Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_KERNEL_H
3#define _LINUX_KERNEL_H
4
5
6#include <stdarg.h>
7#include <linux/linkage.h>
8#include <linux/stddef.h>
9#include <linux/types.h>
10#include <linux/compiler.h>
11#include <linux/bitops.h>
12#include <linux/log2.h>
13#include <linux/typecheck.h>
14#include <linux/printk.h>
15#include <linux/build_bug.h>
16#include <asm/byteorder.h>
17#include <uapi/linux/kernel.h>
18
19#define USHRT_MAX ((u16)(~0U))
20#define SHRT_MAX ((s16)(USHRT_MAX>>1))
21#define SHRT_MIN ((s16)(-SHRT_MAX - 1))
22#define INT_MAX ((int)(~0U>>1))
23#define INT_MIN (-INT_MAX - 1)
24#define UINT_MAX (~0U)
25#define LONG_MAX ((long)(~0UL>>1))
26#define LONG_MIN (-LONG_MAX - 1)
27#define ULONG_MAX (~0UL)
28#define LLONG_MAX ((long long)(~0ULL>>1))
29#define LLONG_MIN (-LLONG_MAX - 1)
30#define ULLONG_MAX (~0ULL)
31#define SIZE_MAX (~(size_t)0)
32#define PHYS_ADDR_MAX (~(phys_addr_t)0)
33
34#define U8_MAX ((u8)~0U)
35#define S8_MAX ((s8)(U8_MAX>>1))
36#define S8_MIN ((s8)(-S8_MAX - 1))
37#define U16_MAX ((u16)~0U)
38#define S16_MAX ((s16)(U16_MAX>>1))
39#define S16_MIN ((s16)(-S16_MAX - 1))
40#define U32_MAX ((u32)~0U)
41#define S32_MAX ((s32)(U32_MAX>>1))
42#define S32_MIN ((s32)(-S32_MAX - 1))
43#define U64_MAX ((u64)~0ULL)
44#define S64_MAX ((s64)(U64_MAX>>1))
45#define S64_MIN ((s64)(-S64_MAX - 1))
46
47#define STACK_MAGIC 0xdeadbeef
48
49/**
50 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
51 * @x: value to repeat
52 *
53 * NOTE: @x is not checked for > 0xff; larger values produce odd results.
54 */
55#define REPEAT_BYTE(x) ((~0ul / 0xff) * (x))
56
57/* @a is a power of 2 value */
58#define ALIGN(x, a) __ALIGN_KERNEL((x), (a))
59#define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a))
60#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask))
61#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a)))
62#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0)
63
64/* generic data direction definitions */
65#define READ 0
66#define WRITE 1
67
68/**
69 * ARRAY_SIZE - get the number of elements in array @arr
70 * @arr: array to be sized
71 */
72#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
73
74#define u64_to_user_ptr(x) ( \
75{ \
76 typecheck(u64, x); \
77 (void __user *)(uintptr_t)x; \
78} \
79)
80
81/*
82 * This looks more complex than it should be. But we need to
83 * get the type for the ~ right in round_down (it needs to be
84 * as wide as the result!), and we want to evaluate the macro
85 * arguments just once each.
86 */
87#define __round_mask(x, y) ((__typeof__(x))((y)-1))
88/**
89 * round_up - round up to next specified power of 2
90 * @x: the value to round
91 * @y: multiple to round up to (must be a power of 2)
92 *
93 * Rounds @x up to next multiple of @y (which must be a power of 2).
94 * To perform arbitrary rounding up, use roundup() below.
95 */
96#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
97/**
98 * round_down - round down to next specified power of 2
99 * @x: the value to round
100 * @y: multiple to round down to (must be a power of 2)
101 *
102 * Rounds @x down to next multiple of @y (which must be a power of 2).
103 * To perform arbitrary rounding down, use rounddown() below.
104 */
105#define round_down(x, y) ((x) & ~__round_mask(x, y))
106
107/**
108 * FIELD_SIZEOF - get the size of a struct's field
109 * @t: the target struct
110 * @f: the target struct's field
111 * Return: the size of @f in the struct definition without having a
112 * declared instance of @t.
