Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51#include <linux/uaccess.h>
52
53#include <linux/errno.h>
54#include <linux/time.h>
55#include <linux/proc_fs.h>
56#include <linux/stat.h>
57#include <linux/task_io_accounting_ops.h>
58#include <linux/init.h>
59#include <linux/capability.h>
60#include <linux/file.h>
61#include <linux/fdtable.h>
62#include <linux/string.h>
63#include <linux/seq_file.h>
64#include <linux/namei.h>
65#include <linux/mnt_namespace.h>
66#include <linux/mm.h>
67#include <linux/swap.h>
68#include <linux/rcupdate.h>
69#include <linux/kallsyms.h>
70#include <linux/stacktrace.h>
71#include <linux/resource.h>
72#include <linux/module.h>
73#include <linux/mount.h>
74#include <linux/security.h>
75#include <linux/ptrace.h>
76#include <linux/tracehook.h>
77#include <linux/printk.h>
78#include <linux/cache.h>
79#include <linux/cgroup.h>
80#include <linux/cpuset.h>
81#include <linux/audit.h>
82#include <linux/poll.h>
83#include <linux/nsproxy.h>
84#include <linux/oom.h>
85#include <linux/elf.h>
86#include <linux/pid_namespace.h>
87#include <linux/user_namespace.h>
88#include <linux/fs_struct.h>
89#include <linux/slab.h>
90#include <linux/sched/autogroup.h>
91#include <linux/sched/mm.h>
92#include <linux/sched/coredump.h>
93#include <linux/sched/debug.h>
94#include <linux/sched/stat.h>
95#include <linux/flex_array.h>
96#include <linux/posix-timers.h>
97#include <trace/events/oom.h>
98#include "internal.h"
99#include "fd.h"
100
101#include "../../lib/kstrtox.h"
102
103/* NOTE:
104 * Implementing inode permission operations in /proc is almost
105 * certainly an error. Permission checks need to happen during
106 * each system call not at open time. The reason is that most of
107 * what we wish to check for permissions in /proc varies at runtime.
108 *
109 * The classic example of a problem is opening file descriptors
110 * in /proc for a task before it execs a suid executable.
111 */
112
113static u8 nlink_tid __ro_after_init;
114static u8 nlink_tgid __ro_after_init;
115
116struct pid_entry {
117 const char *name;
118 unsigned int len;
119 umode_t mode;
120 const struct inode_operations *iop;
121 const struct file_operations *fop;
122 union proc_op op;
123};
124
125#define NOD(NAME, MODE, IOP, FOP, OP) { \
126 .name = (NAME), \
127 .len = sizeof(NAME) - 1, \
128 .mode = MODE, \
129 .iop = IOP, \
130 .fop = FOP, \
131 .op = OP, \
132}
133
134#define DIR(NAME, MODE, iops, fops) \
135 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
136#define LNK(NAME, get_link) \
137 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
138 &proc_pid_link_inode_operations, NULL, \
139 { .proc_get_link = get_link } )
140#define REG(NAME, MODE, fops) \
141 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
142#define ONE(NAME, MODE, show) \
143 NOD(NAME, (S_IFREG|(MODE)), \
144 NULL, &proc_single_file_operations, \
145 { .proc_show = show } )
146
147/*
148 * Count the number of hardlinks for the pid_entry table, excluding the .
149 * and .. links.
150 */
151static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
152 unsigned int n)
153{
154 unsigned int i;
155 unsigned int count;
156
157 count = 2;
158 for (i = 0; i < n; ++i) {
159 if (S_ISDIR(entries[i].mode))
160 ++count;
161 }
162
163 return count;
164}
165
166static int get_task_root(struct task_struct *task, struct path *root)
167{
168 int result = -ENOENT;
169
170 task_lock(task);
171 if (task->fs) {
172 get_fs_root(task->fs, root);
173 result = 0;
174 }
175 task_unlock(task);
176 return result;
177}
178
179static int proc_cwd_link(struct dentry *dentry, struct path *path)
180{
181 struct task_struct *task = get_proc_task(d_inode(dentry));
182 int result = -ENOENT;
183
184 if (task) {
185 task_lock(task);
186 if (task->fs) {
187 get_fs_pwd(task->fs, path);
188 result = 0;
189 }
190 task_unlock(task);
191 put_task_struct(task);
192 }
193 return result;
194}
195
196static int proc_root_link(struct dentry *dentry, struct path *path)
197{
198 struct task_struct *task = get_proc_task(d_inode(dentry));
199 int result = -ENOENT;
200
201 if (task) {
202 result = get_task_root(task, path);
203 put_task_struct(task);
204 }
205 return result;
206}
207
208static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
209 size_t count, loff_t *ppos)
210{
211 unsigned long arg_start, arg_end, env_start, env_end;
212 unsigned long pos, len;
213 char *page;
214
215 /* Check if process spawned far enough to have cmdline. */
216 if (!mm->env_end)
217 return 0;
218
219 spin_lock(&mm->arg_lock);
220 arg_start = mm->arg_start;
221 arg_end = mm->arg_end;
222 env_start = mm->env_start;
223 env_end = mm->env_end;
224 spin_unlock(&mm->arg_lock);
225
226 if (arg_start >= arg_end)
227 return 0;
228
229 /*
230 * We have traditionally allowed the user to re-write
231 * the argument strings and overflow the end result
232 * into the environment section. But only do that if
233 * the environment area is contiguous to the arguments.
234 */
235 if (env_start != arg_end || env_start >= env_end)
236 env_start = env_end = arg_end;
237
238 /* .. and limit it to a maximum of one page of slop */
239 if (env_end >= arg_end + PAGE_SIZE)
240 env_end = arg_end + PAGE_SIZE - 1;
241
242 /* We're not going to care if "*ppos" has high bits set */
243 pos = arg_start + *ppos;
244
245 /* .. but we do check the result is in the proper range */
246 if (pos < arg_start || pos >= env_end)
247 return 0;
248
249 /* .. and we never go past env_end */
250 if (env_end - pos < count)
251 count = env_end - pos;
252
253 page = (char *)__get_free_page(GFP_KERNEL);
254 if (!page)
255 return -ENOMEM;
256
257 len = 0;
258 while (count) {
259 int got;
260 size_t size = min_t(size_t, PAGE_SIZE, count);
261 long offset;
262
263 /*
264 * Are we already starting past the official end?
