Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * f_fs.c -- user mode file system API for USB composite function controllers
4 *
5 * Copyright (C) 2010 Samsung Electronics
6 * Author: Michal Nazarewicz <mina86@mina86.com>
7 *
8 * Based on inode.c (GadgetFS) which was:
9 * Copyright (C) 2003-2004 David Brownell
10 * Copyright (C) 2003 Agilent Technologies
11 */
12
13
14/* #define DEBUG */
15/* #define VERBOSE_DEBUG */
16
17#include <linux/blkdev.h>
18#include <linux/pagemap.h>
19#include <linux/export.h>
20#include <linux/hid.h>
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/scatterlist.h>
24#include <linux/sched/signal.h>
25#include <linux/uio.h>
26#include <linux/vmalloc.h>
27#include <asm/unaligned.h>
28
29#include <linux/usb/ccid.h>
30#include <linux/usb/composite.h>
31#include <linux/usb/functionfs.h>
32
33#include <linux/aio.h>
34#include <linux/mmu_context.h>
35#include <linux/poll.h>
36#include <linux/eventfd.h>
37
38#include "u_fs.h"
39#include "u_f.h"
40#include "u_os_desc.h"
41#include "configfs.h"
42
43#define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
44
45/* Reference counter handling */
46static void ffs_data_get(struct ffs_data *ffs);
47static void ffs_data_put(struct ffs_data *ffs);
48/* Creates new ffs_data object. */
49static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
50 __attribute__((malloc));
51
52/* Opened counter handling. */
53static void ffs_data_opened(struct ffs_data *ffs);
54static void ffs_data_closed(struct ffs_data *ffs);
55
56/* Called with ffs->mutex held; take over ownership of data. */
57static int __must_check
58__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
59static int __must_check
60__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
61
62
63/* The function structure ***************************************************/
64
65struct ffs_ep;
66
67struct ffs_function {
68 struct usb_configuration *conf;
69 struct usb_gadget *gadget;
70 struct ffs_data *ffs;
71
72 struct ffs_ep *eps;
73 u8 eps_revmap[16];
74 short *interfaces_nums;
75
76 struct usb_function function;
77};
78
79
80static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
81{
82 return container_of(f, struct ffs_function, function);
83}
84
85
86static inline enum ffs_setup_state
87ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
88{
89 return (enum ffs_setup_state)
90 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
91}
92
93
94static void ffs_func_eps_disable(struct ffs_function *func);
95static int __must_check ffs_func_eps_enable(struct ffs_function *func);
96
97static int ffs_func_bind(struct usb_configuration *,
98 struct usb_function *);
99static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
100static void ffs_func_disable(struct usb_function *);
101static int ffs_func_setup(struct usb_function *,
102 const struct usb_ctrlrequest *);
103static bool ffs_func_req_match(struct usb_function *,
104 const struct usb_ctrlrequest *,
105 bool config0);
106static void ffs_func_suspend(struct usb_function *);
107static void ffs_func_resume(struct usb_function *);
108
109
110static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
111static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
112
113
114/* The endpoints structures *************************************************/
115
116struct ffs_ep {
117 struct usb_ep *ep; /* P: ffs->eps_lock */
118 struct usb_request *req; /* P: epfile->mutex */
119
120 /* [0]: full speed, [1]: high speed, [2]: super speed */
121 struct usb_endpoint_descriptor *descs[3];
122
123 u8 num;
124
125 int status; /* P: epfile->mutex */
126};
127
128struct ffs_epfile {
129 /* Protects ep->ep and ep->req. */
130 struct mutex mutex;
131
132 struct ffs_data *ffs;
133 struct ffs_ep *ep; /* P: ffs->eps_lock */
134
135 struct dentry *dentry;
136
137 /*
138 * Buffer for holding data from partial reads which may happen since
139 * we’re rounding user read requests to a multiple of a max packet size.
140 *
141 * The pointer is initialised with NULL value and may be set by
142 * __ffs_epfile_read_data function to point to a temporary buffer.
143 *
144 * In normal operation, calls to __ffs_epfile_read_buffered will consume
145 * data from said buffer and eventually free it. Importantly, while the
146 * function is using the buffer, it sets the pointer to NULL. This is
147 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
148 * can never run concurrently (they are synchronised by epfile->mutex)
149 * so the latter will not assign a new value to the pointer.
150 *
151 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
152 * valid) and sets the pointer to READ_BUFFER_DROP value. This special
153 * value is crux of the synchronisation between ffs_func_eps_disable and
154 * __ffs_epfile_read_data.
155 *
156 * Once __ffs_epfile_read_data is about to finish it will try to set the
157 * pointer back to its old value (as described above), but seeing as the
158 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
159 * the buffer.
160 *
161 * == State transitions ==
162 *
163 * • ptr == NULL: (initial state)
164 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
165 * ◦ __ffs_epfile_read_buffered: nop
166 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
167 * ◦ reading finishes: n/a, not in ‘and reading’ state
168 * • ptr == DROP:
169 * ◦ __ffs_epfile_read_buffer_free: nop
170 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL
171 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
172 * ◦ reading finishes: n/a, not in ‘and reading’ state
173 * • ptr == buf:
174 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
175 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading
176 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered
177 * is always called first
178 * ◦ reading finishes: n/a, not in ‘and reading’ state
179 * • ptr == NULL and reading:
180 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
181 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
182 * ◦ __ffs_epfile_read_data: n/a, mutex is held
183 * ◦ reading finishes and …
184 * … all data read: free buf, go to ptr == NULL
185 * … otherwise: go to ptr == buf and reading
186 * • ptr == DROP and reading:
187 * ◦ __ffs_epfile_read_buffer_free: nop
188 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
189 * ◦ __ffs_epfile_read_data: n/a, mutex is held
190 * ◦ reading finishes: free buf, go to ptr == DROP
191 */
192 struct ffs_buffer *read_buffer;
193#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
194
195 char name[5];
196
197 unsigned char in; /* P: ffs->eps_lock */
198 unsigned char isoc; /* P: ffs->eps_lock */
199
200 unsigned char _pad;
201};
202
203struct ffs_buffer {
204 size_t length;
205 char *data;
206 char storage[];
207};
208
209/* ffs_io_data structure ***************************************************/
210
211struct ffs_io_data {
212 bool aio;
213 bool read;
214
215 struct kiocb *kiocb;
216 struct iov_iter data;
217 const void *to_free;
218 char *buf;
219
220 struct mm_struct *mm;
221 struct work_struct work;
222
223 struct usb_ep *ep;
224 struct usb_request *req;
225 struct sg_table sgt;
226 bool use_sg;
227
228 struct ffs_data *ffs;
229};
230
231struct ffs_desc_helper {
232 struct ffs_data *ffs;
233 unsigned interfaces_count;
234 unsigned eps_count;
235};
236
237static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
238static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
239
240static struct dentry *
241ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
242 const struct file_operations *fops);
243
244/* Devices management *******************************************************/
245
246DEFINE_MUTEX(ffs_lock);
247EXPORT_SYMBOL_GPL(ffs_lock);
248
249static struct ffs_dev *_ffs_find_dev(const char *name);
250static struct ffs_dev *_ffs_alloc_dev(void);
251static void _ffs_free_dev(struct ffs_dev *dev);
252static void *ffs_acquire_dev(const char *dev_name);
253static void ffs_release_dev(struct ffs_data *ffs_data);
254static int ffs_ready(struct ffs_data *ffs);
255static void ffs_closed(struct ffs_data *ffs);
256
257/* Misc helper functions ****************************************************/
258
259static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
260 __attribute__((warn_unused_result, nonnull));
261static char *ffs_prepare_buffer(const char __user *buf, size_t len)
262 __attribute__((warn_unused_result, nonnull));
263
264
265/* Control file aka ep0 *****************************************************/
266
267static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
268{
269 struct ffs_data *ffs = req->context;
270
271 complete(&ffs->ep0req_completion);
272}
273
274static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
275 __releases(&ffs->ev.waitq.lock)
276{
277 struct usb_request *req = ffs->ep0req;
278 int ret;
279
280 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
281
282 spin_unlock_irq(&ffs->ev.waitq.lock);
283
284 req->buf = data;
285 req->length = len;
286
287 /*
288 * UDC layer requires to provide a buffer even for ZLP, but should
289 * not use it at all. Let's provide some poisoned pointer to catch
290 * possible bug in the driver.
291 */
292 if (req->buf == NULL)
293 req->buf = (void *)0xDEADBABE;
294
295 reinit_completion(&ffs->ep0req_completion);
296
297 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
298 if (unlikely(ret < 0))
299 return ret;
300
301 ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
302 if (unlikely(ret)) {
303 usb_ep_dequeue(ffs->gadget->ep0, req);
304 return -EINTR;
305 }
306
307 ffs->setup_state = FFS_NO_SETUP;
308 return req->status ? req->status : req->actual;
309}
310
311static int __ffs_ep0_stall(struct ffs_data *ffs)
312{
313 if (ffs->ev.can_stall) {
314 pr_vdebug("ep0 stall\n");
315 usb_ep_set_halt(ffs->gadget->ep0);
316 ffs->setup_state = FFS_NO_SETUP;
317 return -EL2HLT;
318 } else {
319 pr_debug("bogus ep0 stall!\n");
320 return -ESRCH;
321 }
322}
323
324static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
325 size_t len, loff_t *ptr)
326{
327 struct ffs_data *ffs = file->private_data;
328 ssize_t ret;
329 char *data;
330
331 ENTER();
332
333 /* Fast check if setup was canceled */
334 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
335 return -EIDRM;
336
337 /* Acquire mutex */
338 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
339 if (unlikely(ret < 0))
340 return ret;
341
342 /* Check state */
343 switch (ffs->state) {
344 case FFS_READ_DESCRIPTORS:
345 case FFS_READ_STRINGS:
346 /* Copy data */
347 if (unlikely(len < 16)) {
348 ret = -EINVAL;
349 break;
350 }
351
352 data = ffs_prepare_buffer(buf, len);
353 if (IS_ERR(data)) {
354 ret = PTR_ERR(data);
355 break;
356 }
357
358 /* Handle data */
359 if (ffs->state == FFS_READ_DESCRIPTORS) {
360 pr_info("read descriptors\n");
361 ret = __ffs_data_got_descs(ffs, data, len);
362 if (unlikely(ret < 0))
363 break;
364
365 ffs->state = FFS_READ_STRINGS;
366 ret = len;
367 } else {
368 pr_info("read strings\n");
369 ret = __ffs_data_got_strings(ffs, data, len);
370 if (unlikely(ret < 0))
371 break;
372
373 ret = ffs_epfiles_create(ffs);
374 if (unlikely(ret)) {
375 ffs->state = FFS_CLOSING;
376 break;
377 }
378
379 ffs->state = FFS_ACTIVE;
380 mutex_unlock(&ffs->mutex);
381
382 ret = ffs_ready(ffs);
383 if (unlikely(ret < 0)) {
384 ffs->state = FFS_CLOSING;
385 return ret;
386 }
387
388 return len;
389 }
390 break;
391
392 case FFS_ACTIVE:
393 data = NULL;
394 /*
395 * We're called from user space, we can use _irq
396 * rather then _irqsave
397 */
398 spin_lock_irq(&ffs->ev.waitq.lock);
399 switch (ffs_setup_state_clear_cancelled(ffs)) {
400 case FFS_SETUP_CANCELLED:
401 ret = -EIDRM;
402 goto done_spin;
403
404 case FFS_NO_SETUP:
405 ret = -ESRCH;
406 goto done_spin;
407
408 case FFS_SETUP_PENDING:
409 break;
410 }
411
412 /* FFS_SETUP_PENDING */
413 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
414 spin_unlock_irq(&ffs->ev.waitq.lock);
415 ret = __ffs_ep0_stall(ffs);
416 break;
417 }
418
419 /* FFS_SETUP_PENDING and not stall */
420 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
421
422 spin_unlock_irq(&ffs->ev.waitq.lock);
423
424 data = ffs_prepare_buffer(buf, len);
425 if (IS_ERR(data)) {
426 ret = PTR_ERR(data);
427 break;
428 }
429
430 spin_lock_irq(&ffs->ev.waitq.lock);
431
432 /*
433 * We are guaranteed to be still in FFS_ACTIVE state
434 * but the state of setup could have changed from
435 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
436 * to check for that. If that happened we copied data
437 * from user space in vain but it's unlikely.
438 *
439 * For sure we are not in FFS_NO_SETUP since this is
440 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
441 * transition can be performed and it's protected by
442 * mutex.
443 */
444 if (ffs_setup_state_clear_cancelled(ffs) ==
445 FFS_SETUP_CANCELLED) {
446 ret = -EIDRM;
447done_spin:
448 spin_unlock_irq(&ffs->ev.waitq.lock);
449 } else {
450 /* unlocks spinlock */
451 ret = __ffs_ep0_queue_wait(ffs, data, len);
452 }
453 kfree(data);
454 break;
455
456 default:
457 ret = -EBADFD;
458 break;
459 }
460
461 mutex_unlock(&ffs->mutex);
462 return ret;
463}
464
465/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
466static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
467 size_t n)
468 __releases(&ffs->ev.waitq.lock)
469{
470 /*
471 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
472 * size of ffs->ev.types array (which is four) so that's how much space
473 * we reserve.
