at v5.0 9.6 kB view raw
1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * 3 * This program is free software; you can redistribute it and/or 4 * modify it under the terms of version 2 of the GNU General Public 5 * License as published by the Free Software Foundation. 6 */ 7#ifndef _LINUX_BPF_VERIFIER_H 8#define _LINUX_BPF_VERIFIER_H 1 9 10#include <linux/bpf.h> /* for enum bpf_reg_type */ 11#include <linux/filter.h> /* for MAX_BPF_STACK */ 12#include <linux/tnum.h> 13 14/* Maximum variable offset umax_value permitted when resolving memory accesses. 15 * In practice this is far bigger than any realistic pointer offset; this limit 16 * ensures that umax_value + (int)off + (int)size cannot overflow a u64. 17 */ 18#define BPF_MAX_VAR_OFF (1 << 29) 19/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures 20 * that converting umax_value to int cannot overflow. 21 */ 22#define BPF_MAX_VAR_SIZ (1 << 29) 23 24/* Liveness marks, used for registers and spilled-regs (in stack slots). 25 * Read marks propagate upwards until they find a write mark; they record that 26 * "one of this state's descendants read this reg" (and therefore the reg is 27 * relevant for states_equal() checks). 28 * Write marks collect downwards and do not propagate; they record that "the 29 * straight-line code that reached this state (from its parent) wrote this reg" 30 * (and therefore that reads propagated from this state or its descendants 31 * should not propagate to its parent). 32 * A state with a write mark can receive read marks; it just won't propagate 33 * them to its parent, since the write mark is a property, not of the state, 34 * but of the link between it and its parent. See mark_reg_read() and 35 * mark_stack_slot_read() in kernel/bpf/verifier.c. 36 */ 37enum bpf_reg_liveness { 38 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */ 39 REG_LIVE_READ, /* reg was read, so we're sensitive to initial value */ 40 REG_LIVE_WRITTEN, /* reg was written first, screening off later reads */ 41 REG_LIVE_DONE = 4, /* liveness won't be updating this register anymore */ 42}; 43 44struct bpf_reg_state { 45 /* Ordering of fields matters. See states_equal() */ 46 enum bpf_reg_type type; 47 union { 48 /* valid when type == PTR_TO_PACKET */ 49 u16 range; 50 51 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | 52 * PTR_TO_MAP_VALUE_OR_NULL 53 */ 54 struct bpf_map *map_ptr; 55 56 /* Max size from any of the above. */ 57 unsigned long raw; 58 }; 59 /* Fixed part of pointer offset, pointer types only */ 60 s32 off; 61 /* For PTR_TO_PACKET, used to find other pointers with the same variable 62 * offset, so they can share range knowledge. 63 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we 64 * came from, when one is tested for != NULL. 65 * For PTR_TO_SOCKET this is used to share which pointers retain the 66 * same reference to the socket, to determine proper reference freeing. 67 */ 68 u32 id; 69 /* For scalar types (SCALAR_VALUE), this represents our knowledge of 70 * the actual value. 71 * For pointer types, this represents the variable part of the offset 72 * from the pointed-to object, and is shared with all bpf_reg_states 73 * with the same id as us. 74 */ 75 struct tnum var_off; 76 /* Used to determine if any memory access using this register will 77 * result in a bad access. 78 * These refer to the same value as var_off, not necessarily the actual 79 * contents of the register. 80 */ 81 s64 smin_value; /* minimum possible (s64)value */ 82 s64 smax_value; /* maximum possible (s64)value */ 83 u64 umin_value; /* minimum possible (u64)value */ 84 u64 umax_value; /* maximum possible (u64)value */ 85 /* parentage chain for liveness checking */ 86 struct bpf_reg_state *parent; 87 /* Inside the callee two registers can be both PTR_TO_STACK like 88 * R1=fp-8 and R2=fp-8, but one of them points to this function stack 89 * while another to the caller's stack. To differentiate them 'frameno' 90 * is used which is an index in bpf_verifier_state->frame[] array 91 * pointing to bpf_func_state. 92 */ 93 u32 frameno; 94 enum bpf_reg_liveness live; 95}; 96 97enum bpf_stack_slot_type { 98 STACK_INVALID, /* nothing was stored in this stack slot */ 99 STACK_SPILL, /* register spilled into stack */ 100 STACK_MISC, /* BPF program wrote some data into this slot */ 101 STACK_ZERO, /* BPF program wrote constant zero */ 102}; 103 104#define BPF_REG_SIZE 8 /* size of eBPF register in bytes */ 105 106struct bpf_stack_state { 107 struct bpf_reg_state spilled_ptr; 108 u8 slot_type[BPF_REG_SIZE]; 109}; 110 111struct bpf_reference_state { 112 /* Track each reference created with a unique id, even if the same 113 * instruction creates the reference multiple times (eg, via CALL). 