265 * We always include the last byte that is *supposed*
266 * to be NUL
267 */
268 offset = (pos >= arg_end) ? pos - arg_end + 1 : 0;
269
270 got = access_remote_vm(mm, pos - offset, page, size + offset, FOLL_ANON);
271 if (got <= offset)
272 break;
273 got -= offset;
274
275 /* Don't walk past a NUL character once you hit arg_end */
276 if (pos + got >= arg_end) {
277 int n = 0;
278
279 /*
280 * If we started before 'arg_end' but ended up
281 * at or after it, we start the NUL character
282 * check at arg_end-1 (where we expect the normal
283 * EOF to be).
284 *
285 * NOTE! This is smaller than 'got', because
286 * pos + got >= arg_end
287 */
288 if (pos < arg_end)
289 n = arg_end - pos - 1;
290
291 /* Cut off at first NUL after 'n' */
292 got = n + strnlen(page+n, offset+got-n);
293 if (got < offset)
294 break;
295 got -= offset;
296
297 /* Include the NUL if it existed */
298 if (got < size)
299 got++;
300 }
301
302 got -= copy_to_user(buf, page+offset, got);
303 if (unlikely(!got)) {
304 if (!len)
305 len = -EFAULT;
306 break;
307 }
308 pos += got;
309 buf += got;
310 len += got;
311 count -= got;
312 }
313
314 free_page((unsigned long)page);
315 return len;
316}
317
318static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
319 size_t count, loff_t *pos)
320{
321 struct mm_struct *mm;
322 ssize_t ret;
323
324 mm = get_task_mm(tsk);
325 if (!mm)
326 return 0;
327
328 ret = get_mm_cmdline(mm, buf, count, pos);
329 mmput(mm);
330 return ret;
331}
332
333static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
334 size_t count, loff_t *pos)
335{
336 struct task_struct *tsk;
337 ssize_t ret;
338
339 BUG_ON(*pos < 0);
340
341 tsk = get_proc_task(file_inode(file));
342 if (!tsk)
343 return -ESRCH;
344 ret = get_task_cmdline(tsk, buf, count, pos);
345 put_task_struct(tsk);
346 if (ret > 0)
347 *pos += ret;
348 return ret;
349}
350
351static const struct file_operations proc_pid_cmdline_ops = {
352 .read = proc_pid_cmdline_read,
353 .llseek = generic_file_llseek,
354};
355
356#ifdef CONFIG_KALLSYMS
357/*
358 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
359 * Returns the resolved symbol. If that fails, simply return the address.
360 */
361static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
362 struct pid *pid, struct task_struct *task)
363{
364 unsigned long wchan;
365 char symname[KSYM_NAME_LEN];
366
367 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
368 goto print0;
369
370 wchan = get_wchan(task);
371 if (wchan && !lookup_symbol_name(wchan, symname)) {
372 seq_puts(m, symname);
373 return 0;
374 }
375
376print0:
377 seq_putc(m, '0');
378 return 0;
379}
380#endif /* CONFIG_KALLSYMS */
381
382static int lock_trace(struct task_struct *task)
383{
384 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
385 if (err)
386 return err;
387 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
388 mutex_unlock(&task->signal->cred_guard_mutex);
389 return -EPERM;
390 }
391 return 0;
392}
393
394static void unlock_trace(struct task_struct *task)
395{
396 mutex_unlock(&task->signal->cred_guard_mutex);
397}
398
399#ifdef CONFIG_STACKTRACE
400
401#define MAX_STACK_TRACE_DEPTH 64
402
403static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
404 struct pid *pid, struct task_struct *task)
405{
406 struct stack_trace trace;
407 unsigned long *entries;
408 int err;
409
410 /*
411 * The ability to racily run the kernel stack unwinder on a running task
412 * and then observe the unwinder output is scary; while it is useful for
413 * debugging kernel issues, it can also allow an attacker to leak kernel
414 * stack contents.
415 * Doing this in a manner that is at least safe from races would require
416 * some work to ensure that the remote task can not be scheduled; and
417 * even then, this would still expose the unwinder as local attack
418 * surface.
419 * Therefore, this interface is restricted to root.
420 */
421 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
422 return -EACCES;
423
424 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
425 GFP_KERNEL);
426 if (!entries)
427 return -ENOMEM;
428
429 trace.nr_entries = 0;
430 trace.max_entries = MAX_STACK_TRACE_DEPTH;
431 trace.entries = entries;
432 trace.skip = 0;
433
434 err = lock_trace(task);
435 if (!err) {
436 unsigned int i;
437
438 save_stack_trace_tsk(task, &trace);
439
440 for (i = 0; i < trace.nr_entries; i++) {
441 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
442 }
443 unlock_trace(task);
444 }
445 kfree(entries);
446
447 return err;
448}
449#endif
450
451#ifdef CONFIG_SCHED_INFO
452/*
453 * Provides /proc/PID/schedstat
454 */
455static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
456 struct pid *pid, struct task_struct *task)
457{
458 if (unlikely(!sched_info_on()))
459 seq_printf(m, "0 0 0\n");
460 else
461 seq_printf(m, "%llu %llu %lu\n",
462 (unsigned long long)task->se.sum_exec_runtime,
463 (unsigned long long)task->sched_info.run_delay,
464 task->sched_info.pcount);
465
466 return 0;
467}
468#endif
469
470#ifdef CONFIG_LATENCYTOP
471static int lstats_show_proc(struct seq_file *m, void *v)
472{
473 int i;
474 struct inode *inode = m->private;
475 struct task_struct *task = get_proc_task(inode);
476
477 if (!task)
478 return -ESRCH;
479 seq_puts(m, "Latency Top version : v0.1\n");
480 for (i = 0; i < LT_SAVECOUNT; i++) {
481 struct latency_record *lr = &task->latency_record[i];
482 if (lr->backtrace[0]) {
483 int q;
484 seq_printf(m, "%i %li %li",
485 lr->count, lr->time, lr->max);
486 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
487 unsigned long bt = lr->backtrace[q];
488 if (!bt)
489 break;
490 if (bt == ULONG_MAX)
491 break;
492 seq_printf(m, " %ps", (void *)bt);
493 }
494 seq_putc(m, '\n');
495 }
496
497 }
498 put_task_struct(task);
499 return 0;
500}
501