474 */
475 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
476 const size_t size = n * sizeof *events;
477 unsigned i = 0;
478
479 memset(events, 0, size);
480
481 do {
482 events[i].type = ffs->ev.types[i];
483 if (events[i].type == FUNCTIONFS_SETUP) {
484 events[i].u.setup = ffs->ev.setup;
485 ffs->setup_state = FFS_SETUP_PENDING;
486 }
487 } while (++i < n);
488
489 ffs->ev.count -= n;
490 if (ffs->ev.count)
491 memmove(ffs->ev.types, ffs->ev.types + n,
492 ffs->ev.count * sizeof *ffs->ev.types);
493
494 spin_unlock_irq(&ffs->ev.waitq.lock);
495 mutex_unlock(&ffs->mutex);
496
497 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
498}
499
500static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
501 size_t len, loff_t *ptr)
502{
503 struct ffs_data *ffs = file->private_data;
504 char *data = NULL;
505 size_t n;
506 int ret;
507
508 ENTER();
509
510 /* Fast check if setup was canceled */
511 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
512 return -EIDRM;
513
514 /* Acquire mutex */
515 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
516 if (unlikely(ret < 0))
517 return ret;
518
519 /* Check state */
520 if (ffs->state != FFS_ACTIVE) {
521 ret = -EBADFD;
522 goto done_mutex;
523 }
524
525 /*
526 * We're called from user space, we can use _irq rather then
527 * _irqsave
528 */
529 spin_lock_irq(&ffs->ev.waitq.lock);
530
531 switch (ffs_setup_state_clear_cancelled(ffs)) {
532 case FFS_SETUP_CANCELLED:
533 ret = -EIDRM;
534 break;
535
536 case FFS_NO_SETUP:
537 n = len / sizeof(struct usb_functionfs_event);
538 if (unlikely(!n)) {
539 ret = -EINVAL;
540 break;
541 }
542
543 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
544 ret = -EAGAIN;
545 break;
546 }
547
548 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
549 ffs->ev.count)) {
550 ret = -EINTR;
551 break;
552 }
553
554 /* unlocks spinlock */
555 return __ffs_ep0_read_events(ffs, buf,
556 min(n, (size_t)ffs->ev.count));
557
558 case FFS_SETUP_PENDING:
559 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
560 spin_unlock_irq(&ffs->ev.waitq.lock);
561 ret = __ffs_ep0_stall(ffs);
562 goto done_mutex;
563 }
564
565 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
566
567 spin_unlock_irq(&ffs->ev.waitq.lock);
568
569 if (likely(len)) {
570 data = kmalloc(len, GFP_KERNEL);
571 if (unlikely(!data)) {
572 ret = -ENOMEM;
573 goto done_mutex;
574 }
575 }
576
577 spin_lock_irq(&ffs->ev.waitq.lock);
578
579 /* See ffs_ep0_write() */
580 if (ffs_setup_state_clear_cancelled(ffs) ==
581 FFS_SETUP_CANCELLED) {
582 ret = -EIDRM;
583 break;
584 }
585
586 /* unlocks spinlock */
587 ret = __ffs_ep0_queue_wait(ffs, data, len);
588 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
589 ret = -EFAULT;
590 goto done_mutex;
591
592 default:
593 ret = -EBADFD;
594 break;
595 }
596
597 spin_unlock_irq(&ffs->ev.waitq.lock);
598done_mutex:
599 mutex_unlock(&ffs->mutex);
600 kfree(data);
601 return ret;
602}
603
604static int ffs_ep0_open(struct inode *inode, struct file *file)
605{
606 struct ffs_data *ffs = inode->i_private;
607
608 ENTER();
609
610 if (unlikely(ffs->state == FFS_CLOSING))
611 return -EBUSY;
612
613 file->private_data = ffs;
614 ffs_data_opened(ffs);
615
616 return 0;
617}
618
619static int ffs_ep0_release(struct inode *inode, struct file *file)
620{
621 struct ffs_data *ffs = file->private_data;
622
623 ENTER();
624
625 ffs_data_closed(ffs);
626
627 return 0;
628}
629
630static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
631{
632 struct ffs_data *ffs = file->private_data;
633 struct usb_gadget *gadget = ffs->gadget;
634 long ret;
635
636 ENTER();
637
638 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
639 struct ffs_function *func = ffs->func;
640 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
641 } else if (gadget && gadget->ops->ioctl) {
642 ret = gadget->ops->ioctl(gadget, code, value);
643 } else {
644 ret = -ENOTTY;
645 }
646
647 return ret;
648}
649
650static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
651{
652 struct ffs_data *ffs = file->private_data;
653 __poll_t mask = EPOLLWRNORM;
654 int ret;
655
656 poll_wait(file, &ffs->ev.waitq, wait);
657
658 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
659 if (unlikely(ret < 0))
660 return mask;
661
662 switch (ffs->state) {
663 case FFS_READ_DESCRIPTORS:
664 case FFS_READ_STRINGS:
665 mask |= EPOLLOUT;
666 break;
667
668 case FFS_ACTIVE:
669 switch (ffs->setup_state) {
670 case FFS_NO_SETUP:
671 if (ffs->ev.count)
672 mask |= EPOLLIN;
673 break;
674
675 case FFS_SETUP_PENDING:
676 case FFS_SETUP_CANCELLED:
677 mask |= (EPOLLIN | EPOLLOUT);
678 break;
679 }
680 case FFS_CLOSING:
681 break;
682 case FFS_DEACTIVATED:
683 break;
684 }
685
686 mutex_unlock(&ffs->mutex);
687
688 return mask;
689}
690
691static const struct file_operations ffs_ep0_operations = {
692 .llseek = no_llseek,
693
694 .open = ffs_ep0_open,
695 .write = ffs_ep0_write,
696 .read = ffs_ep0_read,
697 .release = ffs_ep0_release,
698 .unlocked_ioctl = ffs_ep0_ioctl,
699 .poll = ffs_ep0_poll,
700};
701
702
703/* "Normal" endpoints operations ********************************************/
704
705static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
706{
707 ENTER();
708 if (likely(req->context)) {
709 struct ffs_ep *ep = _ep->driver_data;
710 ep->status = req->status ? req->status : req->actual;
711 complete(req->context);
712 }
713}
714
715static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
716{
717 ssize_t ret = copy_to_iter(data, data_len, iter);
718 if (likely(ret == data_len))
719 return ret;
720
721 if (unlikely(iov_iter_count(iter)))
722 return -EFAULT;
723
724 /*
725 * Dear user space developer!
726 *
727 * TL;DR: To stop getting below error message in your kernel log, change
728 * user space code using functionfs to align read buffers to a max
729 * packet size.
730 *
731 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
732 * packet size. When unaligned buffer is passed to functionfs, it
733 * internally uses a larger, aligned buffer so that such UDCs are happy.
734 *
735 * Unfortunately, this means that host may send more data than was
736 * requested in read(2) system call. f_fs doesn’t know what to do with
737 * that excess data so it simply drops it.
738 *
739 * Was the buffer aligned in the first place, no such problem would
740 * happen.
741 *
742 * Data may be dropped only in AIO reads. Synchronous reads are handled
743 * by splitting a request into multiple parts. This splitting may still
744 * be a problem though so it’s likely best to align the buffer
745 * regardless of it being AIO or not..
746 *
747 * This only affects OUT endpoints, i.e. reading data with a read(2),
748 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not
749 * affected.
750 */
751 pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
752 "Align read buffer size to max packet size to avoid the problem.\n",
753 data_len, ret);
754
755 return ret;
756}
757
758/*
759 * allocate a virtually contiguous buffer and create a scatterlist describing it
760 * @sg_table - pointer to a place to be filled with sg_table contents
761 * @size - required buffer size
762 */
763static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
764{
765 struct page **pages;
766 void *vaddr, *ptr;
767 unsigned int n_pages;
768 int i;
769
770 vaddr = vmalloc(sz);
771 if (!vaddr)
772 return NULL;
773
774 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
775 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
776 if (!pages) {
777 vfree(vaddr);
778
779 return NULL;
780 }
781 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
782 pages[i] = vmalloc_to_page(ptr);
783
784 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
785 kvfree(pages);
786 vfree(vaddr);
787
788 return NULL;
789 }
790 kvfree(pages);
791
792 return vaddr;
793}
794
795static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
796 size_t data_len)
797{
798 if (io_data->use_sg)
799 return ffs_build_sg_list(&io_data->sgt, data_len);
800
801 return kmalloc(data_len, GFP_KERNEL);
802}
803
804static inline void ffs_free_buffer(struct ffs_io_data *io_data)
805{
806 if (!io_data->buf)
807 return;
808
809 if (io_data->use_sg) {
810 sg_free_table(&io_data->sgt);
811 vfree(io_data->buf);
812 } else {
813 kfree(io_data->buf);
814 }
815}
816
817static void ffs_user_copy_worker(struct work_struct *work)
818{
819 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
820 work);
821 int ret = io_data->req->status ? io_data->req->status :
822 io_data->req->actual;
823 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
824
825 if (io_data->read && ret > 0) {
826 mm_segment_t oldfs = get_fs();
827
828 set_fs(USER_DS);
829 use_mm(io_data->mm);
830 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
831 unuse_mm(io_data->mm);
832 set_fs(oldfs);
833 }
834
835 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
836
837 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
838 eventfd_signal(io_data->ffs->ffs_eventfd, 1);
839
840 usb_ep_free_request(io_data->ep, io_data->req);
841
842 if (io_data->read)
843 kfree(io_data->to_free);
844 ffs_free_buffer(io_data);
845 kfree(io_data);
846}
847
848static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
849 struct usb_request *req)
850{
851 struct ffs_io_data *io_data = req->context;
852 struct ffs_data *ffs = io_data->ffs;
853
854 ENTER();
855
856 INIT_WORK(&io_data->work, ffs_user_copy_worker);
857 queue_work(ffs->io_completion_wq, &io_data->work);
858}
859
860static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
861{
862 /*
863 * See comment in struct ffs_epfile for full read_buffer pointer
864 * synchronisation story.
865 */
866 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
867 if (buf && buf != READ_BUFFER_DROP)
868 kfree(buf);
869}
870
871/* Assumes epfile->mutex is held. */
872static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
873 struct iov_iter *iter)
874{
875 /*
876 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
877 * the buffer while we are using it. See comment in struct ffs_epfile
878 * for full read_buffer pointer synchronisation story.
879 */
880 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
881 ssize_t ret;
882 if (!buf || buf == READ_BUFFER_DROP)
883 return 0;
884
885 ret = copy_to_iter(buf->data, buf->length, iter);
886 if (buf->length == ret) {
887 kfree(buf);
888 return ret;
889 }
890
891 if (unlikely(iov_iter_count(iter))) {
892 ret = -EFAULT;
893 } else {
894 buf->length -= ret;
895 buf->data += ret;
896 }
897
898 if (cmpxchg(&epfile->read_buffer, NULL, buf))
899 kfree(buf);
900
901 return ret;
902}
903
904/* Assumes epfile->mutex is held. */
905static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
906 void *data, int data_len,
907 struct iov_iter *iter)
908{
909 struct ffs_buffer *buf;
910
911 ssize_t ret = copy_to_iter(data, data_len, iter);
912 if (likely(data_len == ret))
913 return ret;
914
915 if (unlikely(iov_iter_count(iter)))
916 return -EFAULT;
917
918 /* See ffs_copy_to_iter for more context. */
919 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
920 data_len, ret);
921
922 data_len -= ret;
923 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
924 if (!buf)
925 return -ENOMEM;
926 buf->length = data_len;
927 buf->data = buf->storage;
928 memcpy(buf->storage, data + ret, data_len);
929
930 /*
931 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
932 * ffs_func_eps_disable has been called in the meanwhile). See comment
933 * in struct ffs_epfile for full read_buffer pointer synchronisation
934 * story.
935 */
936 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
937 kfree(buf);
938
939 return ret;
940}
941
942static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
943{
944 struct ffs_epfile *epfile = file->private_data;
945 struct usb_request *req;
946 struct ffs_ep *ep;
947 char *data = NULL;
948 ssize_t ret, data_len = -EINVAL;
949 int halt;
950
951 /* Are we still active? */
952 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
953 return -ENODEV;
954
955 /* Wait for endpoint to be enabled */
956 ep = epfile->ep;
957 if (!ep) {
958 if (file->f_flags & O_NONBLOCK)
959 return -EAGAIN;
960
961 ret = wait_event_interruptible(
962 epfile->ffs->wait, (ep = epfile->ep));
963 if (ret)
964 return -EINTR;
965 }
966
967 /* Do we halt? */
968 halt = (!io_data->read == !epfile->in);
969 if (halt && epfile->isoc)
970 return -EINVAL;
971
972 /* We will be using request and read_buffer */
973 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
974 if (unlikely(ret))
975 goto error;
976
977 /* Allocate & copy */
978 if (!halt) {
979 struct usb_gadget *gadget;
980
981 /*
982 * Do we have buffered data from previous partial read? Check
983 * that for synchronous case only because we do not have
984 * facility to ‘wake up’ a pending asynchronous read and push
985 * buffered data to it which we would need to make things behave
986 * consistently.
987 */
988 if (!io_data->aio && io_data->read) {
989 ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
990 if (ret)
991 goto error_mutex;
992 }
993
994 /*
995 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
996 * before the waiting completes, so do not assign to 'gadget'
997 * earlier
998 */
999 gadget = epfile->ffs->gadget;
1000 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1001
1002 spin_lock_irq(&epfile->ffs->eps_lock);
1003 /* In the meantime, endpoint got disabled or changed. */
1004 if (epfile->ep != ep) {
1005 ret = -ESHUTDOWN;
1006 goto error_lock;
1007 }
1008 data_len = iov_iter_count(&io_data->data);
1009 /*
1010 * Controller may require buffer size to be aligned to
1011 * maxpacketsize of an out endpoint.
1012 */
1013 if (io_data->read)
1014 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1015 spin_unlock_irq(&epfile->ffs->eps_lock);
1016
1017 data = ffs_alloc_buffer(io_data, data_len);
1018 if (unlikely(!data)) {
1019 ret = -ENOMEM;
1020 goto error_mutex;
1021 }
1022 if (!io_data->read &&
1023 !copy_from_iter_full(data, data_len, &io_data->data)) {
1024 ret = -EFAULT;
1025 goto error_mutex;
1026 }
1027 }
1028
1029 spin_lock_irq(&epfile->ffs->eps_lock);
1030
1031 if (epfile->ep != ep) {
1032 /* In the meantime, endpoint got disabled or changed. */
1033 ret = -ESHUTDOWN;
1034 } else if (halt) {
1035 ret = usb_ep_set_halt(ep->ep);
1036 if (!ret)
1037 ret = -EBADMSG;
1038 } else if (unlikely(data_len == -EINVAL)) {
1039 /*
1040 * Sanity Check: even though data_len can't be used
1041 * uninitialized at the time I write this comment, some
1042 * compilers complain about this situation.
