Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/pagemap.h>
11#include <linux/highmem.h>
12#include <linux/time.h>
13#include <linux/init.h>
14#include <linux/string.h>
15#include <linux/backing-dev.h>
16#include <linux/writeback.h>
17#include <linux/slab.h>
18#include <linux/sched/mm.h>
19#include <linux/log2.h>
20#include "ctree.h"
21#include "disk-io.h"
22#include "transaction.h"
23#include "btrfs_inode.h"
24#include "volumes.h"
25#include "ordered-data.h"
26#include "compression.h"
27#include "extent_io.h"
28#include "extent_map.h"
29
30static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
31
32const char* btrfs_compress_type2str(enum btrfs_compression_type type)
33{
34 switch (type) {
35 case BTRFS_COMPRESS_ZLIB:
36 case BTRFS_COMPRESS_LZO:
37 case BTRFS_COMPRESS_ZSTD:
38 case BTRFS_COMPRESS_NONE:
39 return btrfs_compress_types[type];
40 }
41
42 return NULL;
43}
44
45static int btrfs_decompress_bio(struct compressed_bio *cb);
46
47static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
48 unsigned long disk_size)
49{
50 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
51
52 return sizeof(struct compressed_bio) +
53 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
54}
55
56static int check_compressed_csum(struct btrfs_inode *inode,
57 struct compressed_bio *cb,
58 u64 disk_start)
59{
60 int ret;
61 struct page *page;
62 unsigned long i;
63 char *kaddr;
64 u32 csum;
65 u32 *cb_sum = &cb->sums;
66
67 if (inode->flags & BTRFS_INODE_NODATASUM)
68 return 0;
69
70 for (i = 0; i < cb->nr_pages; i++) {
71 page = cb->compressed_pages[i];
72 csum = ~(u32)0;
73
74 kaddr = kmap_atomic(page);
75 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
76 btrfs_csum_final(csum, (u8 *)&csum);
77 kunmap_atomic(kaddr);
78
79 if (csum != *cb_sum) {
80 btrfs_print_data_csum_error(inode, disk_start, csum,
81 *cb_sum, cb->mirror_num);
82 ret = -EIO;
83 goto fail;
84 }
85 cb_sum++;
86
87 }
88 ret = 0;
89fail:
90 return ret;
91}
92
93/* when we finish reading compressed pages from the disk, we
94 * decompress them and then run the bio end_io routines on the
95 * decompressed pages (in the inode address space).
96 *
97 * This allows the checksumming and other IO error handling routines
98 * to work normally
99 *
100 * The compressed pages are freed here, and it must be run
101 * in process context
102 */
103static void end_compressed_bio_read(struct bio *bio)
104{
105 struct compressed_bio *cb = bio->bi_private;
106 struct inode *inode;
107 struct page *page;
108 unsigned long index;
109 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
110 int ret = 0;
111
112 if (bio->bi_status)
113 cb->errors = 1;
114
115 /* if there are more bios still pending for this compressed
116 * extent, just exit
117 */
118 if (!refcount_dec_and_test(&cb->pending_bios))
119 goto out;
120
121 /*
122 * Record the correct mirror_num in cb->orig_bio so that
123 * read-repair can work properly.
124 */
125 ASSERT(btrfs_io_bio(cb->orig_bio));
126 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
127 cb->mirror_num = mirror;
128
129 /*
130 * Some IO in this cb have failed, just skip checksum as there
131 * is no way it could be correct.
132 */
133 if (cb->errors == 1)
134 goto csum_failed;
135
136 inode = cb->inode;
137 ret = check_compressed_csum(BTRFS_I(inode), cb,
138 (u64)bio->bi_iter.bi_sector << 9);
139 if (ret)
140 goto csum_failed;
141
142 /* ok, we're the last bio for this extent, lets start
143 * the decompression.
144 */
145 ret = btrfs_decompress_bio(cb);
146
147csum_failed:
148 if (ret)
149 cb->errors = 1;
150
151 /* release the compressed pages */
152 index = 0;
153 for (index = 0; index < cb->nr_pages; index++) {
154 page = cb->compressed_pages[index];
155 page->mapping = NULL;
156 put_page(page);
157 }
158
159 /* do io completion on the original bio */
160 if (cb->errors) {
161 bio_io_error(cb->orig_bio);
162 } else {
163 int i;
164 struct bio_vec *bvec;
165
166 /*
167 * we have verified the checksum already, set page
168 * checked so the end_io handlers know about it
169 */
170 ASSERT(!bio_flagged(bio, BIO_CLONED));
171 bio_for_each_segment_all(bvec, cb->orig_bio, i)
172 SetPageChecked(bvec->bv_page);
173
174 bio_endio(cb->orig_bio);
175 }
176
177 /* finally free the cb struct */
178 kfree(cb->compressed_pages);
179 kfree(cb);
180out:
181 bio_put(bio);
182}
183
184/*
185 * Clear the writeback bits on all of the file
186 * pages for a compressed write
187 */
188static noinline void end_compressed_writeback(struct inode *inode,
189 const struct compressed_bio *cb)
190{
191 unsigned long index = cb->start >> PAGE_SHIFT;
192 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
193 struct page *pages[16];
194 unsigned long nr_pages = end_index - index + 1;
195 int i;
196 int ret;
197
198 if (cb->errors)
199 mapping_set_error(inode->i_mapping, -EIO);
200
201 while (nr_pages > 0) {
202 ret = find_get_pages_contig(inode->i_mapping, index,
203 min_t(unsigned long,
204 nr_pages, ARRAY_SIZE(pages)), pages);
205 if (ret == 0) {
206 nr_pages -= 1;
207 index += 1;
208 continue;
209 }
210 for (i = 0; i < ret; i++) {
211 if (cb->errors)
212 SetPageError(pages[i]);
213 end_page_writeback(pages[i]);
214 put_page(pages[i]);
215 }
216 nr_pages -= ret;
217 index += ret;
218 }
219 /* the inode may be gone now */
220}
221
222/*
223 * do the cleanup once all the compressed pages hit the disk.