502static int lstats_open(struct inode *inode, struct file *file)
503{
504 return single_open(file, lstats_show_proc, inode);
505}
506
507static ssize_t lstats_write(struct file *file, const char __user *buf,
508 size_t count, loff_t *offs)
509{
510 struct task_struct *task = get_proc_task(file_inode(file));
511
512 if (!task)
513 return -ESRCH;
514 clear_all_latency_tracing(task);
515 put_task_struct(task);
516
517 return count;
518}
519
520static const struct file_operations proc_lstats_operations = {
521 .open = lstats_open,
522 .read = seq_read,
523 .write = lstats_write,
524 .llseek = seq_lseek,
525 .release = single_release,
526};
527
528#endif
529
530static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
531 struct pid *pid, struct task_struct *task)
532{
533 unsigned long totalpages = totalram_pages() + total_swap_pages;
534 unsigned long points = 0;
535
536 points = oom_badness(task, NULL, NULL, totalpages) *
537 1000 / totalpages;
538 seq_printf(m, "%lu\n", points);
539
540 return 0;
541}
542
543struct limit_names {
544 const char *name;
545 const char *unit;
546};
547
548static const struct limit_names lnames[RLIM_NLIMITS] = {
549 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
550 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
551 [RLIMIT_DATA] = {"Max data size", "bytes"},
552 [RLIMIT_STACK] = {"Max stack size", "bytes"},
553 [RLIMIT_CORE] = {"Max core file size", "bytes"},
554 [RLIMIT_RSS] = {"Max resident set", "bytes"},
555 [RLIMIT_NPROC] = {"Max processes", "processes"},
556 [RLIMIT_NOFILE] = {"Max open files", "files"},
557 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
558 [RLIMIT_AS] = {"Max address space", "bytes"},
559 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
560 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
561 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
562 [RLIMIT_NICE] = {"Max nice priority", NULL},
563 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
564 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
565};
566
567/* Display limits for a process */
568static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
569 struct pid *pid, struct task_struct *task)
570{
571 unsigned int i;
572 unsigned long flags;
573
574 struct rlimit rlim[RLIM_NLIMITS];
575
576 if (!lock_task_sighand(task, &flags))
577 return 0;
578 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
579 unlock_task_sighand(task, &flags);
580
581 /*
582 * print the file header
583 */
584 seq_puts(m, "Limit "
585 "Soft Limit "
586 "Hard Limit "
587 "Units \n");
588
589 for (i = 0; i < RLIM_NLIMITS; i++) {
590 if (rlim[i].rlim_cur == RLIM_INFINITY)
591 seq_printf(m, "%-25s %-20s ",
592 lnames[i].name, "unlimited");
593 else
594 seq_printf(m, "%-25s %-20lu ",
595 lnames[i].name, rlim[i].rlim_cur);
596
597 if (rlim[i].rlim_max == RLIM_INFINITY)
598 seq_printf(m, "%-20s ", "unlimited");
599 else
600 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
601
602 if (lnames[i].unit)
603 seq_printf(m, "%-10s\n", lnames[i].unit);
604 else
605 seq_putc(m, '\n');
606 }
607
608 return 0;
609}
610
611#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
612static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
613 struct pid *pid, struct task_struct *task)
614{
615 long nr;
616 unsigned long args[6], sp, pc;
617 int res;
618
619 res = lock_trace(task);
620 if (res)
621 return res;
622
623 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
624 seq_puts(m, "running\n");
625 else if (nr < 0)
626 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
627 else
628 seq_printf(m,
629 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
630 nr,
631 args[0], args[1], args[2], args[3], args[4], args[5],
632 sp, pc);
633 unlock_trace(task);
634
635 return 0;
636}
637#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
638
639/************************************************************************/
640/* Here the fs part begins */
641/************************************************************************/
642
643/* permission checks */
644static int proc_fd_access_allowed(struct inode *inode)
645{
646 struct task_struct *task;
647 int allowed = 0;
648 /* Allow access to a task's file descriptors if it is us or we
649 * may use ptrace attach to the process and find out that
650 * information.
651 */
652 task = get_proc_task(inode);
653 if (task) {
654 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
655 put_task_struct(task);
656 }
657 return allowed;
658}
659
660int proc_setattr(struct dentry *dentry, struct iattr *attr)
661{
662 int error;
663 struct inode *inode = d_inode(dentry);
664
665 if (attr->ia_valid & ATTR_MODE)
666 return -EPERM;
667
668 error = setattr_prepare(dentry, attr);
669 if (error)
670 return error;
671
672 setattr_copy(inode, attr);
673 mark_inode_dirty(inode);
674 return 0;
675}
676
677/*
678 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
679 * or euid/egid (for hide_pid_min=2)?
680 */
681static bool has_pid_permissions(struct pid_namespace *pid,
682 struct task_struct *task,
683 int hide_pid_min)
684{
685 if (pid->hide_pid < hide_pid_min)
686 return true;
687 if (in_group_p(pid->pid_gid))
688 return true;
689 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
690}
691
692
693static int proc_pid_permission(struct inode *inode, int mask)
694{
695 struct pid_namespace *pid = proc_pid_ns(inode);
696 struct task_struct *task;
697 bool has_perms;
698
699 task = get_proc_task(inode);
700 if (!task)
701 return -ESRCH;
702 has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
703 put_task_struct(task);
704
705 if (!has_perms) {
706 if (pid->hide_pid == HIDEPID_INVISIBLE) {
707 /*
708 * Let's make getdents(), stat(), and open()
709 * consistent with each other. If a process
710 * may not stat() a file, it shouldn't be seen
711 * in procfs at all.
