at v5.0 33 kB view raw
1/* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20#ifndef _LINUX_MEMCONTROL_H 21#define _LINUX_MEMCONTROL_H 22#include <linux/cgroup.h> 23#include <linux/vm_event_item.h> 24#include <linux/hardirq.h> 25#include <linux/jump_label.h> 26#include <linux/page_counter.h> 27#include <linux/vmpressure.h> 28#include <linux/eventfd.h> 29#include <linux/mm.h> 30#include <linux/vmstat.h> 31#include <linux/writeback.h> 32#include <linux/page-flags.h> 33 34struct mem_cgroup; 35struct page; 36struct mm_struct; 37struct kmem_cache; 38 39/* Cgroup-specific page state, on top of universal node page state */ 40enum memcg_stat_item { 41 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS, 42 MEMCG_RSS, 43 MEMCG_RSS_HUGE, 44 MEMCG_SWAP, 45 MEMCG_SOCK, 46 /* XXX: why are these zone and not node counters? */ 47 MEMCG_KERNEL_STACK_KB, 48 MEMCG_NR_STAT, 49}; 50 51enum memcg_memory_event { 52 MEMCG_LOW, 53 MEMCG_HIGH, 54 MEMCG_MAX, 55 MEMCG_OOM, 56 MEMCG_OOM_KILL, 57 MEMCG_SWAP_MAX, 58 MEMCG_SWAP_FAIL, 59 MEMCG_NR_MEMORY_EVENTS, 60}; 61 62enum mem_cgroup_protection { 63 MEMCG_PROT_NONE, 64 MEMCG_PROT_LOW, 65 MEMCG_PROT_MIN, 66}; 67 68struct mem_cgroup_reclaim_cookie { 69 pg_data_t *pgdat; 70 int priority; 71 unsigned int generation; 72}; 73 74#ifdef CONFIG_MEMCG 75 76#define MEM_CGROUP_ID_SHIFT 16 77#define MEM_CGROUP_ID_MAX USHRT_MAX 78 79struct mem_cgroup_id { 80 int id; 81 refcount_t ref; 82}; 83 84/* 85 * Per memcg event counter is incremented at every pagein/pageout. With THP, 86 * it will be incremated by the number of pages. This counter is used for 87 * for trigger some periodic events. This is straightforward and better 88 * than using jiffies etc. to handle periodic memcg event. 89 */ 90enum mem_cgroup_events_target { 91 MEM_CGROUP_TARGET_THRESH, 92 MEM_CGROUP_TARGET_SOFTLIMIT, 93 MEM_CGROUP_TARGET_NUMAINFO, 94 MEM_CGROUP_NTARGETS, 95}; 96 97struct mem_cgroup_stat_cpu { 98 long count[MEMCG_NR_STAT]; 99 unsigned long events[NR_VM_EVENT_ITEMS]; 100 unsigned long nr_page_events; 101 unsigned long targets[MEM_CGROUP_NTARGETS]; 102}; 103 104struct mem_cgroup_reclaim_iter { 105 struct mem_cgroup *position; 106 /* scan generation, increased every round-trip */ 107 unsigned int generation; 108}; 109 110struct lruvec_stat { 111 long count[NR_VM_NODE_STAT_ITEMS]; 112}; 113 114/* 115 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, 116 * which have elements charged to this memcg. 117 */ 118struct memcg_shrinker_map { 119 struct rcu_head rcu; 120 unsigned long map[0]; 121}; 122 123/* 124 * per-zone information in memory controller. 125 */ 126struct mem_cgroup_per_node { 127 struct lruvec lruvec; 128 129 struct lruvec_stat __percpu *lruvec_stat_cpu; 130 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 131 132 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 133 134 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1]; 135 136#ifdef CONFIG_MEMCG_KMEM 137 struct memcg_shrinker_map __rcu *shrinker_map; 138#endif 139 struct rb_node tree_node; /* RB tree node */ 140 unsigned long usage_in_excess;/* Set to the value by which */ 141 /* the soft limit is exceeded*/ 142 bool on_tree; 143 bool congested; /* memcg has many dirty pages */ 144 /* backed by a congested BDI */ 145 146 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 147 /* use container_of */ 148}; 149 150struct mem_cgroup_threshold { 151 struct eventfd_ctx *eventfd; 152 unsigned long threshold; 153}; 154 155/* For threshold */ 156struct mem_cgroup_threshold_ary { 157 /* An array index points to threshold just below or equal to usage. */ 158 int current_threshold; 159 /* Size of entries[] */ 160 unsigned int size; 161 /* Array of thresholds */ 162 struct mem_cgroup_threshold entries[0]; 163}; 164 165struct mem_cgroup_thresholds { 166 /* Primary thresholds array */ 167 struct mem_cgroup_threshold_ary *primary; 168 /* 169 * Spare threshold array. 170 * This is needed to make mem_cgroup_unregister_event() "never fail". 171 * It must be able to store at least primary->size - 1 entries. 