFIG_MEMCG_KMEM
137 struct memcg_shrinker_map __rcu *shrinker_map;
138#endif
139 struct rb_node tree_node; /* RB tree node */
140 unsigned long usage_in_excess;/* Set to the value by which */
141 /* the soft limit is exceeded*/
142 bool on_tree;
143 bool congested; /* memcg has many dirty pages */
144 /* backed by a congested BDI */
145
146 struct mem_cgroup *memcg; /* Back pointer, we cannot */
147 /* use container_of */
148};
149
150struct mem_cgroup_threshold {
151 struct eventfd_ctx *eventfd;
152 unsigned long threshold;
153};
154
155/* For threshold */
156struct mem_cgroup_threshold_ary {
157 /* An array index points to threshold just below or equal to usage. */
158 int current_threshold;
159 /* Size of entries[] */
160 unsigned int size;
161 /* Array of thresholds */
162 struct mem_cgroup_threshold entries[0];
163};
164
165struct mem_cgroup_thresholds {
166 /* Primary thresholds array */
167 struct mem_cgroup_threshold_ary *primary;
168 /*
169 * Spare threshold array.
170 * This is needed to make mem_cgroup_unregister_event() "never fail".
171 * It must be able to store at least primary->size - 1 entries.
172 */
173 struct mem_cgroup_threshold_ary *spare;
174};
175
176enum memcg_kmem_state {
177 KMEM_NONE,
178 KMEM_ALLOCATED,
179 KMEM_ONLINE,
180};
181
182#if defined(CONFIG_SMP)
183struct memcg_padding {
184 char x[0];
185} ____cacheline_internodealigned_in_smp;
186#define MEMCG_PADDING(name) struct memcg_padding name;
187#else
188#define MEMCG_PADDING(name)
189#endif
190
191/*
192 * The memory controller data structure. The memory controller controls both
193 * page cache and RSS per cgroup. We would eventually like to provide
194 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
195 * to help the administrator determine what knobs to tune.
196 */
197struct mem_cgroup {
198 struct cgroup_subsys_state css;
199
200 /* Private memcg ID. Used to ID objects that outlive the cgroup */
201 struct mem_cgroup_id id;
202
203 /* Accounted resources */
204 struct page_counter memory;
205 struct page_counter swap;
206
207 /* Legacy consumer-oriented counters */
208 struct page_counter memsw;
209 struct page_counter kmem;
210 struct page_counter tcpmem;
211
212 /* Upper bound of normal memory consumption range */
213 unsigned long high;
214
215 /* Range enforcement for interrupt charges */
216 struct work_struct high_work;
217
218 unsigned long soft_limit;
219
220 /* vmpressure notifications */
221 struct vmpressure vmpressure;
222
223 /*
224 * Should the accounting and control be hierarchical, per subtree?
225 */
226 bool use_hierarchy;
227
228 /*
229 * Should the OOM killer kill all belonging tasks, had it kill one?
230 */
231 bool oom_group;
232
233 /* protected by memcg_oom_lock */
234 bool oom_lock;
235 int under_oom;
236
237 int swappiness;
238 /* OOM-Killer disable */
239 int oom_kill_disable;
240
241 /* memory.events */
242 struct cgroup_file events_file;
243
244 /* handle for "memory.swap.events" */
245 struct cgroup_file swap_events_file;
246
247 /* protect arrays of thresholds */
248 struct mutex thresholds_lock;
249
250 /* thresholds for memory usage. RCU-protected */
251 struct mem_cgroup_thresholds thresholds;
252
253 /* thresholds for mem+swap usage. RCU-protected */
254 struct mem_cgroup_thresholds memsw_thresholds;
255
256 /* For oom notifier event fd */
257 struct list_head oom_notify;
258
259 /*
260 * Should we move charges of a task when a task is moved into this
261 * mem_cgroup ? And what type of charges should we move ?
262 */
263 unsigned long move_charge_at_immigrate;
264 /* taken only while moving_account > 0 */
265 spinlock_t move_lock;
266 unsigned long move_lock_flags;
267
268 MEMCG_PADDING(_pad1_);
269
270 /*
271 * set > 0 if pages under this cgroup are moving to other cgroup.