113 */
114#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
115
116#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
117
118#define DIV_ROUND_DOWN_ULL(ll, d) \
119 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
120
121#define DIV_ROUND_UP_ULL(ll, d) DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d))
122
123#if BITS_PER_LONG == 32
124# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
125#else
126# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
127#endif
128
129/**
130 * roundup - round up to the next specified multiple
131 * @x: the value to up
132 * @y: multiple to round up to
133 *
134 * Rounds @x up to next multiple of @y. If @y will always be a power
135 * of 2, consider using the faster round_up().
136 *
137 * The `const' here prevents gcc-3.3 from calling __divdi3
138 */
139#define roundup(x, y) ( \
140{ \
141 const typeof(y) __y = y; \
142 (((x) + (__y - 1)) / __y) * __y; \
143} \
144)
145/**
146 * rounddown - round down to next specified multiple
147 * @x: the value to round
148 * @y: multiple to round down to
149 *
150 * Rounds @x down to next multiple of @y. If @y will always be a power
151 * of 2, consider using the faster round_down().
152 */
153#define rounddown(x, y) ( \
154{ \
155 typeof(x) __x = (x); \
156 __x - (__x % (y)); \
157} \
158)
159
160/*
161 * Divide positive or negative dividend by positive or negative divisor
162 * and round to closest integer. Result is undefined for negative
163 * divisors if the dividend variable type is unsigned and for negative
164 * dividends if the divisor variable type is unsigned.
165 */
166#define DIV_ROUND_CLOSEST(x, divisor)( \
167{ \
168 typeof(x) __x = x; \
169 typeof(divisor) __d = divisor; \
170 (((typeof(x))-1) > 0 || \
171 ((typeof(divisor))-1) > 0 || \
172 (((__x) > 0) == ((__d) > 0))) ? \
173 (((__x) + ((__d) / 2)) / (__d)) : \
174 (((__x) - ((__d) / 2)) / (__d)); \
175} \
176)
177/*
178 * Same as above but for u64 dividends. divisor must be a 32-bit
179 * number.
180 */
181#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \
182{ \
183 typeof(divisor) __d = divisor; \
184 unsigned long long _tmp = (x) + (__d) / 2; \
185 do_div(_tmp, __d); \
186 _tmp; \
187} \
188)
189
190/*
191 * Multiplies an integer by a fraction, while avoiding unnecessary
192 * overflow or loss of precision.
193 */
194#define mult_frac(x, numer, denom)( \
195{ \
196 typeof(x) quot = (x) / (denom); \
197 typeof(x) rem = (x) % (denom); \
198 (quot * (numer)) + ((rem * (numer)) / (denom)); \
199} \
200)
201
202
203#define _RET_IP_ (unsigned long)__builtin_return_address(0)
204#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; })
205
206#ifdef CONFIG_LBDAF
207# include <asm/div64.h>
208# define sector_div(a, b) do_div(a, b)
209#else
210# define sector_div(n, b)( \
211{ \
212 int _res; \
213 _res = (n) % (b); \
214 (n) /= (b); \
215 _res; \
216} \
217)
218#endif
219
220/**
221 * upper_32_bits - return bits 32-63 of a number
222 * @n: the number we're accessing
223 *
224 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress
225 * the "right shift count >= width of type" warning when that quantity is
226 * 32-bits.
227 */
228#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
229
230/**
231 * lower_32_bits - return bits 0-31 of a number
232 * @n: the number we're accessing
233 */
234#define lower_32_bits(n) ((u32)(n))
235
236struct completion;
237struct pt_regs;
238struct user;
239
240#ifdef CONFIG_PREEMPT_VOLUNTARY
241extern int _cond_resched(void);
242# define might_resched() _cond_resched()
243#else
244# define might_resched() do { } while (0)
245#endif
246
247#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
248 void ___might_sleep(const char *file, int line, int preempt_offset);
249 void __might_sleep(const char *file, int line, int preempt_offset);
250/**
251 * might_sleep - annotation for functions that can sleep
252 *
253 * this macro will print a stack trace if it is executed in an atomic
254 * context (spinlock, irq-handler, ...).
255 *
256 * This is a useful debugging help to be able to catch problems early and not
257 * be bitten later when the calling function happens to sleep when it is not
258 * supposed to.
