at v5.0 546 lines 19 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _PARISC_PGTABLE_H 3#define _PARISC_PGTABLE_H 4 5#include <asm-generic/4level-fixup.h> 6 7#include <asm/fixmap.h> 8 9#ifndef __ASSEMBLY__ 10/* 11 * we simulate an x86-style page table for the linux mm code 12 */ 13 14#include <linux/bitops.h> 15#include <linux/spinlock.h> 16#include <linux/mm_types.h> 17#include <asm/processor.h> 18#include <asm/cache.h> 19 20extern spinlock_t pa_tlb_lock; 21 22/* 23 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel 24 * memory. For the return value to be meaningful, ADDR must be >= 25 * PAGE_OFFSET. This operation can be relatively expensive (e.g., 26 * require a hash-, or multi-level tree-lookup or something of that 27 * sort) but it guarantees to return TRUE only if accessing the page 28 * at that address does not cause an error. Note that there may be 29 * addresses for which kern_addr_valid() returns FALSE even though an 30 * access would not cause an error (e.g., this is typically true for 31 * memory mapped I/O regions. 32 * 33 * XXX Need to implement this for parisc. 34 */ 35#define kern_addr_valid(addr) (1) 36 37/* Purge data and instruction TLB entries. Must be called holding 38 * the pa_tlb_lock. The TLB purge instructions are slow on SMP 39 * machines since the purge must be broadcast to all CPUs. 40 */ 41 42static inline void purge_tlb_entries(struct mm_struct *mm, unsigned long addr) 43{ 44 mtsp(mm->context, 1); 45 pdtlb(addr); 46 pitlb(addr); 47} 48 49/* Certain architectures need to do special things when PTEs 50 * within a page table are directly modified. Thus, the following 51 * hook is made available. 52 */ 53#define set_pte(pteptr, pteval) \ 54 do{ \ 55 *(pteptr) = (pteval); \ 56 } while(0) 57 58#define set_pte_at(mm, addr, ptep, pteval) \ 59 do { \ 60 pte_t old_pte; \ 61 unsigned long flags; \ 62 spin_lock_irqsave(&pa_tlb_lock, flags); \ 63 old_pte = *ptep; \ 64 set_pte(ptep, pteval); \ 65 purge_tlb_entries(mm, addr); \ 66 spin_unlock_irqrestore(&pa_tlb_lock, flags); \ 67 } while (0) 68 69#endif /* !__ASSEMBLY__ */ 70 71#include <asm/page.h> 72 73#define pte_ERROR(e) \ 74 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 75#define pmd_ERROR(e) \ 76 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e)) 77#define pgd_ERROR(e) \ 78 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e)) 79 80/* This is the size of the initially mapped kernel memory */ 81#if defined(CONFIG_64BIT) 82#define KERNEL_INITIAL_ORDER 26 /* 1<<26 = 64MB */ 83#else 84#define KERNEL_INITIAL_ORDER 25 /* 1<<25 = 32MB */ 85#endif 86#define KERNEL_INITIAL_SIZE (1 << KERNEL_INITIAL_ORDER) 87 88#if CONFIG_PGTABLE_LEVELS == 3 89#define PGD_ORDER 1 /* Number of pages per pgd */ 90#define PMD_ORDER 1 /* Number of pages per pmd */ 91#define PGD_ALLOC_ORDER 2 /* first pgd contains pmd */ 92#else 93#define PGD_ORDER 1 /* Number of pages per pgd */ 94#define PGD_ALLOC_ORDER PGD_ORDER 95#endif 96 97/* Definitions for 3rd level (we use PLD here for Page Lower directory 98 * because PTE_SHIFT is used lower down to mean shift that has to be 99 * done to get usable bits out of the PTE) */ 100#define PLD_SHIFT PAGE_SHIFT 101#define PLD_SIZE PAGE_SIZE 102#define BITS_PER_PTE (PAGE_SHIFT - BITS_PER_PTE_ENTRY) 103#define PTRS_PER_PTE (1UL << BITS_PER_PTE) 104 105/* Definitions for 2nd level */ 106#define pgtable_cache_init() do { } while (0) 107 108#define PMD_SHIFT (PLD_SHIFT + BITS_PER_PTE) 109#define PMD_SIZE (1UL << PMD_SHIFT) 110#define PMD_MASK (~(PMD_SIZE-1)) 111#if CONFIG_PGTABLE_LEVELS == 3 112#define BITS_PER_PMD (PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY) 113#else 114#define __PAGETABLE_PMD_FOLDED 1 115#define BITS_PER_PMD 0 116#endif 117#define PTRS_PER_PMD (1UL << BITS_PER_PMD) 118 119/* Definitions for 1st level */ 120#define PGDIR_SHIFT (PMD_SHIFT + BITS_PER_PMD) 121#if (PGDIR_SHIFT + PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) > BITS_PER_LONG 122#define BITS_PER_PGD (BITS_PER_LONG - PGDIR_SHIFT) 123#else 124#define BITS_PER_PGD (PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) 125#endif 126#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 127#define PGDIR_MASK (~(PGDIR_SIZE-1)) 128#define PTRS_PER_PGD (1UL << BITS_PER_PGD) 129#define USER_PTRS_PER_PGD PTRS_PER_PGD 130 131#ifdef CONFIG_64BIT 132#define MAX_ADDRBITS (PGDIR_SHIFT + BITS_PER_PGD) 133#define MAX_ADDRESS (1UL << MAX_ADDRBITS) 134#define SPACEID_SHIFT (MAX_ADDRBITS - 32) 135#else 136#define MAX_ADDRBITS (BITS_PER_LONG) 137#define MAX_ADDRESS (1UL << MAX_ADDRBITS) 138#define SPACEID_SHIFT 0 139#endif 140 141/* This calculates the number of initial pages we need for the initial 142 * page tables */ 143#if (KERNEL_INITIAL_ORDER) >= (PMD_SHIFT) 144# define PT_INITIAL (1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT)) 145#else 146# define PT_INITIAL (1) /* all initial PTEs fit into one page */ 147#endif 148 149/* 150 * pgd entries used up by user/kernel: 151 */ 152 153#define FIRST_USER_ADDRESS 0UL 154 155/* NB: The tlb miss handlers make certain assumptions about the order */ 156/* of the following bits, so be careful (One example, bits 25-31 */ 157/* are moved together in one instruction). */ 158 159#define _PAGE_READ_BIT 31 /* (0x001) read access allowed */ 160#define _PAGE_WRITE_BIT 30 /* (0x002) write access allowed */ 161#define _PAGE_EXEC_BIT 29 /* (0x004) execute access allowed */ 162#define _PAGE_GATEWAY_BIT 28 /* (0x008) privilege promotion allowed */ 163#define _PAGE_DMB_BIT 27 /* (0x010) Data Memory Break enable (B bit) */ 164#define _PAGE_DIRTY_BIT 26 /* (0x020) Page Dirty (D bit) */ 165#define _PAGE_REFTRAP_BIT 25 /* (0x040) Page Ref. Trap enable (T bit) */ 166#define _PAGE_NO_CACHE_BIT 24 /* (0x080) Uncached Page (U bit) */ 167#define _PAGE_ACCESSED_BIT 23 /* (0x100) Software: Page Accessed */ 168#define _PAGE_PRESENT_BIT 22 /* (0x200) Software: translation valid */ 169#define _PAGE_HPAGE_BIT 21 /* (0x400) Software: Huge Page */ 170#define _PAGE_USER_BIT 20 /* (0x800) Software: User accessible page */ 171 172/* N.B. The bits are defined in terms of a 32 bit word above, so the */ 173/* following macro is ok for both 32 and 64 bit. */ 174 175#define xlate_pabit(x) (31 - x) 176 177/* this defines the shift to the usable bits in the PTE it is set so 178 * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set 179 * to zero */ 180#define PTE_SHIFT xlate_pabit(_PAGE_USER_BIT) 181 182/* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */ 183#define PFN_PTE_SHIFT 12 184 185#define _PAGE_READ (1 << xlate_pabit(_PAGE_READ_BIT)) 186#define _PAGE_WRITE (1 << xlate_pabit(_PAGE_WRITE_BIT)) 187#define _PAGE_RW (_PAGE_READ | _PAGE_WRITE) 188#define _PAGE_EXEC (1 << xlate_pabit(_PAGE_EXEC_BIT)) 189#define _PAGE_GATEWAY (1 << xlate_pabit(_PAGE_GATEWAY_BIT)) 190#define _PAGE_DMB (1 << xlate_pabit(_PAGE_DMB_BIT)) 191#define _PAGE_DIRTY (1 << xlate_pabit(_PAGE_DIRTY_BIT)) 192#define _PAGE_REFTRAP (1 << xlate_pabit(_PAGE_REFTRAP_BIT)) 193#define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT)) 194#define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT)) 195#define _PAGE_PRESENT (1 << xlate_pabit(_PAGE_PRESENT_BIT)) 196#define _PAGE_HUGE (1 << xlate_pabit(_PAGE_HPAGE_BIT)) 197#define _PAGE_USER (1 << xlate_pabit(_PAGE_USER_BIT)) 198 199#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED) 200#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 201#define _PAGE_KERNEL_RO (_PAGE_PRESENT | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED) 202#define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXEC) 203#define _PAGE_KERNEL_RWX (_PAGE_KERNEL_EXEC | _PAGE_WRITE) 204#define _PAGE_KERNEL (_PAGE_KERNEL_RO | _PAGE_WRITE) 205 206/* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds 207 * are page-aligned, we