712 */
713 return -ENOENT;
714 }
715
716 return -EPERM;
717 }
718 return generic_permission(inode, mask);
719}
720
721
722
723static const struct inode_operations proc_def_inode_operations = {
724 .setattr = proc_setattr,
725};
726
727static int proc_single_show(struct seq_file *m, void *v)
728{
729 struct inode *inode = m->private;
730 struct pid_namespace *ns = proc_pid_ns(inode);
731 struct pid *pid = proc_pid(inode);
732 struct task_struct *task;
733 int ret;
734
735 task = get_pid_task(pid, PIDTYPE_PID);
736 if (!task)
737 return -ESRCH;
738
739 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
740
741 put_task_struct(task);
742 return ret;
743}
744
745static int proc_single_open(struct inode *inode, struct file *filp)
746{
747 return single_open(filp, proc_single_show, inode);
748}
749
750static const struct file_operations proc_single_file_operations = {
751 .open = proc_single_open,
752 .read = seq_read,
753 .llseek = seq_lseek,
754 .release = single_release,
755};
756
757
758struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
759{
760 struct task_struct *task = get_proc_task(inode);
761 struct mm_struct *mm = ERR_PTR(-ESRCH);
762
763 if (task) {
764 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
765 put_task_struct(task);
766
767 if (!IS_ERR_OR_NULL(mm)) {
768 /* ensure this mm_struct can't be freed */
769 mmgrab(mm);
770 /* but do not pin its memory */
771 mmput(mm);
772 }
773 }
774
775 return mm;
776}
777
778static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
779{
780 struct mm_struct *mm = proc_mem_open(inode, mode);
781
782 if (IS_ERR(mm))
783 return PTR_ERR(mm);
784
785 file->private_data = mm;
786 return 0;
787}
788
789static int mem_open(struct inode *inode, struct file *file)
790{
791 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
792
793 /* OK to pass negative loff_t, we can catch out-of-range */
794 file->f_mode |= FMODE_UNSIGNED_OFFSET;
795
796 return ret;
797}
798
799static ssize_t mem_rw(struct file *file, char __user *buf,
800 size_t count, loff_t *ppos, int write)
801{
802 struct mm_struct *mm = file->private_data;
803 unsigned long addr = *ppos;
804 ssize_t copied;
805 char *page;
806 unsigned int flags;
807
808 if (!mm)
809 return 0;
810
811 page = (char *)__get_free_page(GFP_KERNEL);
812 if (!page)
813 return -ENOMEM;
814
815 copied = 0;
816 if (!mmget_not_zero(mm))
817 goto free;
818
819 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
820
821 while (count > 0) {
822 int this_len = min_t(int, count, PAGE_SIZE);
823
824 if (write && copy_from_user(page, buf, this_len)) {
825 copied = -EFAULT;
826 break;
827 }
828
829 this_len = access_remote_vm(mm, addr, page, this_len, flags);
830 if (!this_len) {
831 if (!copied)
832 copied = -EIO;
833 break;
834 }
835
836 if (!write && copy_to_user(buf, page, this_len)) {
837 copied = -EFAULT;
838 break;
839 }
840
841 buf += this_len;
842 addr += this_len;
843 copied += this_len;
844 count -= this_len;
845 }
846 *ppos = addr;
847
848 mmput(mm);
849free:
850 free_page((unsigned long) page);
851 return copied;
852}
853
854static ssize_t mem_read(struct file *file, char __user *buf,
855 size_t count, loff_t *ppos)
856{
857 return mem_rw(file, buf, count, ppos, 0);
858}
859
860static ssize_t mem_write(struct file *file, const char __user *buf,
861 size_t count, loff_t *ppos)
862{
863 return mem_rw(file, (char __user*)buf, count, ppos, 1);
864}
865
866loff_t mem_lseek(struct file *file, loff_t offset, int orig)
867{
868 switch (orig) {
869 case 0:
870 file->f_pos = offset;
871 break;
872 case 1:
873 file->f_pos += offset;
874 break;
875 default:
876 return -EINVAL;
877 }
878 force_successful_syscall_return();
879 return file->f_pos;
880}
881
882static int mem_release(struct inode *inode, struct file *file)
883{
884 struct mm_struct *mm = file->private_data;
885 if (mm)
886 mmdrop(mm);
887 return 0;
888}
889
890static const struct file_operations proc_mem_operations = {
891 .llseek = mem_lseek,
892 .read = mem_read,
893 .write = mem_write,
894 .open = mem_open,
895 .release = mem_release,
896};
897
898static int environ_open(struct inode *inode, struct file *file)
899{
900 return __mem_open(inode, file, PTRACE_MODE_READ);
901}
902
903static ssize_t environ_read(struct file *file, char __user *buf,
904 size_t count, loff_t *ppos)
905{
906 char *page;
907 unsigned long src = *ppos;
908 int ret = 0;
909 struct mm_struct *mm = file->private_data;
910 unsigned long env_start, env_end;
911
912 /* Ensure the process spawned far enough to have an environment. */
913 if (!mm || !mm->env_end)
914 return 0;
915
916 page = (char *)__get_free_page(GFP_KERNEL);
917 if (!page)
918 return -ENOMEM;
919
920 ret = 0;
921 if (!mmget_not_zero(mm))
922 goto free;
923
924 spin_lock(&mm->arg_lock);
925 env_start = mm->env_start;
926 env_end = mm->env_end;
927 spin_unlock(&mm->arg_lock);
928
929 while (count > 0) {
930 size_t this_len, max_len;
931 int retval;
932
933 if (src >= (env_end - env_start))
934 break;
935
936 this_len = env_end - (env_start + src);
937
938 max_len = min_t(size_t, PAGE_SIZE, count);
939 this_len = min(max_len, this_len);
940
941 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
942
943 if (retval <= 0) {
944 ret = retval;
945 break;
946 }
947
948 if (copy_to_user(buf, page, retval)) {
949 ret = -EFAULT;
950 break;
951 }
952
953 ret += retval;
954 src += retval;
955 buf += retval;
956 count -= retval;
957 }
958 *ppos = src;
959 mmput(mm);
960
961free:
962 free_page((unsigned long) page);
963 return ret;
964}
965
966static const struct file_operations proc_environ_operations = {
967 .open = environ_open,
968 .read = environ_read,
969 .llseek = generic_file_llseek,
970 .release = mem_release,
971};
972
973static int auxv_open(struct inode *inode, struct file *file)
974{
975 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
976}
977
978static ssize_t auxv_read(struct file *file, char __user *buf,
979 size_t count, loff_t *ppos)
980{
981 struct mm_struct *mm = file->private_data;
982 unsigned int nwords = 0;
983
984 if (!mm)
985 return 0;
986 do {
987 nwords += 2;
988 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
989 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
990 nwords * sizeof(mm->saved_auxv[0]));
991}
992
993static const struct file_operations proc_auxv_operations = {
994 .open = auxv_open,
995 .read = auxv_read,
996 .llseek = generic_file_llseek,
997 .release = mem_release,
998};
999
1000static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1001 loff_t *ppos)
1002{
1003 struct task_struct *task = get_proc_task(file_inode(file));
1004 char buffer[PROC_NUMBUF];
1005 int oom_adj = OOM_ADJUST_MIN;
1006 size_t len;
1007
1008 if (!task)
1009 return -ESRCH;
1010 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1011 oom_adj = OOM_ADJUST_MAX;
1012 else
1013 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1014 OOM_SCORE_ADJ_MAX;
1015 put_task_struct(task);
1016 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1017 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1018}
1019
1020static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1021{
1022 static DEFINE_MUTEX(oom_adj_mutex);
1023 struct mm_struct *mm = NULL;
1024 struct task_struct *task;
1025 int err = 0;
1026
1027 task = get_proc_task(file_inode(file));
1028 if (!task)
1029 return -ESRCH;
1030
1031 mutex_lock(&oom_adj_mutex);
1032 if (legacy) {
1033 if (oom_adj < task->signal->oom_score_adj &&
1034 !capable(CAP_SYS_RESOURCE)) {
1035 err = -EACCES;
1036 goto err_unlock;
1037 }
1038 /*
1039 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1040 * /proc/pid/oom_score_adj instead.
