at v5.0 56 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/backing-dev.h> 18#include <linux/module.h> 19#include <linux/blkpg.h> 20#include <linux/magic.h> 21#include <linux/dax.h> 22#include <linux/buffer_head.h> 23#include <linux/swap.h> 24#include <linux/pagevec.h> 25#include <linux/writeback.h> 26#include <linux/mpage.h> 27#include <linux/mount.h> 28#include <linux/uio.h> 29#include <linux/namei.h> 30#include <linux/log2.h> 31#include <linux/cleancache.h> 32#include <linux/dax.h> 33#include <linux/badblocks.h> 34#include <linux/task_io_accounting_ops.h> 35#include <linux/falloc.h> 36#include <linux/uaccess.h> 37#include "internal.h" 38 39struct bdev_inode { 40 struct block_device bdev; 41 struct inode vfs_inode; 42}; 43 44static const struct address_space_operations def_blk_aops; 45 46static inline struct bdev_inode *BDEV_I(struct inode *inode) 47{ 48 return container_of(inode, struct bdev_inode, vfs_inode); 49} 50 51struct block_device *I_BDEV(struct inode *inode) 52{ 53 return &BDEV_I(inode)->bdev; 54} 55EXPORT_SYMBOL(I_BDEV); 56 57static void bdev_write_inode(struct block_device *bdev) 58{ 59 struct inode *inode = bdev->bd_inode; 60 int ret; 61 62 spin_lock(&inode->i_lock); 63 while (inode->i_state & I_DIRTY) { 64 spin_unlock(&inode->i_lock); 65 ret = write_inode_now(inode, true); 66 if (ret) { 67 char name[BDEVNAME_SIZE]; 68 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 69 "for block device %s (err=%d).\n", 70 bdevname(bdev, name), ret); 71 } 72 spin_lock(&inode->i_lock); 73 } 74 spin_unlock(&inode->i_lock); 75} 76 77/* Kill _all_ buffers and pagecache , dirty or not.. */ 78void kill_bdev(struct block_device *bdev) 79{ 80 struct address_space *mapping = bdev->bd_inode->i_mapping; 81 82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 83 return; 84 85 invalidate_bh_lrus(); 86 truncate_inode_pages(mapping, 0); 87} 88EXPORT_SYMBOL(kill_bdev); 89 90/* Invalidate clean unused buffers and pagecache. */ 91void invalidate_bdev(struct block_device *bdev) 92{ 93 struct address_space *mapping = bdev->bd_inode->i_mapping; 94 95 if (mapping->nrpages) { 96 invalidate_bh_lrus(); 97 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 98 invalidate_mapping_pages(mapping, 0, -1); 99 } 100 /* 99% of the time, we don't need to flush the cleancache on the bdev. 101 * But, for the strange corners, lets be cautious 102 */ 103 cleancache_invalidate_inode(mapping); 104} 105EXPORT_SYMBOL(invalidate_bdev); 106 107static void set_init_blocksize(struct block_device *bdev) 108{ 109 unsigned bsize = bdev_logical_block_size(bdev); 110 loff_t size = i_size_read(bdev->bd_inode); 111 112 while (bsize < PAGE_SIZE) { 113 if (size & bsize) 114 break; 115 bsize <<= 1; 116 } 117 bdev->bd_block_size = bsize; 118 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 119} 120 121int set_blocksize(struct block_device *bdev, int size) 122{ 123 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 124 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 125 return -EINVAL; 126 127 /* Size cannot be smaller than the size supported by the device */ 128 if (size < bdev_logical_block_size(bdev)) 129 return -EINVAL; 130 131 /* Don't change the size if it is same as current */ 132 if (bdev->bd_block_size != size) { 133 sync_blockdev(bdev); 134 bdev->bd_block_size = size; 135 bdev->bd_inode->i_blkbits = blksize_bits(size); 136 kill_bdev(bdev); 137 } 138 return 0; 139} 140 141EXPORT_SYMBOL(set_blocksize); 142 143int sb_set_blocksize(struct super_block *sb, int size) 144{ 145 if (set_blocksize(sb->s_bdev, size)) 146 return 0; 147 /* If we get here, we know size is power of two 148 * and it's value is between 512 and PAGE_SIZE */ 149 sb->s_blocksize = size; 150 sb->s_blocksize_bits = blksize_bits(size); 151 return sb->s_blocksize; 152} 153 154EXPORT_SYMBOL(sb_set_blocksize); 155 156int sb_min_blocksize(struct super_block *sb, int size) 157{ 158 int minsize = bdev_logical_block_size(sb->s_bdev); 159 if (size < minsize) 160 size = minsize; 161 return sb_set_blocksize(sb, size); 162} 163 164EXPORT_SYMBOL(sb_min_blocksize); 165 166static int 167blkdev_get_block(struct inode *inode, sector_t iblock, 168 struct buffer_head *bh, int create) 169{ 170 bh->b_bdev = I_BDEV(inode); 171 bh->b_blocknr = iblock; 172 set_buffer_mapped(bh); 173 return 0; 174} 175 176static struct inode *bdev_file_inode(struct file *file) 177{ 178 return file->f_mapping->host; 179} 180 181static unsigned int dio_bio_write_op(struct kiocb *iocb) 182{ 183 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 184 185 /* avoid the need for a I/O completion work item */ 186 if (iocb->ki_flags & IOCB_DSYNC) 187 op |= REQ_FUA; 188 return op; 189} 190 191#define DIO_INLINE_BIO_VECS 4 192 193static void blkdev_bio_end_io_simple(struct bio *bio) 194{ 195 struct task_struct *waiter = bio->bi_private; 196 197 WRITE_ONCE(bio->bi_private, NULL); 198 blk_wake_io_task(waiter); 199} 200 201static ssize_t 202__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter, 203 int nr_pages) 204{ 205 struct file *file = iocb->ki_filp; 206 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 207 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec; 208 loff_t pos = iocb->ki_pos; 209 bool should_dirty = false; 210 struct bio bio; 211 ssize_t ret; 212 blk_qc_t qc; 213 int i; 214 215 if ((pos | iov_iter_alignment(iter)) & 216 (bdev_logical_block_size(bdev) - 1)) 217 return -EINVAL; 218 219 if (nr_pages <= DIO_INLINE_BIO_VECS) 220 vecs = inline_vecs; 221 else { 222 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec), 223 GFP_KERNEL); 224 if (!vecs) 225 return -ENOMEM; 226 } 227 228 bio_init(&bio, vecs, nr_pages); 229 bio_set_dev(&bio, bdev); 230 bio.bi_iter.bi_sector = pos >> 9; 231 bio.bi_write_hint = iocb->ki_hint; 232 bio.bi_private = current; 233 bio.bi_end_io = blkdev_bio_end_io_simple; 234 bio.bi_ioprio = iocb->ki_ioprio; 235 236 ret = bio_iov_iter_get_pages(&bio, iter); 237 if (unlikely(ret)) 238 goto out; 239 ret = bio.bi_iter.bi_size; 240 241 if (iov_iter_rw(iter) == READ) { 242 bio.bi_opf = REQ_OP_READ; 243 if (iter_is_iovec(iter)) 244 should_dirty = true; 245 } else { 246 bio.bi_opf = dio_bio_write_op(iocb); 247 task_io_account_write(ret); 248 } 249 if (iocb->ki_flags & IOCB_HIPRI) 250 bio.bi_opf |= REQ_HIPRI; 251 252 qc = submit_bio(&bio); 253 for (;;) { 254 set_current_state(TASK_UNINTERRUPTIBLE); 255 if (!READ_ONCE(bio.bi_private)) 256 break; 257 if (!(iocb->ki_flags & IOCB_HIPRI) || 258 !blk_poll(bdev_get_queue(bdev), qc, true)) 259 io_schedule(); 260 } 261 __set_current_state(TASK_RUNNING); 262 263 bio_for_each_segment_all(bvec, &bio, i) { 264 if (should_dirty && !PageCompound(bvec->bv_page)) 265 set_page_dirty_lock(bvec->bv_page); 266 put_page(bvec->bv_page); 267 } 268 269 if (unlikely(bio.bi_status)) 270 ret = blk_status_to_errno(bio.bi_status); 271 272out: 273 if (vecs != inline_vecs) 274 kfree(vecs); 275 276 bio_uninit(&bio); 277 278 return ret; 279} 280 281struct blkdev_dio { 282 union { 283 struct kiocb *iocb; 284 struct task_struct *waiter; 285 }; 286 size_t size; 287 atomic_t ref; 288 bool multi_bio : 1; 289 bool should_dirty : 1; 290 bool is_sync : 1; 291 struct bio bio; 292}; 293 294static struct bio_set blkdev_dio_pool; 295 296static void blkdev_bio_end_io(struct bio *bio) 297{ 298 struct blkdev_dio *dio = bio->bi_private; 299 bool should_dirty = dio->should_dirty; 300 301 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) { 302 if (bio->bi_status && !dio->bio.bi_status) 303 dio->bio.bi_status = bio->bi_status; 304 } else { 305 if (!dio->is_sync) { 306 struct kiocb *iocb = dio->iocb; 307 ssize_t ret; 308 309 if (likely(!dio->bio.bi_status)) { 310 