224 * This will clear writeback on the file pages and free the compressed
225 * pages.
226 *
227 * This also calls the writeback end hooks for the file pages so that
228 * metadata and checksums can be updated in the file.
229 */
230static void end_compressed_bio_write(struct bio *bio)
231{
232 struct compressed_bio *cb = bio->bi_private;
233 struct inode *inode;
234 struct page *page;
235 unsigned long index;
236
237 if (bio->bi_status)
238 cb->errors = 1;
239
240 /* if there are more bios still pending for this compressed
241 * extent, just exit
242 */
243 if (!refcount_dec_and_test(&cb->pending_bios))
244 goto out;
245
246 /* ok, we're the last bio for this extent, step one is to
247 * call back into the FS and do all the end_io operations
248 */
249 inode = cb->inode;
250 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
251 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
252 cb->start, cb->start + cb->len - 1,
253 bio->bi_status ? BLK_STS_OK : BLK_STS_NOTSUPP);
254 cb->compressed_pages[0]->mapping = NULL;
255
256 end_compressed_writeback(inode, cb);
257 /* note, our inode could be gone now */
258
259 /*
260 * release the compressed pages, these came from alloc_page and
261 * are not attached to the inode at all
262 */
263 index = 0;
264 for (index = 0; index < cb->nr_pages; index++) {
265 page = cb->compressed_pages[index];
266 page->mapping = NULL;
267 put_page(page);
268 }
269
270 /* finally free the cb struct */
271 kfree(cb->compressed_pages);
272 kfree(cb);
273out:
274 bio_put(bio);
275}
276
277/*
278 * worker function to build and submit bios for previously compressed pages.
279 * The corresponding pages in the inode should be marked for writeback
280 * and the compressed pages should have a reference on them for dropping
281 * when the IO is complete.
282 *
283 * This also checksums the file bytes and gets things ready for
284 * the end io hooks.
285 */
286blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
287 unsigned long len, u64 disk_start,
288 unsigned long compressed_len,
289 struct page **compressed_pages,
290 unsigned long nr_pages,
291 unsigned int write_flags)
292{
293 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
294 struct bio *bio = NULL;
295 struct compressed_bio *cb;
296 unsigned long bytes_left;
297 int pg_index = 0;
298 struct page *page;
299 u64 first_byte = disk_start;
300 struct block_device *bdev;
301 blk_status_t ret;
302 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
303
304 WARN_ON(!PAGE_ALIGNED(start));
305 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
306 if (!cb)
307 return BLK_STS_RESOURCE;
308 refcount_set(&cb->pending_bios, 0);
309 cb->errors = 0;
310 cb->inode = inode;
311 cb->start = start;
312 cb->len = len;
313 cb->mirror_num = 0;
314 cb->compressed_pages = compressed_pages;
315 cb->compressed_len = compressed_len;
316 cb->orig_bio = NULL;
317 cb->nr_pages = nr_pages;
318
319 bdev = fs_info->fs_devices->latest_bdev;
320
321 bio = btrfs_bio_alloc(bdev, first_byte);
322 bio->bi_opf = REQ_OP_WRITE | write_flags;
323 bio->bi_private = cb;
324 bio->bi_end_io = end_compressed_bio_write;
325 refcount_set(&cb->pending_bios, 1);
326
327 /* create and submit bios for the compressed pages */
328 bytes_left = compressed_len;
329 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
330 int submit = 0;
331
332 page = compressed_pages[pg_index];
333 page->mapping = inode->i_mapping;
334 if (bio->bi_iter.bi_size)
335 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
336 0);
337
338 page->mapping = NULL;
339 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
340 PAGE_SIZE) {
341 /*
342 * inc the count before we submit the bio so
343 * we know the end IO handler won't happen before
344 * we inc the count. Otherwise, the cb might get
345 * freed before we're done setting it up
346 */
347 refcount_inc(&cb->pending_bios);
348 ret = btrfs_bio_wq_end_io(fs_info, bio,
349 BTRFS_WQ_ENDIO_DATA);
350 BUG_ON(ret); /* -ENOMEM */
351
352 if (!skip_sum) {
353 ret = btrfs_csum_one_bio(inode, bio, start, 1);
354 BUG_ON(ret); /* -ENOMEM */
355 }
356
357 ret = btrfs_map_bio(fs_info, bio, 0, 1);
358 if (ret) {
359 bio->bi_status = ret;
360 bio_endio(bio);
361 }
362
363 bio = btrfs_bio_alloc(bdev, first_byte);
364 bio->bi_opf = REQ_OP_WRITE | write_flags;
365 bio->bi_private = cb;
366 bio->bi_end_io = end_compressed_bio_write;
367 bio_add_page(bio, page, PAGE_SIZE, 0);
368 }
369 if (bytes_left < PAGE_SIZE) {
370 btrfs_info(fs_info,
371 "bytes left %lu compress len %lu nr %lu",
372 bytes_left, cb->compressed_len, cb->nr_pages);
373 }
374 bytes_left -= PAGE_SIZE;
375 first_byte += PAGE_SIZE;
376 cond_resched();
377 }
378
379 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
380 BUG_ON(ret); /* -ENOMEM */
381
382 if (!skip_sum) {
383 ret = btrfs_csum_one_bio(inode, bio, start, 1);
384 BUG_ON(ret); /* -ENOMEM */
385 }
386
387 ret = btrfs_map_bio(fs_info, bio, 0, 1);
388 if (ret) {
389 bio->bi_status = ret;
390 bio_endio(bio);
391 }
392
393 return 0;
394}
395
396static u64 bio_end_offset(struct bio *bio)
397{
398 struct bio_vec *last = bio_last_bvec_all(bio);
399
400 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
401}
402
403static noinline int add_ra_bio_pages(struct inode *inode,
404 u64 compressed_end,
405 struct compressed_bio *cb)
406{
407 unsigned long end_index;
408 unsigned long pg_index;
409 u64 last_offset;
410 u64 isize = i_size_read(inode);
411 int ret;
412 struct page *page;
413 unsigned long nr_pages = 0;
414 struct extent_map *em;
415 struct address_space *mapping = inode->i_mapping;
416 struct extent_map_tree *em_tree;
417 struct extent_io_tree *tree;
418 u64 end;
419 int misses = 0;
420
421 last_offset = bio_end_offset(cb->orig_bio);
422 em_tree = &BTRFS_I(inode)->extent_tree;
423 tree = &BTRFS_I(inode)->io_tree;
424
425 if (isize == 0)
426 return 0;
427
428 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
429
430 while (last_offset < compressed_end) {
431 pg_index = last_offset >> PAGE_SHIFT;
432
433 if (pg_index > end_index)
434 break;
435
436 page = xa_load(&mapping->i_pages, pg_index);
437 if (page && !xa_is_value(page)) {
438 misses++;
439 if (misses > 4)
440 break;
441 goto next;
442 }
443
444 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
445 ~__GFP_FS));
446 if (!page)
447 break;
448
449 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
450 put_page(page);
451 goto next;
452 }
453
454 end = last_offset + PAGE_SIZE - 1;
455 /*
456 * at this point, we have a locked page in the page cache
457 * for these bytes in the file. But, we have to make
458 * sure they map to this compressed extent on disk.