272 */
273 atomic_t moving_account;
274 struct task_struct *move_lock_task;
275
276 /* memory.stat */
277 struct mem_cgroup_stat_cpu __percpu *stat_cpu;
278
279 MEMCG_PADDING(_pad2_);
280
281 atomic_long_t stat[MEMCG_NR_STAT];
282 atomic_long_t events[NR_VM_EVENT_ITEMS];
283 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
284
285 unsigned long socket_pressure;
286
287 /* Legacy tcp memory accounting */
288 bool tcpmem_active;
289 int tcpmem_pressure;
290
291#ifdef CONFIG_MEMCG_KMEM
292 /* Index in the kmem_cache->memcg_params.memcg_caches array */
293 int kmemcg_id;
294 enum memcg_kmem_state kmem_state;
295 struct list_head kmem_caches;
296#endif
297
298 int last_scanned_node;
299#if MAX_NUMNODES > 1
300 nodemask_t scan_nodes;
301 atomic_t numainfo_events;
302 atomic_t numainfo_updating;
303#endif
304
305#ifdef CONFIG_CGROUP_WRITEBACK
306 struct list_head cgwb_list;
307 struct wb_domain cgwb_domain;
308#endif
309
310 /* List of events which userspace want to receive */
311 struct list_head event_list;
312 spinlock_t event_list_lock;
313
314 struct mem_cgroup_per_node *nodeinfo[0];
315 /* WARNING: nodeinfo must be the last member here */
316};
317
318/*
319 * size of first charge trial. "32" comes from vmscan.c's magic value.
320 * TODO: maybe necessary to use big numbers in big irons.
321 */
322#define MEMCG_CHARGE_BATCH 32U
323
324extern struct mem_cgroup *root_mem_cgroup;
325
326static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
327{
328 return (memcg == root_mem_cgroup);
329}
330
331static inline bool mem_cgroup_disabled(void)
332{
333 return !cgroup_subsys_enabled(memory_cgrp_subsys);
334}
335
336enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
337 struct mem_cgroup *memcg);
338
339int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
340 gfp_t gfp_mask, struct mem_cgroup **memcgp,
341 bool compound);
342int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
343 gfp_t gfp_mask, struct mem_cgroup **memcgp,
344 bool compound);
345void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
346 bool lrucare, bool compound);
347void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
348 bool compound);
349void mem_cgroup_uncharge(struct page *page);
350void mem_cgroup_uncharge_list(struct list_head *page_list);
351
352void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
353
354static struct mem_cgroup_per_node *
355mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
356{
357 return memcg->nodeinfo[nid];
358}
359
360/**
361 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone
362 * @node: node of the wanted lruvec
363 * @memcg: memcg of the wanted lruvec
364 *
365 * Returns the lru list vector holding pages for a given @node or a given
366 * @memcg and @zone. This can be the node lruvec, if the memory controller
367 * is disabled.
368 */
369static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
370 struct mem_cgroup *memcg)
371{
372 struct mem_cgroup_per_node *mz;
373 struct lruvec *lruvec;
374
375 if (mem_cgroup_disabled()) {
376 lruvec = node_lruvec(pgdat);
377 goto out;
378 }
379
380 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
381 lruvec = &mz->lruvec;
382out:
383 /*
384 * Since a node can be onlined after the mem_cgroup was created,
385 * we have to be prepared to initialize lruvec->pgdat here;
386 * and if offlined then reonlined, we need to reinitialize it.