ret = dio->size; 311 iocb->ki_pos += ret; 312 } else { 313 ret = blk_status_to_errno(dio->bio.bi_status); 314 } 315 316 dio->iocb->ki_complete(iocb, ret, 0); 317 if (dio->multi_bio) 318 bio_put(&dio->bio); 319 } else { 320 struct task_struct *waiter = dio->waiter; 321 322 WRITE_ONCE(dio->waiter, NULL); 323 blk_wake_io_task(waiter); 324 } 325 } 326 327 if (should_dirty) { 328 bio_check_pages_dirty(bio); 329 } else { 330 struct bio_vec *bvec; 331 int i; 332 333 bio_for_each_segment_all(bvec, bio, i) 334 put_page(bvec->bv_page); 335 bio_put(bio); 336 } 337} 338 339static ssize_t 340__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages) 341{ 342 struct file *file = iocb->ki_filp; 343 struct inode *inode = bdev_file_inode(file); 344 struct block_device *bdev = I_BDEV(inode); 345 struct blk_plug plug; 346 struct blkdev_dio *dio; 347 struct bio *bio; 348 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0; 349 bool is_read = (iov_iter_rw(iter) == READ), is_sync; 350 loff_t pos = iocb->ki_pos; 351 blk_qc_t qc = BLK_QC_T_NONE; 352 int ret = 0; 353 354 if ((pos | iov_iter_alignment(iter)) & 355 (bdev_logical_block_size(bdev) - 1)) 356 return -EINVAL; 357 358 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool); 359 360 dio = container_of(bio, struct blkdev_dio, bio); 361 dio->is_sync = is_sync = is_sync_kiocb(iocb); 362 if (dio->is_sync) { 363 dio->waiter = current; 364 bio_get(bio); 365 } else { 366 dio->iocb = iocb; 367 } 368 369 dio->size = 0; 370 dio->multi_bio = false; 371 dio->should_dirty = is_read && iter_is_iovec(iter); 372 373 /* 374 * Don't plug for HIPRI/polled IO, as those should go straight 375 * to issue 376 */ 377 if (!is_poll) 378 blk_start_plug(&plug); 379 380 for (;;) { 381 bio_set_dev(bio, bdev); 382 bio->bi_iter.bi_sector = pos >> 9; 383 bio->bi_write_hint = iocb->ki_hint; 384 bio->bi_private = dio; 385 bio->bi_end_io = blkdev_bio_end_io; 386 bio->bi_ioprio = iocb->ki_ioprio; 387 388 ret = bio_iov_iter_get_pages(bio, iter); 389 if (unlikely(ret)) { 390 bio->bi_status = BLK_STS_IOERR; 391 bio_endio(bio); 392 break; 393 } 394 395 if (is_read) { 396 bio->bi_opf = REQ_OP_READ; 397 if (dio->should_dirty) 398 bio_set_pages_dirty(bio); 399 } else { 400 bio->bi_opf = dio_bio_write_op(iocb); 401 task_io_account_write(bio->bi_iter.bi_size); 402 } 403 404 dio->size += bio->bi_iter.bi_size; 405 pos += bio->bi_iter.bi_size; 406 407 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES); 408 if (!nr_pages) { 409 if (iocb->ki_flags & IOCB_HIPRI) 410 bio->bi_opf |= REQ_HIPRI; 411 412 qc = submit_bio(bio); 413 break; 414 } 415 416 if (!dio->multi_bio) { 417 /* 418 * AIO needs an extra reference to ensure the dio 419 * structure which is embedded into the first bio 420 * stays around. 421 */ 422 if (!is_sync) 423 bio_get(bio); 424 dio->multi_bio = true; 425 atomic_set(&dio->ref, 2); 426 } else { 427 atomic_inc(&dio->ref); 428 } 429 430 submit_bio(bio); 431 bio = bio_alloc(GFP_KERNEL, nr_pages); 432 } 433 434 if (!is_poll) 435 blk_finish_plug(&plug); 436 437 if (!is_sync) 438 return -EIOCBQUEUED; 439 440 for (;;) { 441 set_current_state(TASK_UNINTERRUPTIBLE); 442 if (!READ_ONCE(dio->waiter)) 443 break; 444 445 if (!(iocb->ki_flags & IOCB_HIPRI) || 446 !blk_poll(bdev_get_queue(bdev), qc, true)) 447 io_schedule(); 448 } 449 __set_current_state(TASK_RUNNING); 450 451 if (!ret) 452 ret = blk_status_to_errno(dio->bio.bi_status); 453 if (likely(!ret)) 454 ret = dio->size; 455 456 bio_put(&dio->bio); 457 return ret; 458} 459 460static ssize_t 461blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 462{ 463 int nr_pages; 464 465 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1); 466 if (!nr_pages) 467 return 0; 468 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES) 469 return __blkdev_direct_IO_simple(iocb, iter, nr_pages); 470 471 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES)); 472} 473 474static __init int blkdev_init(void) 475{ 476 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS); 477} 478module_init(blkdev_init); 479 480int __sync_blockdev(struct block_device *bdev, int wait) 481{ 482 if (!bdev) 483 return 0; 484 if (!wait) 485 return filemap_flush(bdev->bd_inode->i_mapping); 486 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 487} 488 489/* 490 * Write out and wait upon all the dirty data associated with a block 491 * device via its mapping. Does not take the superblock lock. 492 */ 493int sync_blockdev(struct block_device *bdev) 494{ 495 return __sync_blockdev(bdev, 1); 496} 497EXPORT_SYMBOL(sync_blockdev); 498 499/* 500 * Write out and wait upon all dirty data associated with this 501 * device. Filesystem data as well as the underlying block 502 * device. Takes the superblock lock. 503 */ 504int fsync_bdev(struct block_device *bdev) 505{ 506 struct super_block *sb = get_super(bdev); 507 if (sb) { 508 int res = sync_filesystem(sb); 509 drop_super(sb); 510 return res; 511 } 512 return sync_blockdev(bdev); 513} 514EXPORT_SYMBOL(fsync_bdev); 515 516/** 517 * freeze_bdev -- lock a filesystem and force it into a consistent state 518 * @bdev: blockdevice to lock 519 * 520 * If a superblock is found on this device, we take the s_umount semaphore 521 * on it to make sure nobody unmounts until the snapshot creation is done. 522 * The reference counter (bd_fsfreeze_count) guarantees that only the last 523 * unfreeze process can unfreeze the frozen filesystem actually when multiple 524 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 525 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 526 * actually. 527 */ 528struct super_block *freeze_bdev(struct block_device *bdev) 529{ 530 struct super_block *sb; 531 int error = 0; 532 533 mutex_lock(&bdev->bd_fsfreeze_mutex); 534 if (++bdev->bd_fsfreeze_count > 1) { 535 /* 536 * We don't even need to grab a reference - the first call 537 * to freeze_bdev grab an active reference and only the last 538 * thaw_bdev drops it. 539 */ 540 sb = get_super(bdev); 541 if (sb) 542 drop_super(sb); 543 mutex_unlock(&bdev->bd_fsfreeze_mutex); 544 return sb; 545 } 546 547 sb = get_active_super(bdev); 548 if (!sb) 549 goto out; 550 if (sb->s_op->freeze_super) 551 error = sb->s_op->freeze_super(sb); 552 else 553 error = freeze_super(sb); 554 if (error) { 555 deactivate_super(sb); 556 bdev->bd_fsfreeze_count--; 557 mutex_unlock(&bdev->bd_fsfreeze_mutex); 558 return ERR_PTR(error); 559 } 560 deactivate_super(sb); 561 out: 562 sync_blockdev(bdev); 563 mutex_unlock(&bdev->bd_fsfreeze_mutex); 564 return sb; /* thaw_bdev releases s->s_umount */ 565} 566EXPORT_SYMBOL(freeze_bdev); 567 568/** 569 * thaw_bdev -- unlock filesystem 570 * @bdev: blockdevice to unlock 571 * @sb: associated superblock 572 * 573 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 574 */ 575int thaw_bdev(struct block_device *bdev, struct super_block *sb) 576{ 577 int error = -EINVAL; 578 579 mutex_lock(&bdev->bd_fsfreeze_mutex); 580 if (!bdev->bd_fsfreeze_count) 581 goto out; 582 583 error = 0; 584 if (--bdev->bd_fsfreeze_count > 0) 585 goto out; 586 587 if (!sb) 588 goto out; 589 590 if (sb->s_op->thaw_super) 591 error = sb->s_op->thaw_super(sb); 592 else 593 error = thaw_super(sb); 594 if (error) 595 bdev->bd_fsfreeze_count++; 596out: 597 mutex_unlock(&bdev->bd_fsfreeze_mutex); 598 return error; 599} 600EXPORT_SYMBOL(thaw_bdev); 601 602static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 603{ 604 return block_write_full_page(page, blkdev_get_block, wbc); 605} 606 607static int blkdev_readpage(struct file * file, struct page * page) 608{ 609 return block_read_full_page(page, blkdev_get_block); 610} 611 612static int blkdev_readpages(struct file *file, struct address_space *mapping, 613 struct list_head *pages, unsigned nr_pages) 614{ 615 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 616} 617 618static int blkdev_write_begin(struct file *file, struct address_space *mapping, 619 loff_t pos, unsigned len, unsigned flags, 620 struct page **pagep, void **fsdata) 621{ 622 return block_write_begin(mapping, pos, len, flags, pagep, 623 blkdev_get_block); 624} 625 626static int blkdev_write_end(struct file *file, struct address_space *mapping, 627 loff_t pos, unsigned len, unsigned copied, 628 struct page *page, void *fsdata) 629{ 630 int ret; 631 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 632 633 unlock_page(page); 634 put_page(page); 635 636 return ret; 637} 638 639/* 640 * private llseek: 641 * for a block special file file_inode(file)->i_size is zero 642 * so we compute the size by hand (just as in block_read/write above) 643 */ 644static loff_t block_llseek(struct file *file, loff_t offset, int whence) 645{ 646 struct inode *bd_inode = bdev_file_inode(file); 647 loff_t retval; 648 649 inode_lock(bd_inode); 650 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 651 inode_unlock(bd_inode); 652 return retval; 653} 654 655int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 656{ 657 struct inode *bd_inode = bdev_file_inode(filp); 658 struct block_device *bdev = I_BDEV(bd_inode); 659 int error; 660 661 error = file_write_and_wait_range(filp, start, end); 662 if (error) 663 return error; 664 665 /* 666 * There is no need to serialise calls to blkdev_issue_flush with 667 * i_mutex and doing so causes performance issues with concurrent 668 * O_SYNC writers to a block device. 669 */ 670 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 671 if (error == -EOPNOTSUPP) 672 error = 0; 673 674 return error; 675} 676EXPORT_SYMBOL(blkdev_fsync); 677 678/** 679 * bdev_read_page() - Start reading a page from a block device 680 * @bdev: The device to read the page from 681 * @sector: The offset on the device to read the page to (need not be aligned) 682 * @page: The page to read 683 * 684 * On entry, the page should be locked. It will be unlocked when the page 685 * has been read. If the block driver implements rw_page synchronously, 686 * that will be true on exit from this function, but it need not be. 687 * 688 * Errors returned by this function are usually "soft", eg out of memory, or 689 * queue full; callers should try a different route to read this page rather 690 * than propagate an error back up the stack. 691 * 692 * Return: negative errno if an error occurs, 0 if submission was successful. 693 */ 694int bdev_read_page(struct block_device *bdev, sector_t sector, 695 struct page *page) 696{ 697 const struct block_device_operations *ops = bdev->bd_disk->fops; 698 int result = -EOPNOTSUPP; 699 700 if (!ops->rw_page || bdev_get_integrity(bdev)) 701 return result; 702 703 result = blk_queue_enter(bdev->bd_queue, 0); 704 if (result) 705 return result; 706 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, 707 REQ_OP_READ); 708 blk_queue_exit(bdev->bd_queue); 709 return result; 710} 711EXPORT_SYMBOL_GPL(bdev_read_page); 712 713/** 714 * bdev_write_page() - Start writing a page to a block device 715 * @bdev: The device to write the page to 716 * @sector: The offset on the device to write the page to (need not be aligned) 717 * @page: The page to write 718 * @wbc: The writeback_control for the write 719 * 720 * On entry, the page should be locked and not currently under writeback. 721 * On exit, if the write started successfully, the page will be unlocked and 722 * under writeback. If the write failed already (eg the driver failed to 723 * queue the page to the device), the page will still be locked. If the 724 * caller is a ->writepage implementation, it will need to unlock the page. 725 * 726 * Errors returned by this function are usually "soft", eg out of memory, or 727 * queue full; callers should try a different route to write this page rather 728 * than propagate an error back up the stack. 729 * 730 * Return: negative errno if an error occurs, 0 if submission was successful. 731 */ 732int bdev_write_page(struct block_device *bdev, sector_t sector, 733 struct page *page, struct writeback_control *wbc) 734{ 735 int result; 736 const struct block_device_operations *ops = bdev->bd_disk->fops; 737 738 if (!ops->rw_page || bdev_get_integrity(bdev)) 739 return -EOPNOTSUPP; 740 result = blk_queue_enter(bdev->bd_queue, 0); 741 if (result) 742 return result; 743 744 set_page_writeback(page); 745 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, 746 REQ_OP_WRITE); 747 if (result) { 748 end_page_writeback(page); 749 } else { 750 clean_page_buffers(page); 751 unlock_page(page); 752 } 753 blk_queue_exit(bdev->bd_queue); 754 return result; 755} 756EXPORT_SYMBOL_GPL(bdev_write_page); 757 758/* 759 * pseudo-fs 760 */ 761 762static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 763static struct kmem_cache * bdev_cachep __read_mostly; 764 765static struct inode *bdev_alloc_inode(struct super_block *sb) 766{ 767 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 768 if (!ei) 769 return NULL; 770 return &ei->vfs_inode; 771} 772 773static void bdev_i_callback(struct rcu_head *head) 774{ 775 struct inode *inode = container_of(head, struct inode, i_rcu); 776 struct bdev_inode *bdi = BDEV_I(inode); 777 778 kmem_cache_free(bdev_cachep, bdi); 779} 780 781static void bdev_destroy_inode(struct inode *inode) 782{ 783 call_rcu(&inode->i_rcu, bdev_i_callback); 784} 785 786static void init_once(void *foo) 787{ 788 struct bdev_inode *ei = (struct bdev_inode *) foo; 789 struct block_device *bdev = &ei->bdev; 790 791 memset(bdev, 0, sizeof(*bdev)); 792 mutex_init(&bdev->bd_mutex); 793 INIT_LIST_HEAD(&bdev->bd_list); 794#ifdef CONFIG_SYSFS 795 INIT_LIST_HEAD(&bdev->bd_holder_disks); 796#endif 797 bdev->bd_bdi = &noop_backing_dev_info; 798 inode_init_once(&ei->vfs_inode); 799 /* Initialize mutex for freeze. */ 800 mutex_init(&bdev->bd_fsfreeze_mutex); 801} 802 803static void bdev_evict_inode(struct inode *inode) 804{ 805 struct block_device *bdev = &BDEV_I(inode)->bdev; 806 truncate_inode_pages_final(&inode->i_data); 807 invalidate_inode_buffers(inode); /* is it needed here? */ 808 clear_inode(inode); 809 spin_lock(&bdev_lock); 810 list_del_init(&bdev->bd_list); 811 spin_unlock(&bdev_lock); 812 /* Detach inode from wb early as bdi_put() may free bdi->wb */ 813 inode_detach_wb(inode); 814 if (bdev->bd_bdi != &noop_backing_dev_info) { 815 bdi_put(bdev->bd_bdi); 816 bdev->bd_bdi = &noop_backing_dev_info; 817 } 818} 819 820static const struct super_operations bdev_sops = { 821 .statfs = simple_statfs, 822 .alloc_inode = bdev_alloc_inode, 823 .destroy_inode = bdev_destroy_inode, 824 .drop_inode = generic_delete_inode, 825 .evict_inode = bdev_evict_inode, 826}; 827 828static struct dentry *bd_mount(struct file_system_type *fs_type, 829 int flags, const char *dev_name, void *data) 830{ 831 struct dentry *dent; 832 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 833 if (!IS_ERR(dent)) 834 dent->d_sb->s_iflags |= SB_I_CGROUPWB; 835 return dent; 836} 837 838static struct file_system_type bd_type = { 839 .name = "bdev", 840 .mount = bd_mount, 841 .kill_sb = kill_anon_super, 842}; 843 844struct super_block *blockdev_superblock __read_mostly; 845EXPORT_SYMBOL_GPL(blockdev_superblock); 846 847void __init bdev_cache_init(void) 848{ 849 int err; 850 static struct vfsmount *bd_mnt; 851 852 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 853 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 854 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 855 init_once); 856 err = register_filesystem(&bd_type); 857 if (err) 858 panic("Cannot register bdev pseudo-fs"); 859 bd_mnt = kern_mount(&bd_type); 860 if (IS_ERR(bd_mnt)) 861 panic("Cannot create bdev pseudo-fs"); 862 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 863} 864 865/* 866 * Most likely _very_ bad one - but then it's hardly critical for small 867 * /dev and can be fixed when somebody will need really large one. 868 * Keep in mind that it will be fed through icache hash function too. 869 */ 870static inline unsigned long hash(dev_t dev) 871{ 872 return MAJOR(dev)+MINOR(dev); 873} 874 875static int bdev_test(struct inode *inode, void *data) 876{ 877 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 878} 879 880static int bdev_set(struct inode *inode, void *data) 881{ 882 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 883 return 0; 884} 885 886static LIST_HEAD(all_bdevs); 887 888/* 889 * If there is a bdev inode for this device, unhash it so that it gets evicted 890 * as soon as last inode reference is dropped. 