172 */ 173 struct mem_cgroup_threshold_ary *spare; 174}; 175 176enum memcg_kmem_state { 177 KMEM_NONE, 178 KMEM_ALLOCATED, 179 KMEM_ONLINE, 180}; 181 182#if defined(CONFIG_SMP) 183struct memcg_padding { 184 char x[0]; 185} ____cacheline_internodealigned_in_smp; 186#define MEMCG_PADDING(name) struct memcg_padding name; 187#else 188#define MEMCG_PADDING(name) 189#endif 190 191/* 192 * The memory controller data structure. The memory controller controls both 193 * page cache and RSS per cgroup. We would eventually like to provide 194 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 195 * to help the administrator determine what knobs to tune. 196 */ 197struct mem_cgroup { 198 struct cgroup_subsys_state css; 199 200 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 201 struct mem_cgroup_id id; 202 203 /* Accounted resources */ 204 struct page_counter memory; 205 struct page_counter swap; 206 207 /* Legacy consumer-oriented counters */ 208 struct page_counter memsw; 209 struct page_counter kmem; 210 struct page_counter tcpmem; 211 212 /* Upper bound of normal memory consumption range */ 213 unsigned long high; 214 215 /* Range enforcement for interrupt charges */ 216 struct work_struct high_work; 217 218 unsigned long soft_limit; 219 220 /* vmpressure notifications */ 221 struct vmpressure vmpressure; 222 223 /* 224 * Should the accounting and control be hierarchical, per subtree? 225 */ 226 bool use_hierarchy; 227 228 /* 229 * Should the OOM killer kill all belonging tasks, had it kill one? 230 */ 231 bool oom_group; 232 233 /* protected by memcg_oom_lock */ 234 bool oom_lock; 235 int under_oom; 236 237 int swappiness; 238 /* OOM-Killer disable */ 239 int oom_kill_disable; 240 241 /* memory.events */ 242 struct cgroup_file events_file; 243 244 /* handle for "memory.swap.events" */ 245 struct cgroup_file swap_events_file; 246 247 /* protect arrays of thresholds */ 248 struct mutex thresholds_lock; 249 250 /* thresholds for memory usage. RCU-protected */ 251 struct mem_cgroup_thresholds thresholds; 252 253 /* thresholds for mem+swap usage. RCU-protected */ 254 struct mem_cgroup_thresholds memsw_thresholds; 255 256 /* For oom notifier event fd */ 257 struct list_head oom_notify; 258 259 /* 260 * Should we move charges of a task when a task is moved into this 261 * mem_cgroup ? And what type of charges should we move ? 262 */ 263 unsigned long move_charge_at_immigrate; 264 /* taken only while moving_account > 0 */ 265 spinlock_t move_lock; 266 unsigned long move_lock_flags; 267 268 MEMCG_PADDING(_pad1_); 269 270 /* 271 * set > 0 if pages under this cgroup are moving to other cgroup. 272 */ 273 atomic_t moving_account; 274 struct task_struct *move_lock_task; 275 276 /* memory.stat */ 277 struct mem_cgroup_stat_cpu __percpu *stat_cpu; 278 279 MEMCG_PADDING(_pad2_); 280 281 atomic_long_t stat[MEMCG_NR_STAT]; 282 atomic_long_t events[NR_VM_EVENT_ITEMS]; 283 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 284 285 unsigned long socket_pressure; 286 287 /* Legacy tcp memory accounting */ 288 bool tcpmem_active; 289 int tcpmem_pressure; 290 291#ifdef CONFIG_MEMCG_KMEM 292 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 293 int kmemcg_id; 294 enum memcg_kmem_state kmem_state; 295 struct list_head kmem_caches; 296#endif 297 298 int last_scanned_node; 299#if MAX_NUMNODES > 1 300 nodemask_t scan_nodes; 301 atomic_t numainfo_events; 302 atomic_t numainfo_updating; 303#endif 304 305#ifdef CONFIG_CGROUP_WRITEBACK 306 struct list_head cgwb_list; 307 struct wb_domain cgwb_domain; 308#endif 309 310 /* List of events which userspace want to receive */ 311 struct list_head event_list; 312 spinlock_t event_list_lock; 313 314 struct mem_cgroup_per_node *nodeinfo[0]; 315 /* WARNING: nodeinfo must be the last member here */ 316}; 317 318/* 319 * size of first charge trial. "32" comes from vmscan.c's magic value. 320 * TODO: maybe necessary to use big numbers in big irons. 321 */ 322#define MEMCG_CHARGE_BATCH 32U 323 324extern struct mem_cgroup *root_mem_cgroup; 325 326static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 327{ 328 return (memcg == root_mem_cgroup); 329} 330 331static inline bool mem_cgroup_disabled(void) 332{ 333 return !cgroup_subsys_enabled(memory_cgrp_subsys); 334} 335 336enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 337 struct mem_cgroup *memcg); 338 339int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 340 gfp_t gfp_mask, struct mem_cgroup **memcgp, 341 bool compound); 342int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 343 gfp_t gfp_mask, struct mem_cgroup **memcgp, 344 bool compound); 345void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 