459 */
460 set_page_extent_mapped(page);
461 lock_extent(tree, last_offset, end);
462 read_lock(&em_tree->lock);
463 em = lookup_extent_mapping(em_tree, last_offset,
464 PAGE_SIZE);
465 read_unlock(&em_tree->lock);
466
467 if (!em || last_offset < em->start ||
468 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
469 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
470 free_extent_map(em);
471 unlock_extent(tree, last_offset, end);
472 unlock_page(page);
473 put_page(page);
474 break;
475 }
476 free_extent_map(em);
477
478 if (page->index == end_index) {
479 char *userpage;
480 size_t zero_offset = offset_in_page(isize);
481
482 if (zero_offset) {
483 int zeros;
484 zeros = PAGE_SIZE - zero_offset;
485 userpage = kmap_atomic(page);
486 memset(userpage + zero_offset, 0, zeros);
487 flush_dcache_page(page);
488 kunmap_atomic(userpage);
489 }
490 }
491
492 ret = bio_add_page(cb->orig_bio, page,
493 PAGE_SIZE, 0);
494
495 if (ret == PAGE_SIZE) {
496 nr_pages++;
497 put_page(page);
498 } else {
499 unlock_extent(tree, last_offset, end);
500 unlock_page(page);
501 put_page(page);
502 break;
503 }
504next:
505 last_offset += PAGE_SIZE;
506 }
507 return 0;
508}
509
510/*
511 * for a compressed read, the bio we get passed has all the inode pages
512 * in it. We don't actually do IO on those pages but allocate new ones
513 * to hold the compressed pages on disk.
514 *
515 * bio->bi_iter.bi_sector points to the compressed extent on disk
516 * bio->bi_io_vec points to all of the inode pages
517 *
518 * After the compressed pages are read, we copy the bytes into the
519 * bio we were passed and then call the bio end_io calls
520 */
521blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
522 int mirror_num, unsigned long bio_flags)
523{
524 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
525 struct extent_map_tree *em_tree;
526 struct compressed_bio *cb;
527 unsigned long compressed_len;
528 unsigned long nr_pages;
529 unsigned long pg_index;
530 struct page *page;
531 struct block_device *bdev;
532 struct bio *comp_bio;
533 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
534 u64 em_len;
535 u64 em_start;
536 struct extent_map *em;
537 blk_status_t ret = BLK_STS_RESOURCE;
538 int faili = 0;
539 u32 *sums;
540
541 em_tree = &BTRFS_I(inode)->extent_tree;
542
543 /* we need the actual starting offset of this extent in the file */
544 read_lock(&em_tree->lock);
545 em = lookup_extent_mapping(em_tree,
546 page_offset(bio_first_page_all(bio)),
547 PAGE_SIZE);
548 read_unlock(&em_tree->lock);
549 if (!em)
550 return BLK_STS_IOERR;
551
552 compressed_len = em->block_len;
553 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
554 if (!cb)
555 goto out;
556
557 refcount_set(&cb->pending_bios, 0);
558 cb->errors = 0;
559 cb->inode = inode;
560 cb->mirror_num = mirror_num;
561 sums = &cb->sums;
562
563 cb->start = em->orig_start;
564 em_len = em->len;
565 em_start = em->start;
566
567 free_extent_map(em);
568 em = NULL;
569
570 cb->len = bio->bi_iter.bi_size;
571 cb->compressed_len = compressed_len;
572 cb->compress_type = extent_compress_type(bio_flags);
573 cb->orig_bio = bio;
574
575 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
576 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
577 GFP_NOFS);
578 if (!cb->compressed_pages)
579 goto fail1;
580
581 bdev = fs_info->fs_devices->latest_bdev;
582
583 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
584 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
585 __GFP_HIGHMEM);
586 if (!cb->compressed_pages[pg_index]) {
587 faili = pg_index - 1;
588 ret = BLK_STS_RESOURCE;
589 goto fail2;
590 }
591 }
592 faili = nr_pages - 1;
593 cb->nr_pages = nr_pages;
594
595 add_ra_bio_pages(inode, em_start + em_len, cb);
596
597 /* include any pages we added in add_ra-bio_pages */
598 cb->len = bio->bi_iter.bi_size;
599
600 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
601 comp_bio->bi_opf = REQ_OP_READ;
602 comp_bio->bi_private = cb;
603 comp_bio->bi_end_io = end_compressed_bio_read;
604 refcount_set(&cb->pending_bios, 1);
605
606 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
607 int submit = 0;
608
609 page = cb->compressed_pages[pg_index];
610 page->mapping = inode->i_mapping;
611 page->index = em_start >> PAGE_SHIFT;
612
613 if (comp_bio->bi_iter.bi_size)
614 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
615 comp_bio, 0);
616
617 page->mapping = NULL;
618 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
619 PAGE_SIZE) {
620 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
621 BTRFS_WQ_ENDIO_DATA);
622 BUG_ON(ret); /* -ENOMEM */
623
624 /*
625 * inc the count before we submit the bio so
626 * we know the end IO handler won't happen before
627 * we inc the count. Otherwise, the cb might get
628 * freed before we're done setting it up
629 */
630 refcount_inc(&cb->pending_bios);
631
632 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
633 ret = btrfs_lookup_bio_sums(inode, comp_bio,
634 sums);
635 BUG_ON(ret); /* -ENOMEM */
636 }
637 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
638 fs_info->sectorsize);
639
640 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
641 if (ret) {
642 comp_bio->bi_status = ret;
643 bio_endio(comp_bio);
644 }
645
646 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