891 */ 892void bdev_unhash_inode(dev_t dev) 893{ 894 struct inode *inode; 895 896 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev); 897 if (inode) { 898 remove_inode_hash(inode); 899 iput(inode); 900 } 901} 902 903struct block_device *bdget(dev_t dev) 904{ 905 struct block_device *bdev; 906 struct inode *inode; 907 908 inode = iget5_locked(blockdev_superblock, hash(dev), 909 bdev_test, bdev_set, &dev); 910 911 if (!inode) 912 return NULL; 913 914 bdev = &BDEV_I(inode)->bdev; 915 916 if (inode->i_state & I_NEW) { 917 bdev->bd_contains = NULL; 918 bdev->bd_super = NULL; 919 bdev->bd_inode = inode; 920 bdev->bd_block_size = i_blocksize(inode); 921 bdev->bd_part_count = 0; 922 bdev->bd_invalidated = 0; 923 inode->i_mode = S_IFBLK; 924 inode->i_rdev = dev; 925 inode->i_bdev = bdev; 926 inode->i_data.a_ops = &def_blk_aops; 927 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 928 spin_lock(&bdev_lock); 929 list_add(&bdev->bd_list, &all_bdevs); 930 spin_unlock(&bdev_lock); 931 unlock_new_inode(inode); 932 } 933 return bdev; 934} 935 936EXPORT_SYMBOL(bdget); 937 938/** 939 * bdgrab -- Grab a reference to an already referenced block device 940 * @bdev: Block device to grab a reference to. 941 */ 942struct block_device *bdgrab(struct block_device *bdev) 943{ 944 ihold(bdev->bd_inode); 945 return bdev; 946} 947EXPORT_SYMBOL(bdgrab); 948 949long nr_blockdev_pages(void) 950{ 951 struct block_device *bdev; 952 long ret = 0; 953 spin_lock(&bdev_lock); 954 list_for_each_entry(bdev, &all_bdevs, bd_list) { 955 ret += bdev->bd_inode->i_mapping->nrpages; 956 } 957 spin_unlock(&bdev_lock); 958 return ret; 959} 960 961void bdput(struct block_device *bdev) 962{ 963 iput(bdev->bd_inode); 964} 965 966EXPORT_SYMBOL(bdput); 967 968static struct block_device *bd_acquire(struct inode *inode) 969{ 970 struct block_device *bdev; 971 972 spin_lock(&bdev_lock); 973 bdev = inode->i_bdev; 974 if (bdev && !inode_unhashed(bdev->bd_inode)) { 975 bdgrab(bdev); 976 spin_unlock(&bdev_lock); 977 return bdev; 978 } 979 spin_unlock(&bdev_lock); 980 981 /* 982 * i_bdev references block device inode that was already shut down 983 * (corresponding device got removed). Remove the reference and look 984 * up block device inode again just in case new device got 985 * reestablished under the same device number. 986 */ 987 if (bdev) 988 bd_forget(inode); 989 990 bdev = bdget(inode->i_rdev); 991 if (bdev) { 992 spin_lock(&bdev_lock); 993 if (!inode->i_bdev) { 994 /* 995 * We take an additional reference to bd_inode, 996 * and it's released in clear_inode() of inode. 997 * So, we can access it via ->i_mapping always 998 * without igrab(). 999 */ 1000 bdgrab(bdev); 1001 inode->i_bdev = bdev; 1002 inode->i_mapping = bdev->bd_inode->i_mapping; 1003 } 1004 spin_unlock(&bdev_lock); 1005 } 1006 return bdev; 1007} 1008 1009/* Call when you free inode */ 1010 1011void bd_forget(struct inode *inode) 1012{ 1013 struct block_device *bdev = NULL; 1014 1015 spin_lock(&bdev_lock); 1016 if (!sb_is_blkdev_sb(inode->i_sb)) 1017 bdev = inode->i_bdev; 1018 inode->i_bdev = NULL; 1019 inode->i_mapping = &inode->i_data; 1020 spin_unlock(&bdev_lock); 1021 1022 if (bdev) 1023 bdput(bdev); 1024} 1025 1026/** 1027 * bd_may_claim - test whether a block device can be claimed 1028 * @bdev: block device of interest 1029 * @whole: whole block device containing @bdev, may equal @bdev 1030 * @holder: holder trying to claim @bdev 1031 * 1032 * Test whether @bdev can be claimed by @holder. 1033 * 1034 * CONTEXT: 1035 * spin_lock(&bdev_lock). 1036 * 1037 * RETURNS: 1038 * %true if @bdev can be claimed, %false otherwise. 1039 */ 1040static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 1041 void *holder) 1042{ 1043 if (bdev->bd_holder == holder) 1044 return true; /* already a holder */ 1045 else if (bdev->bd_holder != NULL) 1046 return false; /* held by someone else */ 1047 else if (whole == bdev) 1048 return true; /* is a whole device which isn't held */ 1049 1050 else if (whole->bd_holder == bd_may_claim) 1051 return true; /* is a partition of a device that is being partitioned */ 1052 else if (whole->bd_holder != NULL) 1053 return false; /* is a partition of a held device */ 1054 else 1055 return true; /* is a partition of an un-held device */ 1056} 1057 1058/** 1059 * bd_prepare_to_claim - prepare to claim a block device 1060 * @bdev: block device of interest 1061 * @whole: the whole device containing @bdev, may equal @bdev 1062 * @holder: holder trying to claim @bdev 1063 * 1064 * Prepare to claim @bdev. This function fails if @bdev is already 1065 * claimed by another holder and waits if another claiming is in 1066 * progress. This function doesn't actually claim. On successful 1067 * return, the caller has ownership of bd_claiming and bd_holder[s]. 1068 * 1069 * CONTEXT: 1070 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 1071 * it multiple times. 1072 * 1073 * RETURNS: 1074 * 0 if @bdev can be claimed, -EBUSY otherwise. 1075 */ 1076static int bd_prepare_to_claim(struct block_device *bdev, 1077 struct block_device *whole, void *holder) 1078{ 1079retry: 1080 /* if someone else claimed, fail */ 1081 if (!bd_may_claim(bdev, whole, holder)) 1082 return -EBUSY; 1083 1084 /* if claiming is already in progress, wait for it to finish */ 1085 if (whole->bd_claiming) { 1086 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 1087 DEFINE_WAIT(wait); 1088 1089 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 1090 spin_unlock(&bdev_lock); 1091 schedule(); 1092 finish_wait(wq, &wait); 1093 spin_lock(&bdev_lock); 1094 goto retry; 1095 } 1096 1097 /* yay, all mine */ 1098 return 0; 1099} 1100 1101static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno) 1102{ 1103 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno); 1104 1105 if (!disk) 1106 return NULL; 1107 /* 1108 * Now that we hold gendisk reference we make sure bdev we looked up is 1109 * not stale. If it is, it means device got removed and created before 1110 * we looked up gendisk and we fail open in such case. Associating 1111 * unhashed bdev with newly created gendisk could lead to two bdevs 1112 * (and thus two independent caches) being associated with one device 1113 * which is bad. 1114 */ 1115 if (inode_unhashed(bdev->bd_inode)) { 1116 put_disk_and_module(disk); 1117 return NULL; 1118 } 1119 return disk; 1120} 1121 1122/** 1123 * bd_start_claiming - start claiming a block device 1124 * @bdev: block device of interest 1125 * @holder: holder trying to claim @bdev 1126 * 1127 * @bdev is about to be opened exclusively. Check @bdev can be opened 1128 * exclusively and mark that an exclusive open is in progress. Each 1129 * successful call to this function must be matched with a call to 1130 * either bd_finish_claiming() or bd_abort_claiming() (which do not 1131 * fail). 