1043 * In order to keep the code clean from warnings, data_len is
1044 * being initialized to -EINVAL during its declaration, which
1045 * means we can't rely on compiler anymore to warn no future
1046 * changes won't result in data_len being used uninitialized.
1047 * For such reason, we're adding this redundant sanity check
1048 * here.
1049 */
1050 WARN(1, "%s: data_len == -EINVAL\n", __func__);
1051 ret = -EINVAL;
1052 } else if (!io_data->aio) {
1053 DECLARE_COMPLETION_ONSTACK(done);
1054 bool interrupted = false;
1055
1056 req = ep->req;
1057 if (io_data->use_sg) {
1058 req->buf = NULL;
1059 req->sg = io_data->sgt.sgl;
1060 req->num_sgs = io_data->sgt.nents;
1061 } else {
1062 req->buf = data;
1063 }
1064 req->length = data_len;
1065
1066 io_data->buf = data;
1067
1068 req->context = &done;
1069 req->complete = ffs_epfile_io_complete;
1070
1071 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1072 if (unlikely(ret < 0))
1073 goto error_lock;
1074
1075 spin_unlock_irq(&epfile->ffs->eps_lock);
1076
1077 if (unlikely(wait_for_completion_interruptible(&done))) {
1078 /*
1079 * To avoid race condition with ffs_epfile_io_complete,
1080 * dequeue the request first then check
1081 * status. usb_ep_dequeue API should guarantee no race
1082 * condition with req->complete callback.
1083 */
1084 usb_ep_dequeue(ep->ep, req);
1085 interrupted = ep->status < 0;
1086 }
1087
1088 if (interrupted)
1089 ret = -EINTR;
1090 else if (io_data->read && ep->status > 0)
1091 ret = __ffs_epfile_read_data(epfile, data, ep->status,
1092 &io_data->data);
1093 else
1094 ret = ep->status;
1095 goto error_mutex;
1096 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1097 ret = -ENOMEM;
1098 } else {
1099 if (io_data->use_sg) {
1100 req->buf = NULL;
1101 req->sg = io_data->sgt.sgl;
1102 req->num_sgs = io_data->sgt.nents;
1103 } else {
1104 req->buf = data;
1105 }
1106 req->length = data_len;
1107
1108 io_data->buf = data;
1109 io_data->ep = ep->ep;
1110 io_data->req = req;
1111 io_data->ffs = epfile->ffs;
1112
1113 req->context = io_data;
1114 req->complete = ffs_epfile_async_io_complete;
1115
1116 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1117 if (unlikely(ret)) {
1118 usb_ep_free_request(ep->ep, req);
1119 goto error_lock;
1120 }
1121
1122 ret = -EIOCBQUEUED;
1123 /*
1124 * Do not kfree the buffer in this function. It will be freed
1125 * by ffs_user_copy_worker.
1126 */
1127 data = NULL;
1128 }
1129
1130error_lock:
1131 spin_unlock_irq(&epfile->ffs->eps_lock);
1132error_mutex:
1133 mutex_unlock(&epfile->mutex);
1134error:
1135 ffs_free_buffer(io_data);
1136 return ret;
1137}
1138
1139static int
1140ffs_epfile_open(struct inode *inode, struct file *file)
1141{
1142 struct ffs_epfile *epfile = inode->i_private;
1143
1144 ENTER();
1145
1146 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1147 return -ENODEV;
1148
1149 file->private_data = epfile;
1150 ffs_data_opened(epfile->ffs);
1151
1152 return 0;
1153}
1154
1155static int ffs_aio_cancel(struct kiocb *kiocb)
1156{
1157 struct ffs_io_data *io_data = kiocb->private;
1158 struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1159 int value;
1160
1161 ENTER();
1162
1163 spin_lock_irq(&epfile->ffs->eps_lock);
1164
1165 if (likely(io_data && io_data->ep && io_data->req))
1166 value = usb_ep_dequeue(io_data->ep, io_data->req);
1167 else
1168 value = -EINVAL;
1169
1170 spin_unlock_irq(&epfile->ffs->eps_lock);
1171
1172 return value;
1173}
1174
1175static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1176{
1177 struct ffs_io_data io_data, *p = &io_data;
1178 ssize_t res;
1179
1180 ENTER();
1181
1182 if (!is_sync_kiocb(kiocb)) {
1183 p = kmalloc(sizeof(io_data), GFP_KERNEL);
1184 if (unlikely(!p))
1185 return -ENOMEM;
1186 p->aio = true;
1187 } else {
1188 p->aio = false;
1189 }
1190
1191 p->read = false;
1192 p->kiocb = kiocb;
1193 p->data = *from;
1194 p->mm = current->mm;
1195
1196 kiocb->private = p;
1197
1198 if (p->aio)
1199 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1200
1201 res = ffs_epfile_io(kiocb->ki_filp, p);
1202 if (res == -EIOCBQUEUED)
1203 return res;
1204 if (p->aio)
1205 kfree(p);
1206 else
1207 *from = p->data;
1208 return res;
1209}
1210
1211static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1212{
1213 struct ffs_io_data io_data, *p = &io_data;
1214 ssize_t res;
1215
1216 ENTER();
1217
1218 if (!is_sync_kiocb(kiocb)) {
1219 p = kmalloc(sizeof(io_data), GFP_KERNEL);
1220 if (unlikely(!p))
1221 return -ENOMEM;
1222 p->aio = true;
1223 } else {
1224 p->aio = false;
1225 }
1226
1227 p->read = true;
1228 p->kiocb = kiocb;
1229 if (p->aio) {
1230 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1231 if (!p->to_free) {
1232 kfree(p);
1233 return -ENOMEM;
1234 }
1235 } else {
1236 p->data = *to;
1237 p->to_free = NULL;
1238 }
1239 p->mm = current->mm;
1240
1241 kiocb->private = p;
1242
1243 if (p->aio)
1244 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1245
1246 res = ffs_epfile_io(kiocb->ki_filp, p);
1247 if (res == -EIOCBQUEUED)
1248 return res;
1249
1250 if (p->aio) {
1251 kfree(p->to_free);
1252 kfree(p);
1253 } else {
1254 *to = p->data;
1255 }
1256 return res;
1257}
1258
1259static int
1260ffs_epfile_release(struct inode *inode, struct file *file)
1261{
1262 struct ffs_epfile *epfile = inode->i_private;
1263
1264 ENTER();
1265
1266 __ffs_epfile_read_buffer_free(epfile);
1267 ffs_data_closed(epfile->ffs);
1268
1269 return 0;
1270}
1271
1272static long ffs_epfile_ioctl(struct file *file, unsigned code,
1273 unsigned long value)
1274{
1275 struct ffs_epfile *epfile = file->private_data;
1276 struct ffs_ep *ep;
1277 int ret;
1278
1279 ENTER();
1280
1281 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1282 return -ENODEV;
1283
1284 /* Wait for endpoint to be enabled */
1285 ep = epfile->ep;
1286 if (!ep) {
1287 if (file->f_flags & O_NONBLOCK)
1288 return -EAGAIN;
1289
1290 ret = wait_event_interruptible(
1291 epfile->ffs->wait, (ep = epfile->ep));
1292 if (ret)
1293 return -EINTR;
1294 }
1295
1296 spin_lock_irq(&epfile->ffs->eps_lock);
1297
1298 /* In the meantime, endpoint got disabled or changed. */
1299 if (epfile->ep != ep) {
1300 spin_unlock_irq(&epfile->ffs->eps_lock);
1301 return -ESHUTDOWN;
1302 }
1303
1304 switch (code) {
1305 case FUNCTIONFS_FIFO_STATUS:
1306 ret = usb_ep_fifo_status(epfile->ep->ep);
1307 break;
1308 case FUNCTIONFS_FIFO_FLUSH:
1309 usb_ep_fifo_flush(epfile->ep->ep);
1310 ret = 0;
1311 break;
1312 case FUNCTIONFS_CLEAR_HALT:
1313 ret = usb_ep_clear_halt(epfile->ep->ep);
1314 break;
1315 case FUNCTIONFS_ENDPOINT_REVMAP:
1316 ret = epfile->ep->num;
1317 break;
1318 case FUNCTIONFS_ENDPOINT_DESC:
1319 {
1320 int desc_idx;
1321 struct usb_endpoint_descriptor *desc;
1322
1323 switch (epfile->ffs->gadget->speed) {
1324 case USB_SPEED_SUPER:
1325 desc_idx = 2;
1326 break;
1327 case USB_SPEED_HIGH:
1328 desc_idx = 1;
1329 break;
1330 default:
1331 desc_idx = 0;
1332 }
1333 desc = epfile->ep->descs[desc_idx];
1334
1335 spin_unlock_irq(&epfile->ffs->eps_lock);
1336 ret = copy_to_user((void __user *)value, desc, desc->bLength);
1337 if (ret)
1338 ret = -EFAULT;
1339 return ret;
1340 }
1341 default:
1342 ret = -ENOTTY;
1343 }
1344 spin_unlock_irq(&epfile->ffs->eps_lock);
1345
1346 return ret;
1347}
1348
1349#ifdef CONFIG_COMPAT
1350static long ffs_epfile_compat_ioctl(struct file *file, unsigned code,
1351 unsigned long value)
1352{
1353 return ffs_epfile_ioctl(file, code, value);
1354}
1355#endif
1356
1357static const struct file_operations ffs_epfile_operations = {
1358 .llseek = no_llseek,
1359
1360 .open = ffs_epfile_open,
1361 .write_iter = ffs_epfile_write_iter,
1362 .read_iter = ffs_epfile_read_iter,
1363 .release = ffs_epfile_release,
1364 .unlocked_ioctl = ffs_epfile_ioctl,
1365#ifdef CONFIG_COMPAT
1366 .compat_ioctl = ffs_epfile_compat_ioctl,
1367#endif
1368};
1369
1370
1371/* File system and super block operations ***********************************/
1372
1373/*
1374 * Mounting the file system creates a controller file, used first for
1375 * function configuration then later for event monitoring.