259 */
260# define might_sleep() \
261 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
262# define sched_annotate_sleep() (current->task_state_change = 0)
263#else
264 static inline void ___might_sleep(const char *file, int line,
265 int preempt_offset) { }
266 static inline void __might_sleep(const char *file, int line,
267 int preempt_offset) { }
268# define might_sleep() do { might_resched(); } while (0)
269# define sched_annotate_sleep() do { } while (0)
270#endif
271
272#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
273
274/**
275 * abs - return absolute value of an argument
276 * @x: the value. If it is unsigned type, it is converted to signed type first.
277 * char is treated as if it was signed (regardless of whether it really is)
278 * but the macro's return type is preserved as char.
279 *
280 * Return: an absolute value of x.
281 */
282#define abs(x) __abs_choose_expr(x, long long, \
283 __abs_choose_expr(x, long, \
284 __abs_choose_expr(x, int, \
285 __abs_choose_expr(x, short, \
286 __abs_choose_expr(x, char, \
287 __builtin_choose_expr( \
288 __builtin_types_compatible_p(typeof(x), char), \
289 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
290 ((void)0)))))))
291
292#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \
293 __builtin_types_compatible_p(typeof(x), signed type) || \
294 __builtin_types_compatible_p(typeof(x), unsigned type), \
295 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
296
297/**
298 * reciprocal_scale - "scale" a value into range [0, ep_ro)
299 * @val: value
300 * @ep_ro: right open interval endpoint
301 *
302 * Perform a "reciprocal multiplication" in order to "scale" a value into
303 * range [0, @ep_ro), where the upper interval endpoint is right-open.
304 * This is useful, e.g. for accessing a index of an array containing
305 * @ep_ro elements, for example. Think of it as sort of modulus, only that
306 * the result isn't that of modulo. ;) Note that if initial input is a
307 * small value, then result will return 0.
308 *
309 * Return: a result based on @val in interval [0, @ep_ro).
310 */
311static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
312{
313 return (u32)(((u64) val * ep_ro) >> 32);
314}
315
316#if defined(CONFIG_MMU) && \
317 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
318#define might_fault() __might_fault(__FILE__, __LINE__)
319void __might_fault(const char *file, int line);
320#else
321static inline void might_fault(void) { }
322#endif
323
324extern struct atomic_notifier_head panic_notifier_list;
325extern long (*panic_blink)(int state);
326__printf(1, 2)
327void panic(const char *fmt, ...) __noreturn __cold;
328void nmi_panic(struct pt_regs *regs, const char *msg);
329extern void oops_enter(void);
330extern void oops_exit(void);
331void print_oops_end_marker(void);
332extern int oops_may_print(void);
333void do_exit(long error_code) __noreturn;
334void complete_and_exit(struct completion *, long) __noreturn;
335
336#ifdef CONFIG_ARCH_HAS_REFCOUNT
337void refcount_error_report(struct pt_regs *regs, const char *err);
338#else
339static inline void refcount_error_report(struct pt_regs *regs, const char *err)
340{ }
341#endif
342
343/* Internal, do not use. */
344int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
345int __must_check _kstrtol(const char *s, unsigned int base, long *res);
346
347int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
348int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
349
350/**
351 * kstrtoul - convert a string to an unsigned long
352 * @s: The start of the string. The string must be null-terminated, and may also
353 * include a single newline before its terminating null. The first character
354 * may also be a plus sign, but not a minus sign.
355 * @base: The number base to use. The maximum supported base is 16. If base is
356 * given as 0, then the base of the string is automatically detected with the
357 * conventional semantics - If it begins with 0x the number will be parsed as a
358 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be
359 * parsed as an octal number. Otherwise it will be parsed as a decimal.
360 * @res: Where to write the result of the conversion on success.
361 *
362 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
363 * Used as a replacement for the obsolete simple_strtoull. Return code must
364 * be checked.
365*/
366static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
367{
368 /*
369 * We want to shortcut function call, but
370 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
371 */
372 if (sizeof(unsigned long) == sizeof(unsigned long long) &&
373 __alignof__(unsigned long) == __alignof__(unsigned long long))
374 return kstrtoull(s, base, (unsigned long long *)res);
375 else
376 return _kstrtoul(s, base, res);
377}
378
379/**
380 * kstrtol - convert a string to a long
381 * @s: The start of the string. The string must be null-terminated, and may also
382 * include a single newline before its terminating null. The first character
383 * may also be a plus sign or a minus sign.
