Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
21#include <linux/leds.h>
22#include <linux/scatterlist.h>
23#include <linux/log2.h>
24#include <linux/regulator/consumer.h>
25#include <linux/pm_runtime.h>
26#include <linux/pm_wakeup.h>
27#include <linux/suspend.h>
28#include <linux/fault-inject.h>
29#include <linux/random.h>
30#include <linux/slab.h>
31#include <linux/of.h>
32
33#include <linux/mmc/card.h>
34#include <linux/mmc/host.h>
35#include <linux/mmc/mmc.h>
36#include <linux/mmc/sd.h>
37#include <linux/mmc/slot-gpio.h>
38
39#define CREATE_TRACE_POINTS
40#include <trace/events/mmc.h>
41
42#include "core.h"
43#include "card.h"
44#include "bus.h"
45#include "host.h"
46#include "sdio_bus.h"
47#include "pwrseq.h"
48
49#include "mmc_ops.h"
50#include "sd_ops.h"
51#include "sdio_ops.h"
52
53/* The max erase timeout, used when host->max_busy_timeout isn't specified */
54#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
55
56static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
57
58/*
59 * Enabling software CRCs on the data blocks can be a significant (30%)
60 * performance cost, and for other reasons may not always be desired.
61 * So we allow it it to be disabled.
62 */
63bool use_spi_crc = 1;
64module_param(use_spi_crc, bool, 0);
65
66static int mmc_schedule_delayed_work(struct delayed_work *work,
67 unsigned long delay)
68{
69 /*
70 * We use the system_freezable_wq, because of two reasons.
71 * First, it allows several works (not the same work item) to be
72 * executed simultaneously. Second, the queue becomes frozen when
73 * userspace becomes frozen during system PM.
74 */
75 return queue_delayed_work(system_freezable_wq, work, delay);
76}
77
78#ifdef CONFIG_FAIL_MMC_REQUEST
79
80/*
81 * Internal function. Inject random data errors.
82 * If mmc_data is NULL no errors are injected.
83 */
84static void mmc_should_fail_request(struct mmc_host *host,
85 struct mmc_request *mrq)
86{
87 struct mmc_command *cmd = mrq->cmd;
88 struct mmc_data *data = mrq->data;
89 static const int data_errors[] = {
90 -ETIMEDOUT,
91 -EILSEQ,
92 -EIO,
93 };
94
95 if (!data)
96 return;
97
98 if ((cmd && cmd->error) || data->error ||
99 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
100 return;
101
102 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
103 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
104}
105
106#else /* CONFIG_FAIL_MMC_REQUEST */
107
108static inline void mmc_should_fail_request(struct mmc_host *host,
109 struct mmc_request *mrq)
110{
111}
112
113#endif /* CONFIG_FAIL_MMC_REQUEST */
114
115static inline void mmc_complete_cmd(struct mmc_request *mrq)
116{
117 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
118 complete_all(&mrq->cmd_completion);
119}
120
121void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
122{
123 if (!mrq->cap_cmd_during_tfr)
124 return;
125
126 mmc_complete_cmd(mrq);
127
128 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
129 mmc_hostname(host), mrq->cmd->opcode);
130}
131EXPORT_SYMBOL(mmc_command_done);
132
133/**
134 * mmc_request_done - finish processing an MMC request
135 * @host: MMC host which completed request
136 * @mrq: MMC request which request
137 *
138 * MMC drivers should call this function when they have completed
139 * their processing of a request.
140 */
141void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
142{
143 struct mmc_command *cmd = mrq->cmd;
144 int err = cmd->error;
145
146 /* Flag re-tuning needed on CRC errors */
147 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
148 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
149 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
150 (mrq->data && mrq->data->error == -EILSEQ) ||
151 (mrq->stop && mrq->stop->error == -EILSEQ)))
152 mmc_retune_needed(host);
153
154 if (err && cmd->retries && mmc_host_is_spi(host)) {
155 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
156 cmd->retries = 0;
157 }
158
159 if (host->ongoing_mrq == mrq)
160 host->ongoing_mrq = NULL;
161
162 mmc_complete_cmd(mrq);
163
164 trace_mmc_request_done(host, mrq);
165
166 /*
167 * We list various conditions for the command to be considered
168 * properly done:
169 *
170 * - There was no error, OK fine then
171 * - We are not doing some kind of retry
172 * - The card was removed (...so just complete everything no matter
173 * if there are errors or retries)
174 */
175 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
176 mmc_should_fail_request(host, mrq);
177
178 if (!host->ongoing_mrq)
179 led_trigger_event(host->led, LED_OFF);
180
181 if (mrq->sbc) {
182 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
183 mmc_hostname(host), mrq->sbc->opcode,
184 mrq->sbc->error,
185 mrq->sbc->resp[0], mrq->sbc->resp[1],
186 mrq->sbc->resp[2], mrq->sbc->resp[3]);
187 }
188
189 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
190 mmc_hostname(host), cmd->opcode, err,
191 cmd->resp[0], cmd->resp[1],
192 cmd->resp[2], cmd->resp[3]);
193
194 if (mrq->data) {
195 pr_debug("%s: %d bytes transferred: %d\n",
196 mmc_hostname(host),
197 mrq->data->bytes_xfered, mrq->data->error);
198 }
199
200 if (mrq->stop) {
201 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
202 mmc_hostname(host), mrq->stop->opcode,
203 mrq->stop->error,
204 mrq->stop->resp[0], mrq->stop->resp[1],
205 mrq->stop->resp[2], mrq->stop->resp[3]);
206 }
207 }
208 /*
209 * Request starter must handle retries - see
210 * mmc_wait_for_req_done().
211 */
212 if (mrq->done)
213 mrq->done(mrq);
214}
215
216EXPORT_SYMBOL(mmc_request_done);
217
218static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
219{
220 int err;
221
222 /* Assumes host controller has been runtime resumed by mmc_claim_host */
223 err = mmc_retune(host);
224 if (err) {
225 mrq->cmd->error = err;
226 mmc_request_done(host, mrq);
227 return;
228 }
229
230 /*
231 * For sdio rw commands we must wait for card busy otherwise some
232 * sdio devices won't work properly.
233 * And bypass I/O abort, reset and bus suspend operations.
234 */
235 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
236 host->ops->card_busy) {
237 int tries = 500; /* Wait aprox 500ms at maximum */
238
239 while (host->ops->card_busy(host) && --tries)
240 mmc_delay(1);
241
242 if (tries == 0) {
243 mrq->cmd->error = -EBUSY;
244 mmc_request_done(host, mrq);
245 return;
246 }
247 }
248
249 if (mrq->cap_cmd_during_tfr) {
250 host->ongoing_mrq = mrq;
251 /*
252 * Retry path could come through here without having waiting on
253 * cmd_completion, so ensure it is reinitialised.
254 */
255 reinit_completion(&mrq->cmd_completion);
256 }
257
258 trace_mmc_request_start(host, mrq);
259
260 if (host->cqe_on)
261 host->cqe_ops->cqe_off(host);
262
263 host->ops->request(host, mrq);
264}
265
266static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
267 bool cqe)
268{
269 if (mrq->sbc) {
270 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
271 mmc_hostname(host), mrq->sbc->opcode,
272 mrq->sbc->arg, mrq->sbc->flags);
273 }
274
275 if (mrq->cmd) {
276 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
277 mmc_hostname(host), cqe ? "CQE direct " : "",
278 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
279 } else if (cqe) {
280 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
281 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
282 }
283
284 if (mrq->data) {
285 pr_debug("%s: blksz %d blocks %d flags %08x "
286 "tsac %d ms nsac %d\n",
287 mmc_hostname(host), mrq->data->blksz,
288 mrq->data->blocks, mrq->data->flags,
289 mrq->data->timeout_ns / 1000000,
290 mrq->data->timeout_clks);
291 }
292
293 if (mrq->stop) {
294 pr_debug("%s: CMD%u arg %08x flags %08x\n",
295 mmc_hostname(host), mrq->stop->opcode,
296 mrq->stop->arg, mrq->stop->flags);
297 }
298}
299
300static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
301{
302 unsigned int i, sz = 0;
303 struct scatterlist *sg;
304
305 if (mrq->cmd) {
306 mrq->cmd->error = 0;
307 mrq->cmd->mrq = mrq;
308 mrq->cmd->data = mrq->data;
309 }
310 if (mrq->sbc) {
311 mrq->sbc->error = 0;
312 mrq->sbc->mrq = mrq;
313 }
314 if (mrq->data) {
315 if (mrq->data->blksz > host->max_blk_size ||
316 mrq->data->blocks > host->max_blk_count ||
317 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
318 return -EINVAL;
319
320 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
321 sz += sg->length;
322 if (sz != mrq->data->blocks * mrq->data->blksz)
323 return -EINVAL;
324
325 mrq->data->error = 0;
326 mrq->data->mrq = mrq;
327 if (mrq->stop) {
328 mrq->data->stop = mrq->stop;
329 mrq->stop->error = 0;
330 mrq->stop->mrq = mrq;
331 }
332 }
333
334 return 0;
335}
336
337int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
338{
339 int err;
340
341 init_completion(&mrq->cmd_completion);
342
343 mmc_retune_hold(host);
344
345 if (mmc_card_removed(host->card))
346 return -ENOMEDIUM;
347
348 mmc_mrq_pr_debug(host, mrq, false);
349
350 WARN_ON(!host->claimed);
351
352 err = mmc_mrq_prep(host, mrq);
353 if (err)
354 return err;
355
356 led_trigger_event(host->led, LED_FULL);
357 __mmc_start_request(host, mrq);
358
359 return 0;
360}
361EXPORT_SYMBOL(mmc_start_request);
362
363static void mmc_wait_done(struct mmc_request *mrq)
364{
365 complete(&mrq->completion);
366}
367
368static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
369{
370 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
371
372 /*
373 * If there is an ongoing transfer, wait for the command line to become
374 * available.
375 */
376 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
377 wait_for_completion(&ongoing_mrq->cmd_completion);
378}
379
380static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
381{
382 int err;
383
384 mmc_wait_ongoing_tfr_cmd(host);
385
386 init_completion(&mrq->completion);
387 mrq->done = mmc_wait_done;
388
389 err = mmc_start_request(host, mrq);
390 if (err) {
391 mrq->cmd->error = err;
392 mmc_complete_cmd(mrq);
393 complete(&mrq->completion);
394 }
395
396 return err;
397}
398
399void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
400{
401 struct mmc_command *cmd;
402
403 while (1) {
404 wait_for_completion(&mrq->completion);
405
406 cmd = mrq->cmd;
407
408 /*
409 * If host has timed out waiting for the sanitize
410 * to complete, card might be still in programming state
411 * so let's try to bring the card out of programming
412 * state.