647 comp_bio->bi_opf = REQ_OP_READ;
648 comp_bio->bi_private = cb;
649 comp_bio->bi_end_io = end_compressed_bio_read;
650
651 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
652 }
653 cur_disk_byte += PAGE_SIZE;
654 }
655
656 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
657 BUG_ON(ret); /* -ENOMEM */
658
659 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
660 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
661 BUG_ON(ret); /* -ENOMEM */
662 }
663
664 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
665 if (ret) {
666 comp_bio->bi_status = ret;
667 bio_endio(comp_bio);
668 }
669
670 return 0;
671
672fail2:
673 while (faili >= 0) {
674 __free_page(cb->compressed_pages[faili]);
675 faili--;
676 }
677
678 kfree(cb->compressed_pages);
679fail1:
680 kfree(cb);
681out:
682 free_extent_map(em);
683 return ret;
684}
685
686/*
687 * Heuristic uses systematic sampling to collect data from the input data
688 * range, the logic can be tuned by the following constants:
689 *
690 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
691 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
692 */
693#define SAMPLING_READ_SIZE (16)
694#define SAMPLING_INTERVAL (256)
695
696/*
697 * For statistical analysis of the input data we consider bytes that form a
698 * Galois Field of 256 objects. Each object has an attribute count, ie. how
699 * many times the object appeared in the sample.
700 */
701#define BUCKET_SIZE (256)
702
703/*
704 * The size of the sample is based on a statistical sampling rule of thumb.
705 * The common way is to perform sampling tests as long as the number of
706 * elements in each cell is at least 5.
707 *
708 * Instead of 5, we choose 32 to obtain more accurate results.
709 * If the data contain the maximum number of symbols, which is 256, we obtain a
710 * sample size bound by 8192.
711 *
712 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
713 * from up to 512 locations.
714 */
715#define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
716 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
717
718struct bucket_item {
719 u32 count;
720};
721
722struct heuristic_ws {
723 /* Partial copy of input data */
724 u8 *sample;
725 u32 sample_size;
726 /* Buckets store counters for each byte value */
727 struct bucket_item *bucket;
728 /* Sorting buffer */
729 struct bucket_item *bucket_b;
730 struct list_head list;
731};
732
733static void free_heuristic_ws(struct list_head *ws)
734{
735 struct heuristic_ws *workspace;
736
737 workspace = list_entry(ws, struct heuristic_ws, list);
738
739 kvfree(workspace->sample);
740 kfree(workspace->bucket);
741 kfree(workspace->bucket_b);
742 kfree(workspace);
743}
744
745static struct list_head *alloc_heuristic_ws(void)
746{
747 struct heuristic_ws *ws;
748
749 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
750 if (!ws)
751 return ERR_PTR(-ENOMEM);
752
753 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
754 if (!ws->sample)
755 goto fail;
756
757 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
758 if (!ws->bucket)
759 goto fail;
760
761 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
762 if (!ws->bucket_b)
763 goto fail;
764
765 INIT_LIST_HEAD(&ws->list);
766 return &ws->list;
767fail:
768 free_heuristic_ws(&ws->list);
769 return ERR_PTR(-ENOMEM);
770}
771
772struct workspaces_list {
773 struct list_head idle_ws;
774 spinlock_t ws_lock;
775 /* Number of free workspaces */
776 int free_ws;
777 /* Total number of allocated workspaces */
778 atomic_t total_ws;
779 /* Waiters for a free workspace */
780 wait_queue_head_t ws_wait;
781};
782
783static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
784
785static struct workspaces_list btrfs_heuristic_ws;
786
787static const struct btrfs_compress_op * const btrfs_compress_op[] = {
788 &btrfs_zlib_compress,
789 &btrfs_lzo_compress,
790 &btrfs_zstd_compress,
791};
792
793void __init btrfs_init_compress(void)
794{
795 struct list_head *workspace;
796 int i;
797
798 INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
799 spin_lock_init(&btrfs_heuristic_ws.ws_lock);
800 atomic_set(&btrfs_heuristic_ws.total_ws, 0);
801 init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
802
803 workspace = alloc_heuristic_ws();
804 if (IS_ERR(workspace)) {
805 pr_warn(
806 "BTRFS: cannot preallocate heuristic workspace, will try later\n");
807 } else {
808 atomic_set(&btrfs_heuristic_ws.total_ws, 1);
809 btrfs_heuristic_ws.free_ws = 1;
810 list_add(workspace, &btrfs_heuristic_ws.idle_ws);
811 }
812
813 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
814 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
815 spin_lock_init(&btrfs_comp_ws[i].ws_lock);
816 atomic_set(&btrfs_comp_ws[i].total_ws, 0);
817 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
818
819 /*
820 * Preallocate one workspace for each compression type so
821 * we can guarantee forward progress in the worst case
822 */
823 workspace = btrfs_compress_op[i]->alloc_workspace();
824 if (IS_ERR(workspace)) {
825 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
826 } else {
827 atomic_set(&btrfs_comp_ws[i].total_ws, 1);
828 btrfs_comp_ws[i].free_ws = 1;
829 list_add(workspace, &btrfs_comp_ws[i].idle_ws);
830 }
831 }
832}
833
834/*
835 * This finds an available workspace or allocates a new one.