1376 */
1377
1378static struct inode *__must_check
1379ffs_sb_make_inode(struct super_block *sb, void *data,
1380 const struct file_operations *fops,
1381 const struct inode_operations *iops,
1382 struct ffs_file_perms *perms)
1383{
1384 struct inode *inode;
1385
1386 ENTER();
1387
1388 inode = new_inode(sb);
1389
1390 if (likely(inode)) {
1391 struct timespec64 ts = current_time(inode);
1392
1393 inode->i_ino = get_next_ino();
1394 inode->i_mode = perms->mode;
1395 inode->i_uid = perms->uid;
1396 inode->i_gid = perms->gid;
1397 inode->i_atime = ts;
1398 inode->i_mtime = ts;
1399 inode->i_ctime = ts;
1400 inode->i_private = data;
1401 if (fops)
1402 inode->i_fop = fops;
1403 if (iops)
1404 inode->i_op = iops;
1405 }
1406
1407 return inode;
1408}
1409
1410/* Create "regular" file */
1411static struct dentry *ffs_sb_create_file(struct super_block *sb,
1412 const char *name, void *data,
1413 const struct file_operations *fops)
1414{
1415 struct ffs_data *ffs = sb->s_fs_info;
1416 struct dentry *dentry;
1417 struct inode *inode;
1418
1419 ENTER();
1420
1421 dentry = d_alloc_name(sb->s_root, name);
1422 if (unlikely(!dentry))
1423 return NULL;
1424
1425 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1426 if (unlikely(!inode)) {
1427 dput(dentry);
1428 return NULL;
1429 }
1430
1431 d_add(dentry, inode);
1432 return dentry;
1433}
1434
1435/* Super block */
1436static const struct super_operations ffs_sb_operations = {
1437 .statfs = simple_statfs,
1438 .drop_inode = generic_delete_inode,
1439};
1440
1441struct ffs_sb_fill_data {
1442 struct ffs_file_perms perms;
1443 umode_t root_mode;
1444 const char *dev_name;
1445 bool no_disconnect;
1446 struct ffs_data *ffs_data;
1447};
1448
1449static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1450{
1451 struct ffs_sb_fill_data *data = _data;
1452 struct inode *inode;
1453 struct ffs_data *ffs = data->ffs_data;
1454
1455 ENTER();
1456
1457 ffs->sb = sb;
1458 data->ffs_data = NULL;
1459 sb->s_fs_info = ffs;
1460 sb->s_blocksize = PAGE_SIZE;
1461 sb->s_blocksize_bits = PAGE_SHIFT;
1462 sb->s_magic = FUNCTIONFS_MAGIC;
1463 sb->s_op = &ffs_sb_operations;
1464 sb->s_time_gran = 1;
1465
1466 /* Root inode */
1467 data->perms.mode = data->root_mode;
1468 inode = ffs_sb_make_inode(sb, NULL,
1469 &simple_dir_operations,
1470 &simple_dir_inode_operations,
1471 &data->perms);
1472 sb->s_root = d_make_root(inode);
1473 if (unlikely(!sb->s_root))
1474 return -ENOMEM;
1475
1476 /* EP0 file */
1477 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1478 &ffs_ep0_operations)))
1479 return -ENOMEM;
1480
1481 return 0;
1482}
1483
1484static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1485{
1486 ENTER();
1487
1488 if (!opts || !*opts)
1489 return 0;
1490
1491 for (;;) {
1492 unsigned long value;
1493 char *eq, *comma;
1494
1495 /* Option limit */
1496 comma = strchr(opts, ',');
1497 if (comma)
1498 *comma = 0;
1499
1500 /* Value limit */
1501 eq = strchr(opts, '=');
1502 if (unlikely(!eq)) {
1503 pr_err("'=' missing in %s\n", opts);
1504 return -EINVAL;
1505 }
1506 *eq = 0;
1507
1508 /* Parse value */
1509 if (kstrtoul(eq + 1, 0, &value)) {
1510 pr_err("%s: invalid value: %s\n", opts, eq + 1);
1511 return -EINVAL;
1512 }
1513
1514 /* Interpret option */
1515 switch (eq - opts) {
1516 case 13:
1517 if (!memcmp(opts, "no_disconnect", 13))
1518 data->no_disconnect = !!value;
1519 else
1520 goto invalid;
1521 break;
1522 case 5:
1523 if (!memcmp(opts, "rmode", 5))
1524 data->root_mode = (value & 0555) | S_IFDIR;
1525 else if (!memcmp(opts, "fmode", 5))
1526 data->perms.mode = (value & 0666) | S_IFREG;
1527 else
1528 goto invalid;
1529 break;
1530
1531 case 4:
1532 if (!memcmp(opts, "mode", 4)) {
1533 data->root_mode = (value & 0555) | S_IFDIR;
1534 data->perms.mode = (value & 0666) | S_IFREG;
1535 } else {
1536 goto invalid;
1537 }
1538 break;
1539
1540 case 3:
1541 if (!memcmp(opts, "uid", 3)) {
1542 data->perms.uid = make_kuid(current_user_ns(), value);
1543 if (!uid_valid(data->perms.uid)) {
1544 pr_err("%s: unmapped value: %lu\n", opts, value);
1545 return -EINVAL;
1546 }
1547 } else if (!memcmp(opts, "gid", 3)) {
1548 data->perms.gid = make_kgid(current_user_ns(), value);
1549 if (!gid_valid(data->perms.gid)) {
1550 pr_err("%s: unmapped value: %lu\n", opts, value);
1551 return -EINVAL;
1552 }
1553 } else {
1554 goto invalid;
1555 }
1556 break;
1557
1558 default:
1559invalid:
1560 pr_err("%s: invalid option\n", opts);
1561 return -EINVAL;
1562 }
1563
1564 /* Next iteration */
1565 if (!comma)
1566 break;
1567 opts = comma + 1;
1568 }
1569
1570 return 0;
1571}
1572
1573/* "mount -t functionfs dev_name /dev/function" ends up here */
1574
1575static struct dentry *
1576ffs_fs_mount(struct file_system_type *t, int flags,
1577 const char *dev_name, void *opts)
1578{
1579 struct ffs_sb_fill_data data = {
1580 .perms = {
1581 .mode = S_IFREG | 0600,
1582 .uid = GLOBAL_ROOT_UID,
1583 .gid = GLOBAL_ROOT_GID,
1584 },
1585 .root_mode = S_IFDIR | 0500,
1586 .no_disconnect = false,
1587 };
1588 struct dentry *rv;
1589 int ret;
1590 void *ffs_dev;
1591 struct ffs_data *ffs;
1592
1593 ENTER();
1594
1595 ret = ffs_fs_parse_opts(&data, opts);
1596 if (unlikely(ret < 0))
1597 return ERR_PTR(ret);
1598
1599 ffs = ffs_data_new(dev_name);
1600 if (unlikely(!ffs))
1601 return ERR_PTR(-ENOMEM);
1602 ffs->file_perms = data.perms;
1603 ffs->no_disconnect = data.no_disconnect;
1604
1605 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1606 if (unlikely(!ffs->dev_name)) {
1607 ffs_data_put(ffs);
1608 return ERR_PTR(-ENOMEM);
1609 }
1610
1611 ffs_dev = ffs_acquire_dev(dev_name);
1612 if (IS_ERR(ffs_dev)) {
1613 ffs_data_put(ffs);
1614 return ERR_CAST(ffs_dev);
1615 }
1616 ffs->private_data = ffs_dev;
1617 data.ffs_data = ffs;
1618
1619 rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1620 if (IS_ERR(rv) && data.ffs_data) {
1621 ffs_release_dev(data.ffs_data);
1622 ffs_data_put(data.ffs_data);
1623 }
1624 return rv;
1625}
1626
1627static void
1628ffs_fs_kill_sb(struct super_block *sb)
1629{
1630 ENTER();
1631
1632 kill_litter_super(sb);
1633 if (sb->s_fs_info) {
1634 ffs_release_dev(sb->s_fs_info);
1635 ffs_data_closed(sb->s_fs_info);
1636 }
1637}
1638
1639static struct file_system_type ffs_fs_type = {
1640 .owner = THIS_MODULE,
1641 .name = "functionfs",
1642 .mount = ffs_fs_mount,
1643 .kill_sb = ffs_fs_kill_sb,
1644};
1645MODULE_ALIAS_FS("functionfs");
1646
1647
1648/* Driver's main init/cleanup functions *************************************/
1649
1650static int functionfs_init(void)
1651{
1652 int ret;
1653
1654 ENTER();
1655
1656 ret = register_filesystem(&ffs_fs_type);
1657 if (likely(!ret))
1658 pr_info("file system registered\n");
1659 else
1660 pr_err("failed registering file system (%d)\n", ret);
1661
1662 return ret;
1663}
1664
1665static void functionfs_cleanup(void)
1666{
1667 ENTER();
1668
1669 pr_info("unloading\n");
1670 unregister_filesystem(&ffs_fs_type);
1671}
1672
1673
1674/* ffs_data and ffs_function construction and destruction code **************/
1675
1676static void ffs_data_clear(struct ffs_data *ffs);
1677static void ffs_data_reset(struct ffs_data *ffs);
1678
1679static void ffs_data_get(struct ffs_data *ffs)
1680{
1681 ENTER();
1682
1683 refcount_inc(&ffs->ref);
1684}
1685
1686static void ffs_data_opened(struct ffs_data *ffs)
1687{
1688 ENTER();
1689
1690 refcount_inc(&ffs->ref);
1691 if (atomic_add_return(1, &ffs->opened) == 1 &&
1692 ffs->state == FFS_DEACTIVATED) {
1693 ffs->state = FFS_CLOSING;
1694 ffs_data_reset(ffs);
1695 }
1696}
1697
1698static void ffs_data_put(struct ffs_data *ffs)
1699{
1700 ENTER();
1701
1702 if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1703 pr_info("%s(): freeing\n", __func__);
1704 ffs_data_clear(ffs);
1705 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1706 waitqueue_active(&ffs->ep0req_completion.wait) ||
1707 waitqueue_active(&ffs->wait));
1708 destroy_workqueue(ffs->io_completion_wq);
1709 kfree(ffs->dev_name);
1710 kfree(ffs);
1711 }
1712}
1713
1714static void ffs_data_closed(struct ffs_data *ffs)
1715{
1716 ENTER();
1717
1718 if (atomic_dec_and_test(&ffs->opened)) {
1719 if (ffs->no_disconnect) {
1720 ffs->state = FFS_DEACTIVATED;
1721 if (ffs->epfiles) {
1722 ffs_epfiles_destroy(ffs->epfiles,
1723 ffs->eps_count);
1724 ffs->epfiles = NULL;
1725 }
1726 if (ffs->setup_state == FFS_SETUP_PENDING)
1727 __ffs_ep0_stall(ffs);
1728 } else {
1729 ffs->state = FFS_CLOSING;
1730 ffs_data_reset(ffs);
1731 }
1732 }
1733 if (atomic_read(&ffs->opened) < 0) {
1734 ffs->state = FFS_CLOSING;
1735 ffs_data_reset(ffs);
1736 }
1737
1738 ffs_data_put(ffs);
1739}
1740
1741static struct ffs_data *ffs_data_new(const char *dev_name)
1742{
1743 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1744 if (unlikely(!ffs))
1745 return NULL;
1746
1747 ENTER();
1748
1749 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1750 if (!ffs->io_completion_wq) {
1751 kfree(ffs);
1752 return NULL;
1753 }
1754
1755 refcount_set(&ffs->ref, 1);
1756 atomic_set(&ffs->opened, 0);
1757 ffs->state = FFS_READ_DESCRIPTORS;
1758 mutex_init(&ffs->mutex);
1759 spin_lock_init(&ffs->eps_lock);
1760 init_waitqueue_head(&ffs->ev.waitq);
1761 init_waitqueue_head(&ffs->wait);
1762 init_completion(&ffs->ep0req_completion);
1763
1764 /* XXX REVISIT need to update it in some places, or do we? */
1765 ffs->ev.can_stall = 1;
1766
1767 return ffs;
1768}
1769
1770static void ffs_data_clear(struct ffs_data *ffs)
1771{
1772 ENTER();
1773
1774 ffs_closed(ffs);
1775
1776 BUG_ON(ffs->gadget);
1777
1778 if (ffs->epfiles)
1779 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1780
1781 if (ffs->ffs_eventfd)
1782 eventfd_ctx_put(ffs->ffs_eventfd);
1783
1784 kfree(ffs->raw_descs_data);
1785 kfree(ffs->raw_strings);
1786 kfree(ffs->stringtabs);
1787}
1788
1789static void ffs_data_reset(struct ffs_data *ffs)
1790{
1791 ENTER();
1792
1793 ffs_data_clear(ffs);
1794
1795 ffs->epfiles = NULL;
1796 ffs->raw_descs_data = NULL;
1797 ffs->raw_descs = NULL;
1798 ffs->raw_strings = NULL;
1799 ffs->stringtabs = NULL;
1800
1801 ffs->raw_descs_length = 0;
1802 ffs->fs_descs_count = 0;
1803 ffs->hs_descs_count = 0;
1804 ffs->ss_descs_count = 0;
1805
1806 ffs->strings_count = 0;
1807 ffs->interfaces_count = 0;
1808 ffs->eps_count = 0;
1809
1810 ffs->ev.count = 0;
1811
1812 ffs->state = FFS_READ_DESCRIPTORS;
1813 ffs->setup_state = FFS_NO_SETUP;
1814 ffs->flags = 0;
1815}
1816
1817
1818static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1819{
1820 struct usb_gadget_strings **lang;
1821 int first_id;
1822
1823 ENTER();
1824
1825 if (WARN_ON(ffs->state != FFS_ACTIVE
1826 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1827 return -EBADFD;
1828
1829 first_id = usb_string_ids_n(cdev, ffs->strings_count);
1830 if (unlikely(first_id < 0))
1831 return first_id;
1832
1833 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1834 if (unlikely(!ffs->ep0req))
1835 return -ENOMEM;
1836 ffs->ep0req->complete = ffs_ep0_complete;
1837 ffs->ep0req->context = ffs;
1838
1839 lang = ffs->stringtabs;
1840 if (lang) {
1841 for (; *lang; ++lang) {
1842 struct usb_string *str = (*lang)->strings;
1843 int id = first_id;
1844 for (; str->s; ++id, ++str)
1845 str->id = id;
1846 }
1847 }
1848
1849 ffs->gadget = cdev->gadget;
1850 ffs_data_get(ffs);
1851 return 0;
1852}
1853
1854static void functionfs_unbind(struct ffs_data *ffs)
1855{
1856 ENTER();
1857
1858 if (!WARN_ON(!ffs->gadget)) {
1859 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1860 ffs->ep0req = NULL;
1861 ffs->gadget = NULL;
1862 clear_bit(FFS_FL_BOUND, &ffs->flags);
1863 ffs_data_put(ffs);
1864 }
1865}
1866
1867static int ffs_epfiles_create(struct ffs_data *ffs)
1868{
1869 struct ffs_epfile *epfile, *epfiles;
1870 unsigned i, count;
1871
1872 ENTER();
1873
1874 count = ffs->eps_count;
1875 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1876 if (!epfiles)
1877 return -ENOMEM;
1878
1879 epfile = epfiles;
1880 for (i = 1; i <= count; ++i, ++epfile) {
1881 epfile->ffs = ffs;
1882 mutex_init(&epfile->mutex);
1883 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1884 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1885 else
1886 sprintf(epfile->name, "ep%u", i);
1887 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1888 epfile,
1889 &ffs_epfile_operations);
1890 if (unlikely(!epfile->dentry)) {
1891 ffs_epfiles_destroy(epfiles, i - 1);
1892 return -ENOMEM;
1893 }
1894 }
1895
1896 ffs->epfiles = epfiles;
1897 return 0;
1898}
1899
1900static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1901{
1902 struct ffs_epfile *epfile = epfiles;
1903
1904 ENTER();
1905
1906 for (; count; --count, ++epfile) {
1907 BUG_ON(mutex_is_locked(&epfile->mutex));
1908 if (epfile->dentry) {
1909 d_delete(epfile->dentry);
1910 dput(epfile->dentry);
1911 epfile->dentry = NULL;
1912 }
1913 }
1914
1915 kfree(epfiles);
1916}
1917
1918static void ffs_func_eps_disable(struct ffs_function *func)
1919{
1920 struct ffs_ep *ep = func->eps;
1921 struct ffs_epfile *epfile = func->ffs->epfiles;
1922 unsigned count = func->ffs->eps_count;
1923 unsigned long flags;
1924
1925 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1926 while (count--) {
1927 /* pending requests get nuked */
1928 if (likely(ep->ep))
1929 usb_ep_disable(ep->ep);
1930 ++ep;
1931
1932 if (epfile) {
1933 epfile->ep = NULL;
1934 __ffs_epfile_read_buffer_free(epfile);
1935 ++epfile;
1936 }
1937 }
1938 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1939}
1940
1941static int ffs_func_eps_enable(struct ffs_function *func)
1942{
1943 struct ffs_data *ffs = func->ffs;
1944 struct ffs_ep *ep = func->eps;
1945 struct ffs_epfile *epfile = ffs->epfiles;
1946 unsigned count = ffs->eps_count;
1947 unsigned long flags;
1948 int ret = 0;
1949
1950 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1951 while(count--) {
1952 ep->ep->driver_data = ep;
1953
1954 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1955 if (ret) {
1956 pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1957 __func__, ep->ep->name, ret);
1958 break;
1959 }
1960
1961 ret = usb_ep_enable(ep->ep);
1962 if (likely(!ret)) {
1963 epfile->ep = ep;
1964 epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1965 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1966 } else {
1967 break;
1968 }
1969
1970 ++ep;
1971 ++epfile;
1972 }
1973
1974 wake_up_interruptible(&ffs->wait);
1975 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1976
1977 return ret;
1978}
1979
1980
1981/* Parsing and building descriptors and strings *****************************/
1982
1983/*
1984 * This validates if data pointed by data is a valid USB descriptor as
1985 * well as record how many interfaces, endpoints and strings are
1986 * required by given configuration. Returns address after the
1987 * descriptor or NULL if data is invalid.