1132 * 1133 * This function is used to gain exclusive access to the block device 1134 * without actually causing other exclusive open attempts to fail. It 1135 * should be used when the open sequence itself requires exclusive 1136 * access but may subsequently fail. 1137 * 1138 * CONTEXT: 1139 * Might sleep. 1140 * 1141 * RETURNS: 1142 * Pointer to the block device containing @bdev on success, ERR_PTR() 1143 * value on failure. 1144 */ 1145static struct block_device *bd_start_claiming(struct block_device *bdev, 1146 void *holder) 1147{ 1148 struct gendisk *disk; 1149 struct block_device *whole; 1150 int partno, err; 1151 1152 might_sleep(); 1153 1154 /* 1155 * @bdev might not have been initialized properly yet, look up 1156 * and grab the outer block device the hard way. 1157 */ 1158 disk = bdev_get_gendisk(bdev, &partno); 1159 if (!disk) 1160 return ERR_PTR(-ENXIO); 1161 1162 /* 1163 * Normally, @bdev should equal what's returned from bdget_disk() 1164 * if partno is 0; however, some drivers (floppy) use multiple 1165 * bdev's for the same physical device and @bdev may be one of the 1166 * aliases. Keep @bdev if partno is 0. This means claimer 1167 * tracking is broken for those devices but it has always been that 1168 * way. 1169 */ 1170 if (partno) 1171 whole = bdget_disk(disk, 0); 1172 else 1173 whole = bdgrab(bdev); 1174 1175 put_disk_and_module(disk); 1176 if (!whole) 1177 return ERR_PTR(-ENOMEM); 1178 1179 /* prepare to claim, if successful, mark claiming in progress */ 1180 spin_lock(&bdev_lock); 1181 1182 err = bd_prepare_to_claim(bdev, whole, holder); 1183 if (err == 0) { 1184 whole->bd_claiming = holder; 1185 spin_unlock(&bdev_lock); 1186 return whole; 1187 } else { 1188 spin_unlock(&bdev_lock); 1189 bdput(whole); 1190 return ERR_PTR(err); 1191 } 1192} 1193 1194#ifdef CONFIG_SYSFS 1195struct bd_holder_disk { 1196 struct list_head list; 1197 struct gendisk *disk; 1198 int refcnt; 1199}; 1200 1201static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 1202 struct gendisk *disk) 1203{ 1204 struct bd_holder_disk *holder; 1205 1206 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 1207 if (holder->disk == disk) 1208 return holder; 1209 return NULL; 1210} 1211 1212static int add_symlink(struct kobject *from, struct kobject *to) 1213{ 1214 return sysfs_create_link(from, to, kobject_name(to)); 1215} 1216 1217static void del_symlink(struct kobject *from, struct kobject *to) 1218{ 1219 sysfs_remove_link(from, kobject_name(to)); 1220} 1221 1222/** 1223 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 1224 * @bdev: the claimed slave bdev 1225 * @disk: the holding disk 1226 * 1227 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1228 * 1229 * This functions creates the following sysfs symlinks. 1230 * 1231 * - from "slaves" directory of the holder @disk to the claimed @bdev 1232 * - from "holders" directory of the @bdev to the holder @disk 1233 * 1234 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 1235 * passed to bd_link_disk_holder(), then: 1236 * 1237 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 1238 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 1239 * 1240 * The caller must have claimed @bdev before calling this function and 1241 * ensure that both @bdev and @disk are valid during the creation and 1242 * lifetime of these symlinks. 1243 * 1244 * CONTEXT: 1245 * Might sleep. 1246 * 1247 * RETURNS: 1248 * 0 on success, -errno on failure. 1249 */ 1250int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 1251{ 1252 struct bd_holder_disk *holder; 1253 int ret = 0; 1254 1255 mutex_lock(&bdev->bd_mutex); 1256 1257 WARN_ON_ONCE(!bdev->bd_holder); 1258 1259 /* FIXME: remove the following once add_disk() handles errors */ 1260 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 1261 goto out_unlock; 1262 1263 holder = bd_find_holder_disk(bdev, disk); 1264 if (holder) { 1265 holder->refcnt++; 1266 goto out_unlock; 1267 } 1268 1269 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 1270 if (!holder) { 1271 ret = -ENOMEM; 1272 goto out_unlock; 1273 } 1274 1275 INIT_LIST_HEAD(&holder->list); 1276 holder->disk = disk; 1277 holder->refcnt = 1; 1278 1279 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1280 if (ret) 1281 goto out_free; 1282 1283 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 1284 if (ret) 1285 goto out_del; 1286 /* 1287 * bdev could be deleted beneath us which would implicitly destroy 1288 * the holder directory. Hold on to it. 1289 */ 1290 kobject_get(bdev->bd_part->holder_dir); 1291 1292 list_add(&holder->list, &bdev->bd_holder_disks); 1293 goto out_unlock; 1294 1295out_del: 1296 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1297out_free: 1298 kfree(holder); 1299out_unlock: 1300 mutex_unlock(&bdev->bd_mutex); 1301 return ret; 1302} 1303EXPORT_SYMBOL_GPL(bd_link_disk_holder); 1304 1305/** 1306 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 1307 * @bdev: the calimed slave bdev 1308 * @disk: the holding disk 1309 * 1310 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1311 * 1312 * CONTEXT: 1313 * Might sleep. 1314 */ 1315void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 1316{ 1317 struct bd_holder_disk *holder; 1318 1319 mutex_lock(&bdev->bd_mutex); 1320 1321 holder = bd_find_holder_disk(bdev, disk); 1322 1323 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 1324 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1325 del_symlink(bdev->bd_part->holder_dir, 1326 &disk_to_dev(disk)->kobj); 1327 kobject_put(bdev->bd_part->holder_dir); 1328 list_del_init(&holder->list); 1329 kfree(holder); 1330 } 1331 1332 mutex_unlock(&bdev->bd_mutex); 1333} 1334EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1335#endif 1336 1337/** 1338 * flush_disk - invalidates all buffer-cache entries on a disk 1339 * 1340 * @bdev: struct block device to be flushed 1341 * @kill_dirty: flag to guide handling of dirty inodes 1342 * 1343 * Invalidates all buffer-cache entries on a disk. It should be called 1344 * when a disk has been changed -- either by a media change or online 1345 * resize. 1346 */ 1347static void flush_disk(struct block_device *bdev, bool kill_dirty) 1348{ 1349 if (__invalidate_device(bdev, kill_dirty)) { 1350 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1351 "resized disk %s\n", 1352 bdev->bd_disk ? bdev->bd_disk->disk_name : ""); 1353 } 1354 1355 if (!bdev->bd_disk) 1356 return; 1357 if (disk_part_scan_enabled(bdev->bd_disk)) 1358 bdev->bd_invalidated = 1; 1359} 1360 1361/** 1362 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1363 * @disk: struct gendisk to check 1364 * @bdev: struct bdev to adjust. 1365 * @verbose: if %true log a message about a size change if there is any 1366 * 1367 * This routine checks to see if the bdev size does not match the disk size 1368 * and adjusts it if it differs. When shrinking the bdev size, its all caches 1369 * are freed. 1370 */ 1371void check_disk_size_change(struct gendisk *disk, struct block_device *bdev, 1372 bool verbose) 1373{ 1374 loff_t disk_size, bdev_size; 1375 1376 disk_size = (loff_t)get_capacity(disk) << 9; 1377 bdev_size = i_size_read(bdev->bd_inode); 1378 if (disk_size != bdev_size) { 1379 if (verbose) { 1380 printk(KERN_INFO 1381 "%s: detected capacity change from %lld to %lld\n", 1382 disk->disk_name, bdev_size, disk_size); 1383 } 1384 i_size_write(bdev->bd_inode, disk_size); 1385 if (bdev_size > disk_size) 1386 flush_disk(bdev, false); 1387 } 1388} 1389 1390/** 1391 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1392 * @disk: struct gendisk to be revalidated 1393 * 1394 * This routine is a wrapper for lower-level driver's revalidate_disk 1395 * call-backs. It is used to do common pre and post operations needed 1396 * for all revalidate_disk operations. 