384 * @base: The number base to use. The maximum supported base is 16. If base is
385 * given as 0, then the base of the string is automatically detected with the
386 * conventional semantics - If it begins with 0x the number will be parsed as a
387 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be
388 * parsed as an octal number. Otherwise it will be parsed as a decimal.
389 * @res: Where to write the result of the conversion on success.
390 *
391 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
392 * Used as a replacement for the obsolete simple_strtoull. Return code must
393 * be checked.
394 */
395static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
396{
397 /*
398 * We want to shortcut function call, but
399 * __builtin_types_compatible_p(long, long long) = 0.
400 */
401 if (sizeof(long) == sizeof(long long) &&
402 __alignof__(long) == __alignof__(long long))
403 return kstrtoll(s, base, (long long *)res);
404 else
405 return _kstrtol(s, base, res);
406}
407
408int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
409int __must_check kstrtoint(const char *s, unsigned int base, int *res);
410
411static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
412{
413 return kstrtoull(s, base, res);
414}
415
416static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
417{
418 return kstrtoll(s, base, res);
419}
420
421static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
422{
423 return kstrtouint(s, base, res);
424}
425
426static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
427{
428 return kstrtoint(s, base, res);
429}
430
431int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
432int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
433int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
434int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
435int __must_check kstrtobool(const char *s, bool *res);
436
437int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
438int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
439int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
440int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
441int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
442int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
443int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
444int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
445int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
446int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
447int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
448
449static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
450{
451 return kstrtoull_from_user(s, count, base, res);
452}
453
454static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
455{
456 return kstrtoll_from_user(s, count, base, res);
457}
458
459static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
460{
461 return kstrtouint_from_user(s, count, base, res);
462}
463
464static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
465{
466 return kstrtoint_from_user(s, count, base, res);
467}
468
469/* Obsolete, do not use. Use kstrto<foo> instead */
470
471extern unsigned long simple_strtoul(const char *,char **,unsigned int);
472extern long simple_strtol(const char *,char **,unsigned int);
473extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
474extern long long simple_strtoll(const char *,char **,unsigned int);
475
476extern int num_to_str(char *buf, int size,
477 unsigned long long num, unsigned int width);
478
479/* lib/printf utilities */
480
481extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
482extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
483extern __printf(3, 4)
484int snprintf(char *buf, size_t size, const char *fmt, ...);
485extern __printf(3, 0)
486int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
487extern __printf(3, 4)
488int scnprintf(char *buf, size_t size, const char *fmt, ...);
489extern __printf(3, 0)
490int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
491extern __printf(2, 3) __malloc
492char *kasprintf(gfp_t gfp, const char *fmt, ...);
493extern __printf(2, 0) __malloc
494char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
495extern __printf(2, 0)
496const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
497
498extern __scanf(2, 3)
499int sscanf(const char *, const char *, ...);
500extern __scanf(2, 0)
501int vsscanf(const char *, const char *, va_list);
502
503extern int get_option(char **str, int *pint);
504extern char *get_options(const char *str, int nints, int *ints);
505extern unsigned long long memparse(const char *ptr, char **retptr);
506extern bool parse_option_str(const char *str, const char *option);
507extern char *next_arg(char *args, char **param, char **val);
508
509extern int core_kernel_text(unsigned long addr);
510extern int init_kernel_text(unsigned long addr);
511extern int core_kernel_data(unsigned long addr);
512extern int __kernel_text_address(unsigned long addr);
513extern int kernel_text_address(unsigned long addr);
514extern int func_ptr_is_kernel_text(void *ptr);
515
516unsigned long int_sqrt(unsigned long);
517
518#if BITS_PER_LONG < 64
519u32 int_sqrt64(u64 x);
520#else
521static inline u32 int_sqrt64(u64 x)
522{
523 return (u32)int_sqrt(x);
524}
525#endif
526
527extern void bust_spinlocks(int yes);
528extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */
529extern int panic_timeout;
530extern unsigned long panic_print;
531extern int panic_on_oops;
532extern int panic_on_unrecovered_nmi;
533extern int panic_on_io_nmi;
534extern int panic_on_warn;
535extern int sysctl_panic_on_rcu_stall;
536extern int sysctl_panic_on_stackoverflow;
537
538extern bool crash_kexec_post_notifiers;
539
540/*
541 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
542 * holds a CPU number which is executing panic() currently. A value of
543 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
544 */
545extern atomic_t panic_cpu;
546#define PANIC_CPU_INVALID -1
547
548/*
549 * Only to be used by arch init code. If the user over-wrote the default
550 * CONFIG_PANIC_TIMEOUT, honor it.