346 bool lrucare, bool compound); 347void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 348 bool compound); 349void mem_cgroup_uncharge(struct page *page); 350void mem_cgroup_uncharge_list(struct list_head *page_list); 351 352void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 353 354static struct mem_cgroup_per_node * 355mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 356{ 357 return memcg->nodeinfo[nid]; 358} 359 360/** 361 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone 362 * @node: node of the wanted lruvec 363 * @memcg: memcg of the wanted lruvec 364 * 365 * Returns the lru list vector holding pages for a given @node or a given 366 * @memcg and @zone. This can be the node lruvec, if the memory controller 367 * is disabled. 368 */ 369static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 370 struct mem_cgroup *memcg) 371{ 372 struct mem_cgroup_per_node *mz; 373 struct lruvec *lruvec; 374 375 if (mem_cgroup_disabled()) { 376 lruvec = node_lruvec(pgdat); 377 goto out; 378 } 379 380 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 381 lruvec = &mz->lruvec; 382out: 383 /* 384 * Since a node can be onlined after the mem_cgroup was created, 385 * we have to be prepared to initialize lruvec->pgdat here; 386 * and if offlined then reonlined, we need to reinitialize it. 387 */ 388 if (unlikely(lruvec->pgdat != pgdat)) 389 lruvec->pgdat = pgdat; 390 return lruvec; 391} 392 393struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 394 395bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg); 396struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 397 398struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 399 400struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); 401 402static inline 403struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 404 return css ? container_of(css, struct mem_cgroup, css) : NULL; 405} 406 407static inline void mem_cgroup_put(struct mem_cgroup *memcg) 408{ 409 if (memcg) 410 css_put(&memcg->css); 411} 412 413#define mem_cgroup_from_counter(counter, member) \ 414 container_of(counter, struct mem_cgroup, member) 415 416struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 417 struct mem_cgroup *, 418 struct mem_cgroup_reclaim_cookie *); 419void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 420int mem_cgroup_scan_tasks(struct mem_cgroup *, 421 int (*)(struct task_struct *, void *), void *); 422 423static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 424{ 425 if (mem_cgroup_disabled()) 426 return 0; 427 428 return memcg->id.id; 429} 430struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 431 432static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 433{ 434 struct mem_cgroup_per_node *mz; 435 436 if (mem_cgroup_disabled()) 437 return NULL; 438 439 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 440 return mz->memcg; 441} 442 443/** 444 * parent_mem_cgroup - find the accounting parent of a memcg 445 * @memcg: memcg whose parent to find 446 * 447 * Returns the parent memcg, or NULL if this is the root or the memory 448 * controller is in legacy no-hierarchy mode. 449 */ 450static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 451{ 452 if (!memcg->memory.parent) 453 return NULL; 454 return mem_cgroup_from_counter(memcg->memory.parent, memory); 455} 456 457static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 458 struct mem_cgroup *root) 459{ 460 if (root == memcg) 461 return true; 462 if (!root->use_hierarchy) 463 return false; 464 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 465} 466 467static inline bool mm_match_cgroup(struct mm_struct *mm, 468 struct mem_cgroup *memcg) 469{ 470 struct mem_cgroup *task_memcg; 471 bool match = false; 472 473 rcu_read_lock(); 474 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 475 if (task_memcg) 476 match = mem_cgroup_is_descendant(task_memcg, memcg); 477 rcu_read_unlock(); 478 return match; 479} 480 481struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 482ino_t page_cgroup_ino(struct page *page); 483 484static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 485{ 486 if (mem_cgroup_disabled()) 487 return true; 488 return !!(memcg->css.flags & CSS_ONLINE); 489} 490 491/* 492 * For memory reclaim. 