1041 */
1042 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1043 current->comm, task_pid_nr(current), task_pid_nr(task),
1044 task_pid_nr(task));
1045 } else {
1046 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1047 !capable(CAP_SYS_RESOURCE)) {
1048 err = -EACCES;
1049 goto err_unlock;
1050 }
1051 }
1052
1053 /*
1054 * Make sure we will check other processes sharing the mm if this is
1055 * not vfrok which wants its own oom_score_adj.
1056 * pin the mm so it doesn't go away and get reused after task_unlock
1057 */
1058 if (!task->vfork_done) {
1059 struct task_struct *p = find_lock_task_mm(task);
1060
1061 if (p) {
1062 if (atomic_read(&p->mm->mm_users) > 1) {
1063 mm = p->mm;
1064 mmgrab(mm);
1065 }
1066 task_unlock(p);
1067 }
1068 }
1069
1070 task->signal->oom_score_adj = oom_adj;
1071 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1072 task->signal->oom_score_adj_min = (short)oom_adj;
1073 trace_oom_score_adj_update(task);
1074
1075 if (mm) {
1076 struct task_struct *p;
1077
1078 rcu_read_lock();
1079 for_each_process(p) {
1080 if (same_thread_group(task, p))
1081 continue;
1082
1083 /* do not touch kernel threads or the global init */
1084 if (p->flags & PF_KTHREAD || is_global_init(p))
1085 continue;
1086
1087 task_lock(p);
1088 if (!p->vfork_done && process_shares_mm(p, mm)) {
1089 pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1090 task_pid_nr(p), p->comm,
1091 p->signal->oom_score_adj, oom_adj,
1092 task_pid_nr(task), task->comm);
1093 p->signal->oom_score_adj = oom_adj;
1094 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1095 p->signal->oom_score_adj_min = (short)oom_adj;
1096 }
1097 task_unlock(p);
1098 }
1099 rcu_read_unlock();
1100 mmdrop(mm);
1101 }
1102err_unlock:
1103 mutex_unlock(&oom_adj_mutex);
1104 put_task_struct(task);
1105 return err;
1106}
1107
1108/*
1109 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1110 * kernels. The effective policy is defined by oom_score_adj, which has a
1111 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1112 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1113 * Processes that become oom disabled via oom_adj will still be oom disabled
1114 * with this implementation.
1115 *
1116 * oom_adj cannot be removed since existing userspace binaries use it.
1117 */
1118static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1119 size_t count, loff_t *ppos)
1120{
1121 char buffer[PROC_NUMBUF];
1122 int oom_adj;
1123 int err;
1124
1125 memset(buffer, 0, sizeof(buffer));
1126 if (count > sizeof(buffer) - 1)
1127 count = sizeof(buffer) - 1;
1128 if (copy_from_user(buffer, buf, count)) {
1129 err = -EFAULT;
1130 goto out;
1131 }
1132
1133 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1134 if (err)
1135 goto out;
1136 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1137 oom_adj != OOM_DISABLE) {
1138 err = -EINVAL;
1139 goto out;
1140 }
1141
1142 /*
1143 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1144 * value is always attainable.
1145 */
1146 if (oom_adj == OOM_ADJUST_MAX)
1147 oom_adj = OOM_SCORE_ADJ_MAX;
1148 else
1149 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1150
1151 err = __set_oom_adj(file, oom_adj, true);
1152out:
1153 return err < 0 ? err : count;
1154}
1155
1156static const struct file_operations proc_oom_adj_operations = {
1157 .read = oom_adj_read,
1158 .write = oom_adj_write,
1159 .llseek = generic_file_llseek,
1160};
1161
1162static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1163 size_t count, loff_t *ppos)
1164{
1165 struct task_struct *task = get_proc_task(file_inode(file));
1166 char buffer[PROC_NUMBUF];
1167 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1168 size_t len;
1169
1170 if (!task)
1171 return -ESRCH;
1172 oom_score_adj = task->signal->oom_score_adj;
1173 put_task_struct(task);
1174 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1175 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1176}
1177
1178static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1179 size_t count, loff_t *ppos)
1180{
1181 char buffer[PROC_NUMBUF];
1182 int oom_score_adj;
1183 int err;
1184
1185 memset(buffer, 0, sizeof(buffer));
1186 if (count > sizeof(buffer) - 1)
1187 count = sizeof(buffer) - 1;
1188 if (copy_from_user(buffer, buf, count)) {
1189 err = -EFAULT;
1190 goto out;
1191 }
1192
1193 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1194 if (err)
1195 goto out;
1196 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1197 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1198 err = -EINVAL;
1199 goto out;
1200 }
1201
1202 err = __set_oom_adj(file, oom_score_adj, false);
1203out:
1204 return err < 0 ? err : count;
1205}
1206
1207static const struct file_operations proc_oom_score_adj_operations = {
1208 .read = oom_score_adj_read,
1209 .write = oom_score_adj_write,
1210 .llseek = default_llseek,
1211};
1212
1213#ifdef CONFIG_AUDITSYSCALL
1214#define TMPBUFLEN 11
1215static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1216 size_t count, loff_t *ppos)
1217{
1218 struct inode * inode = file_inode(file);
1219 struct task_struct *task = get_proc_task(inode);
1220 ssize_t length;
1221 char tmpbuf[TMPBUFLEN];
1222
1223 if (!task)
1224 return -ESRCH;
1225 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1226 from_kuid(file->f_cred->user_ns,
1227 audit_get_loginuid(task)));
1228 put_task_struct(task);
1229 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1230}
1231
1232static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1233 size_t count, loff_t *ppos)
1234{
1235 struct inode * inode = file_inode(file);
1236 uid_t loginuid;
1237 kuid_t kloginuid;
1238 int rv;
1239
1240 rcu_read_lock();
1241 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1242 rcu_read_unlock();
1243 return -EPERM;
1244 }
1245 rcu_read_unlock();
1246
1247 if (*ppos != 0) {
1248 /* No partial writes. */
1249 return -EINVAL;
1250 }
1251
1252 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1253 if (rv < 0)
1254 return rv;
1255
1256 /* is userspace tring to explicitly UNSET the loginuid? */
1257 if (loginuid == AUDIT_UID_UNSET) {
1258 kloginuid = INVALID_UID;
1259 } else {