551 */
552static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
553{
554 if (panic_timeout == arch_default_timeout)
555 panic_timeout = timeout;
556}
557extern const char *print_tainted(void);
558enum lockdep_ok {
559 LOCKDEP_STILL_OK,
560 LOCKDEP_NOW_UNRELIABLE
561};
562extern void add_taint(unsigned flag, enum lockdep_ok);
563extern int test_taint(unsigned flag);
564extern unsigned long get_taint(void);
565extern int root_mountflags;
566
567extern bool early_boot_irqs_disabled;
568
569/*
570 * Values used for system_state. Ordering of the states must not be changed
571 * as code checks for <, <=, >, >= STATE.
572 */
573extern enum system_states {
574 SYSTEM_BOOTING,
575 SYSTEM_SCHEDULING,
576 SYSTEM_RUNNING,
577 SYSTEM_HALT,
578 SYSTEM_POWER_OFF,
579 SYSTEM_RESTART,
580 SYSTEM_SUSPEND,
581} system_state;
582
583/* This cannot be an enum because some may be used in assembly source. */
584#define TAINT_PROPRIETARY_MODULE 0
585#define TAINT_FORCED_MODULE 1
586#define TAINT_CPU_OUT_OF_SPEC 2
587#define TAINT_FORCED_RMMOD 3
588#define TAINT_MACHINE_CHECK 4
589#define TAINT_BAD_PAGE 5
590#define TAINT_USER 6
591#define TAINT_DIE 7
592#define TAINT_OVERRIDDEN_ACPI_TABLE 8
593#define TAINT_WARN 9
594#define TAINT_CRAP 10
595#define TAINT_FIRMWARE_WORKAROUND 11
596#define TAINT_OOT_MODULE 12
597#define TAINT_UNSIGNED_MODULE 13
598#define TAINT_SOFTLOCKUP 14
599#define TAINT_LIVEPATCH 15
600#define TAINT_AUX 16
601#define TAINT_RANDSTRUCT 17
602#define TAINT_FLAGS_COUNT 18
603
604struct taint_flag {
605 char c_true; /* character printed when tainted */
606 char c_false; /* character printed when not tainted */
607 bool module; /* also show as a per-module taint flag */
608};
609
610extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
611
612extern const char hex_asc[];
613#define hex_asc_lo(x) hex_asc[((x) & 0x0f)]
614#define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4]
615
616static inline char *hex_byte_pack(char *buf, u8 byte)
617{
618 *buf++ = hex_asc_hi(byte);
619 *buf++ = hex_asc_lo(byte);
620 return buf;
621}
622
623extern const char hex_asc_upper[];
624#define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)]
625#define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4]
626
627static inline char *hex_byte_pack_upper(char *buf, u8 byte)
628{
629 *buf++ = hex_asc_upper_hi(byte);
630 *buf++ = hex_asc_upper_lo(byte);
631 return buf;
632}
633
634extern int hex_to_bin(char ch);
635extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
636extern char *bin2hex(char *dst, const void *src, size_t count);
637
638bool mac_pton(const char *s, u8 *mac);
639
640/*
641 * General tracing related utility functions - trace_printk(),
642 * tracing_on/tracing_off and tracing_start()/tracing_stop
643 *
644 * Use tracing_on/tracing_off when you want to quickly turn on or off
645 * tracing. It simply enables or disables the recording of the trace events.
646 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
647 * file, which gives a means for the kernel and userspace to interact.
648 * Place a tracing_off() in the kernel where you want tracing to end.
649 * From user space, examine the trace, and then echo 1 > tracing_on
650 * to continue tracing.