836 * If it's not possible to allocate a new one, waits until there's one.
837 * Preallocation makes a forward progress guarantees and we do not return
838 * errors.
839 */
840static struct list_head *__find_workspace(int type, bool heuristic)
841{
842 struct list_head *workspace;
843 int cpus = num_online_cpus();
844 int idx = type - 1;
845 unsigned nofs_flag;
846 struct list_head *idle_ws;
847 spinlock_t *ws_lock;
848 atomic_t *total_ws;
849 wait_queue_head_t *ws_wait;
850 int *free_ws;
851
852 if (heuristic) {
853 idle_ws = &btrfs_heuristic_ws.idle_ws;
854 ws_lock = &btrfs_heuristic_ws.ws_lock;
855 total_ws = &btrfs_heuristic_ws.total_ws;
856 ws_wait = &btrfs_heuristic_ws.ws_wait;
857 free_ws = &btrfs_heuristic_ws.free_ws;
858 } else {
859 idle_ws = &btrfs_comp_ws[idx].idle_ws;
860 ws_lock = &btrfs_comp_ws[idx].ws_lock;
861 total_ws = &btrfs_comp_ws[idx].total_ws;
862 ws_wait = &btrfs_comp_ws[idx].ws_wait;
863 free_ws = &btrfs_comp_ws[idx].free_ws;
864 }
865
866again:
867 spin_lock(ws_lock);
868 if (!list_empty(idle_ws)) {
869 workspace = idle_ws->next;
870 list_del(workspace);
871 (*free_ws)--;
872 spin_unlock(ws_lock);
873 return workspace;
874
875 }
876 if (atomic_read(total_ws) > cpus) {
877 DEFINE_WAIT(wait);
878
879 spin_unlock(ws_lock);
880 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
881 if (atomic_read(total_ws) > cpus && !*free_ws)
882 schedule();
883 finish_wait(ws_wait, &wait);
884 goto again;
885 }
886 atomic_inc(total_ws);
887 spin_unlock(ws_lock);
888
889 /*
890 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
891 * to turn it off here because we might get called from the restricted
892 * context of btrfs_compress_bio/btrfs_compress_pages
893 */
894 nofs_flag = memalloc_nofs_save();
895 if (heuristic)
896 workspace = alloc_heuristic_ws();
897 else
898 workspace = btrfs_compress_op[idx]->alloc_workspace();
899 memalloc_nofs_restore(nofs_flag);
900
901 if (IS_ERR(workspace)) {
902 atomic_dec(total_ws);
903 wake_up(ws_wait);
904
905 /*
906 * Do not return the error but go back to waiting. There's a
907 * workspace preallocated for each type and the compression
908 * time is bounded so we get to a workspace eventually. This
909 * makes our caller's life easier.
910 *
911 * To prevent silent and low-probability deadlocks (when the
912 * initial preallocation fails), check if there are any
913 * workspaces at all.
914 */
915 if (atomic_read(total_ws) == 0) {
916 static DEFINE_RATELIMIT_STATE(_rs,
917 /* once per minute */ 60 * HZ,
918 /* no burst */ 1);
919
920 if (__ratelimit(&_rs)) {
921 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
922 }
923 }
924 goto again;
925 }
926 return workspace;
927}
928
929static struct list_head *find_workspace(int type)
930{
931 return __find_workspace(type, false);
932}
933
934/*
935 * put a workspace struct back on the list or free it if we have enough
936 * idle ones sitting around
937 */
938static void __free_workspace(int type, struct list_head *workspace,
939 bool heuristic)
940{
941 int idx = type - 1;
942 struct list_head *idle_ws;
943 spinlock_t *ws_lock;
944 atomic_t *total_ws;
945 wait_queue_head_t *ws_wait;
946 int *free_ws;
947
948 if (heuristic) {
949 idle_ws = &btrfs_heuristic_ws.idle_ws;
950 ws_lock = &btrfs_heuristic_ws.ws_lock;
951 total_ws = &btrfs_heuristic_ws.total_ws;
952 ws_wait = &btrfs_heuristic_ws.ws_wait;
953 free_ws = &btrfs_heuristic_ws.free_ws;
954 } else {
955 idle_ws = &btrfs_comp_ws[idx].idle_ws;
956 ws_lock = &btrfs_comp_ws[idx].ws_lock;
957 total_ws = &btrfs_comp_ws[idx].total_ws;
958 ws_wait = &btrfs_comp_ws[idx].ws_wait;
959 free_ws = &btrfs_comp_ws[idx].free_ws;
960 }
961
962 spin_lock(ws_lock);
963 if (*free_ws <= num_online_cpus()) {
964 list_add(workspace, idle_ws);
965 (*free_ws)++;
966 spin_unlock(ws_lock);
967 goto wake;
968 }
969 spin_unlock(ws_lock);
970
971 if (heuristic)
972 free_heuristic_ws(workspace);
973 else
974 btrfs_compress_op[idx]->free_workspace(workspace);
975 atomic_dec(total_ws);
976wake:
977 cond_wake_up(ws_wait);
978}
979
980static void free_workspace(int type, struct list_head *ws)
981{
982 return __free_workspace(type, ws, false);
983}
984
985/*
986 * cleanup function for module exit
987 */
988static void free_workspaces(void)
989{
990 struct list_head *workspace;
991 int i;
992
993 while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
994 workspace = btrfs_heuristic_ws.idle_ws.next;
995 list_del(workspace);
996 free_heuristic_ws(workspace);
997 atomic_dec(&btrfs_heuristic_ws.total_ws);
998 }
999
1000 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
1001 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
1002 workspace = btrfs_comp_ws[i].idle_ws.next;
1003 list_del(workspace);
1004 btrfs_compress_op[i]->free_workspace(workspace);
1005 atomic_dec(&btrfs_comp_ws[i].total_ws);
1006 }
1007 }
1008}
1009
1010/*
1011 * Given an address space and start and length, compress the bytes into @pages
1012 * that are allocated on demand.