1988 */
1989
1990enum ffs_entity_type {
1991 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1992};
1993
1994enum ffs_os_desc_type {
1995 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1996};
1997
1998typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1999 u8 *valuep,
2000 struct usb_descriptor_header *desc,
2001 void *priv);
2002
2003typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2004 struct usb_os_desc_header *h, void *data,
2005 unsigned len, void *priv);
2006
2007static int __must_check ffs_do_single_desc(char *data, unsigned len,
2008 ffs_entity_callback entity,
2009 void *priv, int *current_class)
2010{
2011 struct usb_descriptor_header *_ds = (void *)data;
2012 u8 length;
2013 int ret;
2014
2015 ENTER();
2016
2017 /* At least two bytes are required: length and type */
2018 if (len < 2) {
2019 pr_vdebug("descriptor too short\n");
2020 return -EINVAL;
2021 }
2022
2023 /* If we have at least as many bytes as the descriptor takes? */
2024 length = _ds->bLength;
2025 if (len < length) {
2026 pr_vdebug("descriptor longer then available data\n");
2027 return -EINVAL;
2028 }
2029
2030#define __entity_check_INTERFACE(val) 1
2031#define __entity_check_STRING(val) (val)
2032#define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
2033#define __entity(type, val) do { \
2034 pr_vdebug("entity " #type "(%02x)\n", (val)); \
2035 if (unlikely(!__entity_check_ ##type(val))) { \
2036 pr_vdebug("invalid entity's value\n"); \
2037 return -EINVAL; \
2038 } \
2039 ret = entity(FFS_ ##type, &val, _ds, priv); \
2040 if (unlikely(ret < 0)) { \
2041 pr_debug("entity " #type "(%02x); ret = %d\n", \
2042 (val), ret); \
2043 return ret; \
2044 } \
2045 } while (0)
2046
2047 /* Parse descriptor depending on type. */
2048 switch (_ds->bDescriptorType) {
2049 case USB_DT_DEVICE:
2050 case USB_DT_CONFIG:
2051 case USB_DT_STRING:
2052 case USB_DT_DEVICE_QUALIFIER:
2053 /* function can't have any of those */
2054 pr_vdebug("descriptor reserved for gadget: %d\n",
2055 _ds->bDescriptorType);
2056 return -EINVAL;
2057
2058 case USB_DT_INTERFACE: {
2059 struct usb_interface_descriptor *ds = (void *)_ds;
2060 pr_vdebug("interface descriptor\n");
2061 if (length != sizeof *ds)
2062 goto inv_length;
2063
2064 __entity(INTERFACE, ds->bInterfaceNumber);
2065 if (ds->iInterface)
2066 __entity(STRING, ds->iInterface);
2067 *current_class = ds->bInterfaceClass;
2068 }
2069 break;
2070
2071 case USB_DT_ENDPOINT: {
2072 struct usb_endpoint_descriptor *ds = (void *)_ds;
2073 pr_vdebug("endpoint descriptor\n");
2074 if (length != USB_DT_ENDPOINT_SIZE &&
2075 length != USB_DT_ENDPOINT_AUDIO_SIZE)
2076 goto inv_length;
2077 __entity(ENDPOINT, ds->bEndpointAddress);
2078 }
2079 break;
2080
2081 case USB_TYPE_CLASS | 0x01:
2082 if (*current_class == USB_INTERFACE_CLASS_HID) {
2083 pr_vdebug("hid descriptor\n");
2084 if (length != sizeof(struct hid_descriptor))
2085 goto inv_length;
2086 break;
2087 } else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2088 pr_vdebug("ccid descriptor\n");
2089 if (length != sizeof(struct ccid_descriptor))
2090 goto inv_length;
2091 break;
2092 } else {
2093 pr_vdebug("unknown descriptor: %d for class %d\n",
2094 _ds->bDescriptorType, *current_class);
2095 return -EINVAL;
2096 }
2097
2098 case USB_DT_OTG:
2099 if (length != sizeof(struct usb_otg_descriptor))
2100 goto inv_length;
2101 break;
2102
2103 case USB_DT_INTERFACE_ASSOCIATION: {
2104 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2105 pr_vdebug("interface association descriptor\n");
2106 if (length != sizeof *ds)
2107 goto inv_length;
2108 if (ds->iFunction)
2109 __entity(STRING, ds->iFunction);
2110 }
2111 break;
2112
2113 case USB_DT_SS_ENDPOINT_COMP:
2114 pr_vdebug("EP SS companion descriptor\n");
2115 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2116 goto inv_length;
2117 break;
2118
2119 case USB_DT_OTHER_SPEED_CONFIG:
2120 case USB_DT_INTERFACE_POWER:
2121 case USB_DT_DEBUG:
2122 case USB_DT_SECURITY:
2123 case USB_DT_CS_RADIO_CONTROL:
2124 /* TODO */
2125 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2126 return -EINVAL;
2127
2128 default:
2129 /* We should never be here */
2130 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2131 return -EINVAL;
2132
2133inv_length:
2134 pr_vdebug("invalid length: %d (descriptor %d)\n",
2135 _ds->bLength, _ds->bDescriptorType);
2136 return -EINVAL;
2137 }
2138
2139#undef __entity
2140#undef __entity_check_DESCRIPTOR
2141#undef __entity_check_INTERFACE
2142#undef __entity_check_STRING
2143#undef __entity_check_ENDPOINT
2144
2145 return length;
2146}
2147
2148static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2149 ffs_entity_callback entity, void *priv)
2150{
2151 const unsigned _len = len;
2152 unsigned long num = 0;
2153 int current_class = -1;
2154
2155 ENTER();
2156
2157 for (;;) {
2158 int ret;
2159
2160 if (num == count)
2161 data = NULL;
2162
2163 /* Record "descriptor" entity */
2164 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2165 if (unlikely(ret < 0)) {
2166 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2167 num, ret);
2168 return ret;
2169 }
2170
2171 if (!data)
2172 return _len - len;
2173
2174 ret = ffs_do_single_desc(data, len, entity, priv,
2175 ¤t_class);
2176 if (unlikely(ret < 0)) {
2177 pr_debug("%s returns %d\n", __func__, ret);
2178 return ret;
2179 }
2180
2181 len -= ret;
2182 data += ret;
2183 ++num;
2184 }
2185}
2186
2187static int __ffs_data_do_entity(enum ffs_entity_type type,
2188 u8 *valuep, struct usb_descriptor_header *desc,
2189 void *priv)
2190{
2191 struct ffs_desc_helper *helper = priv;
2192 struct usb_endpoint_descriptor *d;
2193
2194 ENTER();
2195
2196 switch (type) {
2197 case FFS_DESCRIPTOR:
2198 break;
2199
2200 case FFS_INTERFACE:
2201 /*
2202 * Interfaces are indexed from zero so if we
2203 * encountered interface "n" then there are at least
2204 * "n+1" interfaces.
2205 */
2206 if (*valuep >= helper->interfaces_count)
2207 helper->interfaces_count = *valuep + 1;
2208 break;
2209
2210 case FFS_STRING:
2211 /*
2212 * Strings are indexed from 1 (0 is reserved
2213 * for languages list)
2214 */
2215 if (*valuep > helper->ffs->strings_count)
2216 helper->ffs->strings_count = *valuep;
2217 break;
2218
2219 case FFS_ENDPOINT:
2220 d = (void *)desc;
2221 helper->eps_count++;
2222 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2223 return -EINVAL;
2224 /* Check if descriptors for any speed were already parsed */
2225 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2226 helper->ffs->eps_addrmap[helper->eps_count] =
2227 d->bEndpointAddress;
2228 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2229 d->bEndpointAddress)
2230 return -EINVAL;
2231 break;
2232 }
2233
2234 return 0;
2235}
2236
2237static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2238 struct usb_os_desc_header *desc)
2239{
2240 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2241 u16 w_index = le16_to_cpu(desc->wIndex);
2242
2243 if (bcd_version != 1) {
2244 pr_vdebug("unsupported os descriptors version: %d",
2245 bcd_version);
2246 return -EINVAL;
2247 }
2248 switch (w_index) {
2249 case 0x4:
2250 *next_type = FFS_OS_DESC_EXT_COMPAT;
2251 break;
2252 case 0x5:
2253 *next_type = FFS_OS_DESC_EXT_PROP;
2254 break;
2255 default:
2256 pr_vdebug("unsupported os descriptor type: %d", w_index);
2257 return -EINVAL;
2258 }
2259
2260 return sizeof(*desc);
2261}
2262
2263/*
2264 * Process all extended compatibility/extended property descriptors
2265 * of a feature descriptor
2266 */
2267static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2268 enum ffs_os_desc_type type,
2269 u16 feature_count,
2270 ffs_os_desc_callback entity,
2271 void *priv,
2272 struct usb_os_desc_header *h)
2273{
2274 int ret;
2275 const unsigned _len = len;
2276
2277 ENTER();
2278
2279 /* loop over all ext compat/ext prop descriptors */
2280 while (feature_count--) {
2281 ret = entity(type, h, data, len, priv);
2282 if (unlikely(ret < 0)) {
2283 pr_debug("bad OS descriptor, type: %d\n", type);
2284 return ret;
2285 }
2286 data += ret;
2287 len -= ret;
2288 }
2289 return _len - len;
2290}
2291
2292/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2293static int __must_check ffs_do_os_descs(unsigned count,
2294 char *data, unsigned len,
2295 ffs_os_desc_callback entity, void *priv)
2296{
2297 const unsigned _len = len;
2298 unsigned long num = 0;
2299
2300 ENTER();
2301
2302 for (num = 0; num < count; ++num) {
2303 int ret;
2304 enum ffs_os_desc_type type;
2305 u16 feature_count;
2306 struct usb_os_desc_header *desc = (void *)data;
2307
2308 if (len < sizeof(*desc))
2309 return -EINVAL;
2310
2311 /*
2312 * Record "descriptor" entity.
2313 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2314 * Move the data pointer to the beginning of extended
2315 * compatibilities proper or extended properties proper
2316 * portions of the data
2317 */
2318 if (le32_to_cpu(desc->dwLength) > len)
2319 return -EINVAL;
2320
2321 ret = __ffs_do_os_desc_header(&type, desc);
2322 if (unlikely(ret < 0)) {
2323 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2324 num, ret);
2325 return ret;
2326 }
2327 /*
2328 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2329 */
2330 feature_count = le16_to_cpu(desc->wCount);
2331 if (type == FFS_OS_DESC_EXT_COMPAT &&
2332 (feature_count > 255 || desc->Reserved))
2333 return -EINVAL;
2334 len -= ret;
2335 data += ret;
2336
2337 /*
2338 * Process all function/property descriptors
2339 * of this Feature Descriptor
2340 */
2341 ret = ffs_do_single_os_desc(data, len, type,
2342 feature_count, entity, priv, desc);
2343 if (unlikely(ret < 0)) {
2344 pr_debug("%s returns %d\n", __func__, ret);
2345 return ret;
2346 }
2347
2348 len -= ret;
2349 data += ret;
2350 }
2351 return _len - len;
2352}
2353
2354/**
2355 * Validate contents of the buffer from userspace related to OS descriptors.
2356 */
2357static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2358 struct usb_os_desc_header *h, void *data,
2359 unsigned len, void *priv)
2360{
2361 struct ffs_data *ffs = priv;
2362 u8 length;
2363
2364 ENTER();
2365
2366 switch (type) {
2367 case FFS_OS_DESC_EXT_COMPAT: {
2368 struct usb_ext_compat_desc *d = data;
2369 int i;
2370
2371 if (len < sizeof(*d) ||
2372 d->bFirstInterfaceNumber >= ffs->interfaces_count)
2373 return -EINVAL;
2374 if (d->Reserved1 != 1) {
2375 /*
2376 * According to the spec, Reserved1 must be set to 1
2377 * but older kernels incorrectly rejected non-zero
2378 * values. We fix it here to avoid returning EINVAL
2379 * in response to values we used to accept.