651 *
652 * tracing_stop/tracing_start has slightly more overhead. It is used
653 * by things like suspend to ram where disabling the recording of the
654 * trace is not enough, but tracing must actually stop because things
655 * like calling smp_processor_id() may crash the system.
656 *
657 * Most likely, you want to use tracing_on/tracing_off.
658 */
659
660enum ftrace_dump_mode {
661 DUMP_NONE,
662 DUMP_ALL,
663 DUMP_ORIG,
664};
665
666#ifdef CONFIG_TRACING
667void tracing_on(void);
668void tracing_off(void);
669int tracing_is_on(void);
670void tracing_snapshot(void);
671void tracing_snapshot_alloc(void);
672
673extern void tracing_start(void);
674extern void tracing_stop(void);
675
676static inline __printf(1, 2)
677void ____trace_printk_check_format(const char *fmt, ...)
678{
679}
680#define __trace_printk_check_format(fmt, args...) \
681do { \
682 if (0) \
683 ____trace_printk_check_format(fmt, ##args); \
684} while (0)
685
686/**
687 * trace_printk - printf formatting in the ftrace buffer
688 * @fmt: the printf format for printing
689 *
690 * Note: __trace_printk is an internal function for trace_printk() and
691 * the @ip is passed in via the trace_printk() macro.
692 *
693 * This function allows a kernel developer to debug fast path sections
694 * that printk is not appropriate for. By scattering in various
695 * printk like tracing in the code, a developer can quickly see
696 * where problems are occurring.
697 *
698 * This is intended as a debugging tool for the developer only.
699 * Please refrain from leaving trace_printks scattered around in
700 * your code. (Extra memory is used for special buffers that are
701 * allocated when trace_printk() is used.)
702 *
703 * A little optimization trick is done here. If there's only one
704 * argument, there's no need to scan the string for printf formats.
705 * The trace_puts() will suffice. But how can we take advantage of
706 * using trace_puts() when trace_printk() has only one argument?
707 * By stringifying the args and checking the size we can tell
708 * whether or not there are args. __stringify((__VA_ARGS__)) will
709 * turn into "()\0" with a size of 3 when there are no args, anything
710 * else will be bigger. All we need to do is define a string to this,
711 * and then take its size and compare to 3. If it's bigger, use
712 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
713 * let gcc optimize the rest.
714 */
715
716#define trace_printk(fmt, ...) \
717do { \
718 char _______STR[] = __stringify((__VA_ARGS__)); \
719 if (sizeof(_______STR) > 3) \
720 do_trace_printk(fmt, ##__VA_ARGS__); \
721 else \
722 trace_puts(fmt); \
723} while (0)
724
725#define do_trace_printk(fmt, args...) \
726do { \
727 static const char *trace_printk_fmt __used \
728 __attribute__((section("__trace_printk_fmt"))) = \
729 __builtin_constant_p(fmt) ? fmt : NULL; \
730 \
731 __trace_printk_check_format(fmt, ##args); \
732 \
733 if (__builtin_constant_p(fmt)) \
734 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \
735 else \
736 __trace_printk(_THIS_IP_, fmt, ##args); \
737} while (0)
738
739extern __printf(2, 3)
740int __trace_bprintk(unsigned long ip, const char *fmt, ...);
741
742extern __printf(2, 3)
743int __trace_printk(unsigned long ip, const char *fmt, ...);
744
745/**
746 * trace_puts - write a string into the ftrace buffer
747 * @str: the string to record
748 *
749 * Note: __trace_bputs is an internal function for trace_puts and
750 * the @ip is passed in via the trace_puts macro.
751 *
752 * This is similar to trace_printk() but is made for those really fast
753 * paths that a developer wants the least amount of "Heisenbug" effects,
754 * where the processing of the print format is still too much.
755 *
756 * This function allows a kernel developer to debug fast path sections
757 * that printk is not appropriate for. By scattering in various
758 * printk like tracing in the code, a developer can quickly see
759 * where problems are occurring.
760 *
761 * This is intended as a debugging tool for the developer only.
762 * Please refrain from leaving trace_puts scattered around in
763 * your code. (Extra memory is used for special buffers that are
764 * allocated when trace_puts() is used.)