1397 */ 1398int revalidate_disk(struct gendisk *disk) 1399{ 1400 struct block_device *bdev; 1401 int ret = 0; 1402 1403 if (disk->fops->revalidate_disk) 1404 ret = disk->fops->revalidate_disk(disk); 1405 bdev = bdget_disk(disk, 0); 1406 if (!bdev) 1407 return ret; 1408 1409 mutex_lock(&bdev->bd_mutex); 1410 check_disk_size_change(disk, bdev, ret == 0); 1411 bdev->bd_invalidated = 0; 1412 mutex_unlock(&bdev->bd_mutex); 1413 bdput(bdev); 1414 return ret; 1415} 1416EXPORT_SYMBOL(revalidate_disk); 1417 1418/* 1419 * This routine checks whether a removable media has been changed, 1420 * and invalidates all buffer-cache-entries in that case. This 1421 * is a relatively slow routine, so we have to try to minimize using 1422 * it. Thus it is called only upon a 'mount' or 'open'. This 1423 * is the best way of combining speed and utility, I think. 1424 * People changing diskettes in the middle of an operation deserve 1425 * to lose :-) 1426 */ 1427int check_disk_change(struct block_device *bdev) 1428{ 1429 struct gendisk *disk = bdev->bd_disk; 1430 const struct block_device_operations *bdops = disk->fops; 1431 unsigned int events; 1432 1433 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1434 DISK_EVENT_EJECT_REQUEST); 1435 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1436 return 0; 1437 1438 flush_disk(bdev, true); 1439 if (bdops->revalidate_disk) 1440 bdops->revalidate_disk(bdev->bd_disk); 1441 return 1; 1442} 1443 1444EXPORT_SYMBOL(check_disk_change); 1445 1446void bd_set_size(struct block_device *bdev, loff_t size) 1447{ 1448 inode_lock(bdev->bd_inode); 1449 i_size_write(bdev->bd_inode, size); 1450 inode_unlock(bdev->bd_inode); 1451} 1452EXPORT_SYMBOL(bd_set_size); 1453 1454static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1455 1456/* 1457 * bd_mutex locking: 1458 * 1459 * mutex_lock(part->bd_mutex) 1460 * mutex_lock_nested(whole->bd_mutex, 1) 1461 */ 1462 1463static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1464{ 1465 struct gendisk *disk; 1466 int ret; 1467 int partno; 1468 int perm = 0; 1469 bool first_open = false; 1470 1471 if (mode & FMODE_READ) 1472 perm |= MAY_READ; 1473 if (mode & FMODE_WRITE) 1474 perm |= MAY_WRITE; 1475 /* 1476 * hooks: /n/, see "layering violations". 1477 */ 1478 if (!for_part) { 1479 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1480 if (ret != 0) { 1481 bdput(bdev); 1482 return ret; 1483 } 1484 } 1485 1486 restart: 1487 1488 ret = -ENXIO; 1489 disk = bdev_get_gendisk(bdev, &partno); 1490 if (!disk) 1491 goto out; 1492 1493 disk_block_events(disk); 1494 mutex_lock_nested(&bdev->bd_mutex, for_part); 1495 if (!bdev->bd_openers) { 1496 first_open = true; 1497 bdev->bd_disk = disk; 1498 bdev->bd_queue = disk->queue; 1499 bdev->bd_contains = bdev; 1500 bdev->bd_partno = partno; 1501 1502 if (!partno) { 1503 ret = -ENXIO; 1504 bdev->bd_part = disk_get_part(disk, partno); 1505 if (!bdev->bd_part) 1506 goto out_clear; 1507 1508 ret = 0; 1509 if (disk->fops->open) { 1510 ret = disk->fops->open(bdev, mode); 1511 if (ret == -ERESTARTSYS) { 1512 /* Lost a race with 'disk' being 1513 * deleted, try again. 1514 * See md.c 1515 */ 1516 disk_put_part(bdev->bd_part); 1517 bdev->bd_part = NULL; 1518 bdev->bd_disk = NULL; 1519 bdev->bd_queue = NULL; 1520 mutex_unlock(&bdev->bd_mutex); 1521 disk_unblock_events(disk); 1522 put_disk_and_module(disk); 1523 goto restart; 1524 } 1525 } 1526 1527 if (!ret) { 1528 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1529 set_init_blocksize(bdev); 1530 } 1531 1532 /* 1533 * If the device is invalidated, rescan partition 1534 * if open succeeded or failed with -ENOMEDIUM. 1535 * The latter is necessary to prevent ghost 1536 * partitions on a removed medium. 1537 */ 1538 if (bdev->bd_invalidated) { 1539 if (!ret) 1540 rescan_partitions(disk, bdev); 1541 else if (ret == -ENOMEDIUM) 1542 invalidate_partitions(disk, bdev); 1543 } 1544 1545 if (ret) 1546 goto out_clear; 1547 } else { 1548 struct block_device *whole; 1549 whole = bdget_disk(disk, 0); 1550 ret = -ENOMEM; 1551 if (!whole) 1552 goto out_clear; 1553 BUG_ON(for_part); 1554 ret = __blkdev_get(whole, mode, 1); 1555 if (ret) 1556 goto out_clear; 1557 bdev->bd_contains = whole; 1558 bdev->bd_part = disk_get_part(disk, partno); 1559 if (!(disk->flags & GENHD_FL_UP) || 1560 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1561 ret = -ENXIO; 1562 goto out_clear; 1563 } 1564 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1565 set_init_blocksize(bdev); 1566 } 1567 1568 if (bdev->bd_bdi == &noop_backing_dev_info) 1569 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info); 1570 } else { 1571 if (bdev->bd_contains == bdev) { 1572 ret = 0; 1573 if (bdev->bd_disk->fops->open) 1574 ret = bdev->bd_disk->fops->open(bdev, mode); 1575 /* the same as first opener case, read comment there */ 1576 if (bdev->bd_invalidated) { 1577 if (!ret) 1578 rescan_partitions(bdev->bd_disk, bdev); 1579 else if (ret == -ENOMEDIUM) 1580 invalidate_partitions(bdev->bd_disk, bdev); 1581 } 1582 if (ret) 1583 goto out_unlock_bdev; 1584 } 1585 } 1586 bdev->bd_openers++; 1587 if (for_part) 1588 bdev->bd_part_count++; 1589 mutex_unlock(&bdev->bd_mutex); 1590 disk_unblock_events(disk); 1591 /* only one opener holds refs to the module and disk */ 1592 if (!first_open) 1593 put_disk_and_module(disk); 1594 return 0; 1595 1596 out_clear: 1597 disk_put_part(bdev->bd_part); 1598 bdev->bd_disk = NULL; 1599 bdev->bd_part = NULL; 1600 bdev->bd_queue = NULL; 1601 if (bdev != bdev->bd_contains) 1602 __blkdev_put(bdev->bd_contains, mode, 1); 1603 bdev->bd_contains = NULL; 1604 out_unlock_bdev: 1605 mutex_unlock(&bdev->bd_mutex); 1606 disk_unblock_events(disk); 1607 put_disk_and_module(disk); 1608 out: 1609 bdput(bdev); 1610 1611 return ret; 1612} 1613 1614/** 1615 * blkdev_get - open a block device 1616 * @bdev: block_device to open 1617 * @mode: FMODE_* mask 1618 * @holder: exclusive holder identifier 1619 * 1620 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1621 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1622 * @holder is invalid. Exclusive opens may nest for the same @holder. 1623 * 1624 * On success, the reference count of @bdev is unchanged. On failure, 1625 * @bdev is put. 1626 * 1627 * CONTEXT: 1628 * Might sleep. 1629 * 1630 * RETURNS: 1631 * 0 on success, -errno on failure. 1632 */ 1633int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1634{ 1635 struct block_device *whole = NULL; 1636 int res; 1637 1638 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1639 1640 if ((mode & FMODE_EXCL) && holder) { 1641 whole = bd_start_claiming(bdev, holder); 1642 if (IS_ERR(whole)) { 1643 bdput(bdev); 1644 return PTR_ERR(whole); 1645 } 1646 } 1647 1648 res = __blkdev_get(bdev, mode, 0); 1649 1650 if (whole) { 1651 struct gendisk *disk = whole->bd_disk; 1652 1653 /* finish claiming */ 1654 mutex_lock(&bdev->bd_mutex); 1655 spin_lock(&bdev_lock); 1656 1657 if (!res) { 1658 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1659 /* 1660 * Note that for a whole device bd_holders 1661 * will be incremented twice, and bd_holder 1662 * will be set to bd_may_claim before being 1663 * set to holder 1664 */ 1665 whole->bd_holders++; 1666 whole->bd_holder = bd_may_claim; 1667 bdev->bd_holders++; 1668 bdev->bd_holder = holder; 1669 } 1670 1671 /* tell others that we're done */ 1672 BUG_ON(whole->bd_claiming != holder); 1673 whole->bd_claiming = NULL; 1674 wake_up_bit(&whole->bd_claiming, 0); 1675 1676 spin_unlock(&bdev_lock); 1677 1678 /* 1679 * Block event polling for write claims if requested. Any 1680 * write holder makes the write_holder state stick until 1681 * all are released. This is good enough and tracking 1682 * individual writeable reference is too fragile given the 1683 * way @mode is used in blkdev_get/put(). 