Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Linux Socket Filter Data Structures
4 */
5#ifndef __LINUX_FILTER_H__
6#define __LINUX_FILTER_H__
7
8#include <stdarg.h>
9
10#include <linux/atomic.h>
11#include <linux/refcount.h>
12#include <linux/compat.h>
13#include <linux/skbuff.h>
14#include <linux/linkage.h>
15#include <linux/printk.h>
16#include <linux/workqueue.h>
17#include <linux/sched.h>
18#include <linux/capability.h>
19#include <linux/cryptohash.h>
20#include <linux/set_memory.h>
21#include <linux/kallsyms.h>
22#include <linux/if_vlan.h>
23
24#include <net/sch_generic.h>
25
26#include <uapi/linux/filter.h>
27#include <uapi/linux/bpf.h>
28
29struct sk_buff;
30struct sock;
31struct seccomp_data;
32struct bpf_prog_aux;
33struct xdp_rxq_info;
34struct xdp_buff;
35struct sock_reuseport;
36
37/* ArgX, context and stack frame pointer register positions. Note,
38 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
39 * calls in BPF_CALL instruction.
40 */
41#define BPF_REG_ARG1 BPF_REG_1
42#define BPF_REG_ARG2 BPF_REG_2
43#define BPF_REG_ARG3 BPF_REG_3
44#define BPF_REG_ARG4 BPF_REG_4
45#define BPF_REG_ARG5 BPF_REG_5
46#define BPF_REG_CTX BPF_REG_6
47#define BPF_REG_FP BPF_REG_10
48
49/* Additional register mappings for converted user programs. */
50#define BPF_REG_A BPF_REG_0
51#define BPF_REG_X BPF_REG_7
52#define BPF_REG_TMP BPF_REG_2 /* scratch reg */
53#define BPF_REG_D BPF_REG_8 /* data, callee-saved */
54#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */
55
56/* Kernel hidden auxiliary/helper register. */
57#define BPF_REG_AX MAX_BPF_REG
58#define MAX_BPF_EXT_REG (MAX_BPF_REG + 1)
59#define MAX_BPF_JIT_REG MAX_BPF_EXT_REG
60
61/* unused opcode to mark special call to bpf_tail_call() helper */
62#define BPF_TAIL_CALL 0xf0
63
64/* unused opcode to mark call to interpreter with arguments */
65#define BPF_CALL_ARGS 0xe0
66
67/* As per nm, we expose JITed images as text (code) section for
68 * kallsyms. That way, tools like perf can find it to match
69 * addresses.
70 */
71#define BPF_SYM_ELF_TYPE 't'
72
73/* BPF program can access up to 512 bytes of stack space. */
74#define MAX_BPF_STACK 512
75
76/* Helper macros for filter block array initializers. */
77
78/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
79
80#define BPF_ALU64_REG(OP, DST, SRC) \
81 ((struct bpf_insn) { \
82 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \
83 .dst_reg = DST, \
84 .src_reg = SRC, \
85 .off = 0, \
86 .imm = 0 })
87
88#define BPF_ALU32_REG(OP, DST, SRC) \
89 ((struct bpf_insn) { \
90 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \
91 .dst_reg = DST, \
92 .src_reg = SRC, \
93 .off = 0, \
94 .imm = 0 })
95
96/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
97
98#define BPF_ALU64_IMM(OP, DST, IMM) \
99 ((struct bpf_insn) { \
100 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \
101 .dst_reg = DST, \
102 .src_reg = 0, \
103 .off = 0, \
104 .imm = IMM })
105
106#define BPF_ALU32_IMM(OP, DST, IMM) \
107 ((struct bpf_insn) { \
108 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \
109 .dst_reg = DST, \
110 .src_reg = 0, \
111 .off = 0, \
112 .imm = IMM })
113
114/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
115
116#define BPF_ENDIAN(TYPE, DST, LEN) \
117 ((struct bpf_insn) { \
118 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \
119 .dst_reg = DST, \
120 .src_reg = 0, \
121 .off = 0, \
122 .imm = LEN })
123
124/* Short form of mov, dst_reg = src_reg */
125
126#define BPF_MOV64_REG(DST, SRC) \
127 ((struct bpf_insn) { \
128 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
129 .dst_reg = DST, \
130 .src_reg = SRC, \
131 .off = 0, \
132 .imm = 0 })
133
134#define BPF_MOV32_REG(DST, SRC) \
135 ((struct bpf_insn) { \
136 .code = BPF_ALU | BPF_MOV | BPF_X, \
137 .dst_reg = DST, \
138 .src_reg = SRC, \
139 .off = 0, \
140 .imm = 0 })
141
