at v5.0 200 lines 6.6 kB view raw
1/* 2 * linux/arch/unicore32/include/asm/cacheflush.h 3 * 4 * Code specific to PKUnity SoC and UniCore ISA 5 * 6 * Copyright (C) 2001-2010 GUAN Xue-tao 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12#ifndef __UNICORE_CACHEFLUSH_H__ 13#define __UNICORE_CACHEFLUSH_H__ 14 15#include <linux/mm.h> 16 17#include <asm/shmparam.h> 18 19#define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT) 20 21/* 22 * This flag is used to indicate that the page pointed to by a pte is clean 23 * and does not require cleaning before returning it to the user. 24 */ 25#define PG_dcache_clean PG_arch_1 26 27/* 28 * MM Cache Management 29 * =================== 30 * 31 * The arch/unicore32/mm/cache.S files implement these methods. 32 * 33 * Start addresses are inclusive and end addresses are exclusive; 34 * start addresses should be rounded down, end addresses up. 35 * 36 * See Documentation/core-api/cachetlb.rst for more information. 37 * Please note that the implementation of these, and the required 38 * effects are cache-type (VIVT/VIPT/PIPT) specific. 39 * 40 * flush_icache_all() 41 * 42 * Unconditionally clean and invalidate the entire icache. 43 * Currently only needed for cache-v6.S and cache-v7.S, see 44 * __flush_icache_all for the generic implementation. 45 * 46 * flush_kern_all() 47 * 48 * Unconditionally clean and invalidate the entire cache. 49 * 50 * flush_user_all() 51 * 52 * Clean and invalidate all user space cache entries 53 * before a change of page tables. 54 * 55 * flush_user_range(start, end, flags) 56 * 57 * Clean and invalidate a range of cache entries in the 58 * specified address space before a change of page tables. 59 * - start - user start address (inclusive, page aligned) 60 * - end - user end address (exclusive, page aligned) 61 * - flags - vma->vm_flags field 62 * 63 * coherent_kern_range(start, end) 64 * 65 * Ensure coherency between the Icache and the Dcache in the 66 * region described by start, end. If you have non-snooping 67 * Harvard caches, you need to implement this function. 68 * - start - virtual start address 69 * - end - virtual end address 70 * 71 * coherent_user_range(start, end) 72 * 73 * Ensure coherency between the Icache and the Dcache in the 74 * region described by start, end. If you have non-snooping 75 * Harvard caches, you need to implement this function. 76 * - start - virtual start address 77 * - end - virtual end address 78 * 79 * flush_kern_dcache_area(kaddr, size) 80 * 81 * Ensure that the data held in page is written back. 82 * - kaddr - page address 83 * - size - region size 84 * 85 * DMA Cache Coherency 86 * =================== 87 * 88 * dma_flush_range(start, end) 89 * 90 * Clean and invalidate the specified virtual address range. 91 * - start - virtual start address 92 * - end - virtual end address 93 */ 94 95extern void __cpuc_flush_icache_all(void); 96extern void __cpuc_flush_kern_all(void); 97extern void __cpuc_flush_user_all(void); 98extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int); 99extern void __cpuc_coherent_kern_range(unsigned long, unsigned long); 100extern void __cpuc_coherent_user_range(unsigned long, unsigned long); 101extern void __cpuc_flush_dcache_area(void *, size_t); 102extern void __cpuc_flush_kern_dcache_area(void *addr, size_t size); 103 104/* 105 * Copy user data from/to a page which is mapped into a different 106 * processes address space. Really, we want to allow our "user 107 * space" model to handle this. 108 */ 109extern void copy_to_user_page(struct vm_area_struct *, struct page *, 110 unsigned long, void *, const void *, unsigned long); 111#define copy_from_user_page(vma, page, vaddr, dst, src, len) \ 112 do { \ 113 memcpy(dst, src, len); \ 114 } while (0) 115 116/* 117 * Convert calls to our calling convention. 118 */ 119/* Invalidate I-cache */ 120static inline void __flush_icache_all(void) 121{ 122 asm("movc p0.c5, %0, #20;\n" 123 "nop; nop; nop; nop; nop; nop; nop; nop\n" 124 : 125 : "r" (0)); 126} 127 128#define flush_cache_all() __cpuc_flush_kern_all() 129 130extern void flush_cache_mm(struct mm_struct *mm); 131extern void flush_cache_range(struct vm_area_struct *vma, 132 unsigned long start, unsigned long end); 133extern void flush_cache_page(struct vm_area_struct *vma, 134 unsigned long user_addr, unsigned long pfn); 135 136#define flush_cache_dup_mm(mm) flush_cache_mm(mm) 137 138/* 139 * flush_cache_user_range is used when we want to ensure that the 140 * Harvard caches are synchronised for the user space address range. 141 * This is used for the UniCore private sys_cacheflush system call. 142 */ 143#define flush_cache_user_range(vma, start, end) \ 144 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end)) 145 146/* 147 * Perform necessary cache operations to ensure that data previously 148 * stored within this range of addresses can be executed by the CPU. 149 */ 150#define flush_icache_range(s, e) __cpuc_coherent_kern_range(s, e) 151 152/* 153 * Perform necessary cache operations to ensure that the TLB will 154 * see data written in the specified area. 155 */ 156#define clean_dcache_area(start, size) cpu_dcache_clean_area(start, size) 157 158/* 159 * flush_dcache_page is used when the kernel has written to the page 160 * cache page at virtual address page->virtual. 161 * 162 * If this page isn't mapped (ie, page_mapping == NULL), or it might 163 * have userspace mappings, then we _must_ always clean + invalidate 164 * the dcache entries associated with the kernel mapping. 165 * 166 * Otherwise we can defer the operation, and clean the cache when we are 167 * about to change to user space. This is the same method as used on SPARC64. 168 * See update_mmu_cache for the user space part. 169 */ 170#define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1 171extern void flush_dcache_page(struct page *); 172 173#define flush_dcache_mmap_lock(mapping) do { } while (0) 174#define flush_dcache_mmap_unlock(mapping) do { } while (0) 175 176#define flush_icache_user_range(vma, page, addr, len) \ 177 flush_dcache_page(page) 178 179/* 180 * We don't appear to need to do anything here. In fact, if we did, we'd 181 * duplicate cache flushing elsewhere performed by flush_dcache_page(). 182 */ 183#define flush_icache_page(vma, page) do { } while (0) 184 185/* 186 * flush_cache_vmap() is used when creating mappings (eg, via vmap, 187 * vmalloc, ioremap etc) in kernel space for pages. On non-VIPT 188 * caches, since the direct-mappings of these pages may contain cached 189 * data, we need to do a full cache flush to ensure that writebacks 190 * don't corrupt data placed into these pages via the new mappings. 191 */ 192static inline void flush_cache_vmap(unsigned long start, unsigned long end) 193{ 194} 195 196static inline void flush_cache_vunmap(unsigned long start, unsigned long end) 197{ 198} 199 200#endif