2380 */
2381 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2382 d->Reserved1 = 1;
2383 }
2384 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2385 if (d->Reserved2[i])
2386 return -EINVAL;
2387
2388 length = sizeof(struct usb_ext_compat_desc);
2389 }
2390 break;
2391 case FFS_OS_DESC_EXT_PROP: {
2392 struct usb_ext_prop_desc *d = data;
2393 u32 type, pdl;
2394 u16 pnl;
2395
2396 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2397 return -EINVAL;
2398 length = le32_to_cpu(d->dwSize);
2399 if (len < length)
2400 return -EINVAL;
2401 type = le32_to_cpu(d->dwPropertyDataType);
2402 if (type < USB_EXT_PROP_UNICODE ||
2403 type > USB_EXT_PROP_UNICODE_MULTI) {
2404 pr_vdebug("unsupported os descriptor property type: %d",
2405 type);
2406 return -EINVAL;
2407 }
2408 pnl = le16_to_cpu(d->wPropertyNameLength);
2409 if (length < 14 + pnl) {
2410 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2411 length, pnl, type);
2412 return -EINVAL;
2413 }
2414 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2415 if (length != 14 + pnl + pdl) {
2416 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2417 length, pnl, pdl, type);
2418 return -EINVAL;
2419 }
2420 ++ffs->ms_os_descs_ext_prop_count;
2421 /* property name reported to the host as "WCHAR"s */
2422 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2423 ffs->ms_os_descs_ext_prop_data_len += pdl;
2424 }
2425 break;
2426 default:
2427 pr_vdebug("unknown descriptor: %d\n", type);
2428 return -EINVAL;
2429 }
2430 return length;
2431}
2432
2433static int __ffs_data_got_descs(struct ffs_data *ffs,
2434 char *const _data, size_t len)
2435{
2436 char *data = _data, *raw_descs;
2437 unsigned os_descs_count = 0, counts[3], flags;
2438 int ret = -EINVAL, i;
2439 struct ffs_desc_helper helper;
2440
2441 ENTER();
2442
2443 if (get_unaligned_le32(data + 4) != len)
2444 goto error;
2445
2446 switch (get_unaligned_le32(data)) {
2447 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2448 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2449 data += 8;
2450 len -= 8;
2451 break;
2452 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2453 flags = get_unaligned_le32(data + 8);
2454 ffs->user_flags = flags;
2455 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2456 FUNCTIONFS_HAS_HS_DESC |
2457 FUNCTIONFS_HAS_SS_DESC |
2458 FUNCTIONFS_HAS_MS_OS_DESC |
2459 FUNCTIONFS_VIRTUAL_ADDR |
2460 FUNCTIONFS_EVENTFD |
2461 FUNCTIONFS_ALL_CTRL_RECIP |
2462 FUNCTIONFS_CONFIG0_SETUP)) {
2463 ret = -ENOSYS;
2464 goto error;
2465 }
2466 data += 12;
2467 len -= 12;
2468 break;
2469 default:
2470 goto error;
2471 }
2472
2473 if (flags & FUNCTIONFS_EVENTFD) {
2474 if (len < 4)
2475 goto error;
2476 ffs->ffs_eventfd =
2477 eventfd_ctx_fdget((int)get_unaligned_le32(data));
2478 if (IS_ERR(ffs->ffs_eventfd)) {
2479 ret = PTR_ERR(ffs->ffs_eventfd);
2480 ffs->ffs_eventfd = NULL;
2481 goto error;
2482 }
2483 data += 4;
2484 len -= 4;
2485 }
2486
2487 /* Read fs_count, hs_count and ss_count (if present) */
2488 for (i = 0; i < 3; ++i) {
2489 if (!(flags & (1 << i))) {
2490 counts[i] = 0;
2491 } else if (len < 4) {
2492 goto error;
2493 } else {
2494 counts[i] = get_unaligned_le32(data);
2495 data += 4;
2496 len -= 4;
2497 }
2498 }
2499 if (flags & (1 << i)) {
2500 if (len < 4) {
2501 goto error;
2502 }
2503 os_descs_count = get_unaligned_le32(data);
2504 data += 4;
2505 len -= 4;
2506 };
2507
2508 /* Read descriptors */
2509 raw_descs = data;
2510 helper.ffs = ffs;
2511 for (i = 0; i < 3; ++i) {
2512 if (!counts[i])
2513 continue;
2514 helper.interfaces_count = 0;
2515 helper.eps_count = 0;
2516 ret = ffs_do_descs(counts[i], data, len,
2517 __ffs_data_do_entity, &helper);
2518 if (ret < 0)
2519 goto error;
2520 if (!ffs->eps_count && !ffs->interfaces_count) {
2521 ffs->eps_count = helper.eps_count;
2522 ffs->interfaces_count = helper.interfaces_count;
2523 } else {
2524 if (ffs->eps_count != helper.eps_count) {
2525 ret = -EINVAL;
2526 goto error;
2527 }
2528 if (ffs->interfaces_count != helper.interfaces_count) {
2529 ret = -EINVAL;
2530 goto error;
2531 }
2532 }
2533 data += ret;
2534 len -= ret;
2535 }
2536 if (os_descs_count) {
2537 ret = ffs_do_os_descs(os_descs_count, data, len,
2538 __ffs_data_do_os_desc, ffs);
2539 if (ret < 0)
2540 goto error;
2541 data += ret;
2542 len -= ret;
2543 }
2544
2545 if (raw_descs == data || len) {
2546 ret = -EINVAL;
2547 goto error;
2548 }
2549
2550 ffs->raw_descs_data = _data;
2551 ffs->raw_descs = raw_descs;
2552 ffs->raw_descs_length = data - raw_descs;
2553 ffs->fs_descs_count = counts[0];
2554 ffs->hs_descs_count = counts[1];
2555 ffs->ss_descs_count = counts[2];
2556 ffs->ms_os_descs_count = os_descs_count;
2557
2558 return 0;
2559
2560error:
2561 kfree(_data);
2562 return ret;
2563}
2564
2565static int __ffs_data_got_strings(struct ffs_data *ffs,
2566 char *const _data, size_t len)
2567{
2568 u32 str_count, needed_count, lang_count;
2569 struct usb_gadget_strings **stringtabs, *t;
2570 const char *data = _data;
2571 struct usb_string *s;
2572
2573 ENTER();
2574
2575 if (unlikely(len < 16 ||
2576 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2577 get_unaligned_le32(data + 4) != len))
2578 goto error;
2579 str_count = get_unaligned_le32(data + 8);
2580 lang_count = get_unaligned_le32(data + 12);
2581
2582 /* if one is zero the other must be zero */
2583 if (unlikely(!str_count != !lang_count))
2584 goto error;
2585
2586 /* Do we have at least as many strings as descriptors need? */
2587 needed_count = ffs->strings_count;
2588 if (unlikely(str_count < needed_count))
2589 goto error;
2590
2591 /*
2592 * If we don't need any strings just return and free all
2593 * memory.
2594 */
2595 if (!needed_count) {
2596 kfree(_data);
2597 return 0;
2598 }
2599
2600 /* Allocate everything in one chunk so there's less maintenance. */
2601 {
2602 unsigned i = 0;
2603 vla_group(d);
2604 vla_item(d, struct usb_gadget_strings *, stringtabs,
2605 lang_count + 1);
2606 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2607 vla_item(d, struct usb_string, strings,
2608 lang_count*(needed_count+1));
2609
2610 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2611
2612 if (unlikely(!vlabuf)) {
2613 kfree(_data);
2614 return -ENOMEM;
2615 }
2616
2617 /* Initialize the VLA pointers */
2618 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2619 t = vla_ptr(vlabuf, d, stringtab);
2620 i = lang_count;
2621 do {
2622 *stringtabs++ = t++;
2623 } while (--i);
2624 *stringtabs = NULL;
2625
2626 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2627 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2628 t = vla_ptr(vlabuf, d, stringtab);
2629 s = vla_ptr(vlabuf, d, strings);
2630 }
2631
2632 /* For each language */
2633 data += 16;
2634 len -= 16;
2635
2636 do { /* lang_count > 0 so we can use do-while */
2637 unsigned needed = needed_count;
2638
2639 if (unlikely(len < 3))
2640 goto error_free;
2641 t->language = get_unaligned_le16(data);
2642 t->strings = s;
2643 ++t;
2644
2645 data += 2;
2646 len -= 2;
2647
2648 /* For each string */
2649 do { /* str_count > 0 so we can use do-while */
2650 size_t length = strnlen(data, len);
2651
2652 if (unlikely(length == len))
2653 goto error_free;
2654
2655 /*
2656 * User may provide more strings then we need,
2657 * if that's the case we simply ignore the
2658 * rest
2659 */
2660 if (likely(needed)) {
2661 /*
2662 * s->id will be set while adding
2663 * function to configuration so for
2664 * now just leave garbage here.
2665 */
2666 s->s = data;
2667 --needed;
2668 ++s;
2669 }
2670
2671 data += length + 1;
2672 len -= length + 1;
2673 } while (--str_count);
2674
2675 s->id = 0; /* terminator */
2676 s->s = NULL;
2677 ++s;
2678
2679 } while (--lang_count);
2680
2681 /* Some garbage left? */
2682 if (unlikely(len))
2683 goto error_free;
2684
2685 /* Done! */
2686 ffs->stringtabs = stringtabs;
2687 ffs->raw_strings = _data;
2688
2689 return 0;
2690
2691error_free:
2692 kfree(stringtabs);
2693error:
2694 kfree(_data);
2695 return -EINVAL;
2696}
2697
2698
2699/* Events handling and management *******************************************/
2700
2701static void __ffs_event_add(struct ffs_data *ffs,
2702 enum usb_functionfs_event_type type)
2703{
2704 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2705 int neg = 0;
2706
2707 /*
2708 * Abort any unhandled setup
2709 *
2710 * We do not need to worry about some cmpxchg() changing value
2711 * of ffs->setup_state without holding the lock because when
2712 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2713 * the source does nothing.
2714 */
2715 if (ffs->setup_state == FFS_SETUP_PENDING)
2716 ffs->setup_state = FFS_SETUP_CANCELLED;
2717
2718 /*
2719 * Logic of this function guarantees that there are at most four pending
2720 * evens on ffs->ev.types queue. This is important because the queue
2721 * has space for four elements only and __ffs_ep0_read_events function
2722 * depends on that limit as well. If more event types are added, those
2723 * limits have to be revisited or guaranteed to still hold.
2724 */
2725 switch (type) {
2726 case FUNCTIONFS_RESUME:
2727 rem_type2 = FUNCTIONFS_SUSPEND;
2728 /* FALL THROUGH */
2729 case FUNCTIONFS_SUSPEND:
2730 case FUNCTIONFS_SETUP:
2731 rem_type1 = type;
2732 /* Discard all similar events */
2733 break;
2734
2735 case FUNCTIONFS_BIND:
2736 case FUNCTIONFS_UNBIND:
2737 case FUNCTIONFS_DISABLE:
2738 case FUNCTIONFS_ENABLE:
2739 /* Discard everything other then power management. */
2740 rem_type1 = FUNCTIONFS_SUSPEND;
2741 rem_type2 = FUNCTIONFS_RESUME;
2742 neg = 1;
2743 break;
2744
2745 default:
2746 WARN(1, "%d: unknown event, this should not happen\n", type);
2747 return;
2748 }
2749
2750 {
2751 u8 *ev = ffs->ev.types, *out = ev;
2752 unsigned n = ffs->ev.count;
2753 for (; n; --n, ++ev)
2754 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2755 *out++ = *ev;
2756 else
2757 pr_vdebug("purging event %d\n", *ev);
2758 ffs->ev.count = out - ffs->ev.types;
2759 }
2760
2761 pr_vdebug("adding event %d\n", type);
2762 ffs->ev.types[ffs->ev.count++] = type;
2763 wake_up_locked(&ffs->ev.waitq);
2764 if (ffs->ffs_eventfd)
2765 eventfd_signal(ffs->ffs_eventfd, 1);
2766}
2767
2768static void ffs_event_add(struct ffs_data *ffs,
2769 enum usb_functionfs_event_type type)
2770{
2771 unsigned long flags;
2772 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2773 __ffs_event_add(ffs, type);
2774 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2775}
2776
2777/* Bind/unbind USB function hooks *******************************************/
2778
2779static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2780{
2781 int i;
2782
2783 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2784 if (ffs->eps_addrmap[i] == endpoint_address)
2785 return i;
2786 return -ENOENT;
2787}
2788
2789static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2790 struct usb_descriptor_header *desc,
2791 void *priv)
2792{
2793 struct usb_endpoint_descriptor *ds = (void *)desc;
2794 struct ffs_function *func = priv;
2795 struct ffs_ep *ffs_ep;
2796 unsigned ep_desc_id;
2797 int idx;
2798 static const char *speed_names[] = { "full", "high", "super" };
2799
2800 if (type != FFS_DESCRIPTOR)
2801 return 0;
2802
2803 /*
2804 * If ss_descriptors is not NULL, we are reading super speed
2805 * descriptors; if hs_descriptors is not NULL, we are reading high
2806 * speed descriptors; otherwise, we are reading full speed
2807 * descriptors.
2808 */
2809 if (func->function.ss_descriptors) {
2810 ep_desc_id = 2;
2811 func->function.ss_descriptors[(long)valuep] = desc;
2812 } else if (func->function.hs_descriptors) {
2813 ep_desc_id = 1;
2814 func->function.hs_descriptors[(long)valuep] = desc;
2815 } else {
2816 ep_desc_id = 0;
2817 func->function.fs_descriptors[(long)valuep] = desc;
2818 }
2819
2820 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2821 return 0;
2822
2823 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2824 if (idx < 0)
2825 return idx;
2826
2827 ffs_ep = func->eps + idx;
2828
2829 if (unlikely(ffs_ep->descs[ep_desc_id])) {
2830 pr_err("two %sspeed descriptors for EP %d\n",
2831 speed_names[ep_desc_id],
2832 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2833 return -EINVAL;
2834 }
2835 ffs_ep->descs[ep_desc_id] = ds;
2836
2837 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
2838 if (ffs_ep->ep) {
2839 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2840 if (!ds->wMaxPacketSize)
2841 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2842 } else {
2843 struct usb_request *req;
2844 struct usb_ep *ep;
2845 u8 bEndpointAddress;
2846
2847 /*
2848 * We back up bEndpointAddress because autoconfig overwrites
2849 * it with physical endpoint address.
2850 */
2851 bEndpointAddress = ds->bEndpointAddress;
2852 pr_vdebug("autoconfig\n");
2853 ep = usb_ep_autoconfig(func->gadget, ds);
2854 if (unlikely(!ep))
2855 return -ENOTSUPP;
2856 ep->driver_data = func->eps + idx;
2857
2858 req = usb_ep_alloc_request(ep, GFP_KERNEL);
2859 if (unlikely(!req))
2860 return -ENOMEM;
2861
2862 ffs_ep->ep = ep;
2863 ffs_ep->req = req;
2864 func->eps_revmap[ds->bEndpointAddress &
2865 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2866 /*
2867 * If we use virtual address mapping, we restore
2868 * original bEndpointAddress value.