don't care about the PAGE_OFFSET bits, except 208 * for a few meta-information bits, so we shift the address to be 209 * able to effectively address 40/42/44-bits of physical address space 210 * depending on 4k/16k/64k PAGE_SIZE */ 211#define _PxD_PRESENT_BIT 31 212#define _PxD_ATTACHED_BIT 30 213#define _PxD_VALID_BIT 29 214 215#define PxD_FLAG_PRESENT (1 << xlate_pabit(_PxD_PRESENT_BIT)) 216#define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT)) 217#define PxD_FLAG_VALID (1 << xlate_pabit(_PxD_VALID_BIT)) 218#define PxD_FLAG_MASK (0xf) 219#define PxD_FLAG_SHIFT (4) 220#define PxD_VALUE_SHIFT (PFN_PTE_SHIFT-PxD_FLAG_SHIFT) 221 222#ifndef __ASSEMBLY__ 223 224#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER) 225#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE) 226/* Others seem to make this executable, I don't know if that's correct 227 or not. The stack is mapped this way though so this is necessary 228 in the short term - dhd@linuxcare.com, 2000-08-08 */ 229#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ) 230#define PAGE_WRITEONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE) 231#define PAGE_EXECREAD __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC) 232#define PAGE_COPY PAGE_EXECREAD 233#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC) 234#define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 235#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC) 236#define PAGE_KERNEL_RWX __pgprot(_PAGE_KERNEL_RWX) 237#define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO) 238#define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE) 239#define PAGE_GATEWAY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_GATEWAY| _PAGE_READ) 240 241 242/* 243 * We could have an execute only page using "gateway - promote to priv 244 * level 3", but that is kind of silly. So, the way things are defined 245 * now, we must always have read permission for pages with execute 246 * permission. For the fun of it we'll go ahead and support write only 247 * pages. 248 */ 249 250 /*xwr*/ 251#define __P000 PAGE_NONE 252#define __P001 PAGE_READONLY 253#define __P010 __P000 /* copy on write */ 254#define __P011 __P001 /* copy on write */ 255#define __P100 PAGE_EXECREAD 256#define __P101 PAGE_EXECREAD 257#define __P110 __P100 /* copy on write */ 258#define __P111 __P101 /* copy on write */ 259 260#define __S000 PAGE_NONE 261#define __S001 PAGE_READONLY 262#define __S010 PAGE_WRITEONLY 263#define __S011 PAGE_SHARED 264#define __S100 PAGE_EXECREAD 265#define __S101 PAGE_EXECREAD 266#define __S110 PAGE_RWX 267#define __S111 PAGE_RWX 268 269 270extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */ 271 272/* initial page tables for 0-8MB for kernel */ 273 274extern pte_t pg0[]; 275 276/* zero page used for uninitialized stuff */ 277 278extern unsigned long *empty_zero_page; 279 280/* 281 * ZERO_PAGE is a global shared page that is always zero: used 282 * for zero-mapped memory areas etc.. 283 */ 284 285#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 286 287#define pte_none(x) (pte_val(x) == 0) 288#define pte_present(x) (pte_val(x) & _PAGE_PRESENT) 289#define pte_clear(mm, addr, xp) set_pte_at(mm, addr, xp, __pte(0)) 290 291#define pmd_flag(x) (pmd_val(x) & PxD_FLAG_MASK) 292#define pmd_address(x) ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) 293#define pgd_flag(x) (pgd_val(x) & PxD_FLAG_MASK) 294#define pgd_address(x) ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) 295 296#if CONFIG_PGTABLE_LEVELS == 3 297/* The first entry of the permanent pmd is not there if it contains 298 * the gateway marker */ 299#define pmd_none(x) (!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED) 300#else 301#define pmd_none(x) (!pmd_val(x)) 302#endif 303#define pmd_bad(x) (!