142/* Short form of mov, dst_reg = imm32 */
143
144#define BPF_MOV64_IMM(DST, IMM) \
145 ((struct bpf_insn) { \
146 .code = BPF_ALU64 | BPF_MOV | BPF_K, \
147 .dst_reg = DST, \
148 .src_reg = 0, \
149 .off = 0, \
150 .imm = IMM })
151
152#define BPF_MOV32_IMM(DST, IMM) \
153 ((struct bpf_insn) { \
154 .code = BPF_ALU | BPF_MOV | BPF_K, \
155 .dst_reg = DST, \
156 .src_reg = 0, \
157 .off = 0, \
158 .imm = IMM })
159
160/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
161#define BPF_LD_IMM64(DST, IMM) \
162 BPF_LD_IMM64_RAW(DST, 0, IMM)
163
164#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \
165 ((struct bpf_insn) { \
166 .code = BPF_LD | BPF_DW | BPF_IMM, \
167 .dst_reg = DST, \
168 .src_reg = SRC, \
169 .off = 0, \
170 .imm = (__u32) (IMM) }), \
171 ((struct bpf_insn) { \
172 .code = 0, /* zero is reserved opcode */ \
173 .dst_reg = 0, \
174 .src_reg = 0, \
175 .off = 0, \
176 .imm = ((__u64) (IMM)) >> 32 })
177
178/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
179#define BPF_LD_MAP_FD(DST, MAP_FD) \
180 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
181
182/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
183
184#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \
185 ((struct bpf_insn) { \
186 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \
187 .dst_reg = DST, \
188 .src_reg = SRC, \
189 .off = 0, \
190 .imm = IMM })
191
192#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \
193 ((struct bpf_insn) { \
194 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \
195 .dst_reg = DST, \
196 .src_reg = SRC, \
197 .off = 0, \
198 .imm = IMM })
199
200/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
201
202#define BPF_LD_ABS(SIZE, IMM) \
203 ((struct bpf_insn) { \
204 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \
205 .dst_reg = 0, \
206 .src_reg = 0, \
207 .off = 0, \
208 .imm = IMM })
209
210/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
211
212#define BPF_LD_IND(SIZE, SRC, IMM) \
213 ((struct bpf_insn) { \
214 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \
215 .dst_reg = 0, \
216 .src_reg = SRC, \
217 .off = 0, \
218 .imm = IMM })
219
220/* Memory load, dst_reg = *(uint *) (src_reg + off16) */
221
222#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \
223 ((struct bpf_insn) { \
224 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \
225 .dst_reg = DST, \
226 .src_reg = SRC, \
227 .off = OFF, \
228 .imm = 0 })
229
230/* Memory store, *(uint *) (dst_reg + off16) = src_reg */
231
232#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \
233 ((struct bpf_insn) { \
234 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \
235 .dst_reg = DST, \
236 .src_reg = SRC, \
237 .off = OFF, \
238 .imm = 0 })
239
240/* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */
241
242#define BPF_STX_XADD(SIZE, DST, SRC, OFF) \
243 ((struct bpf_insn) { \
244 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD, \
245 .dst_reg = DST, \
246 .src_reg = SRC, \
247 .off = OFF, \
248 .imm = 0 })
249
250/* Memory store, *(uint *) (dst_reg + off16) = imm32 */
251
252#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \
253 ((struct bpf_insn) { \
254 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \
255 .dst_reg = DST, \
256 .src_reg = 0, \
257 .off = OFF, \
258 .imm = IMM })
259
260/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
261
262#define BPF_JMP_REG(OP, DST, SRC, OFF) \
263 ((struct bpf_insn) { \
264 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \
265 .dst_reg = DST, \
266 .src_reg = SRC, \
267 .off = OFF, \
268 .imm = 0 })
269
270/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
271
272#define BPF_JMP_IMM(OP, DST, IMM, OFF) \
273 ((struct bpf_insn) { \
274 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \
275 .dst_reg = DST, \
276 .src_reg = 0, \
277 .off = OFF, \
278 .imm = IMM })
279
280/* Unconditional jumps, goto pc + off16 */