387 */
388 if (unlikely(lruvec->pgdat != pgdat))
389 lruvec->pgdat = pgdat;
390 return lruvec;
391}
392
393struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
394
395bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
396struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
397
398struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
399
400struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
401
402static inline
403struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
404 return css ? container_of(css, struct mem_cgroup, css) : NULL;
405}
406
407static inline void mem_cgroup_put(struct mem_cgroup *memcg)
408{
409 if (memcg)
410 css_put(&memcg->css);
411}
412
413#define mem_cgroup_from_counter(counter, member) \
414 container_of(counter, struct mem_cgroup, member)
415
416struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
417 struct mem_cgroup *,
418 struct mem_cgroup_reclaim_cookie *);
419void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
420int mem_cgroup_scan_tasks(struct mem_cgroup *,
421 int (*)(struct task_struct *, void *), void *);
422
423static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
424{
425 if (mem_cgroup_disabled())
426 return 0;
427
428 return memcg->id.id;
429}
430struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
431
432static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
433{
434 struct mem_cgroup_per_node *mz;
435
436 if (mem_cgroup_disabled())
437 return NULL;
438
439 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
440 return mz->memcg;
441}
442
443/**
444 * parent_mem_cgroup - find the accounting parent of a memcg
445 * @memcg: memcg whose parent to find
446 *
447 * Returns the parent memcg, or NULL if this is the root or the memory
448 * controller is in legacy no-hierarchy mode.
449 */
450static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
451{
452 if (!memcg->memory.parent)
453 return NULL;
454 return mem_cgroup_from_counter(memcg->memory.parent, memory);
455}
456
457static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
458 struct mem_cgroup *root)
459{
460 if (root == memcg)
461 return true;
462 if (!root->use_hierarchy)
463 return false;
464 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
465}
466
467static inline bool mm_match_cgroup(struct mm_struct *mm,
468 struct mem_cgroup *memcg)
469{
470 struct mem_cgroup *task_memcg;
471 bool match = false;
472
473 rcu_read_lock();
474 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
475 if (task_memcg)
476 match = mem_cgroup_is_descendant(task_memcg, memcg);
477 rcu_read_unlock();
478 return match;
479}
480
481struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
482ino_t page_cgroup_ino(struct page *page);
483
484static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
485{
486 if (mem_cgroup_disabled())
487 return true;
488 return !!(memcg->css.flags & CSS_ONLINE);
489}
490
491/*
492 * For memory reclaim.
493 */
494int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
495
496void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
497 int zid, int nr_pages);
498
499unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
500 int nid, unsigned int lru_mask);
501
502static inline
503unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
504{
505 struct mem_cgroup_per_node *mz;
506 unsigned long nr_pages = 0;
507 int zid;
508
509 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
510 for (zid = 0; zid < MAX_NR_ZONES; zid++)
511 nr_pages += mz->lru_zone_size[zid][lru];
512 return nr_pages;
513}
514
515static inline
516unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
517 enum lru_list lru, int zone_idx)
518{
519 struct mem_cgroup_per_node *mz;
520
521 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
522 return mz->lru_zone_size[zone_idx][lru];
523}
524
525void mem_cgroup_handle_over_high(void);
526
527unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
528
529void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
530 struct task_struct *p);
531
532void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
533
534static inline void mem_cgroup_enter_user_fault(void)