(pmd_flag(x) & PxD_FLAG_VALID)) 304#define pmd_present(x) (pmd_flag(x) & PxD_FLAG_PRESENT) 305static inline void pmd_clear(pmd_t *pmd) { 306#if CONFIG_PGTABLE_LEVELS == 3 307 if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED) 308 /* This is the entry pointing to the permanent pmd 309 * attached to the pgd; cannot clear it */ 310 __pmd_val_set(*pmd, PxD_FLAG_ATTACHED); 311 else 312#endif 313 __pmd_val_set(*pmd, 0); 314} 315 316 317 318#if CONFIG_PGTABLE_LEVELS == 3 319#define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_address(pgd))) 320#define pgd_page(pgd) virt_to_page((void *)pgd_page_vaddr(pgd)) 321 322/* For 64 bit we have three level tables */ 323 324#define pgd_none(x) (!pgd_val(x)) 325#define pgd_bad(x) (!(pgd_flag(x) & PxD_FLAG_VALID)) 326#define pgd_present(x) (pgd_flag(x) & PxD_FLAG_PRESENT) 327static inline void pgd_clear(pgd_t *pgd) { 328#if CONFIG_PGTABLE_LEVELS == 3 329 if(pgd_flag(*pgd) & PxD_FLAG_ATTACHED) 330 /* This is the permanent pmd attached to the pgd; cannot 331 * free it */ 332 return; 333#endif 334 __pgd_val_set(*pgd, 0); 335} 336#else 337/* 338 * The "pgd_xxx()" functions here are trivial for a folded two-level 339 * setup: the pgd is never bad, and a pmd always exists (as it's folded 340 * into the pgd entry) 341 */ 342static inline int pgd_none(pgd_t pgd) { return 0; } 343static inline int pgd_bad(pgd_t pgd) { return 0; } 344static inline int pgd_present(pgd_t pgd) { return 1; } 345static inline void pgd_clear(pgd_t * pgdp) { } 346#endif 347 348/* 349 * The following only work if pte_present() is true. 350 * Undefined behaviour if not.. 351 */ 352static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 353static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 354static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } 355static inline int pte_special(pte_t pte) { return 0; } 356 357static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } 358static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 359static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; } 360static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } 361static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } 362static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; } 363static inline pte_t pte_mkspecial(pte_t pte) { return pte; } 364 365/* 366 * Huge pte definitions. 367 */ 368#ifdef CONFIG_HUGETLB_PAGE 369#define pte_huge(pte) (pte_val(pte) & _PAGE_HUGE) 370#define pte_mkhuge(pte) (__pte(pte_val(pte) | \ 371 (parisc_requires_coherency() ? 0 : _PAGE_HUGE))) 372#else 373#define pte_huge(pte) (0) 374#define pte_mkhuge(pte) (pte) 375#endif 376 377 378/* 379 * Conversion functions: convert a page and protection to a page entry, 380 * and a page entry and page directory to the page they refer to. 381 */ 382#define __mk_pte(addr,pgprot) \ 383({ \ 384 pte_t __pte; \ 385 \ 386 pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot)); \ 387 \ 388 __pte; \ 389}) 390 391#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 392 393static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 394{ 395 pte_t pte; 396 pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot); 397 return pte; 398} 399 400static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 401{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } 402 403/* Permanent address of a page. On parisc we don't have highmem. */ 404 405#define pte_pfn(x) (pte_val(x) >> PFN_PTE_SHIFT) 406 407#define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 408 409#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_address(pmd))) 410 411#define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd))) 412#define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd)) 413 414#define pgd_index(address) ((address) >> PGDIR_SHIFT) 415 416/* to find an entry in a page-table-directory */ 417#define pgd_offset(mm, address) \ 418((mm)->pgd + ((address) >> PGDIR_SHIFT)) 419 420/* to find an entry in a kernel page-table-directory */ 421#define