413 */
414 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
415 if (!mmc_interrupt_hpi(host->card)) {
416 pr_warn("%s: %s: Interrupted sanitize\n",
417 mmc_hostname(host), __func__);
418 cmd->error = 0;
419 break;
420 } else {
421 pr_err("%s: %s: Failed to interrupt sanitize\n",
422 mmc_hostname(host), __func__);
423 }
424 }
425 if (!cmd->error || !cmd->retries ||
426 mmc_card_removed(host->card))
427 break;
428
429 mmc_retune_recheck(host);
430
431 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
432 mmc_hostname(host), cmd->opcode, cmd->error);
433 cmd->retries--;
434 cmd->error = 0;
435 __mmc_start_request(host, mrq);
436 }
437
438 mmc_retune_release(host);
439}
440EXPORT_SYMBOL(mmc_wait_for_req_done);
441
442/*
443 * mmc_cqe_start_req - Start a CQE request.
444 * @host: MMC host to start the request
445 * @mrq: request to start
446 *
447 * Start the request, re-tuning if needed and it is possible. Returns an error
448 * code if the request fails to start or -EBUSY if CQE is busy.
449 */
450int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
451{
452 int err;
453
454 /*
455 * CQE cannot process re-tuning commands. Caller must hold retuning
456 * while CQE is in use. Re-tuning can happen here only when CQE has no
457 * active requests i.e. this is the first. Note, re-tuning will call
458 * ->cqe_off().
459 */
460 err = mmc_retune(host);
461 if (err)
462 goto out_err;
463
464 mrq->host = host;
465
466 mmc_mrq_pr_debug(host, mrq, true);
467
468 err = mmc_mrq_prep(host, mrq);
469 if (err)
470 goto out_err;
471
472 err = host->cqe_ops->cqe_request(host, mrq);
473 if (err)
474 goto out_err;
475
476 trace_mmc_request_start(host, mrq);
477
478 return 0;
479
480out_err:
481 if (mrq->cmd) {
482 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
483 mmc_hostname(host), mrq->cmd->opcode, err);
484 } else {
485 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
486 mmc_hostname(host), mrq->tag, err);
487 }
488 return err;
489}
490EXPORT_SYMBOL(mmc_cqe_start_req);
491
492/**
493 * mmc_cqe_request_done - CQE has finished processing an MMC request
494 * @host: MMC host which completed request
495 * @mrq: MMC request which completed
496 *
497 * CQE drivers should call this function when they have completed
498 * their processing of a request.
499 */
500void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
501{
502 mmc_should_fail_request(host, mrq);
503
504 /* Flag re-tuning needed on CRC errors */
505 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
506 (mrq->data && mrq->data->error == -EILSEQ))
507 mmc_retune_needed(host);
508
509 trace_mmc_request_done(host, mrq);
510
511 if (mrq->cmd) {
512 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
513 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
514 } else {
515 pr_debug("%s: CQE transfer done tag %d\n",
516 mmc_hostname(host), mrq->tag);
517 }
518
519 if (mrq->data) {
520 pr_debug("%s: %d bytes transferred: %d\n",
521 mmc_hostname(host),
522 mrq->data->bytes_xfered, mrq->data->error);
523 }
524
525 mrq->done(mrq);
526}
527EXPORT_SYMBOL(mmc_cqe_request_done);
528
529/**
530 * mmc_cqe_post_req - CQE post process of a completed MMC request
531 * @host: MMC host
532 * @mrq: MMC request to be processed
533 */
534void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
535{
536 if (host->cqe_ops->cqe_post_req)
537 host->cqe_ops->cqe_post_req(host, mrq);
538}
539EXPORT_SYMBOL(mmc_cqe_post_req);
540
541/* Arbitrary 1 second timeout */
542#define MMC_CQE_RECOVERY_TIMEOUT 1000
543
544/*
545 * mmc_cqe_recovery - Recover from CQE errors.
546 * @host: MMC host to recover
547 *
548 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
549 * in eMMC, and discarding the queue in CQE. CQE must call
550 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
551 * fails to discard its queue.
552 */
553int mmc_cqe_recovery(struct mmc_host *host)
554{
555 struct mmc_command cmd;
556 int err;
557
558 mmc_retune_hold_now(host);
559
560 /*
561 * Recovery is expected seldom, if at all, but it reduces performance,
562 * so make sure it is not completely silent.
563 */
564 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
565
566 host->cqe_ops->cqe_recovery_start(host);
567
568 memset(&cmd, 0, sizeof(cmd));
569 cmd.opcode = MMC_STOP_TRANSMISSION,
570 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC,
571 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
572 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
573 mmc_wait_for_cmd(host, &cmd, 0);
574
575 memset(&cmd, 0, sizeof(cmd));
576 cmd.opcode = MMC_CMDQ_TASK_MGMT;
577 cmd.arg = 1; /* Discard entire queue */
578 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
579 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
580 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
581 err = mmc_wait_for_cmd(host, &cmd, 0);
582
583 host->cqe_ops->cqe_recovery_finish(host);
584
585 mmc_retune_release(host);
586
587 return err;
588}
589EXPORT_SYMBOL(mmc_cqe_recovery);
590
591/**
592 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
593 * @host: MMC host
594 * @mrq: MMC request
595 *
596 * mmc_is_req_done() is used with requests that have
597 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
598 * starting a request and before waiting for it to complete. That is,
599 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
600 * and before mmc_wait_for_req_done(). If it is called at other times the
601 * result is not meaningful.
602 */
603bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
604{
605 return completion_done(&mrq->completion);
606}
607EXPORT_SYMBOL(mmc_is_req_done);
608
609/**
610 * mmc_wait_for_req - start a request and wait for completion
611 * @host: MMC host to start command
612 * @mrq: MMC request to start
613 *
614 * Start a new MMC custom command request for a host, and wait
615 * for the command to complete. In the case of 'cap_cmd_during_tfr'
616 * requests, the transfer is ongoing and the caller can issue further
617 * commands that do not use the data lines, and then wait by calling
618 * mmc_wait_for_req_done().
619 * Does not attempt to parse the response.
620 */
621void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
622{
623 __mmc_start_req(host, mrq);
624
625 if (!mrq->cap_cmd_during_tfr)
626 mmc_wait_for_req_done(host, mrq);
627}
628EXPORT_SYMBOL(mmc_wait_for_req);
629
630/**
631 * mmc_wait_for_cmd - start a command and wait for completion
632 * @host: MMC host to start command
633 * @cmd: MMC command to start
634 * @retries: maximum number of retries
635 *
636 * Start a new MMC command for a host, and wait for the command
637 * to complete. Return any error that occurred while the command
638 * was executing. Do not attempt to parse the response.
639 */
640int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
641{
642 struct mmc_request mrq = {};
643
644 WARN_ON(!host->claimed);
645
646 memset(cmd->resp, 0, sizeof(cmd->resp));
647 cmd->retries = retries;
648
649 mrq.cmd = cmd;
650 cmd->data = NULL;
651
652 mmc_wait_for_req(host, &mrq);
653
654 return cmd->error;
655}
656
657EXPORT_SYMBOL(mmc_wait_for_cmd);
658
659/**
660 * mmc_set_data_timeout - set the timeout for a data command
661 * @data: data phase for command
662 * @card: the MMC card associated with the data transfer
663 *
664 * Computes the data timeout parameters according to the
665 * correct algorithm given the card type.
666 */
667void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
668{
669 unsigned int mult;
670
671 /*
672 * SDIO cards only define an upper 1 s limit on access.
673 */
674 if (mmc_card_sdio(card)) {
675 data->timeout_ns = 1000000000;
676 data->timeout_clks = 0;
677 return;
678 }
679
680 /*
681 * SD cards use a 100 multiplier rather than 10
682 */
683 mult = mmc_card_sd(card) ? 100 : 10;
684
685 /*
686 * Scale up the multiplier (and therefore the timeout) by
687 * the r2w factor for writes.
688 */
689 if (data->flags & MMC_DATA_WRITE)
690 mult <<= card->csd.r2w_factor;
691
692 data->timeout_ns = card->csd.taac_ns * mult;
693 data->timeout_clks = card->csd.taac_clks * mult;
694
695 /*
696 * SD cards also have an upper limit on the timeout.
697 */
698 if (mmc_card_sd(card)) {
699 unsigned int timeout_us, limit_us;
700
701 timeout_us = data->timeout_ns / 1000;
702 if (card->host->ios.clock)
703 timeout_us += data->timeout_clks * 1000 /
704 (card->host->ios.clock / 1000);
705
706 if (data->flags & MMC_DATA_WRITE)
707 /*
708 * The MMC spec "It is strongly recommended
709 * for hosts to implement more than 500ms
710 * timeout value even if the card indicates
711 * the 250ms maximum busy length." Even the
712 * previous value of 300ms is known to be
713 * insufficient for some cards.
714 */
715 limit_us = 3000000;
716 else
717 limit_us = 100000;
718
719 /*
720 * SDHC cards always use these fixed values.
721 */
722 if (timeout_us > limit_us) {
723 data->timeout_ns = limit_us * 1000;
724 data->timeout_clks = 0;
725 }
726
727 /* assign limit value if invalid */
728 if (timeout_us == 0)
729 data->timeout_ns = limit_us * 1000;
730 }
731
732 /*
733 * Some cards require longer data read timeout than indicated in CSD.
734 * Address this by setting the read timeout to a "reasonably high"
735 * value. For the cards tested, 600ms has proven enough. If necessary,
736 * this value can be increased if other problematic cards require this.
737 */
738 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
739 data->timeout_ns = 600000000;
740 data->timeout_clks = 0;
741 }
742
743 /*
744 * Some cards need very high timeouts if driven in SPI mode.
745 * The worst observed timeout was 900ms after writing a
746 * continuous stream of data until the internal logic
747 * overflowed.