1684 */ 1685 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1686 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1687 bdev->bd_write_holder = true; 1688 disk_block_events(disk); 1689 } 1690 1691 mutex_unlock(&bdev->bd_mutex); 1692 bdput(whole); 1693 } 1694 1695 return res; 1696} 1697EXPORT_SYMBOL(blkdev_get); 1698 1699/** 1700 * blkdev_get_by_path - open a block device by name 1701 * @path: path to the block device to open 1702 * @mode: FMODE_* mask 1703 * @holder: exclusive holder identifier 1704 * 1705 * Open the blockdevice described by the device file at @path. @mode 1706 * and @holder are identical to blkdev_get(). 1707 * 1708 * On success, the returned block_device has reference count of one. 1709 * 1710 * CONTEXT: 1711 * Might sleep. 1712 * 1713 * RETURNS: 1714 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1715 */ 1716struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1717 void *holder) 1718{ 1719 struct block_device *bdev; 1720 int err; 1721 1722 bdev = lookup_bdev(path); 1723 if (IS_ERR(bdev)) 1724 return bdev; 1725 1726 err = blkdev_get(bdev, mode, holder); 1727 if (err) 1728 return ERR_PTR(err); 1729 1730 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1731 blkdev_put(bdev, mode); 1732 return ERR_PTR(-EACCES); 1733 } 1734 1735 return bdev; 1736} 1737EXPORT_SYMBOL(blkdev_get_by_path); 1738 1739/** 1740 * blkdev_get_by_dev - open a block device by device number 1741 * @dev: device number of block device to open 1742 * @mode: FMODE_* mask 1743 * @holder: exclusive holder identifier 1744 * 1745 * Open the blockdevice described by device number @dev. @mode and 1746 * @holder are identical to blkdev_get(). 1747 * 1748 * Use it ONLY if you really do not have anything better - i.e. when 1749 * you are behind a truly sucky interface and all you are given is a 1750 * device number. _Never_ to be used for internal purposes. If you 1751 * ever need it - reconsider your API. 1752 * 1753 * On success, the returned block_device has reference count of one. 1754 * 1755 * CONTEXT: 1756 * Might sleep. 1757 * 1758 * RETURNS: 1759 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1760 */ 1761struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1762{ 1763 struct block_device *bdev; 1764 int err; 1765 1766 bdev = bdget(dev); 1767 if (!bdev) 1768 return ERR_PTR(-ENOMEM); 1769 1770 err = blkdev_get(bdev, mode, holder); 1771 if (err) 1772 return ERR_PTR(err); 1773 1774 return bdev; 1775} 1776EXPORT_SYMBOL(blkdev_get_by_dev); 1777 1778static int blkdev_open(struct inode * inode, struct file * filp) 1779{ 1780 struct block_device *bdev; 1781 1782 /* 1783 * Preserve backwards compatibility and allow large file access 1784 * even if userspace doesn't ask for it explicitly. Some mkfs 1785 * binary needs it. We might want to drop this workaround 1786 * during an unstable branch. 1787 */ 1788 filp->f_flags |= O_LARGEFILE; 1789 1790 filp->f_mode |= FMODE_NOWAIT; 1791 1792 if (filp->f_flags & O_NDELAY) 1793 filp->f_mode |= FMODE_NDELAY; 1794 if (filp->f_flags & O_EXCL) 1795 filp->f_mode |= FMODE_EXCL; 1796 if ((filp->f_flags & O_ACCMODE) == 3) 1797 filp->f_mode |= FMODE_WRITE_IOCTL; 1798 1799 bdev = bd_acquire(inode); 1800 if (bdev == NULL) 1801 return -ENOMEM; 1802 1803 filp->f_mapping = bdev->bd_inode->i_mapping; 1804 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping); 1805 1806 return blkdev_get(bdev, filp->f_mode, filp); 1807} 1808 1809static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1810{ 1811 struct gendisk *disk = bdev->bd_disk; 1812 struct block_device *victim = NULL; 1813 1814 mutex_lock_nested(&bdev->bd_mutex, for_part); 1815 if (for_part) 1816 bdev->bd_part_count--; 1817 1818 if (!--bdev->bd_openers) { 1819 WARN_ON_ONCE(bdev->bd_holders); 1820 sync_blockdev(bdev); 1821 kill_bdev(bdev); 1822 1823 bdev_write_inode(bdev); 1824 } 1825 if (bdev->bd_contains == bdev) { 1826 if (disk->fops->release) 1827 disk->fops->release(disk, mode); 1828 } 1829 if (!bdev->bd_openers) { 1830 disk_put_part(bdev->bd_part); 1831 bdev->bd_part = NULL; 1832 bdev->bd_disk = NULL; 1833 if (bdev != bdev->bd_contains) 1834 victim = bdev->bd_contains; 1835 bdev->bd_contains = NULL; 1836 1837 put_disk_and_module(disk); 1838 } 1839 mutex_unlock(&bdev->bd_mutex); 1840 bdput(bdev); 1841 if (victim) 1842 __blkdev_put(victim, mode, 1); 1843} 1844 1845void blkdev_put(struct block_device *bdev, fmode_t mode) 1846{ 1847 mutex_lock(&bdev->bd_mutex); 1848 1849 if (mode & FMODE_EXCL) { 1850 bool bdev_free; 1851 1852 /* 1853 * Release a claim on the device. The holder fields 1854 * are protected with bdev_lock. bd_mutex is to 1855 * synchronize disk_holder unlinking. 1856 */ 1857 spin_lock(&bdev_lock); 1858 1859 WARN_ON_ONCE(--bdev->bd_holders < 0); 1860 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1861 1862 /* bd_contains might point to self, check in a separate step */ 1863 if ((bdev_free = !bdev->bd_holders)) 1864 bdev->bd_holder = NULL; 1865 if (!bdev->bd_contains->bd_holders) 1866 bdev->bd_contains->bd_holder = NULL; 1867 1868 spin_unlock(&bdev_lock); 1869 1870 /* 1871 * If this was the last claim, remove holder link and 1872 * unblock evpoll if it was a write holder. 1873 */ 1874 if (bdev_free && bdev->bd_write_holder) { 1875 disk_unblock_events(bdev->bd_disk); 1876 bdev->bd_write_holder = false; 1877 } 1878 } 1879 1880 /* 1881 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1882 * event. This is to ensure detection of media removal commanded 1883 * from userland - e.g. eject(1). 1884 */ 1885 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1886 1887 mutex_unlock(&bdev->bd_mutex); 1888 1889 __blkdev_put(bdev, mode, 0); 1890} 1891EXPORT_SYMBOL(blkdev_put); 1892 1893static int blkdev_close(struct inode * inode, struct file * filp) 1894{ 1895 struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); 1896 blkdev_put(bdev, filp->f_mode); 1897 return 0; 1898} 1899 1900static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1901{ 1902 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1903 fmode_t mode = file->f_mode; 1904 1905 /* 1906 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1907 * to updated it before every ioctl. 1908 */ 1909 if (file->f_flags & O_NDELAY) 1910 mode |= FMODE_NDELAY; 1911 else 1912 mode &= ~FMODE_NDELAY; 1913 1914 return blkdev_ioctl(bdev, mode, cmd, arg); 1915} 1916 1917/* 1918 * Write data to the block device. Only intended for the block device itself 1919 * and the raw driver which basically is a fake block device. 