1013 *
1014 * @type_level is encoded algorithm and level, where level 0 means whatever
1015 * default the algorithm chooses and is opaque here;
1016 * - compression algo are 0-3
1017 * - the level are bits 4-7
1018 *
1019 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1020 * and returns number of actually allocated pages
1021 *
1022 * @total_in is used to return the number of bytes actually read. It
1023 * may be smaller than the input length if we had to exit early because we
1024 * ran out of room in the pages array or because we cross the
1025 * max_out threshold.
1026 *
1027 * @total_out is an in/out parameter, must be set to the input length and will
1028 * be also used to return the total number of compressed bytes
1029 *
1030 * @max_out tells us the max number of bytes that we're allowed to
1031 * stuff into pages
1032 */
1033int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1034 u64 start, struct page **pages,
1035 unsigned long *out_pages,
1036 unsigned long *total_in,
1037 unsigned long *total_out)
1038{
1039 struct list_head *workspace;
1040 int ret;
1041 int type = type_level & 0xF;
1042
1043 workspace = find_workspace(type);
1044
1045 btrfs_compress_op[type - 1]->set_level(workspace, type_level);
1046 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
1047 start, pages,
1048 out_pages,
1049 total_in, total_out);
1050 free_workspace(type, workspace);
1051 return ret;
1052}
1053
1054/*
1055 * pages_in is an array of pages with compressed data.
1056 *
1057 * disk_start is the starting logical offset of this array in the file
1058 *
1059 * orig_bio contains the pages from the file that we want to decompress into
1060 *
1061 * srclen is the number of bytes in pages_in
1062 *
1063 * The basic idea is that we have a bio that was created by readpages.
1064 * The pages in the bio are for the uncompressed data, and they may not
1065 * be contiguous. They all correspond to the range of bytes covered by
1066 * the compressed extent.
1067 */
1068static int btrfs_decompress_bio(struct compressed_bio *cb)
1069{
1070 struct list_head *workspace;
1071 int ret;
1072 int type = cb->compress_type;
1073
1074 workspace = find_workspace(type);
1075 ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
1076 free_workspace(type, workspace);
1077
1078 return ret;
1079}
1080
1081/*
1082 * a less complex decompression routine. Our compressed data fits in a
1083 * single page, and we want to read a single page out of it.
1084 * start_byte tells us the offset into the compressed data we're interested in
1085 */
1086int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1087 unsigned long start_byte, size_t srclen, size_t destlen)
1088{
1089 struct list_head *workspace;
1090 int ret;
1091
1092 workspace = find_workspace(type);
1093
1094 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1095 dest_page, start_byte,
1096 srclen, destlen);
1097
1098 free_workspace(type, workspace);
1099 return ret;
1100}
1101
1102void __cold btrfs_exit_compress(void)
1103{
1104 free_workspaces();
1105}
1106
1107/*
1108 * Copy uncompressed data from working buffer to pages.
1109 *
1110 * buf_start is the byte offset we're of the start of our workspace buffer.
1111 *
1112 * total_out is the last byte of the buffer
1113 */
1114int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1115 unsigned long total_out, u64 disk_start,
1116 struct bio *bio)
1117{
1118 unsigned long buf_offset;
1119 unsigned long current_buf_start;
1120 unsigned long start_byte;
1121 unsigned long prev_start_byte;
1122 unsigned long working_bytes = total_out - buf_start;
1123 unsigned long bytes;
1124 char *kaddr;
1125 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1126
1127 /*
1128 * start byte is the first byte of the page we're currently
1129 * copying into relative to the start of the compressed data.
1130 */
1131 start_byte = page_offset(bvec.bv_page) - disk_start;
1132
1133 /* we haven't yet hit data corresponding to this page */
1134 if (total_out <= start_byte)
1135 return 1;
1136
1137 /*
1138 * the start of the data we care about is offset into
1139 * the middle of our working buffer
1140 */
1141 if (total_out > start_byte && buf_start < start_byte) {
1142 buf_offset = start_byte - buf_start;
1143 working_bytes -= buf_offset;
1144 } else {
1145 buf_offset = 0;
1146 }
1147 current_buf_start = buf_start;
1148
1149 /* copy bytes from the working buffer into the pages */
1150 while (working_bytes > 0) {
1151 bytes = min_t(unsigned long, bvec.bv_len,
1152 PAGE_SIZE - buf_offset);
1153 bytes = min(bytes, working_bytes);
1154
1155 kaddr = kmap_atomic(bvec.bv_page);
1156 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1157 kunmap_atomic(kaddr);
1158 flush_dcache_page(bvec.bv_page);
1159
1160 buf_offset += bytes;
1161 working_bytes -= bytes;
1162 current_buf_start += bytes;
1163
1164 /* check if we need to pick another page */
1165 bio_advance(bio, bytes);
1166 if (!bio->bi_iter.bi_size)
1167 return 0;
1168 bvec = bio_iter_iovec(bio, bio->bi_iter);
1169 prev_start_byte = start_byte;
1170 start_byte = page_offset(bvec.bv_page) - disk_start;
1171
1172 /*
1173 * We need to make sure we're only adjusting
1174 * our offset into compression working buffer when
1175 * we're switching pages. Otherwise we can incorrectly
1176 * keep copying when we were actually done.
1177 */
1178 if (start_byte != prev_start_byte) {
1179 /*
1180 * make sure our new page is covered by this
1181 * working buffer
1182 */
1183 if (total_out <= start_byte)
1184 return 1;
1185
1186 /*
1187 * the next page in the biovec might not be adjacent
1188 * to the last page, but it might still be found
1189 * inside this working buffer. bump our offset pointer
1190 */
1191 if (total_out > start_byte &&
1192 current_buf_start < start_byte) {
1193 buf_offset = start_byte - buf_start;
1194 working_bytes = total_out - start_byte;
1195 current_buf_start = buf_start + buf_offset;
1196 }
1197 }
1198 }
1199
1200 return 1;
1201}
1202
1203/*
1204 * Shannon Entropy calculation
1205 *
1206 * Pure byte distribution analysis fails to determine compressibility of data.