748 */
749 if (mmc_host_is_spi(card->host)) {
750 if (data->flags & MMC_DATA_WRITE) {
751 if (data->timeout_ns < 1000000000)
752 data->timeout_ns = 1000000000; /* 1s */
753 } else {
754 if (data->timeout_ns < 100000000)
755 data->timeout_ns = 100000000; /* 100ms */
756 }
757 }
758}
759EXPORT_SYMBOL(mmc_set_data_timeout);
760
761/**
762 * mmc_align_data_size - pads a transfer size to a more optimal value
763 * @card: the MMC card associated with the data transfer
764 * @sz: original transfer size
765 *
766 * Pads the original data size with a number of extra bytes in
767 * order to avoid controller bugs and/or performance hits
768 * (e.g. some controllers revert to PIO for certain sizes).
769 *
770 * Returns the improved size, which might be unmodified.
771 *
772 * Note that this function is only relevant when issuing a
773 * single scatter gather entry.
774 */
775unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
776{
777 /*
778 * FIXME: We don't have a system for the controller to tell
779 * the core about its problems yet, so for now we just 32-bit
780 * align the size.
781 */
782 sz = ((sz + 3) / 4) * 4;
783
784 return sz;
785}
786EXPORT_SYMBOL(mmc_align_data_size);
787
788/*
789 * Allow claiming an already claimed host if the context is the same or there is
790 * no context but the task is the same.
791 */
792static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
793 struct task_struct *task)
794{
795 return host->claimer == ctx ||
796 (!ctx && task && host->claimer->task == task);
797}
798
799static inline void mmc_ctx_set_claimer(struct mmc_host *host,
800 struct mmc_ctx *ctx,
801 struct task_struct *task)
802{
803 if (!host->claimer) {
804 if (ctx)
805 host->claimer = ctx;
806 else
807 host->claimer = &host->default_ctx;
808 }
809 if (task)
810 host->claimer->task = task;
811}
812
813/**
814 * __mmc_claim_host - exclusively claim a host
815 * @host: mmc host to claim
816 * @ctx: context that claims the host or NULL in which case the default
817 * context will be used
818 * @abort: whether or not the operation should be aborted
819 *
820 * Claim a host for a set of operations. If @abort is non null and
821 * dereference a non-zero value then this will return prematurely with
822 * that non-zero value without acquiring the lock. Returns zero
823 * with the lock held otherwise.
824 */
825int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
826 atomic_t *abort)
827{
828 struct task_struct *task = ctx ? NULL : current;
829 DECLARE_WAITQUEUE(wait, current);
830 unsigned long flags;
831 int stop;
832 bool pm = false;
833
834 might_sleep();
835
836 add_wait_queue(&host->wq, &wait);
837 spin_lock_irqsave(&host->lock, flags);
838 while (1) {
839 set_current_state(TASK_UNINTERRUPTIBLE);
840 stop = abort ? atomic_read(abort) : 0;
841 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
842 break;
843 spin_unlock_irqrestore(&host->lock, flags);
844 schedule();
845 spin_lock_irqsave(&host->lock, flags);
846 }
847 set_current_state(TASK_RUNNING);
848 if (!stop) {
849 host->claimed = 1;
850 mmc_ctx_set_claimer(host, ctx, task);
851 host->claim_cnt += 1;
852 if (host->claim_cnt == 1)
853 pm = true;
854 } else
855 wake_up(&host->wq);
856 spin_unlock_irqrestore(&host->lock, flags);
857 remove_wait_queue(&host->wq, &wait);
858
859 if (pm)
860 pm_runtime_get_sync(mmc_dev(host));
861
862 return stop;
863}
864EXPORT_SYMBOL(__mmc_claim_host);
865
866/**
867 * mmc_release_host - release a host
868 * @host: mmc host to release
869 *
870 * Release a MMC host, allowing others to claim the host
871 * for their operations.
872 */
873void mmc_release_host(struct mmc_host *host)
874{
875 unsigned long flags;
876
877 WARN_ON(!host->claimed);
878
879 spin_lock_irqsave(&host->lock, flags);
880 if (--host->claim_cnt) {
881 /* Release for nested claim */
882 spin_unlock_irqrestore(&host->lock, flags);
883 } else {
884 host->claimed = 0;
885 host->claimer->task = NULL;
886 host->claimer = NULL;
887 spin_unlock_irqrestore(&host->lock, flags);
888 wake_up(&host->wq);
889 pm_runtime_mark_last_busy(mmc_dev(host));
890 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
891 pm_runtime_put_sync_suspend(mmc_dev(host));
892 else
893 pm_runtime_put_autosuspend(mmc_dev(host));
894 }
895}
896EXPORT_SYMBOL(mmc_release_host);
897
898/*
899 * This is a helper function, which fetches a runtime pm reference for the
900 * card device and also claims the host.
901 */
902void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
903{
904 pm_runtime_get_sync(&card->dev);
905 __mmc_claim_host(card->host, ctx, NULL);
906}
907EXPORT_SYMBOL(mmc_get_card);
908
909/*
910 * This is a helper function, which releases the host and drops the runtime
911 * pm reference for the card device.
912 */
913void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
914{
915 struct mmc_host *host = card->host;
916
917 WARN_ON(ctx && host->claimer != ctx);
918
919 mmc_release_host(host);
920 pm_runtime_mark_last_busy(&card->dev);
921 pm_runtime_put_autosuspend(&card->dev);
922}
923EXPORT_SYMBOL(mmc_put_card);
924
925/*
926 * Internal function that does the actual ios call to the host driver,
927 * optionally printing some debug output.
928 */
929static inline void mmc_set_ios(struct mmc_host *host)
930{
931 struct mmc_ios *ios = &host->ios;
932
933 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
934 "width %u timing %u\n",
935 mmc_hostname(host), ios->clock, ios->bus_mode,
936 ios->power_mode, ios->chip_select, ios->vdd,
937 1 << ios->bus_width, ios->timing);
938
939 host->ops->set_ios(host, ios);
940}
941
942/*
943 * Control chip select pin on a host.
944 */
945void mmc_set_chip_select(struct mmc_host *host, int mode)
946{
947 host->ios.chip_select = mode;
948 mmc_set_ios(host);
949}
950
951/*
952 * Sets the host clock to the highest possible frequency that
953 * is below "hz".
954 */
955void mmc_set_clock(struct mmc_host *host, unsigned int hz)
956{
957 WARN_ON(hz && hz < host->f_min);
958
959 if (hz > host->f_max)
960 hz = host->f_max;
961
962 host->ios.clock = hz;
963 mmc_set_ios(host);
964}
965
966int mmc_execute_tuning(struct mmc_card *card)
967{
968 struct mmc_host *host = card->host;
969 u32 opcode;
970 int err;
971
972 if (!host->ops->execute_tuning)
973 return 0;
974
975 if (host->cqe_on)
976 host->cqe_ops->cqe_off(host);
977
978 if (mmc_card_mmc(card))
979 opcode = MMC_SEND_TUNING_BLOCK_HS200;
980 else
981 opcode = MMC_SEND_TUNING_BLOCK;
982
983 err = host->ops->execute_tuning(host, opcode);
984
985 if (err)
986 pr_err("%s: tuning execution failed: %d\n",
987 mmc_hostname(host), err);
988 else
989 mmc_retune_enable(host);
990
991 return err;
992}
993
994/*
995 * Change the bus mode (open drain/push-pull) of a host.
996 */
997void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
998{
999 host->ios.bus_mode = mode;
1000 mmc_set_ios(host);
1001}
1002
1003/*
1004 * Change data bus width of a host.
1005 */
1006void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1007{
1008 host->ios.bus_width = width;
1009 mmc_set_ios(host);
1010}
1011
1012/*
1013 * Set initial state after a power cycle or a hw_reset.
1014 */
1015void mmc_set_initial_state(struct mmc_host *host)
1016{
1017 if (host->cqe_on)
1018 host->cqe_ops->cqe_off(host);
1019
1020 mmc_retune_disable(host);
1021
1022 if (mmc_host_is_spi(host))
1023 host->ios.chip_select = MMC_CS_HIGH;
1024 else
1025 host->ios.chip_select = MMC_CS_DONTCARE;
1026 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1027 host->ios.bus_width = MMC_BUS_WIDTH_1;
1028 host->ios.timing = MMC_TIMING_LEGACY;
1029 host->ios.drv_type = 0;
1030 host->ios.enhanced_strobe = false;
1031
1032 /*
1033 * Make sure we are in non-enhanced strobe mode before we
1034 * actually enable it in ext_csd.
1035 */
1036 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1037 host->ops->hs400_enhanced_strobe)
1038 host->ops->hs400_enhanced_strobe(host, &host->ios);
1039
1040 mmc_set_ios(host);
1041}
1042
1043/**
1044 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1045 * @vdd: voltage (mV)
1046 * @low_bits: prefer low bits in boundary cases
1047 *
1048 * This function returns the OCR bit number according to the provided @vdd
1049 * value. If conversion is not possible a negative errno value returned.
1050 *
1051 * Depending on the @low_bits flag the function prefers low or high OCR bits
1052 * on boundary voltages. For example,
1053 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1054 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1055 *
1056 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1057 */
1058static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1059{
1060 const int max_bit = ilog2(MMC_VDD_35_36);
1061 int bit;
1062
1063 if (vdd < 1650 || vdd > 3600)
1064 return -EINVAL;
1065
1066 if (vdd >= 1650 && vdd <= 1950)
1067 return ilog2(MMC_VDD_165_195);
1068
1069 if (low_bits)
1070 vdd -= 1;
1071
1072 /* Base 2000 mV, step 100 mV, bit's base 8. */
1073 bit = (vdd - 2000) / 100 + 8;
1074 if (bit > max_bit)
1075 return max_bit;
1076 return bit;
1077}
1078
1079/**
1080 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1081 * @vdd_min: minimum voltage value (mV)
1082 * @vdd_max: maximum voltage value (mV)
1083 *
1084 * This function returns the OCR mask bits according to the provided @vdd_min
1085 * and @vdd_max values. If conversion is not possible the function returns 0.
1086 *
1087 * Notes wrt boundary cases:
1088 * This function sets the OCR bits for all boundary voltages, for example
1089 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1090 * MMC_VDD_34_35 mask.