765 *
766 * Returns: 0 if nothing was written, positive # if string was.
767 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
768 */
769
770#define trace_puts(str) ({ \
771 static const char *trace_printk_fmt __used \
772 __attribute__((section("__trace_printk_fmt"))) = \
773 __builtin_constant_p(str) ? str : NULL; \
774 \
775 if (__builtin_constant_p(str)) \
776 __trace_bputs(_THIS_IP_, trace_printk_fmt); \
777 else \
778 __trace_puts(_THIS_IP_, str, strlen(str)); \
779})
780extern int __trace_bputs(unsigned long ip, const char *str);
781extern int __trace_puts(unsigned long ip, const char *str, int size);
782
783extern void trace_dump_stack(int skip);
784
785/*
786 * The double __builtin_constant_p is because gcc will give us an error
787 * if we try to allocate the static variable to fmt if it is not a
788 * constant. Even with the outer if statement.
789 */
790#define ftrace_vprintk(fmt, vargs) \
791do { \
792 if (__builtin_constant_p(fmt)) { \
793 static const char *trace_printk_fmt __used \
794 __attribute__((section("__trace_printk_fmt"))) = \
795 __builtin_constant_p(fmt) ? fmt : NULL; \
796 \
797 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \
798 } else \
799 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \
800} while (0)
801
802extern __printf(2, 0) int
803__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
804
805extern __printf(2, 0) int
806__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
807
808extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
809#else
810static inline void tracing_start(void) { }
811static inline void tracing_stop(void) { }
812static inline void trace_dump_stack(int skip) { }
813
814static inline void tracing_on(void) { }
815static inline void tracing_off(void) { }
816static inline int tracing_is_on(void) { return 0; }
817static inline void tracing_snapshot(void) { }
818static inline void tracing_snapshot_alloc(void) { }
819
820static inline __printf(1, 2)
821int trace_printk(const char *fmt, ...)
822{
823 return 0;
824}
825static __printf(1, 0) inline int
826ftrace_vprintk(const char *fmt, va_list ap)
827{
828 return 0;
829}
830static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
831#endif /* CONFIG_TRACING */
832
833/*
834 * min()/max()/clamp() macros must accomplish three things:
835 *
836 * - avoid multiple evaluations of the arguments (so side-effects like
837 * "x++" happen only once) when non-constant.
838 * - perform strict type-checking (to generate warnings instead of
839 * nasty runtime surprises). See the "unnecessary" pointer comparison
840 * in __typecheck().
841 * - retain result as a constant expressions when called with only
842 * constant expressions (to avoid tripping VLA warnings in stack
843 * allocation usage).
844 */
845#define __typecheck(x, y) \
846 (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
847
848/*
849 * This returns a constant expression while determining if an argument is
850 * a constant expression, most importantly without evaluating the argument.
851 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
852 */
853#define __is_constexpr(x) \
854 (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
855
856#define __no_side_effects(x, y) \
857 (__is_constexpr(x) && __is_constexpr(y))
858
859#define __safe_cmp(x, y) \
860 (__typecheck(x, y) && __no_side_effects(x, y))
861
862#define __cmp(x, y, op) ((x) op (y) ? (x) : (y))
863
864#define __cmp_once(x, y, unique_x, unique_y, op) ({ \
865 typeof(x) unique_x = (x); \
866 typeof(y) unique_y = (y); \
867 __cmp(unique_x, unique_y, op); })
868
869#define __careful_cmp(x, y, op) \
870 __builtin_choose_expr(__safe_cmp(x, y), \
871 __cmp(x, y, op), \
872 __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
873
874/**
875 * min - return minimum of two values of the same or compatible types
876 * @x: first value
877 * @y: second value
878 */
879#define min(x, y) __careful_cmp(x, y, <)
880
881/**
882 * max - return maximum of two values of the same or compatible types
883 * @x: first value
884 * @y: second value
885 */
886#define max(x, y) __careful_cmp(x, y, >)
887
888/**
889 * min3 - return minimum of three values
890 * @x: first value
891 * @y: second value
892 * @z: third value
893 */
894#define min3(x, y, z) min((typeof(x))min(x, y), z)
895
896/**
897 * max3 - return maximum of three values
898 * @x: first value
899 * @y: second value
900 * @z: third value
901 */
902#define max3(x, y, z) max((typeof(x))max(x, y), z)
903
904/**
905 * min_not_zero - return the minimum that is _not_ zero, unless both are zero
906 * @x: value1
907 * @y: value2
908 */
909#define min_not_zero(x, y) ({ \
910 typeof(x) __x = (x); \
911 typeof(y) __y = (y); \
912 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
913
914/**
915 * clamp - return a value clamped to a given range with strict typechecking
916 * @val: current value
917 * @lo: lowest allowable value
918 * @hi: highest allowable value
919 *
920 * This macro does strict typechecking of @lo/@hi to make sure they are of the
921 * same type as @val. See the unnecessary pointer comparisons.