2869 */
2870 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2871 ds->bEndpointAddress = bEndpointAddress;
2872 }
2873 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2874
2875 return 0;
2876}
2877
2878static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2879 struct usb_descriptor_header *desc,
2880 void *priv)
2881{
2882 struct ffs_function *func = priv;
2883 unsigned idx;
2884 u8 newValue;
2885
2886 switch (type) {
2887 default:
2888 case FFS_DESCRIPTOR:
2889 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2890 return 0;
2891
2892 case FFS_INTERFACE:
2893 idx = *valuep;
2894 if (func->interfaces_nums[idx] < 0) {
2895 int id = usb_interface_id(func->conf, &func->function);
2896 if (unlikely(id < 0))
2897 return id;
2898 func->interfaces_nums[idx] = id;
2899 }
2900 newValue = func->interfaces_nums[idx];
2901 break;
2902
2903 case FFS_STRING:
2904 /* String' IDs are allocated when fsf_data is bound to cdev */
2905 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2906 break;
2907
2908 case FFS_ENDPOINT:
2909 /*
2910 * USB_DT_ENDPOINT are handled in
2911 * __ffs_func_bind_do_descs().
2912 */
2913 if (desc->bDescriptorType == USB_DT_ENDPOINT)
2914 return 0;
2915
2916 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2917 if (unlikely(!func->eps[idx].ep))
2918 return -EINVAL;
2919
2920 {
2921 struct usb_endpoint_descriptor **descs;
2922 descs = func->eps[idx].descs;
2923 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2924 }
2925 break;
2926 }
2927
2928 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2929 *valuep = newValue;
2930 return 0;
2931}
2932
2933static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2934 struct usb_os_desc_header *h, void *data,
2935 unsigned len, void *priv)
2936{
2937 struct ffs_function *func = priv;
2938 u8 length = 0;
2939
2940 switch (type) {
2941 case FFS_OS_DESC_EXT_COMPAT: {
2942 struct usb_ext_compat_desc *desc = data;
2943 struct usb_os_desc_table *t;
2944
2945 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2946 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2947 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2948 ARRAY_SIZE(desc->CompatibleID) +
2949 ARRAY_SIZE(desc->SubCompatibleID));
2950 length = sizeof(*desc);
2951 }
2952 break;
2953 case FFS_OS_DESC_EXT_PROP: {
2954 struct usb_ext_prop_desc *desc = data;
2955 struct usb_os_desc_table *t;
2956 struct usb_os_desc_ext_prop *ext_prop;
2957 char *ext_prop_name;
2958 char *ext_prop_data;
2959
2960 t = &func->function.os_desc_table[h->interface];
2961 t->if_id = func->interfaces_nums[h->interface];
2962
2963 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2964 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2965
2966 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2967 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2968 ext_prop->data_len = le32_to_cpu(*(__le32 *)
2969 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2970 length = ext_prop->name_len + ext_prop->data_len + 14;
2971
2972 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2973 func->ffs->ms_os_descs_ext_prop_name_avail +=
2974 ext_prop->name_len;
2975
2976 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2977 func->ffs->ms_os_descs_ext_prop_data_avail +=
2978 ext_prop->data_len;
2979 memcpy(ext_prop_data,
2980 usb_ext_prop_data_ptr(data, ext_prop->name_len),
2981 ext_prop->data_len);
2982 /* unicode data reported to the host as "WCHAR"s */
2983 switch (ext_prop->type) {
2984 case USB_EXT_PROP_UNICODE:
2985 case USB_EXT_PROP_UNICODE_ENV:
2986 case USB_EXT_PROP_UNICODE_LINK:
2987 case USB_EXT_PROP_UNICODE_MULTI:
2988 ext_prop->data_len *= 2;
2989 break;
2990 }
2991 ext_prop->data = ext_prop_data;
2992
2993 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2994 ext_prop->name_len);
2995 /* property name reported to the host as "WCHAR"s */
2996 ext_prop->name_len *= 2;
2997 ext_prop->name = ext_prop_name;
2998
2999 t->os_desc->ext_prop_len +=
3000 ext_prop->name_len + ext_prop->data_len + 14;
3001 ++t->os_desc->ext_prop_count;
3002 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3003 }
3004 break;
3005 default:
3006 pr_vdebug("unknown descriptor: %d\n", type);
3007 }
3008
3009 return length;
3010}
3011
3012static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3013 struct usb_configuration *c)
3014{
3015 struct ffs_function *func = ffs_func_from_usb(f);
3016 struct f_fs_opts *ffs_opts =
3017 container_of(f->fi, struct f_fs_opts, func_inst);
3018 int ret;
3019
3020 ENTER();
3021
3022 /*
3023 * Legacy gadget triggers binding in functionfs_ready_callback,
3024 * which already uses locking; taking the same lock here would
3025 * cause a deadlock.
3026 *
3027 * Configfs-enabled gadgets however do need ffs_dev_lock.
3028 */
3029 if (!ffs_opts->no_configfs)
3030 ffs_dev_lock();
3031 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3032 func->ffs = ffs_opts->dev->ffs_data;
3033 if (!ffs_opts->no_configfs)
3034 ffs_dev_unlock();
3035 if (ret)
3036 return ERR_PTR(ret);
3037
3038 func->conf = c;
3039 func->gadget = c->cdev->gadget;
3040
3041 /*
3042 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3043 * configurations are bound in sequence with list_for_each_entry,
3044 * in each configuration its functions are bound in sequence
3045 * with list_for_each_entry, so we assume no race condition
3046 * with regard to ffs_opts->bound access
3047 */
3048 if (!ffs_opts->refcnt) {
3049 ret = functionfs_bind(func->ffs, c->cdev);
3050 if (ret)
3051 return ERR_PTR(ret);
3052 }
3053 ffs_opts->refcnt++;
3054 func->function.strings = func->ffs->stringtabs;
3055
3056 return ffs_opts;
3057}
3058
3059static int _ffs_func_bind(struct usb_configuration *c,
3060 struct usb_function *f)
3061{
3062 struct ffs_function *func = ffs_func_from_usb(f);
3063 struct ffs_data *ffs = func->ffs;
3064
3065 const int full = !!func->ffs->fs_descs_count;
3066 const int high = !!func->ffs->hs_descs_count;
3067 const int super = !!func->ffs->ss_descs_count;
3068
3069 int fs_len, hs_len, ss_len, ret, i;
3070 struct ffs_ep *eps_ptr;
3071
3072 /* Make it a single chunk, less management later on */
3073 vla_group(d);
3074 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3075 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3076 full ? ffs->fs_descs_count + 1 : 0);
3077 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3078 high ? ffs->hs_descs_count + 1 : 0);
3079 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3080 super ? ffs->ss_descs_count + 1 : 0);
3081 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3082 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3083 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3084 vla_item_with_sz(d, char[16], ext_compat,
3085 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3086 vla_item_with_sz(d, struct usb_os_desc, os_desc,
3087 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3088 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3089 ffs->ms_os_descs_ext_prop_count);
3090 vla_item_with_sz(d, char, ext_prop_name,
3091 ffs->ms_os_descs_ext_prop_name_len);
3092 vla_item_with_sz(d, char, ext_prop_data,
3093 ffs->ms_os_descs_ext_prop_data_len);
3094 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3095 char *vlabuf;
3096
3097 ENTER();
3098
3099 /* Has descriptors only for speeds gadget does not support */
3100 if (unlikely(!(full | high | super)))
3101 return -ENOTSUPP;
3102
3103 /* Allocate a single chunk, less management later on */
3104 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3105 if (unlikely(!vlabuf))
3106 return -ENOMEM;
3107
3108 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3109 ffs->ms_os_descs_ext_prop_name_avail =
3110 vla_ptr(vlabuf, d, ext_prop_name);
3111 ffs->ms_os_descs_ext_prop_data_avail =
3112 vla_ptr(vlabuf, d, ext_prop_data);
3113
3114 /* Copy descriptors */
3115 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3116 ffs->raw_descs_length);
3117
3118 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3119 eps_ptr = vla_ptr(vlabuf, d, eps);
3120 for (i = 0; i < ffs->eps_count; i++)
3121 eps_ptr[i].num = -1;
3122
3123 /* Save pointers
3124 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3125 */
3126 func->eps = vla_ptr(vlabuf, d, eps);
3127 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3128
3129 /*
3130 * Go through all the endpoint descriptors and allocate
3131 * endpoints first, so that later we can rewrite the endpoint
3132 * numbers without worrying that it may be described later on.
3133 */
3134 if (likely(full)) {
3135 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3136 fs_len = ffs_do_descs(ffs->fs_descs_count,
3137 vla_ptr(vlabuf, d, raw_descs),
3138 d_raw_descs__sz,
3139 __ffs_func_bind_do_descs, func);
3140 if (unlikely(fs_len < 0)) {
3141 ret = fs_len;
3142 goto error;
3143 }
3144 } else {
3145 fs_len = 0;
3146 }
3147
3148 if (likely(high)) {
3149 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3150 hs_len = ffs_do_descs(ffs->hs_descs_count,
3151 vla_ptr(vlabuf, d, raw_descs) + fs_len,
3152 d_raw_descs__sz - fs_len,
3153 __ffs_func_bind_do_descs, func);
3154 if (unlikely(hs_len < 0)) {
3155 ret = hs_len;
3156 goto error;
3157 }
3158 } else {
3159 hs_len = 0;
3160 }
3161
3162 if (likely(super)) {
3163 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3164 ss_len = ffs_do_descs(ffs->ss_descs_count,
3165 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3166 d_raw_descs__sz - fs_len - hs_len,
3167 __ffs_func_bind_do_descs, func);
3168 if (unlikely(ss_len < 0)) {
3169 ret = ss_len;
3170 goto error;
3171 }
3172 } else {
3173 ss_len = 0;
3174 }
3175
3176 /*
3177 * Now handle interface numbers allocation and interface and
3178 * endpoint numbers rewriting. We can do that in one go
3179 * now.
3180 */
3181 ret = ffs_do_descs(ffs->fs_descs_count +
3182 (high ? ffs->hs_descs_count : 0) +
3183 (super ? ffs->ss_descs_count : 0),
3184 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3185 __ffs_func_bind_do_nums, func);
3186 if (unlikely(ret < 0))
3187 goto error;
3188
3189 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3190 if (c->cdev->use_os_string) {
3191 for (i = 0; i < ffs->interfaces_count; ++i) {
3192 struct usb_os_desc *desc;
3193
3194 desc = func->function.os_desc_table[i].os_desc =
3195 vla_ptr(vlabuf, d, os_desc) +
3196 i * sizeof(struct usb_os_desc);
3197 desc->ext_compat_id =
3198 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3199 INIT_LIST_HEAD(&desc->ext_prop);
3200 }
3201 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3202 vla_ptr(vlabuf, d, raw_descs) +
3203 fs_len + hs_len + ss_len,
3204 d_raw_descs__sz - fs_len - hs_len -
3205 ss_len,
3206 __ffs_func_bind_do_os_desc, func);
3207 if (unlikely(ret < 0))
3208 goto error;
3209 }
3210 func->function.os_desc_n =
3211 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3212
3213 /* And we're done */
3214 ffs_event_add(ffs, FUNCTIONFS_BIND);
3215 return 0;
3216
3217error:
3218 /* XXX Do we need to release all claimed endpoints here? */
3219 return ret;
3220}
3221
3222static int ffs_func_bind(struct usb_configuration *c,
3223 struct usb_function *f)
3224{
3225 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3226 struct ffs_function *func = ffs_func_from_usb(f);
3227 int ret;
3228
3229 if (IS_ERR(ffs_opts))
3230 return PTR_ERR(ffs_opts);
3231
3232 ret = _ffs_func_bind(c, f);
3233 if (ret && !--ffs_opts->refcnt)
3234 functionfs_unbind(func->ffs);
3235
3236 return ret;
3237}
3238
3239
3240/* Other USB function hooks *************************************************/
3241
3242static void ffs_reset_work(struct work_struct *work)
3243{
3244 struct ffs_data *ffs = container_of(work,
3245 struct ffs_data, reset_work);
3246 ffs_data_reset(ffs);
3247}
3248
3249static int ffs_func_set_alt(struct usb_function *f,
3250 unsigned interface, unsigned alt)
3251{
3252 struct ffs_function *func = ffs_func_from_usb(f);
3253 struct ffs_data *ffs = func->ffs;
3254 int ret = 0, intf;
3255
3256 if (alt != (unsigned)-1) {
3257 intf = ffs_func_revmap_intf(func, interface);
3258 if (unlikely(intf < 0))
3259 return intf;
3260 }
3261
3262 if (ffs->func)
3263 ffs_func_eps_disable(ffs->func);
3264
3265 if (ffs->state == FFS_DEACTIVATED) {
3266 ffs->state = FFS_CLOSING;
3267 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3268 schedule_work(&ffs->reset_work);
3269 return -ENODEV;
3270 }
3271
3272 if (ffs->state != FFS_ACTIVE)
3273 return -ENODEV;
3274
3275 if (alt == (unsigned)-1) {
3276 ffs->func = NULL;
3277 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3278 return 0;
3279 }
3280
3281 ffs->func = func;
3282 ret = ffs_func_eps_enable(func);
3283 if (likely(ret >= 0))
3284 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3285 return ret;
3286}
3287
3288static void ffs_func_disable(struct usb_function *f)
3289{
3290 ffs_func_set_alt(f, 0, (unsigned)-1);
3291}
3292
3293static int ffs_func_setup(struct usb_function *f,
3294 const struct usb_ctrlrequest *creq)
3295{
3296 struct ffs_function *func = ffs_func_from_usb(f);
3297 struct ffs_data *ffs = func->ffs;
3298 unsigned long flags;
3299 int ret;
3300
3301 ENTER();
3302
3303 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3304 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
3305 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
3306 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
3307 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
3308
3309 /*
3310 * Most requests directed to interface go through here
3311 * (notable exceptions are set/get interface) so we need to
3312 * handle them. All other either handled by composite or
3313 * passed to usb_configuration->setup() (if one is set). No
3314 * matter, we will handle requests directed to endpoint here
3315 * as well (as it's straightforward). Other request recipient
3316 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3317 * is being used.