1207 * Try calculating entropy to estimate the average minimum number of bits
1208 * needed to encode the sampled data.
1209 *
1210 * For convenience, return the percentage of needed bits, instead of amount of
1211 * bits directly.
1212 *
1213 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1214 * and can be compressible with high probability
1215 *
1216 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1217 *
1218 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1219 */
1220#define ENTROPY_LVL_ACEPTABLE (65)
1221#define ENTROPY_LVL_HIGH (80)
1222
1223/*
1224 * For increasead precision in shannon_entropy calculation,
1225 * let's do pow(n, M) to save more digits after comma:
1226 *
1227 * - maximum int bit length is 64
1228 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1229 * - 13 * 4 = 52 < 64 -> M = 4
1230 *
1231 * So use pow(n, 4).
1232 */
1233static inline u32 ilog2_w(u64 n)
1234{
1235 return ilog2(n * n * n * n);
1236}
1237
1238static u32 shannon_entropy(struct heuristic_ws *ws)
1239{
1240 const u32 entropy_max = 8 * ilog2_w(2);
1241 u32 entropy_sum = 0;
1242 u32 p, p_base, sz_base;
1243 u32 i;
1244
1245 sz_base = ilog2_w(ws->sample_size);
1246 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1247 p = ws->bucket[i].count;
1248 p_base = ilog2_w(p);
1249 entropy_sum += p * (sz_base - p_base);
1250 }
1251
1252 entropy_sum /= ws->sample_size;
1253 return entropy_sum * 100 / entropy_max;
1254}
1255
1256#define RADIX_BASE 4U
1257#define COUNTERS_SIZE (1U << RADIX_BASE)
1258
1259static u8 get4bits(u64 num, int shift) {
1260 u8 low4bits;
1261
1262 num >>= shift;
1263 /* Reverse order */
1264 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1265 return low4bits;
1266}
1267
1268/*
1269 * Use 4 bits as radix base
1270 * Use 16 u32 counters for calculating new position in buf array
1271 *
1272 * @array - array that will be sorted
1273 * @array_buf - buffer array to store sorting results
1274 * must be equal in size to @array
1275 * @num - array size
1276 */
1277static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1278 int num)
1279{
1280 u64 max_num;
1281 u64 buf_num;
1282 u32 counters[COUNTERS_SIZE];
1283 u32 new_addr;
1284 u32 addr;
1285 int bitlen;
1286 int shift;
1287 int i;
1288
1289 /*
1290 * Try avoid useless loop iterations for small numbers stored in big
1291 * counters. Example: 48 33 4 ... in 64bit array
1292 */
1293 max_num = array[0].count;
1294 for (i = 1; i < num; i++) {
1295 buf_num = array[i].count;
1296 if (buf_num > max_num)
1297 max_num = buf_num;
1298 }
1299
1300 buf_num = ilog2(max_num);
1301 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1302
1303 shift = 0;
1304 while (shift < bitlen) {
1305 memset(counters, 0, sizeof(counters));
1306
1307 for (i = 0; i < num; i++) {
1308 buf_num = array[i].count;
1309 addr = get4bits(buf_num, shift);
1310 counters[addr]++;
1311 }
1312
1313 for (i = 1; i < COUNTERS_SIZE; i++)
1314 counters[i] += counters[i - 1];
1315
1316 for (i = num - 1; i >= 0; i--) {
1317 buf_num = array[i].count;
1318 addr = get4bits(buf_num, shift);
1319 counters[addr]--;
1320 new_addr = counters[addr];
1321 array_buf[new_addr] = array[i];
1322 }
1323
1324 shift += RADIX_BASE;
1325
1326 /*
1327 * Normal radix expects to move data from a temporary array, to
1328 * the main one. But that requires some CPU time. Avoid that
1329 * by doing another sort iteration to original array instead of
1330 * memcpy()
1331 */
1332 memset(counters, 0, sizeof(counters));
1333
1334 for (i = 0; i < num; i ++) {
1335 buf_num = array_buf[i].count;
1336 addr = get4bits(buf_num, shift);
1337 counters[addr]++;
1338 }
1339
1340 for (i = 1; i < COUNTERS_SIZE; i++)
1341 counters[i] += counters[i - 1];
1342
1343 for (i = num - 1; i >= 0; i--) {
1344 buf_num = array_buf[i].count;
1345 addr = get4bits(buf_num, shift);
1346 counters[addr]--;
1347 new_addr = counters[addr];
1348 array[new_addr] = array_buf[i];
1349 }
1350
1351 shift += RADIX_BASE;
1352 }
1353}
1354
1355/*
1356 * Size of the core byte set - how many bytes cover 90% of the sample
1357 *
1358 * There are several types of structured binary data that use nearly all byte
1359 * values. The distribution can be uniform and counts in all buckets will be
1360 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1361 *
1362 * Other possibility is normal (Gaussian) distribution, where the data could
1363 * be potentially compressible, but we have to take a few more steps to decide
1364 * how much.
1365 *
1366 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1367 * compression algo can easy fix that
1368 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1369 * probability is not compressible
1370 */
1371#define BYTE_CORE_SET_LOW (64)
1372#define BYTE_CORE_SET_HIGH (200)
1373
1374static int byte_core_set_size(struct heuristic_ws *ws)
1375{
1376 u32 i;
1377 u32 coreset_sum = 0;
1378 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1379 struct bucket_item *bucket = ws->bucket;
1380
1381 /* Sort in reverse order */
1382 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1383
1384 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1385 coreset_sum += bucket[i].count;
1386
1387 if (coreset_sum > core_set_threshold)
1388 return i;
1389
1390 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1391 coreset_sum += bucket[i].count;
1392 if (coreset_sum > core_set_threshold)
1393 break;
1394 }
1395
1396 return i;
1397}
1398
1399/*
1400 * Count byte values in buckets.