493 */ 494int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 495 496void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 497 int zid, int nr_pages); 498 499unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 500 int nid, unsigned int lru_mask); 501 502static inline 503unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 504{ 505 struct mem_cgroup_per_node *mz; 506 unsigned long nr_pages = 0; 507 int zid; 508 509 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 510 for (zid = 0; zid < MAX_NR_ZONES; zid++) 511 nr_pages += mz->lru_zone_size[zid][lru]; 512 return nr_pages; 513} 514 515static inline 516unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 517 enum lru_list lru, int zone_idx) 518{ 519 struct mem_cgroup_per_node *mz; 520 521 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 522 return mz->lru_zone_size[zone_idx][lru]; 523} 524 525void mem_cgroup_handle_over_high(void); 526 527unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 528 529void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 530 struct task_struct *p); 531 532void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 533 534static inline void mem_cgroup_enter_user_fault(void) 535{ 536 WARN_ON(current->in_user_fault); 537 current->in_user_fault = 1; 538} 539 540static inline void mem_cgroup_exit_user_fault(void) 541{ 542 WARN_ON(!current->in_user_fault); 543 current->in_user_fault = 0; 544} 545 546static inline bool task_in_memcg_oom(struct task_struct *p) 547{ 548 return p->memcg_in_oom; 549} 550 551bool mem_cgroup_oom_synchronize(bool wait); 552struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 553 struct mem_cgroup *oom_domain); 554void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 555 556#ifdef CONFIG_MEMCG_SWAP 557extern int do_swap_account; 558#endif 559 560struct mem_cgroup *lock_page_memcg(struct page *page); 561void __unlock_page_memcg(struct mem_cgroup *memcg); 562void unlock_page_memcg(struct page *page); 563 564/* idx can be of type enum memcg_stat_item or node_stat_item */ 565static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, 566 int idx) 567{ 568 long x = atomic_long_read(&memcg->stat[idx]); 569#ifdef CONFIG_SMP 570 if (x < 0) 571 x = 0; 572#endif 573 return x; 574} 575 576/* idx can be of type enum memcg_stat_item or node_stat_item */ 577static inline void __mod_memcg_state(struct mem_cgroup *memcg, 578 int idx, int val) 579{ 580 long x; 581 582 if (mem_cgroup_disabled()) 583 return; 584 585 x = val + __this_cpu_read(memcg->stat_cpu->count[idx]); 586 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 587 atomic_long_add(x, &memcg->stat[idx]); 588 x = 0; 589 } 590 __this_cpu_write(memcg->stat_cpu->count[idx], x); 591} 592 593/* idx can be of type enum memcg_stat_item or node_stat_item */ 594static inline void mod_memcg_state(struct mem_cgroup *memcg, 595 int idx, int val) 596{ 597 unsigned long flags; 598 599 local_irq_save(flags); 600 __mod_memcg_state(memcg, idx, val); 601 local_irq_restore(flags); 602} 603 604/** 605 * mod_memcg_page_state - update page state statistics 606 * @page: the page 607 * @idx: page state item to account 608 * @val: number of pages (positive or negative) 609 * 610 * The @page must be locked or the caller must use lock_page_memcg() 611 * to prevent double accounting when the page is concurrently being 612 * moved to another memcg: 613 * 614 * lock_page(page) or lock_page_memcg(page) 615 * if (TestClearPageState(page)) 616 * mod_memcg_page_state(page, state, -1); 617 * unlock_page(page) or unlock_page_memcg(page) 618 * 619 * Kernel pages are an exception to this, since they'll never move. 620 */ 621static inline void __mod_memcg_page_state(struct page *page, 622 int idx, int val) 623{ 624 if (page->mem_cgroup) 625 __mod_memcg_state(page->mem_cgroup, idx, val); 626} 627 628static inline void mod_memcg_page_state(struct page *page, 629 int idx, int val) 630{ 631 if (page->mem_cgroup) 632 mod_memcg_state(page->mem_cgroup, idx, val); 633} 634 635static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 636 enum node_stat_item idx) 637{ 638 struct mem_cgroup_per_node *pn; 639 long x; 640 641 if (mem_cgroup_disabled()) 642 return node_page_state(lruvec_pgdat(lruvec), idx); 643 644 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 645 x = atomic_long_read(&pn->lruvec_stat[idx]); 646#ifdef CONFIG_SMP 647 if (x < 0) 648 x = 0; 649#endif 650 return x; 651} 652 653static inline void __mod_lruvec_state(struct lruvec *lruvec, 654 enum node_stat_item idx, int val) 655{ 656 struct mem_cgroup_per_node *pn; 657 long x; 658 659 /* Update node */ 660 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 661 662 if (mem_cgroup_disabled()) 663 return; 664 665 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 666 667 /* Update memcg */ 668 __mod_memcg_state(pn->memcg, idx, val); 669 670 /* Update lruvec */ 671 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 672 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 673 atomic_long_add(x, &pn->lruvec_stat[idx]); 674 x = 0; 675 } 676 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 677} 678 679static inline void mod_lruvec_state(struct lruvec *lruvec, 680 enum node_stat_item idx, int val) 681{ 682 unsigned long flags; 683 684 local_irq_save(flags); 685 __mod_lruvec_state(lruvec, idx, val); 686 local_irq_restore(flags); 687} 688 689static inline void __mod_lruvec_page_state(struct page *page, 690 enum node_stat_item idx, int val) 691{ 692 pg_data_t *pgdat = page_pgdat(page); 693 struct lruvec *lruvec; 694 695 /* Untracked pages have no memcg, no lruvec. Update only the node */ 696 if (!page->mem_cgroup) { 697 __mod_node_page_state(pgdat, idx, val); 698 return; 699 } 700 701 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup); 702 __mod_lruvec_state(lruvec, idx, val); 703} 704 705static inline void mod_lruvec_page_state(struct page *page, 706 enum node_stat_item idx, int val) 707{ 708 unsigned long flags; 709 710 local_irq_save(flags); 711 __mod_lruvec_page_state(page, idx, val); 712 local_irq_restore(flags); 713} 714 715unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 716 gfp_t gfp_mask, 717 unsigned long *total_scanned); 718 719static inline void __count_memcg_events(struct mem_cgroup *memcg, 720 enum vm_event_item idx, 721 unsigned long count) 722{ 723 unsigned long x; 724 725 if (mem_cgroup_disabled()) 726 return; 727 728 x = count + __this_cpu_read(memcg->stat_cpu->events[idx]); 729 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 730 atomic_long_add(x, &memcg->events[idx]); 731 x = 0; 732 } 733 __this_cpu_write(memcg->stat_cpu->events[idx], x); 734} 735 736static inline void count_memcg_events(struct mem_cgroup *memcg, 737 enum vm_event_item idx, 738 unsigned long count) 739{ 740 unsigned long flags; 741 742 local_irq_save(flags); 743 __count_memcg_events(memcg, idx, count); 744 local_irq_restore(flags); 745} 746 747static inline void count_memcg_page_event(struct page *page, 748 enum vm_event_item idx) 749{ 750 if (page->mem_cgroup) 751 count_memcg_events(page->mem_cgroup, idx, 1); 752} 753 754static inline void count_memcg_event_mm(struct mm_struct *mm, 755 enum vm_event_item idx) 756{ 757 struct mem_cgroup *memcg; 758 759 if (mem_cgroup_disabled()) 760 return; 761 762 rcu_read_lock(); 763 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 764 if (likely(memcg)) 765 count_memcg_events(memcg, idx, 1); 766 rcu_read_unlock(); 767} 768 769static inline void memcg_memory_event(struct mem_cgroup *memcg, 770 enum memcg_memory_event event) 771{ 772 atomic_long_inc(&memcg->memory_events[event]); 773 cgroup_file_notify(&memcg->events_file); 774} 775 776static inline void memcg_memory_event_mm(struct mm_struct *mm, 777 enum memcg_memory_event event) 778{ 779 struct mem_cgroup *memcg; 780 781 if (mem_cgroup_disabled()) 782 return; 783 784 rcu_read_lock(); 785 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 786 if (likely(memcg)) 787 memcg_memory_event(memcg, event); 788 rcu_read_unlock(); 789} 790 791#ifdef CONFIG_TRANSPARENT_HUGEPAGE 792void mem_cgroup_split_huge_fixup(struct page *head); 793#endif 794 795#else /* CONFIG_MEMCG */ 796 797#define MEM_CGROUP_ID_SHIFT 0 798#define MEM_CGROUP_ID_MAX 0 799 800struct mem_cgroup; 801 802static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 803{ 804 return true; 805} 806 807static inline bool mem_cgroup_disabled(void) 808{ 809 return true; 810} 811 812static inline void memcg_memory_event(struct mem_cgroup *memcg, 813 enum memcg_memory_event event) 814{ 815} 816 817static inline void memcg_memory_event_mm(struct mm_struct *mm, 818 enum memcg_memory_event event) 819{ 820} 821 822static inline enum mem_cgroup_protection mem_cgroup_protected( 823 struct mem_cgroup *root, struct mem_cgroup *memcg) 824{ 825 return MEMCG_PROT_NONE; 826} 827 