281
282#define BPF_JMP_A(OFF) \
283 ((struct bpf_insn) { \
284 .code = BPF_JMP | BPF_JA, \
285 .dst_reg = 0, \
286 .src_reg = 0, \
287 .off = OFF, \
288 .imm = 0 })
289
290/* Relative call */
291
292#define BPF_CALL_REL(TGT) \
293 ((struct bpf_insn) { \
294 .code = BPF_JMP | BPF_CALL, \
295 .dst_reg = 0, \
296 .src_reg = BPF_PSEUDO_CALL, \
297 .off = 0, \
298 .imm = TGT })
299
300/* Function call */
301
302#define BPF_CAST_CALL(x) \
303 ((u64 (*)(u64, u64, u64, u64, u64))(x))
304
305#define BPF_EMIT_CALL(FUNC) \
306 ((struct bpf_insn) { \
307 .code = BPF_JMP | BPF_CALL, \
308 .dst_reg = 0, \
309 .src_reg = 0, \
310 .off = 0, \
311 .imm = ((FUNC) - __bpf_call_base) })
312
313/* Raw code statement block */
314
315#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \
316 ((struct bpf_insn) { \
317 .code = CODE, \
318 .dst_reg = DST, \
319 .src_reg = SRC, \
320 .off = OFF, \
321 .imm = IMM })
322
323/* Program exit */
324
325#define BPF_EXIT_INSN() \
326 ((struct bpf_insn) { \
327 .code = BPF_JMP | BPF_EXIT, \
328 .dst_reg = 0, \
329 .src_reg = 0, \
330 .off = 0, \
331 .imm = 0 })
332
333/* Internal classic blocks for direct assignment */
334
335#define __BPF_STMT(CODE, K) \
336 ((struct sock_filter) BPF_STMT(CODE, K))
337
338#define __BPF_JUMP(CODE, K, JT, JF) \
339 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
340
341#define bytes_to_bpf_size(bytes) \
342({ \
343 int bpf_size = -EINVAL; \
344 \
345 if (bytes == sizeof(u8)) \
346 bpf_size = BPF_B; \
347 else if (bytes == sizeof(u16)) \
348 bpf_size = BPF_H; \
349 else if (bytes == sizeof(u32)) \
350 bpf_size = BPF_W; \
351 else if (bytes == sizeof(u64)) \
352 bpf_size = BPF_DW; \
353 \
354 bpf_size; \
355})
356
357#define bpf_size_to_bytes(bpf_size) \
358({ \
359 int bytes = -EINVAL; \
360 \
361 if (bpf_size == BPF_B) \
362 bytes = sizeof(u8); \
363 else if (bpf_size == BPF_H) \
364 bytes = sizeof(u16); \
365 else if (bpf_size == BPF_W) \
366 bytes = sizeof(u32); \
367 else if (bpf_size == BPF_DW) \
368 bytes = sizeof(u64); \
369 \
370 bytes; \
371})
372
373#define BPF_SIZEOF(type) \
374 ({ \
375 const int __size = bytes_to_bpf_size(sizeof(type)); \
376 BUILD_BUG_ON(__size < 0); \
377 __size; \
378 })
379
380#define BPF_FIELD_SIZEOF(type, field) \
381 ({ \
382 const int __size = bytes_to_bpf_size(FIELD_SIZEOF(type, field)); \
383 BUILD_BUG_ON(__size < 0); \
384 __size; \
385 })
386
387#define BPF_LDST_BYTES(insn) \
388 ({ \
389 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
390 WARN_ON(__size < 0); \
391 __size; \
392 })
393
394#define __BPF_MAP_0(m, v, ...) v
395#define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
396#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
397#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
398#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
399#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
400
401#define __BPF_REG_0(...) __BPF_PAD(5)
402#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
403#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
404#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
405#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
406#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
407
408#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
409#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
410
411#define __BPF_CAST(t, a) \
412 (__force t) \
413 (__force \
414 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \
415 (unsigned long)0, (t)0))) a
416#define __BPF_V void
417#define __BPF_N
418
419#define __BPF_DECL_ARGS(t, a) t a
420#define __BPF_DECL_REGS(t, a) u64 a
421
422#define __BPF_PAD(n) \
423 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \
424 u64, __ur_3, u64, __ur_4, u64, __ur_5)
425
426#define BPF_CALL_x(x, name, ...) \
427 static __always_inline \
428 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