535{
536 WARN_ON(current->in_user_fault);
537 current->in_user_fault = 1;
538}
539
540static inline void mem_cgroup_exit_user_fault(void)
541{
542 WARN_ON(!current->in_user_fault);
543 current->in_user_fault = 0;
544}
545
546static inline bool task_in_memcg_oom(struct task_struct *p)
547{
548 return p->memcg_in_oom;
549}
550
551bool mem_cgroup_oom_synchronize(bool wait);
552struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
553 struct mem_cgroup *oom_domain);
554void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
555
556#ifdef CONFIG_MEMCG_SWAP
557extern int do_swap_account;
558#endif
559
560struct mem_cgroup *lock_page_memcg(struct page *page);
561void __unlock_page_memcg(struct mem_cgroup *memcg);
562void unlock_page_memcg(struct page *page);
563
564/* idx can be of type enum memcg_stat_item or node_stat_item */
565static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
566 int idx)
567{
568 long x = atomic_long_read(&memcg->stat[idx]);
569#ifdef CONFIG_SMP
570 if (x < 0)
571 x = 0;
572#endif
573 return x;
574}
575
576/* idx can be of type enum memcg_stat_item or node_stat_item */
577static inline void __mod_memcg_state(struct mem_cgroup *memcg,
578 int idx, int val)
579{
580 long x;
581
582 if (mem_cgroup_disabled())
583 return;
584
585 x = val + __this_cpu_read(memcg->stat_cpu->count[idx]);
586 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
587 atomic_long_add(x, &memcg->stat[idx]);
588 x = 0;
589 }
590 __this_cpu_write(memcg->stat_cpu->count[idx], x);
591}
592
593/* idx can be of type enum memcg_stat_item or node_stat_item */
594static inline void mod_memcg_state(struct mem_cgroup *memcg,
595 int idx, int val)
596{
597 unsigned long flags;
598
599 local_irq_save(flags);
600 __mod_memcg_state(memcg, idx, val);
601 local_irq_restore(flags);
602}
603
604/**
605 * mod_memcg_page_state - update page state statistics
606 * @page: the page
607 * @idx: page state item to account
608 * @val: number of pages (positive or negative)
609 *
610 * The @page must be locked or the caller must use lock_page_memcg()
611 * to prevent double accounting when the page is concurrently being
612 * moved to another memcg:
613 *
614 * lock_page(page) or lock_page_memcg(page)
615 * if (TestClearPageState(page))
616 * mod_memcg_page_state(page, state, -1);
617 * unlock_page(page) or unlock_page_memcg(page)
618 *
619 * Kernel pages are an exception to this, since they'll never move.
620 */
621static inline void __mod_memcg_page_state(struct page *page,
622 int idx, int val)
623{
624 if (page->mem_cgroup)
625 __mod_memcg_state(page->mem_cgroup, idx, val);
626}
627
628static inline void mod_memcg_page_state(struct page *page,
629 int idx, int val)
630{
631 if (page->mem_cgroup)
632 mod_memcg_state(page->mem_cgroup, idx, val);
633}
634
635static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
636 enum node_stat_item idx)
637{
638 struct mem_cgroup_per_node *pn;
639 long x;
640
641 if (mem_cgroup_disabled())
642 return node_page_state(lruvec_pgdat(lruvec), idx);
643
644 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
645 x = atomic_long_read(&pn->lruvec_stat[idx]);
646#ifdef CONFIG_SMP
647 if (x < 0)
648 x = 0;
649#endif
650 return x;
651}
652
653static inline void __mod_lruvec_state(struct lruvec *lruvec,
654 enum node_stat_item idx, int val)
655{
656 struct mem_cgroup_per_node *pn;
657 long x;
658
659 /* Update node */
660 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
661
662 if (mem_cgroup_disabled())
663 return;
664
665 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
666
667 /* Update memcg */
668 __mod_memcg_state(pn->memcg, idx, val);
669
670 /* Update lruvec */
671 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
672 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
673 atomic_long_add(x, &pn->lruvec_stat[idx]);
674 x = 0;
675 }
676 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
677}
678
679static inline void mod_lruvec_state(struct lruvec *lruvec,
680 enum node_stat_item idx, int val)
681{
682 unsigned long flags;
683
684 local_irq_save(flags);
685 __mod_lruvec_state(lruvec, idx, val);
686 local_irq_restore(flags);