828static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 829 gfp_t gfp_mask, 830 struct mem_cgroup **memcgp, 831 bool compound) 832{ 833 *memcgp = NULL; 834 return 0; 835} 836 837static inline int mem_cgroup_try_charge_delay(struct page *page, 838 struct mm_struct *mm, 839 gfp_t gfp_mask, 840 struct mem_cgroup **memcgp, 841 bool compound) 842{ 843 *memcgp = NULL; 844 return 0; 845} 846 847static inline void mem_cgroup_commit_charge(struct page *page, 848 struct mem_cgroup *memcg, 849 bool lrucare, bool compound) 850{ 851} 852 853static inline void mem_cgroup_cancel_charge(struct page *page, 854 struct mem_cgroup *memcg, 855 bool compound) 856{ 857} 858 859static inline void mem_cgroup_uncharge(struct page *page) 860{ 861} 862 863static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 864{ 865} 866 867static inline void mem_cgroup_migrate(struct page *old, struct page *new) 868{ 869} 870 871static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 872 struct mem_cgroup *memcg) 873{ 874 return node_lruvec(pgdat); 875} 876 877static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 878 struct pglist_data *pgdat) 879{ 880 return &pgdat->lruvec; 881} 882 883static inline bool mm_match_cgroup(struct mm_struct *mm, 884 struct mem_cgroup *memcg) 885{ 886 return true; 887} 888 889static inline bool task_in_mem_cgroup(struct task_struct *task, 890 const struct mem_cgroup *memcg) 891{ 892 return true; 893} 894 895static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 896{ 897 return NULL; 898} 899 900static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 901{ 902 return NULL; 903} 904 905static inline void mem_cgroup_put(struct mem_cgroup *memcg) 906{ 907} 908 909static inline struct mem_cgroup * 910mem_cgroup_iter(struct mem_cgroup *root, 911 struct mem_cgroup *prev, 912 struct mem_cgroup_reclaim_cookie *reclaim) 913{ 914 return NULL; 915} 916 917static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 918 struct mem_cgroup *prev) 919{ 920} 921 922static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 923 int (*fn)(struct task_struct *, void *), void *arg) 924{ 925 return 0; 926} 927 928static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 929{ 930 return 0; 931} 932 933static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 934{ 935 WARN_ON_ONCE(id); 936 /* XXX: This should always return root_mem_cgroup */ 937 return NULL; 938} 939 940static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 941{ 942 return NULL; 943} 944 945static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 946{ 947 return true; 948} 949 950static inline unsigned long 951mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 952{ 953 return 0; 954} 955static inline 956unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 957 enum lru_list lru, int zone_idx) 958{ 959 return 0; 960} 961 962static inline unsigned long 963mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 964 int nid, unsigned int lru_mask) 965{ 966 return 0; 967} 968 969static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 970{ 971 return 0; 972} 973 974static inline void 975mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 976{ 977} 978 979static inline void 980mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 981{ 982} 983 984static inline struct mem_cgroup *lock_page_memcg(struct page *page) 985{ 986 return NULL; 987} 988 989static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 990{ 991} 992 993static inline void unlock_page_memcg(struct page *page) 994{ 995} 996 997static inline void mem_cgroup_handle_over_high(void) 998{ 999} 1000 1001static inline void mem_cgroup_enter_user_fault(void) 1002{ 1003} 1004 1005static inline void mem_cgroup_exit_user_fault(void) 1006{ 1007} 1008 1009static inline bool task_in_memcg_oom(struct task_struct *p) 1010{ 1011 return false; 1012} 1013 1014static inline bool mem_cgroup_oom_synchronize(bool wait) 1015{ 1016 return false; 1017} 1018 1019static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1020 struct task_struct *victim, struct mem_cgroup *oom_domain) 1021{ 1022 return NULL; 1023} 1024 1025static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1026{ 1027} 1028 1029static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, 1030 int idx) 1031{ 1032 return 0; 1033} 1034 1035static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1036 