429 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \
430 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \
431 { \
432 return ____##name(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
433 } \
434 static __always_inline \
435 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
436
437#define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__)
438#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__)
439#define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__)
440#define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__)
441#define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__)
442#define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__)
443
444#define bpf_ctx_range(TYPE, MEMBER) \
445 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
446#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \
447 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
448#if BITS_PER_LONG == 64
449# define bpf_ctx_range_ptr(TYPE, MEMBER) \
450 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
451#else
452# define bpf_ctx_range_ptr(TYPE, MEMBER) \
453 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
454#endif /* BITS_PER_LONG == 64 */
455
456#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \
457 ({ \
458 BUILD_BUG_ON(FIELD_SIZEOF(TYPE, MEMBER) != (SIZE)); \
459 *(PTR_SIZE) = (SIZE); \
460 offsetof(TYPE, MEMBER); \
461 })
462
463#ifdef CONFIG_COMPAT
464/* A struct sock_filter is architecture independent. */
465struct compat_sock_fprog {
466 u16 len;
467 compat_uptr_t filter; /* struct sock_filter * */
468};
469#endif
470
471struct sock_fprog_kern {
472 u16 len;
473 struct sock_filter *filter;
474};
475
476struct bpf_binary_header {
477 u32 pages;
478 /* Some arches need word alignment for their instructions */
479 u8 image[] __aligned(4);
480};
481
482struct bpf_prog {
483 u16 pages; /* Number of allocated pages */
484 u16 jited:1, /* Is our filter JIT'ed? */
485 jit_requested:1,/* archs need to JIT the prog */
486 undo_set_mem:1, /* Passed set_memory_ro() checkpoint */
487 gpl_compatible:1, /* Is filter GPL compatible? */
488 cb_access:1, /* Is control block accessed? */
489 dst_needed:1, /* Do we need dst entry? */
490 blinded:1, /* Was blinded */
491 is_func:1, /* program is a bpf function */
492 kprobe_override:1, /* Do we override a kprobe? */
493 has_callchain_buf:1; /* callchain buffer allocated? */
494 enum bpf_prog_type type; /* Type of BPF program */
495 enum bpf_attach_type expected_attach_type; /* For some prog types */
496 u32 len; /* Number of filter blocks */
497 u32 jited_len; /* Size of jited insns in bytes */
498 u8 tag[BPF_TAG_SIZE];
499 struct bpf_prog_aux *aux; /* Auxiliary fields */
500 struct sock_fprog_kern *orig_prog; /* Original BPF program */
501 unsigned int (*bpf_func)(const void *ctx,
502 const struct bpf_insn *insn);
503 /* Instructions for interpreter */
504 union {
505 struct sock_filter insns[0];
506 struct bpf_insn insnsi[0];
507 };
508};
509
510struct sk_filter {
511 refcount_t refcnt;
512 struct rcu_head rcu;
513 struct bpf_prog *prog;
514};
515
516#define BPF_PROG_RUN(filter, ctx) (*(filter)->bpf_func)(ctx, (filter)->insnsi)
517
518#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
519
520struct bpf_skb_data_end {
521 struct qdisc_skb_cb qdisc_cb;
522 void *data_meta;
523 void *data_end;
524};
525
526struct bpf_redirect_info {
527 u32 ifindex;
528 u32 flags;
529 struct bpf_map *map;
530 struct bpf_map *map_to_flush;
531 u32 kern_flags;
532};
533
534DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
535
536/* flags for bpf_redirect_info kern_flags */
537#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */
538
539/* Compute the linear packet data range [data, data_end) which
540 * will be accessed by various program types (cls_bpf, act_bpf,
541 * lwt, ...). Subsystems allowing direct data access must (!)