687}
688
689static inline void __mod_lruvec_page_state(struct page *page,
690 enum node_stat_item idx, int val)
691{
692 pg_data_t *pgdat = page_pgdat(page);
693 struct lruvec *lruvec;
694
695 /* Untracked pages have no memcg, no lruvec. Update only the node */
696 if (!page->mem_cgroup) {
697 __mod_node_page_state(pgdat, idx, val);
698 return;
699 }
700
701 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup);
702 __mod_lruvec_state(lruvec, idx, val);
703}
704
705static inline void mod_lruvec_page_state(struct page *page,
706 enum node_stat_item idx, int val)
707{
708 unsigned long flags;
709
710 local_irq_save(flags);
711 __mod_lruvec_page_state(page, idx, val);
712 local_irq_restore(flags);
713}
714
715unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
716 gfp_t gfp_mask,
717 unsigned long *total_scanned);
718
719static inline void __count_memcg_events(struct mem_cgroup *memcg,
720 enum vm_event_item idx,
721 unsigned long count)
722{
723 unsigned long x;
724
725 if (mem_cgroup_disabled())
726 return;
727
728 x = count + __this_cpu_read(memcg->stat_cpu->events[idx]);
729 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
730 atomic_long_add(x, &memcg->events[idx]);
731 x = 0;
732 }
733 __this_cpu_write(memcg->stat_cpu->events[idx], x);
734}
735
736static inline void count_memcg_events(struct mem_cgroup *memcg,
737 enum vm_event_item idx,
738 unsigned long count)
739{
740 unsigned long flags;
741
742 local_irq_save(flags);
743 __count_memcg_events(memcg, idx, count);
744 local_irq_restore(flags);
745}
746
747static inline void count_memcg_page_event(struct page *page,
748 enum vm_event_item idx)
749{
750 if (page->mem_cgroup)
751 count_memcg_events(page->mem_cgroup, idx, 1);
752}
753
754static inline void count_memcg_event_mm(struct mm_struct *mm,
755 enum vm_event_item idx)
756{
757 struct mem_cgroup *memcg;
758
759 if (mem_cgroup_disabled())
760 return;
761
762 rcu_read_lock();
763 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
764 if (likely(memcg))
765 count_memcg_events(memcg, idx, 1);
766 rcu_read_unlock();
767}
768
769static inline void memcg_memory_event(struct mem_cgroup *memcg,
770 enum memcg_memory_event event)
771{
772 atomic_long_inc(&memcg->memory_events[event]);
773 cgroup_file_notify(&memcg->events_file);
774}
775
776static inline void memcg_memory_event_mm(struct mm_struct *mm,
777 enum memcg_memory_event event)
778{
779 struct mem_cgroup *memcg;
780
781 if (mem_cgroup_disabled())
782 return;
783
784 rcu_read_lock();
785 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
786 if (likely(memcg))
787 memcg_memory_event(memcg, event);
788 rcu_read_unlock();
789}
790
791#ifdef CONFIG_TRANSPARENT_HUGEPAGE
792void mem_cgroup_split_huge_fixup(struct page *head);
793#endif
794
795#else /* CONFIG_MEMCG */
796
797#define MEM_CGROUP_ID_SHIFT 0
798#define MEM_CGROUP_ID_MAX 0
799
800struct mem_cgroup;
801
802static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
803{
804 return true;
805}
806
807static inline bool mem_cgroup_disabled(void)
808{
809 return true;
810}
811
812static inline void memcg_memory_event(struct mem_cgroup *memcg,
813 enum memcg_memory_event event)
814{
815}
816
817static inline void memcg_memory_event_mm(struct mm_struct *mm,
818 enum memcg_memory_event event)
819{
820}
821
822static inline enum mem_cgroup_protection mem_cgroup_protected(
823 struct mem_cgroup *root, struct mem_cgroup *memcg)
824{
825 return MEMCG_PROT_NONE;
826}
827
828static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
829 gfp_t gfp_mask,
830 struct mem_cgroup **memcgp,
831 bool compound)
832{
833 *memcgp = NULL;
834 return 0;
835}
836
837static inline int mem_cgroup_try_charge_delay(struct page *page,
838 struct mm_struct *mm,
839 gfp_t gfp_mask,
840 struct mem_cgroup **memcgp,
841 bool compound)
842{
843 *memcgp = NULL;
844 return 0;
845}
846
847static inline void mem_cgroup_commit_charge(struct page *page,
848 struct mem_cgroup *memcg,
849 bool lrucare, bool compound)
850{
851}
852
853static inline void mem_cgroup_cancel_charge(struct page *page,
854 struct mem_cgroup *memcg,
855 bool compound)
856{