1091 */
1092u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1093{
1094 u32 mask = 0;
1095
1096 if (vdd_max < vdd_min)
1097 return 0;
1098
1099 /* Prefer high bits for the boundary vdd_max values. */
1100 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1101 if (vdd_max < 0)
1102 return 0;
1103
1104 /* Prefer low bits for the boundary vdd_min values. */
1105 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1106 if (vdd_min < 0)
1107 return 0;
1108
1109 /* Fill the mask, from max bit to min bit. */
1110 while (vdd_max >= vdd_min)
1111 mask |= 1 << vdd_max--;
1112
1113 return mask;
1114}
1115EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1116
1117#ifdef CONFIG_OF
1118
1119/**
1120 * mmc_of_parse_voltage - return mask of supported voltages
1121 * @np: The device node need to be parsed.
1122 * @mask: mask of voltages available for MMC/SD/SDIO
1123 *
1124 * Parse the "voltage-ranges" DT property, returning zero if it is not
1125 * found, negative errno if the voltage-range specification is invalid,
1126 * or one if the voltage-range is specified and successfully parsed.
1127 */
1128int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1129{
1130 const u32 *voltage_ranges;
1131 int num_ranges, i;
1132
1133 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1134 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1135 if (!voltage_ranges) {
1136 pr_debug("%pOF: voltage-ranges unspecified\n", np);
1137 return 0;
1138 }
1139 if (!num_ranges) {
1140 pr_err("%pOF: voltage-ranges empty\n", np);
1141 return -EINVAL;
1142 }
1143
1144 for (i = 0; i < num_ranges; i++) {
1145 const int j = i * 2;
1146 u32 ocr_mask;
1147
1148 ocr_mask = mmc_vddrange_to_ocrmask(
1149 be32_to_cpu(voltage_ranges[j]),
1150 be32_to_cpu(voltage_ranges[j + 1]));
1151 if (!ocr_mask) {
1152 pr_err("%pOF: voltage-range #%d is invalid\n",
1153 np, i);
1154 return -EINVAL;
1155 }
1156 *mask |= ocr_mask;
1157 }
1158
1159 return 1;
1160}
1161EXPORT_SYMBOL(mmc_of_parse_voltage);
1162
1163#endif /* CONFIG_OF */
1164
1165static int mmc_of_get_func_num(struct device_node *node)
1166{
1167 u32 reg;
1168 int ret;
1169
1170 ret = of_property_read_u32(node, "reg", ®);
1171 if (ret < 0)
1172 return ret;
1173
1174 return reg;
1175}
1176
1177struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1178 unsigned func_num)
1179{
1180 struct device_node *node;
1181
1182 if (!host->parent || !host->parent->of_node)
1183 return NULL;
1184
1185 for_each_child_of_node(host->parent->of_node, node) {
1186 if (mmc_of_get_func_num(node) == func_num)
1187 return node;
1188 }
1189
1190 return NULL;
1191}
1192
1193#ifdef CONFIG_REGULATOR
1194
1195/**
1196 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1197 * @vdd_bit: OCR bit number
1198 * @min_uV: minimum voltage value (mV)
1199 * @max_uV: maximum voltage value (mV)
1200 *
1201 * This function returns the voltage range according to the provided OCR
1202 * bit number. If conversion is not possible a negative errno value returned.
1203 */
1204static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1205{
1206 int tmp;
1207
1208 if (!vdd_bit)
1209 return -EINVAL;
1210
1211 /*
1212 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1213 * bits this regulator doesn't quite support ... don't
1214 * be too picky, most cards and regulators are OK with
1215 * a 0.1V range goof (it's a small error percentage).
1216 */
1217 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1218 if (tmp == 0) {
1219 *min_uV = 1650 * 1000;
1220 *max_uV = 1950 * 1000;
1221 } else {
1222 *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1223 *max_uV = *min_uV + 100 * 1000;
1224 }
1225
1226 return 0;
1227}
1228
1229/**
1230 * mmc_regulator_get_ocrmask - return mask of supported voltages
1231 * @supply: regulator to use
1232 *
1233 * This returns either a negative errno, or a mask of voltages that
1234 * can be provided to MMC/SD/SDIO devices using the specified voltage
1235 * regulator. This would normally be called before registering the
1236 * MMC host adapter.
1237 */
1238int mmc_regulator_get_ocrmask(struct regulator *supply)
1239{
1240 int result = 0;
1241 int count;
1242 int i;
1243 int vdd_uV;
1244 int vdd_mV;
1245
1246 count = regulator_count_voltages(supply);
1247 if (count < 0)
1248 return count;
1249
1250 for (i = 0; i < count; i++) {
1251 vdd_uV = regulator_list_voltage(supply, i);
1252 if (vdd_uV <= 0)
1253 continue;
1254
1255 vdd_mV = vdd_uV / 1000;
1256 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1257 }
1258
1259 if (!result) {
1260 vdd_uV = regulator_get_voltage(supply);
1261 if (vdd_uV <= 0)
1262 return vdd_uV;
1263
1264 vdd_mV = vdd_uV / 1000;
1265 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1266 }
1267
1268 return result;
1269}
1270EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1271
1272/**
1273 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1274 * @mmc: the host to regulate
1275 * @supply: regulator to use
1276 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1277 *
1278 * Returns zero on success, else negative errno.
1279 *
1280 * MMC host drivers may use this to enable or disable a regulator using
1281 * a particular supply voltage. This would normally be called from the
1282 * set_ios() method.
1283 */
1284int mmc_regulator_set_ocr(struct mmc_host *mmc,
1285 struct regulator *supply,
1286 unsigned short vdd_bit)
1287{
1288 int result = 0;
1289 int min_uV, max_uV;
1290
1291 if (vdd_bit) {
1292 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1293
1294 result = regulator_set_voltage(supply, min_uV, max_uV);
1295 if (result == 0 && !mmc->regulator_enabled) {
1296 result = regulator_enable(supply);
1297 if (!result)
1298 mmc->regulator_enabled = true;
1299 }
1300 } else if (mmc->regulator_enabled) {
1301 result = regulator_disable(supply);
1302 if (result == 0)
1303 mmc->regulator_enabled = false;
1304 }
1305
1306 if (result)
1307 dev_err(mmc_dev(mmc),
1308 "could not set regulator OCR (%d)\n", result);
1309 return result;
1310}
1311EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1312
1313static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1314 int min_uV, int target_uV,
1315 int max_uV)
1316{
1317 /*
1318 * Check if supported first to avoid errors since we may try several
1319 * signal levels during power up and don't want to show errors.
1320 */
1321 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1322 return -EINVAL;
1323
1324 return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1325 max_uV);
1326}
1327
1328/**
1329 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1330 *
1331 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1332 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1333 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1334 * SD card spec also define VQMMC in terms of VMMC.
1335 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1336 *
1337 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1338 * requested voltage. This is definitely a good idea for UHS where there's a
1339 * separate regulator on the card that's trying to make 1.8V and it's best if
1340 * we match.
1341 *
1342 * This function is expected to be used by a controller's
1343 * start_signal_voltage_switch() function.
1344 */
1345int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1346{
1347 struct device *dev = mmc_dev(mmc);
1348 int ret, volt, min_uV, max_uV;
1349
1350 /* If no vqmmc supply then we can't change the voltage */
1351 if (IS_ERR(mmc->supply.vqmmc))
1352 return -EINVAL;
1353
1354 switch (ios->signal_voltage) {
1355 case MMC_SIGNAL_VOLTAGE_120:
1356 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1357 1100000, 1200000, 1300000);
1358 case MMC_SIGNAL_VOLTAGE_180:
1359 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1360 1700000, 1800000, 1950000);
1361 case MMC_SIGNAL_VOLTAGE_330:
1362 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1363 if (ret < 0)
1364 return ret;
1365
1366 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1367 __func__, volt, max_uV);
1368
1369 min_uV = max(volt - 300000, 2700000);
1370 max_uV = min(max_uV + 200000, 3600000);
1371
1372 /*
1373 * Due to a limitation in the current implementation of
1374 * regulator_set_voltage_triplet() which is taking the lowest
1375 * voltage possible if below the target, search for a suitable
1376 * voltage in two steps and try to stay close to vmmc
1377 * with a 0.3V tolerance at first.
1378 */
1379 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1380 min_uV, volt, max_uV))
1381 return 0;
1382
1383 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1384 2700000, volt, 3600000);
1385 default:
1386 return -EINVAL;
1387 }
1388}
1389EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1390
1391#endif /* CONFIG_REGULATOR */
1392
1393/**
1394 * mmc_regulator_get_supply - try to get VMMC and VQMMC regulators for a host
1395 * @mmc: the host to regulate
1396 *
1397 * Returns 0 or errno. errno should be handled, it is either a critical error
1398 * or -EPROBE_DEFER. 0 means no critical error but it does not mean all
1399 * regulators have been found because they all are optional. If you require
1400 * certain regulators, you need to check separately in your driver if they got
1401 * populated after calling this function.
1402 */
1403int mmc_regulator_get_supply(struct mmc_host *mmc)
1404{
1405 struct device *dev = mmc_dev(mmc);
1406 int ret;
1407
1408 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1409 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1410
1411 if (IS_ERR(mmc->supply.vmmc)) {
1412 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1413 return -EPROBE_DEFER;
1414 dev_dbg(dev, "No vmmc regulator found\n");
1415 } else {
1416 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1417 if (ret > 0)
1418 mmc->ocr_avail = ret;
1419 else
1420 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1421 }
1422
1423 if (IS_ERR(mmc->supply.vqmmc)) {
1424 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1425 return -EPROBE_DEFER;
1426 dev_dbg(dev, "No vqmmc regulator found\n");
1427 }
1428
1429 return 0;
1430}
1431EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1432
1433/*
1434 * Mask off any voltages we don't support and select
1435 * the lowest voltage
1436 */
1437u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1438{
1439 int bit;
1440
1441 /*
1442 * Sanity check the voltages that the card claims to
1443 * support.