542 * ensure that cb[] area can be written to when BPF program is
543 * invoked (otherwise cb[] save/restore is necessary).
544 */
545static inline void bpf_compute_data_pointers(struct sk_buff *skb)
546{
547 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
548
549 BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb));
550 cb->data_meta = skb->data - skb_metadata_len(skb);
551 cb->data_end = skb->data + skb_headlen(skb);
552}
553
554/* Similar to bpf_compute_data_pointers(), except that save orginal
555 * data in cb->data and cb->meta_data for restore.
556 */
557static inline void bpf_compute_and_save_data_end(
558 struct sk_buff *skb, void **saved_data_end)
559{
560 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
561
562 *saved_data_end = cb->data_end;
563 cb->data_end = skb->data + skb_headlen(skb);
564}
565
566/* Restore data saved by bpf_compute_data_pointers(). */
567static inline void bpf_restore_data_end(
568 struct sk_buff *skb, void *saved_data_end)
569{
570 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
571
572 cb->data_end = saved_data_end;
573}
574
575static inline u8 *bpf_skb_cb(struct sk_buff *skb)
576{
577 /* eBPF programs may read/write skb->cb[] area to transfer meta
578 * data between tail calls. Since this also needs to work with
579 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
580 *
581 * In some socket filter cases, the cb unfortunately needs to be
582 * saved/restored so that protocol specific skb->cb[] data won't
583 * be lost. In any case, due to unpriviledged eBPF programs
584 * attached to sockets, we need to clear the bpf_skb_cb() area
585 * to not leak previous contents to user space.
586 */
587 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
588 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) !=
589 FIELD_SIZEOF(struct qdisc_skb_cb, data));
590
591 return qdisc_skb_cb(skb)->data;
592}
593
594static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
595 struct sk_buff *skb)
596{
597 u8 *cb_data = bpf_skb_cb(skb);
598 u8 cb_saved[BPF_SKB_CB_LEN];
599 u32 res;
600
601 if (unlikely(prog->cb_access)) {
602 memcpy(cb_saved, cb_data, sizeof(cb_saved));
603 memset(cb_data, 0, sizeof(cb_saved));
604 }
605
606 res = BPF_PROG_RUN(prog, skb);
607
608 if (unlikely(prog->cb_access))
609 memcpy(cb_data, cb_saved, sizeof(cb_saved));
610
611 return res;
612}
613
614static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
615 struct sk_buff *skb)
616{
617 u32 res;
618
619 preempt_disable();
620 res = __bpf_prog_run_save_cb(prog, skb);
621 preempt_enable();
622 return res;
623}
624
625static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
626 struct sk_buff *skb)
627{
628 u8 *cb_data = bpf_skb_cb(skb);
629 u32 res;
630
631 if (unlikely(prog->cb_access))
632 memset(cb_data, 0, BPF_SKB_CB_LEN);
633
634 preempt_disable();
635 res = BPF_PROG_RUN(prog, skb);
636 preempt_enable();
637 return res;
638}
639
640static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
641 struct xdp_buff *xdp)
642{
643 /* Caller needs to hold rcu_read_lock() (!), otherwise program
644 * can be released while still running, or map elements could be
645 * freed early while still having concurrent users. XDP fastpath
646 * already takes rcu_read_lock() when fetching the program, so
647 * it's not necessary here anymore.
648 */
649 return BPF_PROG_RUN(prog, xdp);
650}
651
652static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
653{
654 return prog->len * sizeof(struct bpf_insn);
655}
656
657static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
658{
659 return round_up(bpf_prog_insn_size(prog) +
660 sizeof(__be64) + 1, SHA_MESSAGE_BYTES);
661}
662
663static inline unsigned int bpf_prog_size(unsigned int proglen)
664{
665 return max(sizeof(struct bpf_prog),
666 offsetof(struct bpf_prog, insns[proglen]));
667}
668
669static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
670{
671 /* When classic BPF programs have been loaded and the arch
672 * does not have a classic BPF JIT (anymore), they have been
673 * converted via bpf_migrate_filter() to eBPF and thus always
674 * have an unspec program type.