3318 */
3319 if (ffs->state != FFS_ACTIVE)
3320 return -ENODEV;
3321
3322 switch (creq->bRequestType & USB_RECIP_MASK) {
3323 case USB_RECIP_INTERFACE:
3324 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3325 if (unlikely(ret < 0))
3326 return ret;
3327 break;
3328
3329 case USB_RECIP_ENDPOINT:
3330 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3331 if (unlikely(ret < 0))
3332 return ret;
3333 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3334 ret = func->ffs->eps_addrmap[ret];
3335 break;
3336
3337 default:
3338 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3339 ret = le16_to_cpu(creq->wIndex);
3340 else
3341 return -EOPNOTSUPP;
3342 }
3343
3344 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3345 ffs->ev.setup = *creq;
3346 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3347 __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3348 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3349
3350 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3351}
3352
3353static bool ffs_func_req_match(struct usb_function *f,
3354 const struct usb_ctrlrequest *creq,
3355 bool config0)
3356{
3357 struct ffs_function *func = ffs_func_from_usb(f);
3358
3359 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3360 return false;
3361
3362 switch (creq->bRequestType & USB_RECIP_MASK) {
3363 case USB_RECIP_INTERFACE:
3364 return (ffs_func_revmap_intf(func,
3365 le16_to_cpu(creq->wIndex)) >= 0);
3366 case USB_RECIP_ENDPOINT:
3367 return (ffs_func_revmap_ep(func,
3368 le16_to_cpu(creq->wIndex)) >= 0);
3369 default:
3370 return (bool) (func->ffs->user_flags &
3371 FUNCTIONFS_ALL_CTRL_RECIP);
3372 }
3373}
3374
3375static void ffs_func_suspend(struct usb_function *f)
3376{
3377 ENTER();
3378 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3379}
3380
3381static void ffs_func_resume(struct usb_function *f)
3382{
3383 ENTER();
3384 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3385}
3386
3387
3388/* Endpoint and interface numbers reverse mapping ***************************/
3389
3390static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3391{
3392 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3393 return num ? num : -EDOM;
3394}
3395
3396static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3397{
3398 short *nums = func->interfaces_nums;
3399 unsigned count = func->ffs->interfaces_count;
3400
3401 for (; count; --count, ++nums) {
3402 if (*nums >= 0 && *nums == intf)
3403 return nums - func->interfaces_nums;
3404 }
3405
3406 return -EDOM;
3407}
3408
3409
3410/* Devices management *******************************************************/
3411
3412static LIST_HEAD(ffs_devices);
3413
3414static struct ffs_dev *_ffs_do_find_dev(const char *name)
3415{
3416 struct ffs_dev *dev;
3417
3418 if (!name)
3419 return NULL;
3420
3421 list_for_each_entry(dev, &ffs_devices, entry) {
3422 if (strcmp(dev->name, name) == 0)
3423 return dev;
3424 }
3425
3426 return NULL;
3427}
3428
3429/*
3430 * ffs_lock must be taken by the caller of this function
3431 */
3432static struct ffs_dev *_ffs_get_single_dev(void)
3433{
3434 struct ffs_dev *dev;
3435
3436 if (list_is_singular(&ffs_devices)) {
3437 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3438 if (dev->single)
3439 return dev;
3440 }
3441
3442 return NULL;
3443}
3444
3445/*
3446 * ffs_lock must be taken by the caller of this function
3447 */
3448static struct ffs_dev *_ffs_find_dev(const char *name)
3449{
3450 struct ffs_dev *dev;
3451
3452 dev = _ffs_get_single_dev();
3453 if (dev)
3454 return dev;
3455
3456 return _ffs_do_find_dev(name);
3457}
3458
3459/* Configfs support *********************************************************/
3460
3461static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3462{
3463 return container_of(to_config_group(item), struct f_fs_opts,
3464 func_inst.group);
3465}
3466
3467static void ffs_attr_release(struct config_item *item)
3468{
3469 struct f_fs_opts *opts = to_ffs_opts(item);
3470
3471 usb_put_function_instance(&opts->func_inst);
3472}
3473
3474static struct configfs_item_operations ffs_item_ops = {
3475 .release = ffs_attr_release,
3476};
3477
3478static const struct config_item_type ffs_func_type = {
3479 .ct_item_ops = &ffs_item_ops,
3480 .ct_owner = THIS_MODULE,
3481};
3482
3483
3484/* Function registration interface ******************************************/
3485
3486static void ffs_free_inst(struct usb_function_instance *f)
3487{
3488 struct f_fs_opts *opts;
3489
3490 opts = to_f_fs_opts(f);
3491 ffs_dev_lock();
3492 _ffs_free_dev(opts->dev);
3493 ffs_dev_unlock();
3494 kfree(opts);
3495}
3496
3497static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3498{
3499 if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3500 return -ENAMETOOLONG;
3501 return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3502}
3503
3504static struct usb_function_instance *ffs_alloc_inst(void)
3505{
3506 struct f_fs_opts *opts;
3507 struct ffs_dev *dev;
3508
3509 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3510 if (!opts)
3511 return ERR_PTR(-ENOMEM);
3512
3513 opts->func_inst.set_inst_name = ffs_set_inst_name;
3514 opts->func_inst.free_func_inst = ffs_free_inst;
3515 ffs_dev_lock();
3516 dev = _ffs_alloc_dev();
3517 ffs_dev_unlock();
3518 if (IS_ERR(dev)) {
3519 kfree(opts);
3520 return ERR_CAST(dev);
3521 }
3522 opts->dev = dev;
3523 dev->opts = opts;
3524
3525 config_group_init_type_name(&opts->func_inst.group, "",
3526 &ffs_func_type);
3527 return &opts->func_inst;
3528}
3529
3530static void ffs_free(struct usb_function *f)
3531{
3532 kfree(ffs_func_from_usb(f));
3533}
3534
3535static void ffs_func_unbind(struct usb_configuration *c,
3536 struct usb_function *f)
3537{
3538 struct ffs_function *func = ffs_func_from_usb(f);
3539 struct ffs_data *ffs = func->ffs;
3540 struct f_fs_opts *opts =
3541 container_of(f->fi, struct f_fs_opts, func_inst);
3542 struct ffs_ep *ep = func->eps;
3543 unsigned count = ffs->eps_count;
3544 unsigned long flags;
3545
3546 ENTER();
3547 if (ffs->func == func) {
3548 ffs_func_eps_disable(func);
3549 ffs->func = NULL;
3550 }
3551
3552 if (!--opts->refcnt)
3553 functionfs_unbind(ffs);
3554
3555 /* cleanup after autoconfig */
3556 spin_lock_irqsave(&func->ffs->eps_lock, flags);
3557 while (count--) {
3558 if (ep->ep && ep->req)
3559 usb_ep_free_request(ep->ep, ep->req);
3560 ep->req = NULL;
3561 ++ep;
3562 }
3563 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3564 kfree(func->eps);
3565 func->eps = NULL;
3566 /*
3567 * eps, descriptors and interfaces_nums are allocated in the
3568 * same chunk so only one free is required.
3569 */
3570 func->function.fs_descriptors = NULL;
3571 func->function.hs_descriptors = NULL;
3572 func->function.ss_descriptors = NULL;
3573 func->interfaces_nums = NULL;
3574
3575 ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3576}
3577
3578static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3579{
3580 struct ffs_function *func;
3581
3582 ENTER();
3583
3584 func = kzalloc(sizeof(*func), GFP_KERNEL);
3585 if (unlikely(!func))
3586 return ERR_PTR(-ENOMEM);
3587
3588 func->function.name = "Function FS Gadget";
3589
3590 func->function.bind = ffs_func_bind;
3591 func->function.unbind = ffs_func_unbind;
3592 func->function.set_alt = ffs_func_set_alt;
3593 func->function.disable = ffs_func_disable;
3594 func->function.setup = ffs_func_setup;
3595 func->function.req_match = ffs_func_req_match;
3596 func->function.suspend = ffs_func_suspend;
3597 func->function.resume = ffs_func_resume;
3598 func->function.free_func = ffs_free;
3599
3600 return &func->function;
3601}
3602
3603/*
3604 * ffs_lock must be taken by the caller of this function
3605 */
3606static struct ffs_dev *_ffs_alloc_dev(void)
3607{
3608 struct ffs_dev *dev;
3609 int ret;
3610
3611 if (_ffs_get_single_dev())
3612 return ERR_PTR(-EBUSY);
3613
3614 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3615 if (!dev)
3616 return ERR_PTR(-ENOMEM);
3617
3618 if (list_empty(&ffs_devices)) {
3619 ret = functionfs_init();
3620 if (ret) {
3621 kfree(dev);
3622 return ERR_PTR(ret);
3623 }
3624 }
3625
3626 list_add(&dev->entry, &ffs_devices);
3627
3628 return dev;
3629}
3630
3631int ffs_name_dev(struct ffs_dev *dev, const char *name)
3632{
3633 struct ffs_dev *existing;
3634 int ret = 0;
3635
3636 ffs_dev_lock();
3637
3638 existing = _ffs_do_find_dev(name);
3639 if (!existing)
3640 strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3641 else if (existing != dev)
3642 ret = -EBUSY;
3643
3644 ffs_dev_unlock();
3645
3646 return ret;
3647}
3648EXPORT_SYMBOL_GPL(ffs_name_dev);
3649
3650int ffs_single_dev(struct ffs_dev *dev)
3651{
3652 int ret;
3653
3654 ret = 0;
3655 ffs_dev_lock();
3656
3657 if (!list_is_singular(&ffs_devices))
3658 ret = -EBUSY;
3659 else
3660 dev->single = true;
3661
3662 ffs_dev_unlock();
3663 return ret;
3664}
3665EXPORT_SYMBOL_GPL(ffs_single_dev);
3666
3667/*
3668 * ffs_lock must be taken by the caller of this function
3669 */
3670static void _ffs_free_dev(struct ffs_dev *dev)
3671{
3672 list_del(&dev->entry);
3673
3674 /* Clear the private_data pointer to stop incorrect dev access */
3675 if (dev->ffs_data)
3676 dev->ffs_data->private_data = NULL;
3677
3678 kfree(dev);
3679 if (list_empty(&ffs_devices))
3680 functionfs_cleanup();
3681}
3682
3683static void *ffs_acquire_dev(const char *dev_name)
3684{
3685 struct ffs_dev *ffs_dev;
3686
3687 ENTER();
3688 ffs_dev_lock();
3689
3690 ffs_dev = _ffs_find_dev(dev_name);
3691 if (!ffs_dev)
3692 ffs_dev = ERR_PTR(-ENOENT);
3693 else if (ffs_dev->mounted)
3694 ffs_dev = ERR_PTR(-EBUSY);
3695 else if (ffs_dev->ffs_acquire_dev_callback &&
3696 ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3697 ffs_dev = ERR_PTR(-ENOENT);
3698 else
3699 ffs_dev->mounted = true;
3700
3701 ffs_dev_unlock();
3702 return ffs_dev;
3703}
3704
3705static void ffs_release_dev(struct ffs_data *ffs_data)
3706{
3707 struct ffs_dev *ffs_dev;
3708
3709 ENTER();
3710 ffs_dev_lock();
3711
3712 ffs_dev = ffs_data->private_data;
3713 if (ffs_dev) {
3714 ffs_dev->mounted = false;
3715
3716 if (ffs_dev->ffs_release_dev_callback)
3717 ffs_dev->ffs_release_dev_callback(ffs_dev);
3718 }
3719
3720 ffs_dev_unlock();
3721}
3722
3723static int ffs_ready(struct ffs_data *ffs)
3724{
3725 struct ffs_dev *ffs_obj;
3726 int ret = 0;
3727
3728 ENTER();
3729 ffs_dev_lock();
3730
3731 ffs_obj = ffs->private_data;
3732 if (!ffs_obj) {
3733 ret = -EINVAL;
3734 goto done;
3735 }
3736 if (WARN_ON(ffs_obj->desc_ready)) {
3737 ret = -EBUSY;
3738 goto done;
3739 }
3740
3741 ffs_obj->desc_ready = true;
3742 ffs_obj->ffs_data = ffs;
3743
3744 if (ffs_obj->ffs_ready_callback) {
3745 ret = ffs_obj->ffs_ready_callback(ffs);
3746 if (ret)
3747 goto done;
3748 }
3749
3750 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3751done:
3752 ffs_dev_unlock();
3753 return ret;
3754}
3755
3756static void ffs_closed(struct ffs_data *ffs)
3757{
3758 struct ffs_dev *ffs_obj;
3759 struct f_fs_opts *opts;
3760 struct config_item *ci;
3761
3762 ENTER();
3763 ffs_dev_lock();
3764
3765 ffs_obj = ffs->private_data;
3766 if (!ffs_obj)
3767 goto done;
3768
3769 ffs_obj->desc_ready = false;
3770 ffs_obj->ffs_data = NULL;
3771
3772 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3773 ffs_obj->ffs_closed_callback)
3774 ffs_obj->ffs_closed_callback(ffs);
3775
3776 if (ffs_obj->opts)
3777 opts = ffs_obj->opts;
3778 else
3779 goto done;
3780
3781 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3782 || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3783 goto done;
3784
3785 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3786 ffs_dev_unlock();
3787
3788 if (test_bit(FFS_FL_BOUND, &ffs->flags))
3789 unregister_gadget_item(ci);
3790 return;
3791done:
3792 ffs_dev_unlock();
3793}
3794
3795/* Misc helper functions ****************************************************/
3796
3797static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3798{
3799 return nonblock
3800 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3801 : mutex_lock_interruptible(mutex);
3802}
3803
3804static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3805{
3806 char *data;
3807
3808 if (unlikely(!len))
3809 return NULL;
3810
3811 data = kmalloc(len, GFP_KERNEL);
3812 if (unlikely(!data))
3813 return ERR_PTR(-ENOMEM);
3814
3815 if (unlikely(copy_from_user(data, buf, len))) {
3816 kfree(data);
3817 return ERR_PTR(-EFAULT);
3818 }
3819
3820 pr_vdebug("Buffer from user space:\n");
3821 ffs_dump_mem("", data, len);
3822
3823 return data;
3824}
3825
3826DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3827MODULE_LICENSE("GPL");
3828MODULE_AUTHOR("Michal Nazarewicz");