1444 */
1445 if (ocr & 0x7F) {
1446 dev_warn(mmc_dev(host),
1447 "card claims to support voltages below defined range\n");
1448 ocr &= ~0x7F;
1449 }
1450
1451 ocr &= host->ocr_avail;
1452 if (!ocr) {
1453 dev_warn(mmc_dev(host), "no support for card's volts\n");
1454 return 0;
1455 }
1456
1457 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1458 bit = ffs(ocr) - 1;
1459 ocr &= 3 << bit;
1460 mmc_power_cycle(host, ocr);
1461 } else {
1462 bit = fls(ocr) - 1;
1463 ocr &= 3 << bit;
1464 if (bit != host->ios.vdd)
1465 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1466 }
1467
1468 return ocr;
1469}
1470
1471int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1472{
1473 int err = 0;
1474 int old_signal_voltage = host->ios.signal_voltage;
1475
1476 host->ios.signal_voltage = signal_voltage;
1477 if (host->ops->start_signal_voltage_switch)
1478 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1479
1480 if (err)
1481 host->ios.signal_voltage = old_signal_voltage;
1482
1483 return err;
1484
1485}
1486
1487void mmc_set_initial_signal_voltage(struct mmc_host *host)
1488{
1489 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1490 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1491 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1492 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1493 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1494 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1495 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1496}
1497
1498int mmc_host_set_uhs_voltage(struct mmc_host *host)
1499{
1500 u32 clock;
1501
1502 /*
1503 * During a signal voltage level switch, the clock must be gated
1504 * for 5 ms according to the SD spec
1505 */
1506 clock = host->ios.clock;
1507 host->ios.clock = 0;
1508 mmc_set_ios(host);
1509
1510 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1511 return -EAGAIN;
1512
1513 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1514 mmc_delay(10);
1515 host->ios.clock = clock;
1516 mmc_set_ios(host);
1517
1518 return 0;
1519}
1520
1521int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1522{
1523 struct mmc_command cmd = {};
1524 int err = 0;
1525
1526 /*
1527 * If we cannot switch voltages, return failure so the caller
1528 * can continue without UHS mode
1529 */
1530 if (!host->ops->start_signal_voltage_switch)
1531 return -EPERM;
1532 if (!host->ops->card_busy)
1533 pr_warn("%s: cannot verify signal voltage switch\n",
1534 mmc_hostname(host));
1535
1536 cmd.opcode = SD_SWITCH_VOLTAGE;
1537 cmd.arg = 0;
1538 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1539
1540 err = mmc_wait_for_cmd(host, &cmd, 0);
1541 if (err)
1542 return err;
1543
1544 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1545 return -EIO;
1546
1547 /*
1548 * The card should drive cmd and dat[0:3] low immediately
1549 * after the response of cmd11, but wait 1 ms to be sure
1550 */
1551 mmc_delay(1);
1552 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1553 err = -EAGAIN;
1554 goto power_cycle;
1555 }
1556
1557 if (mmc_host_set_uhs_voltage(host)) {
1558 /*
1559 * Voltages may not have been switched, but we've already
1560 * sent CMD11, so a power cycle is required anyway
1561 */
1562 err = -EAGAIN;
1563 goto power_cycle;
1564 }
1565
1566 /* Wait for at least 1 ms according to spec */
1567 mmc_delay(1);
1568
1569 /*
1570 * Failure to switch is indicated by the card holding
1571 * dat[0:3] low
1572 */
1573 if (host->ops->card_busy && host->ops->card_busy(host))
1574 err = -EAGAIN;
1575
1576power_cycle:
1577 if (err) {
1578 pr_debug("%s: Signal voltage switch failed, "
1579 "power cycling card\n", mmc_hostname(host));
1580 mmc_power_cycle(host, ocr);
1581 }
1582
1583 return err;
1584}
1585
1586/*
1587 * Select timing parameters for host.
1588 */
1589void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1590{
1591 host->ios.timing = timing;
1592 mmc_set_ios(host);
1593}
1594
1595/*
1596 * Select appropriate driver type for host.
1597 */
1598void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1599{
1600 host->ios.drv_type = drv_type;
1601 mmc_set_ios(host);
1602}
1603
1604int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1605 int card_drv_type, int *drv_type)
1606{
1607 struct mmc_host *host = card->host;
1608 int host_drv_type = SD_DRIVER_TYPE_B;
1609
1610 *drv_type = 0;
1611
1612 if (!host->ops->select_drive_strength)
1613 return 0;
1614
1615 /* Use SD definition of driver strength for hosts */
1616 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1617 host_drv_type |= SD_DRIVER_TYPE_A;
1618
1619 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1620 host_drv_type |= SD_DRIVER_TYPE_C;
1621
1622 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1623 host_drv_type |= SD_DRIVER_TYPE_D;
1624
1625 /*
1626 * The drive strength that the hardware can support
1627 * depends on the board design. Pass the appropriate
1628 * information and let the hardware specific code
1629 * return what is possible given the options
1630 */
1631 return host->ops->select_drive_strength(card, max_dtr,
1632 host_drv_type,
1633 card_drv_type,
1634 drv_type);
1635}
1636
1637/*
1638 * Apply power to the MMC stack. This is a two-stage process.
1639 * First, we enable power to the card without the clock running.
1640 * We then wait a bit for the power to stabilise. Finally,
1641 * enable the bus drivers and clock to the card.
1642 *
1643 * We must _NOT_ enable the clock prior to power stablising.
1644 *
1645 * If a host does all the power sequencing itself, ignore the
1646 * initial MMC_POWER_UP stage.
1647 */
1648void mmc_power_up(struct mmc_host *host, u32 ocr)
1649{
1650 if (host->ios.power_mode == MMC_POWER_ON)
1651 return;
1652
1653 mmc_pwrseq_pre_power_on(host);
1654
1655 host->ios.vdd = fls(ocr) - 1;
1656 host->ios.power_mode = MMC_POWER_UP;
1657 /* Set initial state and call mmc_set_ios */
1658 mmc_set_initial_state(host);
1659
1660 mmc_set_initial_signal_voltage(host);
1661
1662 /*
1663 * This delay should be sufficient to allow the power supply
1664 * to reach the minimum voltage.
1665 */
1666 mmc_delay(host->ios.power_delay_ms);
1667
1668 mmc_pwrseq_post_power_on(host);
1669
1670 host->ios.clock = host->f_init;
1671
1672 host->ios.power_mode = MMC_POWER_ON;
1673 mmc_set_ios(host);
1674
1675 /*
1676 * This delay must be at least 74 clock sizes, or 1 ms, or the
1677 * time required to reach a stable voltage.
1678 */
1679 mmc_delay(host->ios.power_delay_ms);
1680}
1681
1682void mmc_power_off(struct mmc_host *host)
1683{
1684 if (host->ios.power_mode == MMC_POWER_OFF)
1685 return;
1686
1687 mmc_pwrseq_power_off(host);
1688
1689 host->ios.clock = 0;
1690 host->ios.vdd = 0;
1691
1692 host->ios.power_mode = MMC_POWER_OFF;
1693 /* Set initial state and call mmc_set_ios */
1694 mmc_set_initial_state(host);
1695
1696 /*
1697 * Some configurations, such as the 802.11 SDIO card in the OLPC
1698 * XO-1.5, require a short delay after poweroff before the card
1699 * can be successfully turned on again.
1700 */
1701 mmc_delay(1);
1702}
1703
1704void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1705{
1706 mmc_power_off(host);
1707 /* Wait at least 1 ms according to SD spec */
1708 mmc_delay(1);
1709 mmc_power_up(host, ocr);
1710}
1711
1712/*
1713 * Cleanup when the last reference to the bus operator is dropped.
1714 */
1715static void __mmc_release_bus(struct mmc_host *host)
1716{
1717 WARN_ON(!host->bus_dead);
1718
1719 host->bus_ops = NULL;
1720}
1721
1722/*
1723 * Increase reference count of bus operator
1724 */
1725static inline void mmc_bus_get(struct mmc_host *host)
1726{
1727 unsigned long flags;
1728
1729 spin_lock_irqsave(&host->lock, flags);
1730 host->bus_refs++;
1731 spin_unlock_irqrestore(&host->lock, flags);
1732}
1733
1734/*
1735 * Decrease reference count of bus operator and free it if
1736 * it is the last reference.
1737 */
1738static inline void mmc_bus_put(struct mmc_host *host)
1739{
1740 unsigned long flags;
1741
1742 spin_lock_irqsave(&host->lock, flags);
1743 host->bus_refs--;
1744 if ((host->bus_refs == 0) && host->bus_ops)
1745 __mmc_release_bus(host);
1746 spin_unlock_irqrestore(&host->lock, flags);
1747}
1748
1749/*
1750 * Assign a mmc bus handler to a host. Only one bus handler may control a
1751 * host at any given time.
1752 */
1753void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1754{
1755 unsigned long flags;
1756
1757 WARN_ON(!host->claimed);
1758
1759 spin_lock_irqsave(&host->lock, flags);
1760
1761 WARN_ON(host->bus_ops);
1762 WARN_ON(host->bus_refs);
1763
1764 host->bus_ops = ops;
1765 host->bus_refs = 1;
1766 host->bus_dead = 0;
1767
1768 spin_unlock_irqrestore(&host->lock, flags);
1769}
1770
1771/*
1772 * Remove the current bus handler from a host.
1773 */
1774void mmc_detach_bus(struct mmc_host *host)
1775{
1776 unsigned long flags;
1777
1778 WARN_ON(!host->claimed);
1779 WARN_ON(!host->bus_ops);
1780
1781 spin_lock_irqsave(&host->lock, flags);
1782
1783 host->bus_dead = 1;
1784
1785 spin_unlock_irqrestore(&host->lock, flags);
1786
1787 mmc_bus_put(host);
1788}
1789
1790static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1791 bool cd_irq)
1792{
1793 /*
1794 * If the device is configured as wakeup, we prevent a new sleep for
1795 * 5 s to give provision for user space to consume the event.
1796 */
1797 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1798 device_can_wakeup(mmc_dev(host)))
1799 pm_wakeup_event(mmc_dev(host), 5000);
1800
1801 host->detect_change = 1;
1802 mmc_schedule_delayed_work(&host->detect, delay);
1803}
1804
1805/**
1806 * mmc_detect_change - process change of state on a MMC socket
1807 * @host: host which changed state.
1808 * @delay: optional delay to wait before detection (jiffies)
1809 *
1810 * MMC drivers should call this when they detect a card has been
1811 * inserted or removed. The MMC layer will confirm that any
1812 * present card is still functional, and initialize any newly
1813 * inserted.