int idx, 1037 int nr) 1038{ 1039} 1040 1041static inline void mod_memcg_state(struct mem_cgroup *memcg, 1042 int idx, 1043 int nr) 1044{ 1045} 1046 1047static inline void __mod_memcg_page_state(struct page *page, 1048 int idx, 1049 int nr) 1050{ 1051} 1052 1053static inline void mod_memcg_page_state(struct page *page, 1054 int idx, 1055 int nr) 1056{ 1057} 1058 1059static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1060 enum node_stat_item idx) 1061{ 1062 return node_page_state(lruvec_pgdat(lruvec), idx); 1063} 1064 1065static inline void __mod_lruvec_state(struct lruvec *lruvec, 1066 enum node_stat_item idx, int val) 1067{ 1068 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1069} 1070 1071static inline void mod_lruvec_state(struct lruvec *lruvec, 1072 enum node_stat_item idx, int val) 1073{ 1074 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1075} 1076 1077static inline void __mod_lruvec_page_state(struct page *page, 1078 enum node_stat_item idx, int val) 1079{ 1080 __mod_node_page_state(page_pgdat(page), idx, val); 1081} 1082 1083static inline void mod_lruvec_page_state(struct page *page, 1084 enum node_stat_item idx, int val) 1085{ 1086 mod_node_page_state(page_pgdat(page), idx, val); 1087} 1088 1089static inline 1090unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1091 gfp_t gfp_mask, 1092 unsigned long *total_scanned) 1093{ 1094 return 0; 1095} 1096 1097static inline void mem_cgroup_split_huge_fixup(struct page *head) 1098{ 1099} 1100 1101static inline void count_memcg_events(struct mem_cgroup *memcg, 1102 enum vm_event_item idx, 1103 unsigned long count) 1104{ 1105} 1106 1107static inline void count_memcg_page_event(struct page *page, 1108 int idx) 1109{ 1110} 1111 1112static inline 1113void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1114{ 1115} 1116#endif /* CONFIG_MEMCG */ 1117 1118/* idx can be of type enum memcg_stat_item or node_stat_item */ 1119static inline void __inc_memcg_state(struct mem_cgroup *memcg, 1120 int idx) 1121{ 1122 __mod_memcg_state(memcg, idx, 1); 1123} 1124 1125/* idx can be of type enum memcg_stat_item or node_stat_item */ 1126static inline void __dec_memcg_state(struct mem_cgroup *memcg, 1127 int idx) 1128{ 1129 __mod_memcg_state(memcg, idx, -1); 1130} 1131 1132/* idx can be of type enum memcg_stat_item or node_stat_item */ 1133static inline void __inc_memcg_page_state(struct page *page, 1134 int idx) 1135{ 1136 __mod_memcg_page_state(page, idx, 1); 1137} 1138 1139/* idx can be of type enum memcg_stat_item or node_stat_item */ 1140static inline void __dec_memcg_page_state(struct page *page, 1141 int idx) 1142{ 1143 __mod_memcg_page_state(page, idx, -1); 1144} 1145 1146static inline void __inc_lruvec_state(struct lruvec *lruvec, 1147 enum node_stat_item idx) 1148{ 1149 __mod_lruvec_state(lruvec, idx, 1); 1150} 1151 1152static inline void __dec_lruvec_state(struct lruvec *lruvec, 1153 enum node_stat_item idx) 1154{ 1155 __mod_lruvec_state(lruvec, idx, -1); 1156} 1157 1158static inline void __inc_lruvec_page_state(struct page *page, 1159 enum node_stat_item idx) 1160{ 1161 __mod_lruvec_page_state(page, idx, 1); 1162} 1163 1164static inline void __dec_lruvec_page_state(struct page *page, 1165 enum node_stat_item idx) 1166{ 1167 __mod_lruvec_page_state(page, idx, -1); 1168} 1169 1170/* idx can be of type enum memcg_stat_item or node_stat_item */ 1171static inline void inc_memcg_state(struct mem_cgroup *memcg, 1172 int idx) 1173{ 1174 mod_memcg_state(memcg, idx, 1); 1175} 1176 1177/* idx can be of type enum memcg_stat_item or node_stat_item */ 1178static inline void dec_memcg_state(struct mem_cgroup *memcg, 1179 int idx) 1180{ 1181 mod_memcg_state(memcg, idx, -1); 1182} 1183 1184/* idx can be of type enum memcg_stat_item or node_stat_item */ 1185static inline void inc_memcg_page_state(struct page *page, 1186 int idx) 1187{ 1188 mod_memcg_page_state(page, idx, 1); 1189} 1190 1191/* idx can be of type enum memcg_stat_item or node_stat_item */ 1192static inline void dec_memcg_page_state(struct page *page, 1193 int idx) 1194{ 1195 mod_memcg_page_state(page, idx, -1); 1196} 1197 1198static inline void inc_lruvec_state(struct lruvec *lruvec, 1199 enum node_stat_item idx) 1200{ 1201 mod_lruvec_state(lruvec, idx, 1); 1202} 1203 1204static inline void dec_lruvec_state(struct lruvec *lruvec, 1205 enum