1401 * This heuristic can detect textual data (configs, xml, json, html, etc).
1402 * Because in most text-like data byte set is restricted to limited number of
1403 * possible characters, and that restriction in most cases makes data easy to
1404 * compress.
1405 *
1406 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1407 * less - compressible
1408 * more - need additional analysis
1409 */
1410#define BYTE_SET_THRESHOLD (64)
1411
1412static u32 byte_set_size(const struct heuristic_ws *ws)
1413{
1414 u32 i;
1415 u32 byte_set_size = 0;
1416
1417 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1418 if (ws->bucket[i].count > 0)
1419 byte_set_size++;
1420 }
1421
1422 /*
1423 * Continue collecting count of byte values in buckets. If the byte
1424 * set size is bigger then the threshold, it's pointless to continue,
1425 * the detection technique would fail for this type of data.
1426 */
1427 for (; i < BUCKET_SIZE; i++) {
1428 if (ws->bucket[i].count > 0) {
1429 byte_set_size++;
1430 if (byte_set_size > BYTE_SET_THRESHOLD)
1431 return byte_set_size;
1432 }
1433 }
1434
1435 return byte_set_size;
1436}
1437
1438static bool sample_repeated_patterns(struct heuristic_ws *ws)
1439{
1440 const u32 half_of_sample = ws->sample_size / 2;
1441 const u8 *data = ws->sample;
1442
1443 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1444}
1445
1446static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1447 struct heuristic_ws *ws)
1448{
1449 struct page *page;
1450 u64 index, index_end;
1451 u32 i, curr_sample_pos;
1452 u8 *in_data;
1453
1454 /*
1455 * Compression handles the input data by chunks of 128KiB
1456 * (defined by BTRFS_MAX_UNCOMPRESSED)
1457 *
1458 * We do the same for the heuristic and loop over the whole range.
1459 *
1460 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1461 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1462 */
1463 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1464 end = start + BTRFS_MAX_UNCOMPRESSED;
1465
1466 index = start >> PAGE_SHIFT;
1467 index_end = end >> PAGE_SHIFT;
1468
1469 /* Don't miss unaligned end */
1470 if (!IS_ALIGNED(end, PAGE_SIZE))
1471 index_end++;
1472
1473 curr_sample_pos = 0;
1474 while (index < index_end) {
1475 page = find_get_page(inode->i_mapping, index);
1476 in_data = kmap(page);
1477 /* Handle case where the start is not aligned to PAGE_SIZE */
1478 i = start % PAGE_SIZE;
1479 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1480 /* Don't sample any garbage from the last page */
1481 if (start > end - SAMPLING_READ_SIZE)
1482 break;
1483 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1484 SAMPLING_READ_SIZE);
1485 i += SAMPLING_INTERVAL;
1486 start += SAMPLING_INTERVAL;
1487 curr_sample_pos += SAMPLING_READ_SIZE;
1488 }
1489 kunmap(page);
1490 put_page(page);
1491
1492 index++;
1493 }
1494
1495 ws->sample_size = curr_sample_pos;
1496}
1497
1498/*
1499 * Compression heuristic.
1500 *
1501 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1502 * quickly (compared to direct compression) detect data characteristics
1503 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1504 * data.
1505 *
1506 * The following types of analysis can be performed:
1507 * - detect mostly zero data
1508 * - detect data with low "byte set" size (text, etc)
1509 * - detect data with low/high "core byte" set
1510 *
1511 * Return non-zero if the compression should be done, 0 otherwise.
1512 */
1513int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1514{
1515 struct list_head *ws_list = __find_workspace(0, true);
1516 struct heuristic_ws *ws;
1517 u32 i;
1518 u8 byte;
1519 int ret = 0;
1520
1521 ws = list_entry(ws_list, struct heuristic_ws, list);
1522
1523 heuristic_collect_sample(inode, start, end, ws);
1524
1525 if (sample_repeated_patterns(ws)) {
1526 ret = 1;
1527 goto out;
1528 }
1529
1530 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1531
1532 for (i = 0; i < ws->sample_size; i++) {
1533 byte = ws->sample[i];
1534 ws->bucket[byte].count++;
1535 }
1536
1537 i = byte_set_size(ws);
1538 if (i < BYTE_SET_THRESHOLD) {
1539 ret = 2;
1540 goto out;
1541 }
1542
1543 i = byte_core_set_size(ws);
1544 if (i <= BYTE_CORE_SET_LOW) {
1545 ret = 3;
1546 goto out;
1547 }
1548
1549 if (i >= BYTE_CORE_SET_HIGH) {
1550 ret = 0;
1551 goto out;
1552 }
1553
1554 i = shannon_entropy(ws);
1555 if (i <= ENTROPY_LVL_ACEPTABLE) {
1556 ret = 4;
1557 goto out;
1558 }
1559
1560 /*
1561 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1562 * needed to give green light to compression.
1563 *
1564 * For now just assume that compression at that level is not worth the
1565 * resources because:
1566 *
1567 * 1. it is possible to defrag the data later
1568 *
1569 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1570 * values, every bucket has counter at level ~54. The heuristic would
1571 * be confused. This can happen when data have some internal repeated
1572 * patterns like "abbacbbc...". This can be detected by analyzing
1573 * pairs of bytes, which is too costly.
1574 */
1575 if (i < ENTROPY_LVL_HIGH) {
1576 ret = 5;
1577 goto out;
1578 } else {
1579 ret = 0;
1580 goto out;
1581 }
1582
1583out:
1584 __free_workspace(0, ws_list, true);
1585 return ret;
1586}
1587
1588unsigned int btrfs_compress_str2level(const char *str)
1589{
1590 if (strncmp(str, "zlib", 4) != 0)
1591 return 0;
1592
1593 /* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1594 if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
1595 return str[5] - '0';
1596
1597 return BTRFS_ZLIB_DEFAULT_LEVEL;
1598}