1814 */
1815void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1816{
1817 _mmc_detect_change(host, delay, true);
1818}
1819EXPORT_SYMBOL(mmc_detect_change);
1820
1821void mmc_init_erase(struct mmc_card *card)
1822{
1823 unsigned int sz;
1824
1825 if (is_power_of_2(card->erase_size))
1826 card->erase_shift = ffs(card->erase_size) - 1;
1827 else
1828 card->erase_shift = 0;
1829
1830 /*
1831 * It is possible to erase an arbitrarily large area of an SD or MMC
1832 * card. That is not desirable because it can take a long time
1833 * (minutes) potentially delaying more important I/O, and also the
1834 * timeout calculations become increasingly hugely over-estimated.
1835 * Consequently, 'pref_erase' is defined as a guide to limit erases
1836 * to that size and alignment.
1837 *
1838 * For SD cards that define Allocation Unit size, limit erases to one
1839 * Allocation Unit at a time.
1840 * For MMC, have a stab at ai good value and for modern cards it will
1841 * end up being 4MiB. Note that if the value is too small, it can end
1842 * up taking longer to erase. Also note, erase_size is already set to
1843 * High Capacity Erase Size if available when this function is called.
1844 */
1845 if (mmc_card_sd(card) && card->ssr.au) {
1846 card->pref_erase = card->ssr.au;
1847 card->erase_shift = ffs(card->ssr.au) - 1;
1848 } else if (card->erase_size) {
1849 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1850 if (sz < 128)
1851 card->pref_erase = 512 * 1024 / 512;
1852 else if (sz < 512)
1853 card->pref_erase = 1024 * 1024 / 512;
1854 else if (sz < 1024)
1855 card->pref_erase = 2 * 1024 * 1024 / 512;
1856 else
1857 card->pref_erase = 4 * 1024 * 1024 / 512;
1858 if (card->pref_erase < card->erase_size)
1859 card->pref_erase = card->erase_size;
1860 else {
1861 sz = card->pref_erase % card->erase_size;
1862 if (sz)
1863 card->pref_erase += card->erase_size - sz;
1864 }
1865 } else
1866 card->pref_erase = 0;
1867}
1868
1869static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1870 unsigned int arg, unsigned int qty)
1871{
1872 unsigned int erase_timeout;
1873
1874 if (arg == MMC_DISCARD_ARG ||
1875 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1876 erase_timeout = card->ext_csd.trim_timeout;
1877 } else if (card->ext_csd.erase_group_def & 1) {
1878 /* High Capacity Erase Group Size uses HC timeouts */
1879 if (arg == MMC_TRIM_ARG)
1880 erase_timeout = card->ext_csd.trim_timeout;
1881 else
1882 erase_timeout = card->ext_csd.hc_erase_timeout;
1883 } else {
1884 /* CSD Erase Group Size uses write timeout */
1885 unsigned int mult = (10 << card->csd.r2w_factor);
1886 unsigned int timeout_clks = card->csd.taac_clks * mult;
1887 unsigned int timeout_us;
1888
1889 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1890 if (card->csd.taac_ns < 1000000)
1891 timeout_us = (card->csd.taac_ns * mult) / 1000;
1892 else
1893 timeout_us = (card->csd.taac_ns / 1000) * mult;
1894
1895 /*
1896 * ios.clock is only a target. The real clock rate might be
1897 * less but not that much less, so fudge it by multiplying by 2.
1898 */
1899 timeout_clks <<= 1;
1900 timeout_us += (timeout_clks * 1000) /
1901 (card->host->ios.clock / 1000);
1902
1903 erase_timeout = timeout_us / 1000;
1904
1905 /*
1906 * Theoretically, the calculation could underflow so round up
1907 * to 1ms in that case.
1908 */
1909 if (!erase_timeout)
1910 erase_timeout = 1;
1911 }
1912
1913 /* Multiplier for secure operations */
1914 if (arg & MMC_SECURE_ARGS) {
1915 if (arg == MMC_SECURE_ERASE_ARG)
1916 erase_timeout *= card->ext_csd.sec_erase_mult;
1917 else
1918 erase_timeout *= card->ext_csd.sec_trim_mult;
1919 }
1920
1921 erase_timeout *= qty;
1922
1923 /*
1924 * Ensure at least a 1 second timeout for SPI as per
1925 * 'mmc_set_data_timeout()'
1926 */
1927 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1928 erase_timeout = 1000;
1929
1930 return erase_timeout;
1931}
1932
1933static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1934 unsigned int arg,
1935 unsigned int qty)
1936{
1937 unsigned int erase_timeout;
1938
1939 if (card->ssr.erase_timeout) {
1940 /* Erase timeout specified in SD Status Register (SSR) */
1941 erase_timeout = card->ssr.erase_timeout * qty +
1942 card->ssr.erase_offset;
1943 } else {
1944 /*
1945 * Erase timeout not specified in SD Status Register (SSR) so
1946 * use 250ms per write block.
1947 */
1948 erase_timeout = 250 * qty;
1949 }
1950
1951 /* Must not be less than 1 second */
1952 if (erase_timeout < 1000)
1953 erase_timeout = 1000;
1954
1955 return erase_timeout;
1956}
1957
1958static unsigned int mmc_erase_timeout(struct mmc_card *card,
1959 unsigned int arg,
1960 unsigned int qty)
1961{
1962 if (mmc_card_sd(card))
1963 return mmc_sd_erase_timeout(card, arg, qty);
1964 else
1965 return mmc_mmc_erase_timeout(card, arg, qty);
1966}
1967
1968static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1969 unsigned int to, unsigned int arg)
1970{
1971 struct mmc_command cmd = {};
1972 unsigned int qty = 0, busy_timeout = 0;
1973 bool use_r1b_resp = false;
1974 unsigned long timeout;
1975 int loop_udelay=64, udelay_max=32768;
1976 int err;
1977
1978 mmc_retune_hold(card->host);
1979
1980 /*
1981 * qty is used to calculate the erase timeout which depends on how many
1982 * erase groups (or allocation units in SD terminology) are affected.
1983 * We count erasing part of an erase group as one erase group.
1984 * For SD, the allocation units are always a power of 2. For MMC, the
1985 * erase group size is almost certainly also power of 2, but it does not
1986 * seem to insist on that in the JEDEC standard, so we fall back to
1987 * division in that case. SD may not specify an allocation unit size,
1988 * in which case the timeout is based on the number of write blocks.
1989 *
1990 * Note that the timeout for secure trim 2 will only be correct if the
1991 * number of erase groups specified is the same as the total of all
1992 * preceding secure trim 1 commands. Since the power may have been
1993 * lost since the secure trim 1 commands occurred, it is generally
1994 * impossible to calculate the secure trim 2 timeout correctly.
1995 */
1996 if (card->erase_shift)
1997 qty += ((to >> card->erase_shift) -
1998 (from >> card->erase_shift)) + 1;
1999 else if (mmc_card_sd(card))
2000 qty += to - from + 1;
2001 else
2002 qty += ((to / card->erase_size) -
2003 (from / card->erase_size)) + 1;
2004
2005 if (!mmc_card_blockaddr(card)) {
2006 from <<= 9;
2007 to <<= 9;
2008 }
2009
2010 if (mmc_card_sd(card))
2011 cmd.opcode = SD_ERASE_WR_BLK_START;
2012 else
2013 cmd.opcode = MMC_ERASE_GROUP_START;
2014 cmd.arg = from;
2015 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2016 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2017 if (err) {
2018 pr_err("mmc_erase: group start error %d, "
2019 "status %#x\n", err, cmd.resp[0]);
2020 err = -EIO;
2021 goto out;
2022 }
2023
2024 memset(&cmd, 0, sizeof(struct mmc_command));
2025 if (mmc_card_sd(card))
2026 cmd.opcode = SD_ERASE_WR_BLK_END;
2027 else
2028 cmd.opcode = MMC_ERASE_GROUP_END;
2029 cmd.arg = to;
2030 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2031 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2032 if (err) {
2033 pr_err("mmc_erase: group end error %d, status %#x\n",
2034 err, cmd.resp[0]);
2035 err = -EIO;
2036 goto out;
2037 }
2038
2039 memset(&cmd, 0, sizeof(struct mmc_command));
2040 cmd.opcode = MMC_ERASE;
2041 cmd.arg = arg;
2042 busy_timeout = mmc_erase_timeout(card, arg, qty);
2043 /*
2044 * If the host controller supports busy signalling and the timeout for
2045 * the erase operation does not exceed the max_busy_timeout, we should
2046 * use R1B response. Or we need to prevent the host from doing hw busy
2047 * detection, which is done by converting to a R1 response instead.
2048 */
2049 if (card->host->max_busy_timeout &&
2050 busy_timeout > card->host->max_busy_timeout) {
2051 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2052 } else {
2053 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2054 cmd.busy_timeout = busy_timeout;
2055 use_r1b_resp = true;
2056 }
2057
2058 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2059 if (err) {
2060 pr_err("mmc_erase: erase error %d, status %#x\n",
2061 err, cmd.resp[0]);
2062 err = -EIO;
2063 goto out;
2064 }
2065
2066 if (mmc_host_is_spi(card->host))
2067 goto out;
2068
2069 /*
2070 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2071 * shall be avoided.
2072 */
2073 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2074 goto out;
2075
2076 timeout = jiffies + msecs_to_jiffies(busy_timeout);
2077 do {
2078 memset(&cmd, 0, sizeof(struct mmc_command));
2079 cmd.opcode = MMC_SEND_STATUS;
2080 cmd.arg = card->rca << 16;
2081 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2082 /* Do not retry else we can't see errors */
2083 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2084 if (err || R1_STATUS(cmd.resp[0])) {
2085 pr_err("error %d requesting status %#x\n",
2086 err, cmd.resp[0]);
2087 err = -EIO;
2088 goto out;
2089 }
2090
2091 /* Timeout if the device never becomes ready for data and
2092 * never leaves the program state.
2093 */
2094 if (time_after(jiffies, timeout)) {
2095 pr_err("%s: Card stuck in programming state! %s\n",
2096 mmc_hostname(card->host), __func__);
2097 err = -EIO;
2098 goto out;
2099 }
2100 if ((cmd.resp[0] & R1_READY_FOR_DATA) &&
2101 R1_CURRENT_STATE(cmd.resp[0]) != R1_STATE_PRG)
2102 break;
2103
2104 usleep_range(loop_udelay, loop_udelay*2);
2105 if (loop_udelay < udelay_max)
2106 loop_udelay *= 2;
2107 } while (1);
2108
2109out:
2110 mmc_retune_release(card->host);
2111 return err;
2112}
2113
2114static unsigned int mmc_align_erase_size(struct mmc_card *card,
2115 unsigned int *from,
2116 unsigned int *to,
2117 unsigned int nr)
2118{
2119 unsigned int from_new = *from, nr_new = nr, rem;
2120
2121 /*
2122 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2123 * to align the erase size efficiently.