pgd_offset_k(address) pgd_offset(&init_mm, address) 422 423/* Find an entry in the second-level page table.. */ 424 425#if CONFIG_PGTABLE_LEVELS == 3 426#define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)) 427#define pmd_offset(dir,address) \ 428((pmd_t *) pgd_page_vaddr(*(dir)) + pmd_index(address)) 429#else 430#define pmd_offset(dir,addr) ((pmd_t *) dir) 431#endif 432 433/* Find an entry in the third-level page table.. */ 434#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 435#define pte_offset_kernel(pmd, address) \ 436 ((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address)) 437#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 438#define pte_unmap(pte) do { } while (0) 439 440#define pte_unmap(pte) do { } while (0) 441#define pte_unmap_nested(pte) do { } while (0) 442 443extern void paging_init (void); 444 445/* Used for deferring calls to flush_dcache_page() */ 446 447#define PG_dcache_dirty PG_arch_1 448 449extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *); 450 451/* Encode and de-code a swap entry */ 452 453#define __swp_type(x) ((x).val & 0x1f) 454#define __swp_offset(x) ( (((x).val >> 6) & 0x7) | \ 455 (((x).val >> 8) & ~0x7) ) 456#define __swp_entry(type, offset) ((swp_entry_t) { (type) | \ 457 ((offset & 0x7) << 6) | \ 458 ((offset & ~0x7) << 8) }) 459#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 460#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 461 462static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 463{ 464 pte_t pte; 465 unsigned long flags; 466 467 if (!pte_young(*ptep)) 468 return 0; 469 470 spin_lock_irqsave(&pa_tlb_lock, flags); 471 pte = *ptep; 472 if (!pte_young(pte)) { 473 spin_unlock_irqrestore(&pa_tlb_lock, flags); 474 return 0; 475 } 476 set_pte(ptep, pte_mkold(pte)); 477 purge_tlb_entries(vma->vm_mm, addr); 478 spin_unlock_irqrestore(&pa_tlb_lock, flags); 479 return 1; 480} 481 482struct mm_struct; 483static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 484{ 485 pte_t old_pte; 486 unsigned long flags; 487 488 spin_lock_irqsave(&pa_tlb_lock, flags); 489 old_pte = *ptep; 490 set_pte(ptep, __pte(0)); 491 purge_tlb_entries(mm, addr); 492 spin_unlock_irqrestore(&pa_tlb_lock, flags); 493 494 return old_pte; 495} 496 497static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 498{ 499 unsigned long flags; 500 spin_lock_irqsave(&pa_tlb_lock, flags); 501 set_pte(ptep, pte_wrprotect(*ptep)); 502 purge_tlb_entries(mm, addr); 503 spin_unlock_irqrestore(&pa_tlb_lock, flags); 504} 505 506#define pte_same(A,B) (pte_val(A) == pte_val(B)) 507 508struct seq_file; 509extern void arch_report_meminfo(struct seq_file *m); 510 511#endif /* !__ASSEMBLY__ */ 512 513 514/* TLB page size encoding - see table 3-1 in parisc20.pdf */ 515#define _PAGE_SIZE_ENCODING_4K 0 516#define _PAGE_SIZE_ENCODING_16K 1 517#define _PAGE_SIZE_ENCODING_64K 2 518#define _PAGE_SIZE_ENCODING_256K 3 519#define _PAGE_SIZE_ENCODING_1M 4 520#define _PAGE_SIZE_ENCODING_4M 5 521#define _PAGE_SIZE_ENCODING_16M 6 522#define _PAGE_SIZE_ENCODING_64M 7 523 524#if defined(CONFIG_PARISC_PAGE_SIZE_4KB) 525# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K 526#elif defined(CONFIG_PARISC_PAGE_SIZE_16KB) 527# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K 528#elif defined(CONFIG_PARISC_PAGE_SIZE_64KB) 529# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K 530#endif 531 532 533#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE) 534 535/* We provide our own get_unmapped_area to provide cache coherency */ 536 537#define HAVE_ARCH_UNMAPPED_AREA 538#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 539 540#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 541#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 542#define __HAVE_ARCH_PTEP_SET_WRPROTECT 543#define __HAVE_ARCH_PTE_SAME 544#include <asm-generic/pgtable.h> 545 546#endif /* _PARISC_PGTABLE_H */