857}
858
859static inline void mem_cgroup_uncharge(struct page *page)
860{
861}
862
863static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
864{
865}
866
867static inline void mem_cgroup_migrate(struct page *old, struct page *new)
868{
869}
870
871static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
872 struct mem_cgroup *memcg)
873{
874 return node_lruvec(pgdat);
875}
876
877static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
878 struct pglist_data *pgdat)
879{
880 return &pgdat->lruvec;
881}
882
883static inline bool mm_match_cgroup(struct mm_struct *mm,
884 struct mem_cgroup *memcg)
885{
886 return true;
887}
888
889static inline bool task_in_mem_cgroup(struct task_struct *task,
890 const struct mem_cgroup *memcg)
891{
892 return true;
893}
894
895static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
896{
897 return NULL;
898}
899
900static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
901{
902 return NULL;
903}
904
905static inline void mem_cgroup_put(struct mem_cgroup *memcg)
906{
907}
908
909static inline struct mem_cgroup *
910mem_cgroup_iter(struct mem_cgroup *root,
911 struct mem_cgroup *prev,
912 struct mem_cgroup_reclaim_cookie *reclaim)
913{
914 return NULL;
915}
916
917static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
918 struct mem_cgroup *prev)
919{
920}
921
922static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
923 int (*fn)(struct task_struct *, void *), void *arg)
924{
925 return 0;
926}
927
928static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
929{
930 return 0;
931}
932
933static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
934{
935 WARN_ON_ONCE(id);
936 /* XXX: This should always return root_mem_cgroup */
937 return NULL;
938}
939
940static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
941{
942 return NULL;
943}
944
945static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
946{
947 return true;
948}
949
950static inline unsigned long
951mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
952{
953 return 0;
954}
955static inline
956unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
957 enum lru_list lru, int zone_idx)
958{
959 return 0;
960}
961
962static inline unsigned long
963mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
964 int nid, unsigned int lru_mask)
965{
966 return 0;
967}
968
969static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
970{
971 return 0;
972}
973
974static inline void
975mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
976{
977}
978
979static inline void
980mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
981{
982}
983
984static inline struct mem_cgroup *lock_page_memcg(struct page *page)
985{
986 return NULL;
987}
988
989static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
990{
991}
992
993static inline void unlock_page_memcg(struct page *page)
994{
995}
996
997static inline void mem_cgroup_handle_over_high(void)
998{
999}
1000
1001static inline void mem_cgroup_enter_user_fault(void)
1002{
1003}
1004
1005static inline void mem_cgroup_exit_user_fault(void)
1006{
1007}
1008
1009static inline bool task_in_memcg_oom(struct task_struct *p)
1010{
1011 return false;
1012}
1013
1014static inline bool mem_cgroup_oom_synchronize(bool wait)
1015{
1016 return false;
1017}
1018
1019static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1020 struct task_struct *victim, struct mem_cgroup *oom_domain)
1021{
1022 return NULL;
1023}
1024
1025static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1026{
1027}
1028
1029static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
1030 int idx)
1031{
1032 return 0;
1033}
1034
1035static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1036 int idx,
1037 int nr)
1038{
1039}
1040
1041static inline void mod_memcg_state(struct mem_cgroup *memcg,
1042 int idx,
1043 int nr)
1044{
1045}
1046
1047static inline void __mod_memcg_page_state(struct page *page,
1048 int idx,
1049 int nr)
1050{
1051}
1052
1053static inline void mod_memcg_page_state(struct page *page,
1054 int idx,
1055 int nr)
1056{
1057}
1058
1059static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1060 enum node_stat_item idx)