114 */ 115 int id; 116 /* Instruction where the allocation of this reference occurred. This 117 * is used purely to inform the user of a reference leak. 118 */ 119 int insn_idx; 120}; 121 122/* state of the program: 123 * type of all registers and stack info 124 */ 125struct bpf_func_state { 126 struct bpf_reg_state regs[MAX_BPF_REG]; 127 /* index of call instruction that called into this func */ 128 int callsite; 129 /* stack frame number of this function state from pov of 130 * enclosing bpf_verifier_state. 131 * 0 = main function, 1 = first callee. 132 */ 133 u32 frameno; 134 /* subprog number == index within subprog_stack_depth 135 * zero == main subprog 136 */ 137 u32 subprogno; 138 139 /* The following fields should be last. See copy_func_state() */ 140 int acquired_refs; 141 struct bpf_reference_state *refs; 142 int allocated_stack; 143 struct bpf_stack_state *stack; 144}; 145 146#define MAX_CALL_FRAMES 8 147struct bpf_verifier_state { 148 /* call stack tracking */ 149 struct bpf_func_state *frame[MAX_CALL_FRAMES]; 150 u32 curframe; 151 bool speculative; 152}; 153 154#define bpf_get_spilled_reg(slot, frame) \ 155 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \ 156 (frame->stack[slot].slot_type[0] == STACK_SPILL)) \ 157 ? &frame->stack[slot].spilled_ptr : NULL) 158 159/* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */ 160#define bpf_for_each_spilled_reg(iter, frame, reg) \ 161 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame); \ 162 iter < frame->allocated_stack / BPF_REG_SIZE; \ 163 iter++, reg = bpf_get_spilled_reg(iter, frame)) 164 165/* linked list of verifier states used to prune search */ 166struct bpf_verifier_state_list { 167 struct bpf_verifier_state state; 168 struct bpf_verifier_state_list *next; 169}; 170 171/* Possible states for alu_state member. */ 172#define BPF_ALU_SANITIZE_SRC 1U 173#define BPF_ALU_SANITIZE_DST 2U 174#define BPF_ALU_NEG_VALUE (1U << 2) 175#define BPF_ALU_NON_POINTER (1U << 3) 176#define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \ 177 BPF_ALU_SANITIZE_DST) 178 179struct bpf_insn_aux_data { 180 union { 181 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */ 182 unsigned long map_state; /* pointer/poison value for maps */ 183 s32 call_imm; /* saved imm field of call insn */ 184 u32 alu_limit; /* limit for add/sub register with pointer */ 185 }; 186 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */ 187 int sanitize_stack_off; /* stack slot to be cleared */ 188 bool seen; /* this insn was processed by the verifier */ 189 u8 alu_state; /* used in combination with alu_limit */ 190}; 191 192#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ 193 194#define BPF_VERIFIER_TMP_LOG_SIZE 1024 195 196struct bpf_verifier_log { 197 u32 level; 198 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE]; 199 char __user *ubuf; 200 u32 len_used; 201 u32 len_total; 202}; 203 204static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log) 205{ 206 return log->len_used >= log->len_total - 1; 207} 208 209static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log) 210{ 211 return log->level && log->ubuf && !bpf_verifier_log_full(log); 212} 213 214#define BPF_MAX_SUBPROGS 256 215 216struct bpf_subprog_info { 217 u32 start; /* insn idx of function entry point */ 218 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */ 219 u16 stack_depth; /* max. stack depth used by this function */ 220}; 221 222/* single container for all structs 223 * one verifier_env per bpf_check() call 224 */ 225struct bpf_verifier_env { 226 u32 insn_idx; 227 u32 prev_insn_idx; 228 struct bpf_prog *prog; /* eBPF program being verified */ 229 const struct bpf_verifier_ops *ops; 230 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */ 231 int stack_size; /* number of states to be processed */ 232 bool strict_alignment; /* perform strict pointer alignment checks */ 233 struct bpf_verifier_state *cur_state; /* current verifier state */ 234 struct bpf_verifier_state_list **explored_states; /* search pruning optimization */ 235 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ 236 u32 used_map_cnt; /* number of used maps */ 237 u32 id_gen; /* used to generate unique reg IDs */ 238 bool allow_ptr_leaks; 239 bool seen_direct_write; 240 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */ 241 const struct bpf_line_info *prev_linfo; 242 struct bpf_verifier_log log; 243 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1]; 244 u32 subprog_cnt; 245}; 246 247__printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log, 248 const char *fmt, va_list args); 249__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 250 const char *fmt, ...); 251 252static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env) 253{ 254 struct bpf_verifier_state *cur = env->cur_state; 255 256 return cur->frame[cur->curframe]; 257} 258 259static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env) 260{ 261 return cur_func(env)->regs; 262} 263 264int bpf_prog_offload_verifier_prep(struct bpf_prog *prog); 265int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env, 266 int insn_idx, int prev_insn_idx); 267int bpf_prog_offload_finalize(struct bpf_verifier_env *env); 268 269#endif /* _LINUX_BPF_VERIFIER_H */