1260 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1261 if (!uid_valid(kloginuid))
1262 return -EINVAL;
1263 }
1264
1265 rv = audit_set_loginuid(kloginuid);
1266 if (rv < 0)
1267 return rv;
1268 return count;
1269}
1270
1271static const struct file_operations proc_loginuid_operations = {
1272 .read = proc_loginuid_read,
1273 .write = proc_loginuid_write,
1274 .llseek = generic_file_llseek,
1275};
1276
1277static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1278 size_t count, loff_t *ppos)
1279{
1280 struct inode * inode = file_inode(file);
1281 struct task_struct *task = get_proc_task(inode);
1282 ssize_t length;
1283 char tmpbuf[TMPBUFLEN];
1284
1285 if (!task)
1286 return -ESRCH;
1287 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1288 audit_get_sessionid(task));
1289 put_task_struct(task);
1290 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1291}
1292
1293static const struct file_operations proc_sessionid_operations = {
1294 .read = proc_sessionid_read,
1295 .llseek = generic_file_llseek,
1296};
1297#endif
1298
1299#ifdef CONFIG_FAULT_INJECTION
1300static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1301 size_t count, loff_t *ppos)
1302{
1303 struct task_struct *task = get_proc_task(file_inode(file));
1304 char buffer[PROC_NUMBUF];
1305 size_t len;
1306 int make_it_fail;
1307
1308 if (!task)
1309 return -ESRCH;
1310 make_it_fail = task->make_it_fail;
1311 put_task_struct(task);
1312
1313 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1314
1315 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1316}
1317
1318static ssize_t proc_fault_inject_write(struct file * file,
1319 const char __user * buf, size_t count, loff_t *ppos)
1320{
1321 struct task_struct *task;
1322 char buffer[PROC_NUMBUF];
1323 int make_it_fail;
1324 int rv;
1325
1326 if (!capable(CAP_SYS_RESOURCE))
1327 return -EPERM;
1328 memset(buffer, 0, sizeof(buffer));
1329 if (count > sizeof(buffer) - 1)
1330 count = sizeof(buffer) - 1;
1331 if (copy_from_user(buffer, buf, count))
1332 return -EFAULT;
1333 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1334 if (rv < 0)
1335 return rv;
1336 if (make_it_fail < 0 || make_it_fail > 1)
1337 return -EINVAL;
1338
1339 task = get_proc_task(file_inode(file));
1340 if (!task)
1341 return -ESRCH;
1342 task->make_it_fail = make_it_fail;
1343 put_task_struct(task);
1344
1345 return count;
1346}
1347
1348static const struct file_operations proc_fault_inject_operations = {
1349 .read = proc_fault_inject_read,
1350 .write = proc_fault_inject_write,
1351 .llseek = generic_file_llseek,
1352};
1353
1354static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1355 size_t count, loff_t *ppos)
1356{
1357 struct task_struct *task;
1358 int err;
1359 unsigned int n;
1360
1361 err = kstrtouint_from_user(buf, count, 0, &n);
1362 if (err)
1363 return err;
1364
1365 task = get_proc_task(file_inode(file));
1366 if (!task)
1367 return -ESRCH;
1368 task->fail_nth = n;
1369 put_task_struct(task);
1370
1371 return count;
1372}
1373
1374static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1375 size_t count, loff_t *ppos)
1376{
1377 struct task_struct *task;
1378 char numbuf[PROC_NUMBUF];
1379 ssize_t len;
1380
1381 task = get_proc_task(file_inode(file));
1382 if (!task)
1383 return -ESRCH;
1384 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1385 put_task_struct(task);
1386 return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1387}
1388
1389static const struct file_operations proc_fail_nth_operations = {
1390 .read = proc_fail_nth_read,
1391 .write = proc_fail_nth_write,
1392};
1393#endif
1394
1395
1396#ifdef CONFIG_SCHED_DEBUG
1397/*
1398 * Print out various scheduling related per-task fields:
1399 */
1400static int sched_show(struct seq_file *m, void *v)
1401{
1402 struct inode *inode = m->private;
1403 struct pid_namespace *ns = proc_pid_ns(inode);
1404 struct task_struct *p;
1405
1406 p = get_proc_task(inode);
1407 if (!p)
1408 return -ESRCH;
1409 proc_sched_show_task(p, ns, m);
1410
1411 put_task_struct(p);
1412
1413 return 0;
1414}
1415
1416static ssize_t
1417sched_write(struct file *file, const char __user *buf,
1418 size_t count, loff_t *offset)
1419{
1420 struct inode *inode = file_inode(file);
1421 struct task_struct *p;
1422
1423 p = get_proc_task(inode);
1424 if (!p)
1425 return -ESRCH;
1426 proc_sched_set_task(p);
1427
1428 put_task_struct(p);
1429
1430 return count;
1431}
1432
1433static int sched_open(struct inode *inode, struct file *filp)
1434{
1435 return single_open(filp, sched_show, inode);
1436}
1437
1438static const struct file_operations proc_pid_sched_operations = {
1439 .open = sched_open,
1440 .read = seq_read,
1441 .write = sched_write,
1442 .llseek = seq_lseek,
1443 .release = single_release,
1444};
1445
1446#endif
1447
1448#ifdef CONFIG_SCHED_AUTOGROUP
1449/*
1450 * Print out autogroup related information:
1451 */
1452static int sched_autogroup_show(struct seq_file *m, void *v)
1453{
1454 struct inode *inode = m->private;
1455 struct task_struct *p;
1456
1457 p = get_proc_task(inode);
1458 if (!p)
1459 return -ESRCH;
1460 proc_sched_autogroup_show_task(p, m);
1461
1462 put_task_struct(p);
1463
1464 return 0;
1465}
1466
1467static ssize_t
1468sched_autogroup_write(struct file *file, const char __user *buf,
1469 size_t count, loff_t *offset)
1470{
1471 struct inode *inode = file_inode(file);
1472 struct task_struct *p;
1473 char buffer[PROC_NUMBUF];
1474 int nice;
1475 int err;
1476
1477 memset(buffer, 0, sizeof(buffer));
1478 if (count > sizeof(buffer) - 1)
1479 count = sizeof(buffer) - 1;
1480 if (copy_from_user(buffer, buf, count))
1481 return -EFAULT;
1482
1483 err = kstrtoint(strstrip(buffer), 0, &nice);
1484 if (err < 0)
1485 return err;
1486
1487 p = get_proc_task(inode);
1488 if (!p)
1489 return -ESRCH;
1490
1491 err = proc_sched_autogroup_set_nice(p, nice);
1492 if (err)
1493 count = err;
1494
1495 put_task_struct(p);
1496
1497 return count;
1498}
1499
1500static int sched_autogroup_open(struct inode *inode, struct file *filp)
1501{
1502 int ret;
1503
1504 ret = single_open(filp, sched_autogroup_show, NULL);
1505 if (!ret) {