1061{
1062 return node_page_state(lruvec_pgdat(lruvec), idx);
1063}
1064
1065static inline void __mod_lruvec_state(struct lruvec *lruvec,
1066 enum node_stat_item idx, int val)
1067{
1068 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1069}
1070
1071static inline void mod_lruvec_state(struct lruvec *lruvec,
1072 enum node_stat_item idx, int val)
1073{
1074 mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1075}
1076
1077static inline void __mod_lruvec_page_state(struct page *page,
1078 enum node_stat_item idx, int val)
1079{
1080 __mod_node_page_state(page_pgdat(page), idx, val);
1081}
1082
1083static inline void mod_lruvec_page_state(struct page *page,
1084 enum node_stat_item idx, int val)
1085{
1086 mod_node_page_state(page_pgdat(page), idx, val);
1087}
1088
1089static inline
1090unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1091 gfp_t gfp_mask,
1092 unsigned long *total_scanned)
1093{
1094 return 0;
1095}
1096
1097static inline void mem_cgroup_split_huge_fixup(struct page *head)
1098{
1099}
1100
1101static inline void count_memcg_events(struct mem_cgroup *memcg,
1102 enum vm_event_item idx,
1103 unsigned long count)
1104{
1105}
1106
1107static inline void count_memcg_page_event(struct page *page,
1108 int idx)
1109{
1110}
1111
1112static inline
1113void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1114{
1115}
1116#endif /* CONFIG_MEMCG */
1117
1118/* idx can be of type enum memcg_stat_item or node_stat_item */
1119static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1120 int idx)
1121{
1122 __mod_memcg_state(memcg, idx, 1);
1123}
1124
1125/* idx can be of type enum memcg_stat_item or node_stat_item */
1126static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1127 int idx)
1128{
1129 __mod_memcg_state(memcg, idx, -1);
1130}
1131
1132/* idx can be of type enum memcg_stat_item or node_stat_item */
1133static inline void __inc_memcg_page_state(struct page *page,
1134 int idx)
1135{
1136 __mod_memcg_page_state(page, idx, 1);
1137}
1138
1139/* idx can be of type enum memcg_stat_item or node_stat_item */
1140static inline void __dec_memcg_page_state(struct page *page,
1141 int idx)
1142{
1143 __mod_memcg_page_state(page, idx, -1);
1144}
1145
1146static inline void __inc_lruvec_state(struct lruvec *lruvec,
1147 enum node_stat_item idx)
1148{
1149 __mod_lruvec_state(lruvec, idx, 1);
1150}
1151
1152static inline void __dec_lruvec_state(struct lruvec *lruvec,
1153 enum node_stat_item idx)
1154{
1155 __mod_lruvec_state(lruvec, idx, -1);
1156}
1157
1158static inline void __inc_lruvec_page_state(struct page *page,
1159 enum node_stat_item idx)
1160{
1161 __mod_lruvec_page_state(page, idx, 1);
1162}
1163
1164static inline void __dec_lruvec_page_state(struct page *page,
1165 enum node_stat_item idx)
1166{
1167 __mod_lruvec_page_state(page, idx, -1);
1168}
1169
1170/* idx can be of type enum memcg_stat_item or node_stat_item */
1171static inline void inc_memcg_state(struct mem_cgroup *memcg,
1172 int idx)
1173{
1174 mod_memcg_state(memcg, idx, 1);
1175}
1176
1177/* idx can be of type enum memcg_stat_item or node_stat_item */
1178static inline void dec_memcg_state(struct mem_cgroup *memcg,
1179 int idx)
1180{
1181 mod_memcg_state(memcg, idx, -1);
1182}
1183
1184/* idx can be of type enum memcg_stat_item or node_stat_item */
1185static inline void inc_memcg_page_state(struct page *page,
1186 int idx)
1187{
1188 mod_memcg_page_state(page, idx, 1);
1189}
1190
1191/* idx can be of type enum memcg_stat_item or node_stat_item */
1192static inline void dec_memcg_page_state(struct page *page,
1193 int idx)
1194{
1195 mod_memcg_page_state(page, idx, -1);
1196}
1197
1198static inline void inc_lruvec_state(struct lruvec *lruvec,
1199 enum node_stat_item idx)
1200{
1201 mod_lruvec_state(lruvec, idx, 1);
1202}
1203
1204static inline void dec_lruvec_state(struct lruvec *lruvec,
1205 enum node_stat_item idx)
1206{
1207 mod_lruvec_state(lruvec, idx, -1);
1208}
1209
1210static inline void inc_lruvec_page_state(struct page *page,
1211 enum node_stat_item idx)
1212{
1213 mod_lruvec_page_state(page, idx, 1);