675 */
676 return prog->type == BPF_PROG_TYPE_UNSPEC;
677}
678
679static inline u32 bpf_ctx_off_adjust_machine(u32 size)
680{
681 const u32 size_machine = sizeof(unsigned long);
682
683 if (size > size_machine && size % size_machine == 0)
684 size = size_machine;
685
686 return size;
687}
688
689static inline bool
690bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
691{
692 return size <= size_default && (size & (size - 1)) == 0;
693}
694
695#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
696
697static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
698{
699 fp->undo_set_mem = 1;
700 set_memory_ro((unsigned long)fp, fp->pages);
701}
702
703static inline void bpf_prog_unlock_ro(struct bpf_prog *fp)
704{
705 if (fp->undo_set_mem)
706 set_memory_rw((unsigned long)fp, fp->pages);
707}
708
709static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
710{
711 set_memory_ro((unsigned long)hdr, hdr->pages);
712}
713
714static inline void bpf_jit_binary_unlock_ro(struct bpf_binary_header *hdr)
715{
716 set_memory_rw((unsigned long)hdr, hdr->pages);
717}
718
719static inline struct bpf_binary_header *
720bpf_jit_binary_hdr(const struct bpf_prog *fp)
721{
722 unsigned long real_start = (unsigned long)fp->bpf_func;
723 unsigned long addr = real_start & PAGE_MASK;
724
725 return (void *)addr;
726}
727
728int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
729static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
730{
731 return sk_filter_trim_cap(sk, skb, 1);
732}
733
734struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
735void bpf_prog_free(struct bpf_prog *fp);
736
737bool bpf_opcode_in_insntable(u8 code);
738
739void bpf_prog_free_linfo(struct bpf_prog *prog);
740void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
741 const u32 *insn_to_jit_off);
742int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
743void bpf_prog_free_jited_linfo(struct bpf_prog *prog);
744void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog);
745
746struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
747struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
748 gfp_t gfp_extra_flags);
749void __bpf_prog_free(struct bpf_prog *fp);
750
751static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
752{
753 bpf_prog_unlock_ro(fp);
754 __bpf_prog_free(fp);
755}
756
757typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
758 unsigned int flen);
759
760int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
761int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
762 bpf_aux_classic_check_t trans, bool save_orig);
763void bpf_prog_destroy(struct bpf_prog *fp);
764
765int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
766int sk_attach_bpf(u32 ufd, struct sock *sk);
767int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
768int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
769void sk_reuseport_prog_free(struct bpf_prog *prog);
770int sk_detach_filter(struct sock *sk);
771int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
772 unsigned int len);
773
774bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
775void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
776
777u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
778#define __bpf_call_base_args \
779 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
780 __bpf_call_base)
781
782struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
783void bpf_jit_compile(struct bpf_prog *prog);
784bool bpf_helper_changes_pkt_data(void *func);
785
786static inline bool bpf_dump_raw_ok(void)
787{
788 /* Reconstruction of call-sites is dependent on kallsyms,
789 * thus make dump the same restriction.
790 */
791 return kallsyms_show_value() == 1;
792}
793
794struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
795 const struct bpf_insn *patch, u32 len);
796
797void bpf_clear_redirect_map(struct bpf_map *map);
798
799static inline bool xdp_return_frame_no_direct(void)
800{
801 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
802
803 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
804}
805
806static inline void xdp_set_return_frame_no_direct(void)
807{
808 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
809
810 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
811}
812
813static inline void xdp_clear_return_frame_no_direct(void)
814{
815 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
816
817 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
818}
819
820static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
821 unsigned int pktlen)
822{
823 unsigned int len;
824
825 if (unlikely(!(fwd->flags & IFF_UP)))
826 return -ENETDOWN;
827
828 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
829 if (pktlen > len)
830 return -EMSGSIZE;
831
832 return 0;
833}
834
835/* The pair of xdp_do_redirect and xdp_do_flush_map MUST be called in the
836 * same cpu context. Further for best results no more than a single map
837 * for the do_redirect/do_flush pair should be used. This limitation is
838 * because we only track one map and force a flush when the map changes.