1506 struct seq_file *m = filp->private_data;
1507
1508 m->private = inode;
1509 }
1510 return ret;
1511}
1512
1513static const struct file_operations proc_pid_sched_autogroup_operations = {
1514 .open = sched_autogroup_open,
1515 .read = seq_read,
1516 .write = sched_autogroup_write,
1517 .llseek = seq_lseek,
1518 .release = single_release,
1519};
1520
1521#endif /* CONFIG_SCHED_AUTOGROUP */
1522
1523static ssize_t comm_write(struct file *file, const char __user *buf,
1524 size_t count, loff_t *offset)
1525{
1526 struct inode *inode = file_inode(file);
1527 struct task_struct *p;
1528 char buffer[TASK_COMM_LEN];
1529 const size_t maxlen = sizeof(buffer) - 1;
1530
1531 memset(buffer, 0, sizeof(buffer));
1532 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1533 return -EFAULT;
1534
1535 p = get_proc_task(inode);
1536 if (!p)
1537 return -ESRCH;
1538
1539 if (same_thread_group(current, p))
1540 set_task_comm(p, buffer);
1541 else
1542 count = -EINVAL;
1543
1544 put_task_struct(p);
1545
1546 return count;
1547}
1548
1549static int comm_show(struct seq_file *m, void *v)
1550{
1551 struct inode *inode = m->private;
1552 struct task_struct *p;
1553
1554 p = get_proc_task(inode);
1555 if (!p)
1556 return -ESRCH;
1557
1558 proc_task_name(m, p, false);
1559 seq_putc(m, '\n');
1560
1561 put_task_struct(p);
1562
1563 return 0;
1564}
1565
1566static int comm_open(struct inode *inode, struct file *filp)
1567{
1568 return single_open(filp, comm_show, inode);
1569}
1570
1571static const struct file_operations proc_pid_set_comm_operations = {
1572 .open = comm_open,
1573 .read = seq_read,
1574 .write = comm_write,
1575 .llseek = seq_lseek,
1576 .release = single_release,
1577};
1578
1579static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1580{
1581 struct task_struct *task;
1582 struct file *exe_file;
1583
1584 task = get_proc_task(d_inode(dentry));
1585 if (!task)
1586 return -ENOENT;
1587 exe_file = get_task_exe_file(task);
1588 put_task_struct(task);
1589 if (exe_file) {
1590 *exe_path = exe_file->f_path;
1591 path_get(&exe_file->f_path);
1592 fput(exe_file);
1593 return 0;
1594 } else
1595 return -ENOENT;
1596}
1597
1598static const char *proc_pid_get_link(struct dentry *dentry,
1599 struct inode *inode,
1600 struct delayed_call *done)
1601{
1602 struct path path;
1603 int error = -EACCES;
1604
1605 if (!dentry)
1606 return ERR_PTR(-ECHILD);
1607
1608 /* Are we allowed to snoop on the tasks file descriptors? */
1609 if (!proc_fd_access_allowed(inode))
1610 goto out;
1611
1612 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1613 if (error)
1614 goto out;
1615
1616 nd_jump_link(&path);
1617 return NULL;
1618out:
1619 return ERR_PTR(error);
1620}
1621
1622static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1623{
1624 char *tmp = (char *)__get_free_page(GFP_KERNEL);
1625 char *pathname;
1626 int len;
1627
1628 if (!tmp)
1629 return -ENOMEM;
1630
1631 pathname = d_path(path, tmp, PAGE_SIZE);
1632 len = PTR_ERR(pathname);
1633 if (IS_ERR(pathname))
1634 goto out;
1635 len = tmp + PAGE_SIZE - 1 - pathname;
1636
1637 if (len > buflen)
1638 len = buflen;
1639 if (copy_to_user(buffer, pathname, len))
1640 len = -EFAULT;
1641 out:
1642 free_page((unsigned long)tmp);
1643 return len;
1644}
1645
1646static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1647{
1648 int error = -EACCES;
1649 struct inode *inode = d_inode(dentry);
1650 struct path path;
1651
1652 /* Are we allowed to snoop on the tasks file descriptors? */
1653 if (!proc_fd_access_allowed(inode))
1654 goto out;
1655
1656 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1657 if (error)
1658 goto out;
1659
1660 error = do_proc_readlink(&path, buffer, buflen);
1661 path_put(&path);
1662out:
1663 return error;
1664}
1665
1666const struct inode_operations proc_pid_link_inode_operations = {
1667 .readlink = proc_pid_readlink,
1668 .get_link = proc_pid_get_link,
1669 .setattr = proc_setattr,
1670};
1671
1672
1673/* building an inode */
1674
1675void task_dump_owner(struct task_struct *task, umode_t mode,
1676 kuid_t *ruid, kgid_t *rgid)
1677{
1678 /* Depending on the state of dumpable compute who should own a
1679 * proc file for a task.
1680 */
1681 const struct cred *cred;
1682 kuid_t uid;
1683 kgid_t gid;
1684
1685 if (unlikely(task->flags & PF_KTHREAD)) {
1686 *ruid = GLOBAL_ROOT_UID;
1687 *rgid = GLOBAL_ROOT_GID;
1688 return;
1689 }
1690
1691 /* Default to the tasks effective ownership */
1692 rcu_read_lock();
1693 cred = __task_cred(task);
1694 uid = cred->euid;
1695 gid = cred->egid;
1696 rcu_read_unlock();
1697
1698 /*
1699 * Before the /proc/pid/status file was created the only way to read
1700 * the effective uid of a /process was to stat /proc/pid. Reading
1701 * /proc/pid/status is slow enough that procps and other packages
1702 * kept stating /proc/pid. To keep the rules in /proc simple I have
1703 * made this apply to all per process world readable and executable
1704 * directories.
1705 */
1706 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1707 struct mm_struct *mm;
1708 task_lock(task);
1709 mm = task->mm;
1710 /* Make non-dumpable tasks owned by some root */
1711 if (mm) {
1712 if (get_dumpable(mm) != SUID_DUMP_USER) {
1713 struct user_namespace *user_ns = mm->user_ns;
1714
1715 uid = make_kuid(user_ns, 0);
1716 if (!uid_valid(uid))
1717 uid = GLOBAL_ROOT_UID;
1718
1719 gid = make_kgid(user_ns, 0);
1720 if (!gid_valid(gid))
1721 gid = GLOBAL_ROOT_GID;
1722 }
1723 } else {
1724 uid = GLOBAL_ROOT_UID;
1725 gid = GLOBAL_ROOT_GID;
1726 }
1727 task_unlock(task);
1728 }
1729 *ruid = uid;
1730 *rgid = gid;
1731}
1732
1733struct inode *proc_pid_make_inode(struct super_block * sb,
1734 struct task_struct *task, umode_t mode)
1735{
1736 struct inode * inode;
1737 struct proc_inode *ei;
1738
1739 /* We need a new inode */
1740
1741 inode = new_inode(sb);
1742 if (!inode)
1743 goto out;
1744
1745 /* Common stuff */
1746 ei = PROC_I(inode);
1747 inode->i_mode = mode;
1748 inode->i_ino = get_next_ino();
1749 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1750 inode->i_op = &proc_def_inode_operations;
1751
1752 /*
1753 * grab the reference to task.