1920 * 1921 * Does not take i_mutex for the write and thus is not for general purpose 1922 * use. 1923 */ 1924ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1925{ 1926 struct file *file = iocb->ki_filp; 1927 struct inode *bd_inode = bdev_file_inode(file); 1928 loff_t size = i_size_read(bd_inode); 1929 struct blk_plug plug; 1930 ssize_t ret; 1931 1932 if (bdev_read_only(I_BDEV(bd_inode))) 1933 return -EPERM; 1934 1935 if (!iov_iter_count(from)) 1936 return 0; 1937 1938 if (iocb->ki_pos >= size) 1939 return -ENOSPC; 1940 1941 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT) 1942 return -EOPNOTSUPP; 1943 1944 iov_iter_truncate(from, size - iocb->ki_pos); 1945 1946 blk_start_plug(&plug); 1947 ret = __generic_file_write_iter(iocb, from); 1948 if (ret > 0) 1949 ret = generic_write_sync(iocb, ret); 1950 blk_finish_plug(&plug); 1951 return ret; 1952} 1953EXPORT_SYMBOL_GPL(blkdev_write_iter); 1954 1955ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1956{ 1957 struct file *file = iocb->ki_filp; 1958 struct inode *bd_inode = bdev_file_inode(file); 1959 loff_t size = i_size_read(bd_inode); 1960 loff_t pos = iocb->ki_pos; 1961 1962 if (pos >= size) 1963 return 0; 1964 1965 size -= pos; 1966 iov_iter_truncate(to, size); 1967 return generic_file_read_iter(iocb, to); 1968} 1969EXPORT_SYMBOL_GPL(blkdev_read_iter); 1970 1971/* 1972 * Try to release a page associated with block device when the system 1973 * is under memory pressure. 1974 */ 1975static int blkdev_releasepage(struct page *page, gfp_t wait) 1976{ 1977 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1978 1979 if (super && super->s_op->bdev_try_to_free_page) 1980 return super->s_op->bdev_try_to_free_page(super, page, wait); 1981 1982 return try_to_free_buffers(page); 1983} 1984 1985static int blkdev_writepages(struct address_space *mapping, 1986 struct writeback_control *wbc) 1987{ 1988 return generic_writepages(mapping, wbc); 1989} 1990 1991static const struct address_space_operations def_blk_aops = { 1992 .readpage = blkdev_readpage, 1993 .readpages = blkdev_readpages, 1994 .writepage = blkdev_writepage, 1995 .write_begin = blkdev_write_begin, 1996 .write_end = blkdev_write_end, 1997 .writepages = blkdev_writepages, 1998 .releasepage = blkdev_releasepage, 1999 .direct_IO = blkdev_direct_IO, 2000 .migratepage = buffer_migrate_page_norefs, 2001 .is_dirty_writeback = buffer_check_dirty_writeback, 2002}; 2003 2004#define BLKDEV_FALLOC_FL_SUPPORTED \ 2005 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 2006 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE) 2007 2008static long blkdev_fallocate(struct file *file, int mode, loff_t start, 2009 loff_t len) 2010{ 2011 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 2012 struct address_space *mapping; 2013 loff_t end = start + len - 1; 2014 loff_t isize; 2015 int error; 2016 2017 /* Fail if we don't recognize the flags. */ 2018 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED) 2019 return -EOPNOTSUPP; 2020 2021 /* Don't go off the end of the device. */ 2022 isize = i_size_read(bdev->bd_inode); 2023 if (start >= isize) 2024 return -EINVAL; 2025 if (end >= isize) { 2026 if (mode & FALLOC_FL_KEEP_SIZE) { 2027 len = isize - start; 2028 end = start + len - 1; 2029 } else 2030 return -EINVAL; 2031 } 2032 2033 /* 2034 * Don't allow IO that isn't aligned to logical block size. 2035 */ 2036 if ((start | len) & (bdev_logical_block_size(bdev) - 1)) 2037 return -EINVAL; 2038 2039 /* Invalidate the page cache, including dirty pages. */ 2040 mapping = bdev->bd_inode->i_mapping; 2041 truncate_inode_pages_range(mapping, start, end); 2042 2043 switch (mode) { 2044 case FALLOC_FL_ZERO_RANGE: 2045 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE: 2046 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2047 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP); 2048 break; 2049 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE: 2050 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2051 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK); 2052 break; 2053 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE: 2054 error = blkdev_issue_discard(bdev, start >> 9, len >> 9, 2055 GFP_KERNEL, 0); 2056 break; 2057 default: 2058 return -EOPNOTSUPP; 2059 } 2060 if (error) 2061 return error; 2062 2063 /* 2064 * Invalidate again; if someone wandered in and dirtied a page, 2065 * the caller will be given -EBUSY. The third argument is 2066 * inclusive, so the rounding here is safe. 2067 */ 2068 return invalidate_inode_pages2_range(mapping, 2069 start >> PAGE_SHIFT, 2070 end >> PAGE_SHIFT); 2071} 2072 2073const struct file_operations def_blk_fops = { 2074 .open = blkdev_open, 2075 .release = blkdev_close, 2076 .llseek = block_llseek, 2077 .read_iter = blkdev_read_iter, 2078 .write_iter = blkdev_write_iter, 2079 .mmap = generic_file_mmap, 2080 .fsync = blkdev_fsync, 2081 .unlocked_ioctl = block_ioctl, 2082#ifdef CONFIG_COMPAT 2083 .compat_ioctl = compat_blkdev_ioctl, 2084#endif 2085 .splice_read = generic_file_splice_read, 2086 .splice_write = iter_file_splice_write, 2087 .fallocate = blkdev_fallocate, 2088}; 2089 2090int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 2091{ 2092 int res; 2093 mm_segment_t old_fs = get_fs(); 2094 set_fs(KERNEL_DS); 2095 res = blkdev_ioctl(bdev, 0, cmd, arg); 2096 set_fs(old_fs); 2097 return res; 2098} 2099 2100EXPORT_SYMBOL(ioctl_by_bdev); 2101 2102/** 2103 * lookup_bdev - lookup a struct block_device by name 2104 * @pathname: special file representing the block device 2105 * 2106 * Get a reference to the blockdevice at @pathname in the current 2107 * namespace if possible and return it. Return ERR_PTR(error) 2108 * otherwise. 2109 */ 2110struct block_device *lookup_bdev(const char *pathname) 2111{ 2112 struct block_device *bdev; 2113 struct inode *inode; 2114 struct path path; 2115 int error; 2116 2117 if (!pathname || !*pathname) 2118 return ERR_PTR(-EINVAL); 2119 2120 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 2121 if (error) 2122 return ERR_PTR(error); 2123 2124 inode = d_backing_inode(path.dentry); 2125 error = -ENOTBLK; 2126 if (!S_ISBLK(inode->i_mode)) 2127 goto fail; 2128 error = -EACCES; 2129 if (!may_open_dev(&path)) 2130 goto fail; 2131 error = -ENOMEM; 2132 bdev = bd_acquire(inode); 2133 if (!bdev) 2134 goto fail; 2135out: 2136 path_put(&path); 2137 return bdev; 2138fail: 2139 bdev = ERR_PTR(error); 2140 goto out; 2141} 2142EXPORT_SYMBOL(lookup_bdev); 2143 2144int __invalidate_device(struct block_device *bdev, bool kill_dirty) 2145{ 2146 struct super_block *sb = get_super(bdev); 2147 int res = 0; 2148 2149 if (sb) { 2150 /* 2151 * no need to lock the super, get_super holds the 2152 * read mutex so the filesystem cannot go away 2153 * under us (->put_super runs with the write lock 2154 * hold). 2155 */ 2156 shrink_dcache_sb(sb); 2157 res = invalidate_inodes(sb, kill_dirty); 2158 drop_super(sb); 2159 } 2160 invalidate_bdev(bdev); 2161 return res; 2162} 2163EXPORT_SYMBOL(__invalidate_device); 2164 2165void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 2166{ 2167 struct inode *inode, *old_inode = NULL; 2168 2169 spin_lock(&blockdev_superblock->s_inode_list_lock); 2170 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 2171 struct address_space *mapping = inode->i_mapping; 2172 struct block_device *bdev; 2173 2174 spin_lock(&inode->i_lock); 2175 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 2176 mapping->nrpages == 0) { 2177 spin_unlock(&inode->i_lock); 2178 continue; 2179 } 2180 __iget(inode); 2181 spin_unlock(&inode->i_lock); 2182 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2183 /* 2184 * We hold a reference to 'inode' so it couldn't have been 2185 * removed from s_inodes list while we dropped the 2186 * s_inode_list_lock We cannot iput the inode now as we can 2187 * be holding the last reference and we cannot iput it under 2188 * s_inode_list_lock. So we keep the reference and iput it 2189 * later. 2190 */ 2191 iput(old_inode); 2192 old_inode = inode; 2193 bdev = I_BDEV(inode); 2194 2195 mutex_lock(&bdev->bd_mutex); 2196 if (bdev->bd_openers) 2197 func(bdev, arg); 2198 mutex_unlock(&bdev->bd_mutex); 2199 2200 spin_lock(&blockdev_superblock->s_inode_list_lock); 2201 } 2202 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2203 iput(old_inode); 2204}