839 * This does not appear to be a real limitation for existing software.
840 */
841int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
842 struct xdp_buff *xdp, struct bpf_prog *prog);
843int xdp_do_redirect(struct net_device *dev,
844 struct xdp_buff *xdp,
845 struct bpf_prog *prog);
846void xdp_do_flush_map(void);
847
848void bpf_warn_invalid_xdp_action(u32 act);
849
850#ifdef CONFIG_INET
851struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
852 struct bpf_prog *prog, struct sk_buff *skb,
853 u32 hash);
854#else
855static inline struct sock *
856bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
857 struct bpf_prog *prog, struct sk_buff *skb,
858 u32 hash)
859{
860 return NULL;
861}
862#endif
863
864#ifdef CONFIG_BPF_JIT
865extern int bpf_jit_enable;
866extern int bpf_jit_harden;
867extern int bpf_jit_kallsyms;
868extern long bpf_jit_limit;
869
870typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
871
872struct bpf_binary_header *
873bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
874 unsigned int alignment,
875 bpf_jit_fill_hole_t bpf_fill_ill_insns);
876void bpf_jit_binary_free(struct bpf_binary_header *hdr);
877
878void bpf_jit_free(struct bpf_prog *fp);
879
880int bpf_jit_get_func_addr(const struct bpf_prog *prog,
881 const struct bpf_insn *insn, bool extra_pass,
882 u64 *func_addr, bool *func_addr_fixed);
883
884struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
885void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
886
887static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
888 u32 pass, void *image)
889{
890 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
891 proglen, pass, image, current->comm, task_pid_nr(current));
892
893 if (image)
894 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
895 16, 1, image, proglen, false);
896}
897
898static inline bool bpf_jit_is_ebpf(void)
899{
900# ifdef CONFIG_HAVE_EBPF_JIT
901 return true;
902# else
903 return false;
904# endif
905}
906
907static inline bool ebpf_jit_enabled(void)
908{
909 return bpf_jit_enable && bpf_jit_is_ebpf();
910}
911
912static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
913{
914 return fp->jited && bpf_jit_is_ebpf();
915}
916
917static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
918{
919 /* These are the prerequisites, should someone ever have the
920 * idea to call blinding outside of them, we make sure to
921 * bail out.
922 */
923 if (!bpf_jit_is_ebpf())
924 return false;
925 if (!prog->jit_requested)
926 return false;
927 if (!bpf_jit_harden)
928 return false;
929 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
930 return false;
931
932 return true;
933}
934
935static inline bool bpf_jit_kallsyms_enabled(void)
936{
937 /* There are a couple of corner cases where kallsyms should
938 * not be enabled f.e. on hardening.
939 */
940 if (bpf_jit_harden)
941 return false;
942 if (!bpf_jit_kallsyms)
943 return false;
944 if (bpf_jit_kallsyms == 1)
945 return true;
946
947 return false;
948}
949
950const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
951 unsigned long *off, char *sym);
952bool is_bpf_text_address(unsigned long addr);
953int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
954 char *sym);
955
956static inline const char *
957bpf_address_lookup(unsigned long addr, unsigned long *size,
958 unsigned long *off, char **modname, char *sym)
959{
960 const char *ret = __bpf_address_lookup(addr, size, off, sym);
961
962 if (ret && modname)
963 *modname = NULL;
964 return ret;
965}
966
967void bpf_prog_kallsyms_add(struct bpf_prog *fp);
968void bpf_prog_kallsyms_del(struct bpf_prog *fp);
969
970#else /* CONFIG_BPF_JIT */
971
972static inline bool ebpf_jit_enabled(void)
973{
974 return false;
975}
976
977static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
978{
979 return false;
980}
981