922 */
923#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
924
925/*
926 * ..and if you can't take the strict
927 * types, you can specify one yourself.
928 *
929 * Or not use min/max/clamp at all, of course.
930 */
931
932/**
933 * min_t - return minimum of two values, using the specified type
934 * @type: data type to use
935 * @x: first value
936 * @y: second value
937 */
938#define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <)
939
940/**
941 * max_t - return maximum of two values, using the specified type
942 * @type: data type to use
943 * @x: first value
944 * @y: second value
945 */
946#define max_t(type, x, y) __careful_cmp((type)(x), (type)(y), >)
947
948/**
949 * clamp_t - return a value clamped to a given range using a given type
950 * @type: the type of variable to use
951 * @val: current value
952 * @lo: minimum allowable value
953 * @hi: maximum allowable value
954 *
955 * This macro does no typechecking and uses temporary variables of type
956 * @type to make all the comparisons.
957 */
958#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
959
960/**
961 * clamp_val - return a value clamped to a given range using val's type
962 * @val: current value
963 * @lo: minimum allowable value
964 * @hi: maximum allowable value
965 *
966 * This macro does no typechecking and uses temporary variables of whatever
967 * type the input argument @val is. This is useful when @val is an unsigned
968 * type and @lo and @hi are literals that will otherwise be assigned a signed
969 * integer type.
970 */
971#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
972
973
974/**
975 * swap - swap values of @a and @b
976 * @a: first value
977 * @b: second value
978 */
979#define swap(a, b) \
980 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
981
982/* This counts to 12. Any more, it will return 13th argument. */
983#define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n
984#define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
985
986#define __CONCAT(a, b) a ## b
987#define CONCATENATE(a, b) __CONCAT(a, b)
988
989/**
990 * container_of - cast a member of a structure out to the containing structure
991 * @ptr: the pointer to the member.
992 * @type: the type of the container struct this is embedded in.
993 * @member: the name of the member within the struct.
994 *
995 */
996#define container_of(ptr, type, member) ({ \
997 void *__mptr = (void *)(ptr); \
998 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \
999 !__same_type(*(ptr), void), \
1000 "pointer type mismatch in container_of()"); \
1001 ((type *)(__mptr - offsetof(type, member))); })
1002
1003/**
1004 * container_of_safe - cast a member of a structure out to the containing structure
1005 * @ptr: the pointer to the member.
1006 * @type: the type of the container struct this is embedded in.
1007 * @member: the name of the member within the struct.
1008 *
1009 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.
1010 */
1011#define container_of_safe(ptr, type, member) ({ \
1012 void *__mptr = (void *)(ptr); \
1013 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \
1014 !__same_type(*(ptr), void), \
1015 "pointer type mismatch in container_of()"); \
1016 IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) : \
1017 ((type *)(__mptr - offsetof(type, member))); })
1018
1019/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
1020#ifdef CONFIG_FTRACE_MCOUNT_RECORD
1021# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
1022#endif
1023
1024/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
1025#define VERIFY_OCTAL_PERMISSIONS(perms) \
1026 (BUILD_BUG_ON_ZERO((perms) < 0) + \
1027 BUILD_BUG_ON_ZERO((perms) > 0777) + \
1028 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \
1029 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \
1030 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \
1031 /* USER_WRITABLE >= GROUP_WRITABLE */ \
1032 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \
1033 /* OTHER_WRITABLE? Generally considered a bad idea. */ \
1034 BUILD_BUG_ON_ZERO((perms) & 2) + \
1035 (perms))
1036#endif