node_stat_item idx) 1206{ 1207 mod_lruvec_state(lruvec, idx, -1); 1208} 1209 1210static inline void inc_lruvec_page_state(struct page *page, 1211 enum node_stat_item idx) 1212{ 1213 mod_lruvec_page_state(page, idx, 1); 1214} 1215 1216static inline void dec_lruvec_page_state(struct page *page, 1217 enum node_stat_item idx) 1218{ 1219 mod_lruvec_page_state(page, idx, -1); 1220} 1221 1222#ifdef CONFIG_CGROUP_WRITEBACK 1223 1224struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1225void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1226 unsigned long *pheadroom, unsigned long *pdirty, 1227 unsigned long *pwriteback); 1228 1229#else /* CONFIG_CGROUP_WRITEBACK */ 1230 1231static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1232{ 1233 return NULL; 1234} 1235 1236static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1237 unsigned long *pfilepages, 1238 unsigned long *pheadroom, 1239 unsigned long *pdirty, 1240 unsigned long *pwriteback) 1241{ 1242} 1243 1244#endif /* CONFIG_CGROUP_WRITEBACK */ 1245 1246struct sock; 1247bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1248void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1249#ifdef CONFIG_MEMCG 1250extern struct static_key_false memcg_sockets_enabled_key; 1251#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1252void mem_cgroup_sk_alloc(struct sock *sk); 1253void mem_cgroup_sk_free(struct sock *sk); 1254static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1255{ 1256 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1257 return true; 1258 do { 1259 if (time_before(jiffies, memcg->socket_pressure)) 1260 return true; 1261 } while ((memcg = parent_mem_cgroup(memcg))); 1262 return false; 1263} 1264#else 1265#define mem_cgroup_sockets_enabled 0 1266static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1267static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1268static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1269{ 1270 return false; 1271} 1272#endif 1273 1274struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep); 1275void memcg_kmem_put_cache(struct kmem_cache *cachep); 1276int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 1277 struct mem_cgroup *memcg); 1278 1279#ifdef CONFIG_MEMCG_KMEM 1280int memcg_kmem_charge(struct page *page, gfp_t gfp, int order); 1281void memcg_kmem_uncharge(struct page *page, int order); 1282 1283extern struct static_key_false memcg_kmem_enabled_key; 1284extern struct workqueue_struct *memcg_kmem_cache_wq; 1285 1286extern int memcg_nr_cache_ids; 1287void memcg_get_cache_ids(void); 1288void memcg_put_cache_ids(void); 1289 1290/* 1291 * Helper macro to loop through all memcg-specific caches. Callers must still 1292 * check if the cache is valid (it is either valid or NULL). 1293 * the slab_mutex must be held when looping through those caches 1294 */ 1295#define for_each_memcg_cache_index(_idx) \ 1296 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1297 1298static inline bool memcg_kmem_enabled(void) 1299{ 1300 return static_branch_unlikely(&memcg_kmem_enabled_key); 1301} 1302 1303/* 1304 * helper for accessing a memcg's index. It will be used as an index in the 1305 * child cache array in kmem_cache, and also to derive its name. This function 1306 * will return -1 when this is not a kmem-limited memcg. 1307 */ 1308static inline int memcg_cache_id(struct mem_cgroup *memcg) 1309{ 1310 return memcg ? memcg->kmemcg_id : -1; 1311} 1312 1313extern int memcg_expand_shrinker_maps(int new_id); 1314 1315extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1316 int nid, int shrinker_id); 1317#else 1318 1319static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1320{ 1321 return 0; 1322} 1323 1324static inline void memcg_kmem_uncharge(struct page *page, int order) 1325{ 1326} 1327 1328#define for_each_memcg_cache_index(_idx) \ 1329 for (; NULL; ) 1330 1331static inline bool memcg_kmem_enabled(void) 1332{ 1333 return false; 1334} 1335 1336static inline int memcg_cache_id(struct mem_cgroup *memcg) 1337{ 1338 return -1; 1339} 1340 1341static inline void memcg_get_cache_ids(void) 1342{ 1343} 1344 1345static inline void memcg_put_cache_ids(void) 1346{ 1347} 1348 1349static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1350 int nid, int shrinker_id) { } 1351#endif /* CONFIG_MEMCG_KMEM */ 1352 1353#endif /* _LINUX_MEMCONTROL_H */