982static inline void bpf_jit_free(struct bpf_prog *fp)
983{
984 bpf_prog_unlock_free(fp);
985}
986
987static inline bool bpf_jit_kallsyms_enabled(void)
988{
989 return false;
990}
991
992static inline const char *
993__bpf_address_lookup(unsigned long addr, unsigned long *size,
994 unsigned long *off, char *sym)
995{
996 return NULL;
997}
998
999static inline bool is_bpf_text_address(unsigned long addr)
1000{
1001 return false;
1002}
1003
1004static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1005 char *type, char *sym)
1006{
1007 return -ERANGE;
1008}
1009
1010static inline const char *
1011bpf_address_lookup(unsigned long addr, unsigned long *size,
1012 unsigned long *off, char **modname, char *sym)
1013{
1014 return NULL;
1015}
1016
1017static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1018{
1019}
1020
1021static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1022{
1023}
1024#endif /* CONFIG_BPF_JIT */
1025
1026void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp);
1027void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1028
1029#define BPF_ANC BIT(15)
1030
1031static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1032{
1033 switch (first->code) {
1034 case BPF_RET | BPF_K:
1035 case BPF_LD | BPF_W | BPF_LEN:
1036 return false;
1037
1038 case BPF_LD | BPF_W | BPF_ABS:
1039 case BPF_LD | BPF_H | BPF_ABS:
1040 case BPF_LD | BPF_B | BPF_ABS:
1041 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1042 return true;
1043 return false;
1044
1045 default:
1046 return true;
1047 }
1048}
1049
1050static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1051{
1052 BUG_ON(ftest->code & BPF_ANC);
1053
1054 switch (ftest->code) {
1055 case BPF_LD | BPF_W | BPF_ABS:
1056 case BPF_LD | BPF_H | BPF_ABS:
1057 case BPF_LD | BPF_B | BPF_ABS:
1058#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \
1059 return BPF_ANC | SKF_AD_##CODE
1060 switch (ftest->k) {
1061 BPF_ANCILLARY(PROTOCOL);
1062 BPF_ANCILLARY(PKTTYPE);
1063 BPF_ANCILLARY(IFINDEX);
1064 BPF_ANCILLARY(NLATTR);
1065 BPF_ANCILLARY(NLATTR_NEST);
1066 BPF_ANCILLARY(MARK);
1067 BPF_ANCILLARY(QUEUE);
1068 BPF_ANCILLARY(HATYPE);
1069 BPF_ANCILLARY(RXHASH);
1070 BPF_ANCILLARY(CPU);
1071 BPF_ANCILLARY(ALU_XOR_X);
1072 BPF_ANCILLARY(VLAN_TAG);
1073 BPF_ANCILLARY(VLAN_TAG_PRESENT);
1074 BPF_ANCILLARY(PAY_OFFSET);
1075 BPF_ANCILLARY(RANDOM);
1076 BPF_ANCILLARY(VLAN_TPID);
1077 }
1078 /* Fallthrough. */
1079 default:
1080 return ftest->code;
1081 }
1082}
1083
1084void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1085 int k, unsigned int size);
1086
1087static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
1088 unsigned int size, void *buffer)
1089{
1090 if (k >= 0)
1091 return skb_header_pointer(skb, k, size, buffer);
1092
1093 return bpf_internal_load_pointer_neg_helper(skb, k, size);
1094}
1095
1096static inline int bpf_tell_extensions(void)
1097{
1098 return SKF_AD_MAX;
1099}
1100
1101struct bpf_sock_addr_kern {
1102 struct sock *sk;
1103 struct sockaddr *uaddr;
1104 /* Temporary "register" to make indirect stores to nested structures
1105 * defined above. We need three registers to make such a store, but
1106 * only two (src and dst) are available at convert_ctx_access time
1107 */
1108 u64 tmp_reg;
1109 void *t_ctx; /* Attach type specific context. */
1110};
1111
1112struct bpf_sock_ops_kern {
1113 struct sock *sk;
1114 u32 op;
1115 union {
1116 u32 args[4];
1117 u32 reply;
1118 u32 replylong[4];
1119 };
1120 u32 is_fullsock;
1121 u64 temp; /* temp and everything after is not
1122 * initialized to 0 before calling
1123 * the BPF program. New fields that
1124 * should be initialized to 0 should
1125 * be inserted before temp.
1126 * temp is scratch storage used by
1127 * sock_ops_convert_ctx_access
1128 * as temporary storage of a register.
1129 */
1130};
1131
1132#endif /* __LINUX_FILTER_H__ */