1214}
1215
1216static inline void dec_lruvec_page_state(struct page *page,
1217 enum node_stat_item idx)
1218{
1219 mod_lruvec_page_state(page, idx, -1);
1220}
1221
1222#ifdef CONFIG_CGROUP_WRITEBACK
1223
1224struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1225void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1226 unsigned long *pheadroom, unsigned long *pdirty,
1227 unsigned long *pwriteback);
1228
1229#else /* CONFIG_CGROUP_WRITEBACK */
1230
1231static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1232{
1233 return NULL;
1234}
1235
1236static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1237 unsigned long *pfilepages,
1238 unsigned long *pheadroom,
1239 unsigned long *pdirty,
1240 unsigned long *pwriteback)
1241{
1242}
1243
1244#endif /* CONFIG_CGROUP_WRITEBACK */
1245
1246struct sock;
1247bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1248void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1249#ifdef CONFIG_MEMCG
1250extern struct static_key_false memcg_sockets_enabled_key;
1251#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1252void mem_cgroup_sk_alloc(struct sock *sk);
1253void mem_cgroup_sk_free(struct sock *sk);
1254static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1255{
1256 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1257 return true;
1258 do {
1259 if (time_before(jiffies, memcg->socket_pressure))
1260 return true;
1261 } while ((memcg = parent_mem_cgroup(memcg)));
1262 return false;
1263}
1264#else
1265#define mem_cgroup_sockets_enabled 0
1266static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1267static inline void mem_cgroup_sk_free(struct sock *sk) { };
1268static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1269{
1270 return false;
1271}
1272#endif
1273
1274struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1275void memcg_kmem_put_cache(struct kmem_cache *cachep);
1276int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
1277 struct mem_cgroup *memcg);
1278
1279#ifdef CONFIG_MEMCG_KMEM
1280int memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
1281void memcg_kmem_uncharge(struct page *page, int order);
1282
1283extern struct static_key_false memcg_kmem_enabled_key;
1284extern struct workqueue_struct *memcg_kmem_cache_wq;
1285
1286extern int memcg_nr_cache_ids;
1287void memcg_get_cache_ids(void);
1288void memcg_put_cache_ids(void);
1289
1290/*
1291 * Helper macro to loop through all memcg-specific caches. Callers must still
1292 * check if the cache is valid (it is either valid or NULL).
1293 * the slab_mutex must be held when looping through those caches
1294 */
1295#define for_each_memcg_cache_index(_idx) \
1296 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1297
1298static inline bool memcg_kmem_enabled(void)
1299{
1300 return static_branch_unlikely(&memcg_kmem_enabled_key);
1301}
1302
1303/*
1304 * helper for accessing a memcg's index. It will be used as an index in the
1305 * child cache array in kmem_cache, and also to derive its name. This function
1306 * will return -1 when this is not a kmem-limited memcg.
1307 */
1308static inline int memcg_cache_id(struct mem_cgroup *memcg)
1309{
1310 return memcg ? memcg->kmemcg_id : -1;
1311}
1312
1313extern int memcg_expand_shrinker_maps(int new_id);
1314
1315extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1316 int nid, int shrinker_id);
1317#else
1318
1319static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1320{
1321 return 0;
1322}
1323
1324static inline void memcg_kmem_uncharge(struct page *page, int order)
1325{
1326}
1327
1328#define for_each_memcg_cache_index(_idx) \
1329 for (; NULL; )
1330
1331static inline bool memcg_kmem_enabled(void)
1332{
1333 return false;
1334}
1335
1336static inline int memcg_cache_id(struct mem_cgroup *memcg)
1337{
1338 return -1;
1339}
1340
1341static inline void memcg_get_cache_ids(void)
1342{
1343}
1344
1345static inline void memcg_put_cache_ids(void)
1346{
1347}
1348
1349static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1350 int nid, int shrinker_id) { }
1351#endif /* CONFIG_MEMCG_KMEM */
1352
1353#endif /* _LINUX_MEMCONTROL_H */