2124 */
2125 if (is_power_of_2(card->erase_size)) {
2126 unsigned int temp = from_new;
2127
2128 from_new = round_up(temp, card->erase_size);
2129 rem = from_new - temp;
2130
2131 if (nr_new > rem)
2132 nr_new -= rem;
2133 else
2134 return 0;
2135
2136 nr_new = round_down(nr_new, card->erase_size);
2137 } else {
2138 rem = from_new % card->erase_size;
2139 if (rem) {
2140 rem = card->erase_size - rem;
2141 from_new += rem;
2142 if (nr_new > rem)
2143 nr_new -= rem;
2144 else
2145 return 0;
2146 }
2147
2148 rem = nr_new % card->erase_size;
2149 if (rem)
2150 nr_new -= rem;
2151 }
2152
2153 if (nr_new == 0)
2154 return 0;
2155
2156 *to = from_new + nr_new;
2157 *from = from_new;
2158
2159 return nr_new;
2160}
2161
2162/**
2163 * mmc_erase - erase sectors.
2164 * @card: card to erase
2165 * @from: first sector to erase
2166 * @nr: number of sectors to erase
2167 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2168 *
2169 * Caller must claim host before calling this function.
2170 */
2171int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2172 unsigned int arg)
2173{
2174 unsigned int rem, to = from + nr;
2175 int err;
2176
2177 if (!(card->host->caps & MMC_CAP_ERASE) ||
2178 !(card->csd.cmdclass & CCC_ERASE))
2179 return -EOPNOTSUPP;
2180
2181 if (!card->erase_size)
2182 return -EOPNOTSUPP;
2183
2184 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2185 return -EOPNOTSUPP;
2186
2187 if ((arg & MMC_SECURE_ARGS) &&
2188 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2189 return -EOPNOTSUPP;
2190
2191 if ((arg & MMC_TRIM_ARGS) &&
2192 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2193 return -EOPNOTSUPP;
2194
2195 if (arg == MMC_SECURE_ERASE_ARG) {
2196 if (from % card->erase_size || nr % card->erase_size)
2197 return -EINVAL;
2198 }
2199
2200 if (arg == MMC_ERASE_ARG)
2201 nr = mmc_align_erase_size(card, &from, &to, nr);
2202
2203 if (nr == 0)
2204 return 0;
2205
2206 if (to <= from)
2207 return -EINVAL;
2208
2209 /* 'from' and 'to' are inclusive */
2210 to -= 1;
2211
2212 /*
2213 * Special case where only one erase-group fits in the timeout budget:
2214 * If the region crosses an erase-group boundary on this particular
2215 * case, we will be trimming more than one erase-group which, does not
2216 * fit in the timeout budget of the controller, so we need to split it
2217 * and call mmc_do_erase() twice if necessary. This special case is
2218 * identified by the card->eg_boundary flag.
2219 */
2220 rem = card->erase_size - (from % card->erase_size);
2221 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2222 err = mmc_do_erase(card, from, from + rem - 1, arg);
2223 from += rem;
2224 if ((err) || (to <= from))
2225 return err;
2226 }
2227
2228 return mmc_do_erase(card, from, to, arg);
2229}
2230EXPORT_SYMBOL(mmc_erase);
2231
2232int mmc_can_erase(struct mmc_card *card)
2233{
2234 if ((card->host->caps & MMC_CAP_ERASE) &&
2235 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2236 return 1;
2237 return 0;
2238}
2239EXPORT_SYMBOL(mmc_can_erase);
2240
2241int mmc_can_trim(struct mmc_card *card)
2242{
2243 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2244 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2245 return 1;
2246 return 0;
2247}
2248EXPORT_SYMBOL(mmc_can_trim);
2249
2250int mmc_can_discard(struct mmc_card *card)
2251{
2252 /*
2253 * As there's no way to detect the discard support bit at v4.5
2254 * use the s/w feature support filed.
2255 */
2256 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2257 return 1;
2258 return 0;
2259}
2260EXPORT_SYMBOL(mmc_can_discard);
2261
2262int mmc_can_sanitize(struct mmc_card *card)
2263{
2264 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2265 return 0;
2266 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2267 return 1;
2268 return 0;
2269}
2270EXPORT_SYMBOL(mmc_can_sanitize);
2271
2272int mmc_can_secure_erase_trim(struct mmc_card *card)
2273{
2274 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2275 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2276 return 1;
2277 return 0;
2278}
2279EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2280
2281int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2282 unsigned int nr)
2283{
2284 if (!card->erase_size)
2285 return 0;
2286 if (from % card->erase_size || nr % card->erase_size)
2287 return 0;
2288 return 1;
2289}
2290EXPORT_SYMBOL(mmc_erase_group_aligned);
2291
2292static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2293 unsigned int arg)
2294{
2295 struct mmc_host *host = card->host;
2296 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2297 unsigned int last_timeout = 0;
2298 unsigned int max_busy_timeout = host->max_busy_timeout ?
2299 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2300
2301 if (card->erase_shift) {
2302 max_qty = UINT_MAX >> card->erase_shift;
2303 min_qty = card->pref_erase >> card->erase_shift;
2304 } else if (mmc_card_sd(card)) {
2305 max_qty = UINT_MAX;
2306 min_qty = card->pref_erase;
2307 } else {
2308 max_qty = UINT_MAX / card->erase_size;
2309 min_qty = card->pref_erase / card->erase_size;
2310 }
2311
2312 /*
2313 * We should not only use 'host->max_busy_timeout' as the limitation
2314 * when deciding the max discard sectors. We should set a balance value
2315 * to improve the erase speed, and it can not get too long timeout at
2316 * the same time.
2317 *
2318 * Here we set 'card->pref_erase' as the minimal discard sectors no
2319 * matter what size of 'host->max_busy_timeout', but if the
2320 * 'host->max_busy_timeout' is large enough for more discard sectors,
2321 * then we can continue to increase the max discard sectors until we
2322 * get a balance value. In cases when the 'host->max_busy_timeout'
2323 * isn't specified, use the default max erase timeout.
2324 */
2325 do {
2326 y = 0;
2327 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2328 timeout = mmc_erase_timeout(card, arg, qty + x);
2329
2330 if (qty + x > min_qty && timeout > max_busy_timeout)
2331 break;
2332
2333 if (timeout < last_timeout)
2334 break;
2335 last_timeout = timeout;
2336 y = x;
2337 }
2338 qty += y;
2339 } while (y);
2340
2341 if (!qty)
2342 return 0;
2343
2344 /*
2345 * When specifying a sector range to trim, chances are we might cross
2346 * an erase-group boundary even if the amount of sectors is less than
2347 * one erase-group.
2348 * If we can only fit one erase-group in the controller timeout budget,
2349 * we have to care that erase-group boundaries are not crossed by a
2350 * single trim operation. We flag that special case with "eg_boundary".
2351 * In all other cases we can just decrement qty and pretend that we
2352 * always touch (qty + 1) erase-groups as a simple optimization.
2353 */
2354 if (qty == 1)
2355 card->eg_boundary = 1;
2356 else
2357 qty--;
2358
2359 /* Convert qty to sectors */
2360 if (card->erase_shift)
2361 max_discard = qty << card->erase_shift;
2362 else if (mmc_card_sd(card))
2363 max_discard = qty + 1;
2364 else
2365 max_discard = qty * card->erase_size;
2366
2367 return max_discard;
2368}
2369
2370unsigned int mmc_calc_max_discard(struct mmc_card *card)
2371{
2372 struct mmc_host *host = card->host;
2373 unsigned int max_discard, max_trim;
2374
2375 /*
2376 * Without erase_group_def set, MMC erase timeout depends on clock
2377 * frequence which can change. In that case, the best choice is
2378 * just the preferred erase size.
2379 */
2380 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2381 return card->pref_erase;
2382
2383 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2384 if (max_discard && mmc_can_trim(card)) {
2385 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2386 if (max_trim < max_discard)
2387 max_discard = max_trim;
2388 } else if (max_discard < card->erase_size) {
2389 max_discard = 0;
2390 }
2391 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2392 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2393 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2394 return max_discard;
2395}
2396EXPORT_SYMBOL(mmc_calc_max_discard);
2397
2398bool mmc_card_is_blockaddr(struct mmc_card *card)
2399{
2400 return card ? mmc_card_blockaddr(card) : false;
2401}
2402EXPORT_SYMBOL(mmc_card_is_blockaddr);
2403
2404int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2405{
2406 struct mmc_command cmd = {};
2407
2408 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2409 mmc_card_hs400(card) || mmc_card_hs400es(card))
2410 return 0;
2411
2412 cmd.opcode = MMC_SET_BLOCKLEN;
2413 cmd.arg = blocklen;
2414 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2415 return mmc_wait_for_cmd(card->host, &cmd, 5);
2416}
2417EXPORT_SYMBOL(mmc_set_blocklen);
2418
2419static void mmc_hw_reset_for_init(struct mmc_host *host)
2420{
2421 mmc_pwrseq_reset(host);
2422
2423 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2424 return;
2425 host->ops->hw_reset(host);
2426}
2427
2428int mmc_hw_reset(struct mmc_host *host)
2429{
2430 int ret;
2431
2432 if (!host->card)
2433 return -EINVAL;
2434
2435 mmc_bus_get(host);
2436 if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
2437 mmc_bus_put(host);
2438 return -EOPNOTSUPP;
2439 }
2440
2441 ret = host->bus_ops->hw_reset(host);
2442 mmc_bus_put(host);
2443
2444 if (ret)
2445 pr_warn("%s: tried to HW reset card, got error %d\n",
2446 mmc_hostname(host), ret);
2447
2448 return ret;
2449}
2450EXPORT_SYMBOL(mmc_hw_reset);
2451
2452int mmc_sw_reset(struct mmc_host *host)
2453{
2454 int ret;
2455
2456 if (!host->card)
2457 return -EINVAL;
2458
2459 mmc_bus_get(host);
2460 if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2461 mmc_bus_put(host);
2462 return -EOPNOTSUPP;
2463 }
2464
2465 ret = host->bus_ops->sw_reset(host);
2466 mmc_bus_put(host);
2467
2468 if (ret)
2469 pr_warn("%s: tried to SW reset card, got error %d\n",
2470 mmc_hostname(host), ret);
2471
2472 return ret;
2473}
2474EXPORT_SYMBOL(mmc_sw_reset);
2475
2476static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2477{
2478 host->f_init = freq;
2479
2480 pr_debug("%s: %s: trying to init card at %u Hz\n",
2481 mmc_hostname(host), __func__, host->f_init);
2482
2483 mmc_power_up(host, host->ocr_avail);
2484
2485 /*
2486 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2487 * do a hardware reset if possible.
2488 */
2489 mmc_hw_reset_for_init(host);
2490
2491 /*
2492 * sdio_reset sends CMD52 to reset card. Since we do not know
2493 * if the card is being re-initialized, just send it. CMD52
2494 * should be ignored by SD/eMMC cards.
2495 * Skip it if we already know that we do not support SDIO commands
2496 */
2497 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2498 sdio_reset(host);
2499
2500 mmc_go_idle(host);
2501
2502 if (!(host->caps2 & MMC_CAP2_NO_SD))
2503 mmc_send_if_cond(host, host->ocr_avail);
2504
2505 /* Order's important: probe SDIO, then SD, then MMC */
2506 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2507 if (!mmc_attach_sdio(host))
2508 return 0;
2509
2510 if (!(host->caps2 & MMC_CAP2_NO_SD))
2511 if (!mmc_attach_sd(host))
2512 return 0;
2513
2514 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2515 if (!mmc_attach_mmc(host))
2516 return 0;
2517
2518 mmc_power_off(host);
2519 return -EIO;
2520}
2521
2522int _mmc_detect_card_removed(struct mmc_host *host)
2523{
2524 int ret;
2525
2526 if (!host->card || mmc_card_removed(host->card))
2527 return 1;
2528
2529 ret = host->bus_ops->alive(host);
2530
2531 /*
2532 * Card detect status and alive check may be out of sync if card is
2533 * removed slowly, when card detect switch changes while card/slot
2534 * pads are still contacted in hardware (refer to "SD Card Mechanical
2535 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2536 * detect work 200ms later for this case.
2537 */
2538 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2539 mmc_detect_change(host, msecs_to_jiffies(200));
2540 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2541 }
2542
2543 if (ret) {
2544 mmc_card_set_removed(host->card);
2545 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2546 }
2547
2548 return ret;
2549}
2550
2551int mmc_detect_card_removed(struct mmc_host *host)
2552{
2553 struct mmc_card *card = host->card;
2554 int ret;
2555
2556 WARN_ON(!host->claimed);
2557
2558 if (!card)
2559 return 1;
2560
2561 if (!mmc_card_is_removable(host))
2562 return 0;
2563
2564 ret = mmc_card_removed(card);
2565 /*
2566 * The card will be considered unchanged unless we have been asked to
2567 * detect a change or host requires polling to provide card detection.
2568 */
2569 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2570 return ret;
2571
2572 host->detect_change = 0;
2573 if (!ret) {
2574 ret = _mmc_detect_card_removed(host);
2575 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2576 /*
2577 * Schedule a detect work as soon as possible to let a
2578 * rescan handle the card removal.
2579 */
2580 cancel_delayed_work(&host->detect);
2581 _mmc_detect_change(host, 0, false);
2582 }
2583 }
2584
2585 return ret;
2586}
2587EXPORT_SYMBOL(mmc_detect_card_removed);
2588
2589void mmc_rescan(struct work_struct *work)
2590{
2591 struct mmc_host *host =
2592 container_of(work, struct mmc_host, detect.work);
2593 int i;
2594
2595 if (host->rescan_disable)
2596 return;
2597
2598 /* If there is a non-removable card registered, only scan once */
2599 if (!mmc_card_is_removable(host) && host->rescan_entered)
2600 return;
2601 host->rescan_entered = 1;
2602
2603 if (host->trigger_card_event && host->ops->card_event) {
2604 mmc_claim_host(host);
2605 host->ops->card_event(host);
2606 mmc_release_host(host);
2607 host->trigger_card_event = false;
2608 }
2609
2610 mmc_bus_get(host);
2611
2612 /*
2613 * if there is a _removable_ card registered, check whether it is
2614 * still present
2615 */
2616 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2617 host->bus_ops->detect(host);
2618
2619 host->detect_change = 0;
2620
2621 /*
2622 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2623 * the card is no longer present.
2624 */
2625 mmc_bus_put(host);
2626 mmc_bus_get(host);
2627
2628 /* if there still is a card present, stop here */
2629 if (host->bus_ops != NULL) {
2630 mmc_bus_put(host);
2631 goto out;
2632 }
2633
2634 /*
2635 * Only we can add a new handler, so it's safe to
2636 * release the lock here.
2637 */
2638 mmc_bus_put(host);
2639
2640 mmc_claim_host(host);
2641 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2642 host->ops->get_cd(host) == 0) {
2643 mmc_power_off(host);
2644 mmc_release_host(host);
2645 goto out;
2646 }
2647
2648 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2649 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2650 break;
2651 if (freqs[i] <= host->f_min)
2652 break;
2653 }
2654 mmc_release_host(host);
2655
2656 out:
2657 if (host->caps & MMC_CAP_NEEDS_POLL)
2658 mmc_schedule_delayed_work(&host->detect, HZ);
2659}
2660
2661void mmc_start_host(struct mmc_host *host)
2662{
2663 host->f_init = max(freqs[0], host->f_min);
2664 host->rescan_disable = 0;
2665 host->ios.power_mode = MMC_POWER_UNDEFINED;
2666
2667 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2668 mmc_claim_host(host);
2669 mmc_power_up(host, host->ocr_avail);
2670 mmc_release_host(host);
2671 }
2672
2673 mmc_gpiod_request_cd_irq(host);
2674 _mmc_detect_change(host, 0, false);
2675}
2676
2677void mmc_stop_host(struct mmc_host *host)
2678{
2679 if (host->slot.cd_irq >= 0) {
2680 mmc_gpio_set_cd_wake(host, false);
2681 disable_irq(host->slot.cd_irq);
2682 }
2683
2684 host->rescan_disable = 1;
2685 cancel_delayed_work_sync(&host->detect);
2686
2687 /* clear pm flags now and let card drivers set them as needed */
2688 host->pm_flags = 0;
2689
2690 mmc_bus_get(host);
2691 if (host->bus_ops && !host->bus_dead) {
2692 /* Calling bus_ops->remove() with a claimed host can deadlock */
2693 host->bus_ops->remove(host);
2694 mmc_claim_host(host);
2695 mmc_detach_bus(host);
2696 mmc_power_off(host);
2697 mmc_release_host(host);
2698 mmc_bus_put(host);
2699 return;
2700 }
2701 mmc_bus_put(host);
2702
2703 mmc_claim_host(host);
2704 mmc_power_off(host);
2705 mmc_release_host(host);
2706}
2707
2708#ifdef CONFIG_PM_SLEEP
2709/* Do the card removal on suspend if card is assumed removeable
2710 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2711 to sync the card.
2712*/
2713static int mmc_pm_notify(struct notifier_block *notify_block,
2714 unsigned long mode, void *unused)
2715{
2716 struct mmc_host *host = container_of(
2717 notify_block, struct mmc_host, pm_notify);
2718 unsigned long flags;
2719 int err = 0;
2720
2721 switch (mode) {
2722 case PM_HIBERNATION_PREPARE:
2723 case PM_SUSPEND_PREPARE:
2724 case PM_RESTORE_PREPARE:
2725 spin_lock_irqsave(&host->lock, flags);
2726 host->rescan_disable = 1;
2727 spin_unlock_irqrestore(&host->lock, flags);
2728 cancel_delayed_work_sync(&host->detect);
2729
2730 if (!host->bus_ops)
2731 break;
2732
2733 /* Validate prerequisites for suspend */
2734 if (host->bus_ops->pre_suspend)
2735 err = host->bus_ops->pre_suspend(host);
2736 if (!err)
2737 break;
2738
2739 if (!mmc_card_is_removable(host)) {
2740 dev_warn(mmc_dev(host),
2741 "pre_suspend failed for non-removable host: "
2742 "%d\n", err);
2743 /* Avoid removing non-removable hosts */
2744 break;
2745 }
2746
2747 /* Calling bus_ops->remove() with a claimed host can deadlock */
2748 host->bus_ops->remove(host);
2749 mmc_claim_host(host);
2750 mmc_detach_bus(host);
2751 mmc_power_off(host);
2752 mmc_release_host(host);
2753 host->pm_flags = 0;
2754 break;
2755
2756 case PM_POST_SUSPEND:
2757 case PM_POST_HIBERNATION:
2758 case PM_POST_RESTORE:
2759
2760 spin_lock_irqsave(&host->lock, flags);
2761 host->rescan_disable = 0;
2762 spin_unlock_irqrestore(&host->lock, flags);
2763 _mmc_detect_change(host, 0, false);
2764
2765 }
2766
2767 return 0;
2768}
2769
2770void mmc_register_pm_notifier(struct mmc_host *host)
2771{
2772 host->pm_notify.notifier_call = mmc_pm_notify;
2773 register_pm_notifier(&host->pm_notify);
2774}
2775
2776void mmc_unregister_pm_notifier(struct mmc_host *host)
2777{
2778 unregister_pm_notifier(&host->pm_notify);
2779}
2780#endif
2781
2782static int __init mmc_init(void)
2783{
2784 int ret;
2785
2786 ret = mmc_register_bus();
2787 if (ret)
2788 return ret;
2789
2790 ret = mmc_register_host_class();
2791 if (ret)
2792 goto unregister_bus;
2793
2794 ret = sdio_register_bus();
2795 if (ret)
2796 goto unregister_host_class;
2797
2798 return 0;
2799
2800unregister_host_class:
2801 mmc_unregister_host_class();
2802unregister_bus:
2803 mmc_unregister_bus();
2804 return ret;
2805}
2806
2807static void __exit mmc_exit(void)
2808{
2809 sdio_unregister_bus();
2810 mmc_unregister_host_class();
2811 mmc_unregister_bus();
2812}
2813
2814subsys_initcall(mmc_init);
2815module_exit(mmc_exit);
2816
2817MODULE_LICENSE("GPL");