1754 */
1755 ei->pid = get_task_pid(task, PIDTYPE_PID);
1756 if (!ei->pid)
1757 goto out_unlock;
1758
1759 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1760 security_task_to_inode(task, inode);
1761
1762out:
1763 return inode;
1764
1765out_unlock:
1766 iput(inode);
1767 return NULL;
1768}
1769
1770int pid_getattr(const struct path *path, struct kstat *stat,
1771 u32 request_mask, unsigned int query_flags)
1772{
1773 struct inode *inode = d_inode(path->dentry);
1774 struct pid_namespace *pid = proc_pid_ns(inode);
1775 struct task_struct *task;
1776
1777 generic_fillattr(inode, stat);
1778
1779 stat->uid = GLOBAL_ROOT_UID;
1780 stat->gid = GLOBAL_ROOT_GID;
1781 rcu_read_lock();
1782 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1783 if (task) {
1784 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1785 rcu_read_unlock();
1786 /*
1787 * This doesn't prevent learning whether PID exists,
1788 * it only makes getattr() consistent with readdir().
1789 */
1790 return -ENOENT;
1791 }
1792 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1793 }
1794 rcu_read_unlock();
1795 return 0;
1796}
1797
1798/* dentry stuff */
1799
1800/*
1801 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1802 */
1803void pid_update_inode(struct task_struct *task, struct inode *inode)
1804{
1805 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1806
1807 inode->i_mode &= ~(S_ISUID | S_ISGID);
1808 security_task_to_inode(task, inode);
1809}
1810
1811/*
1812 * Rewrite the inode's ownerships here because the owning task may have
1813 * performed a setuid(), etc.
1814 *
1815 */
1816static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1817{
1818 struct inode *inode;
1819 struct task_struct *task;
1820
1821 if (flags & LOOKUP_RCU)
1822 return -ECHILD;
1823
1824 inode = d_inode(dentry);
1825 task = get_proc_task(inode);
1826
1827 if (task) {
1828 pid_update_inode(task, inode);
1829 put_task_struct(task);
1830 return 1;
1831 }
1832 return 0;
1833}
1834
1835static inline bool proc_inode_is_dead(struct inode *inode)
1836{
1837 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1838}
1839
1840int pid_delete_dentry(const struct dentry *dentry)
1841{
1842 /* Is the task we represent dead?
1843 * If so, then don't put the dentry on the lru list,
1844 * kill it immediately.
1845 */
1846 return proc_inode_is_dead(d_inode(dentry));
1847}
1848
1849const struct dentry_operations pid_dentry_operations =
1850{
1851 .d_revalidate = pid_revalidate,
1852 .d_delete = pid_delete_dentry,
1853};
1854
1855/* Lookups */
1856
1857/*
1858 * Fill a directory entry.
1859 *
1860 * If possible create the dcache entry and derive our inode number and
1861 * file type from dcache entry.
1862 *
1863 * Since all of the proc inode numbers are dynamically generated, the inode
1864 * numbers do not exist until the inode is cache. This means creating the
1865 * the dcache entry in readdir is necessary to keep the inode numbers
1866 * reported by readdir in sync with the inode numbers reported
1867 * by stat.
1868 */
1869bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1870 const char *name, unsigned int len,
1871 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1872{
1873 struct dentry *child, *dir = file->f_path.dentry;
1874 struct qstr qname = QSTR_INIT(name, len);
1875 struct inode *inode;
1876 unsigned type = DT_UNKNOWN;
1877 ino_t ino = 1;
1878
1879 child = d_hash_and_lookup(dir, &qname);
1880 if (!child) {
1881 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1882 child = d_alloc_parallel(dir, &qname, &wq);
1883 if (IS_ERR(child))
1884 goto end_instantiate;
1885 if (d_in_lookup(child)) {
1886 struct dentry *res;
1887 res = instantiate(child, task, ptr);
1888 d_lookup_done(child);
1889 if (unlikely(res)) {
1890 dput(child);
1891 child = res;
1892 if (IS_ERR(child))
1893 goto end_instantiate;
1894 }
1895 }
1896 }
1897 inode = d_inode(child);
1898 ino = inode->i_ino;
1899 type = inode->i_mode >> 12;
1900 dput(child);
1901end_instantiate:
1902 return dir_emit(ctx, name, len, ino, type);
1903}
1904
1905/*
1906 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1907 * which represent vma start and end addresses.
1908 */
1909static int dname_to_vma_addr(struct dentry *dentry,
1910 unsigned long *start, unsigned long *end)
1911{
1912 const char *str = dentry->d_name.name;
1913 unsigned long long sval, eval;
1914 unsigned int len;
1915
1916 if (str[0] == '0' && str[1] != '-')
1917 return -EINVAL;
1918 len = _parse_integer(str, 16, &sval);
1919 if (len & KSTRTOX_OVERFLOW)
1920 return -EINVAL;
1921 if (sval != (unsigned long)sval)
1922 return -EINVAL;
1923 str += len;
1924
1925 if (*str != '-')
1926 return -EINVAL;
1927 str++;
1928
1929 if (str[0] == '0' && str[1])
1930 return -EINVAL;
1931 len = _parse_integer(str, 16, &eval);
1932 if (len & KSTRTOX_OVERFLOW)
1933 return -EINVAL;
1934 if (eval != (unsigned long)eval)
1935 return -EINVAL;
1936 str += len;
1937
1938 if (*str != '\0')
1939 return -EINVAL;
1940
1941 *start = sval;
1942 *end = eval;
1943
1944 return 0;
1945}
1946
1947static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1948{
1949 unsigned long vm_start, vm_end;
1950 bool exact_vma_exists = false;
1951 struct mm_struct *mm = NULL;
1952 struct task_struct *task;
1953 struct inode *inode;
1954 int status = 0;
1955
1956 if (flags & LOOKUP_RCU)
1957 return -ECHILD;
1958
1959 inode = d_inode(dentry);
1960 task = get_proc_task(inode);
1961 if (!task)
1962 goto out_notask;
1963
1964 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1965 if (IS_ERR_OR_NULL(mm))
1966 goto out;
1967
1968 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1969 down_read(&mm->mmap_sem);
1970 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1971 up_read(&mm->mmap_sem);
1972 }
1973
1974 mmput(mm);
1975
1976 if (exact_vma_exists) {
1977 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1978
1979 security_task_to_inode(task, inode);
1980 status = 1;
1981 }
1982
1983out:
1984 put_task_struct(task);
1985
1986out_notask:
1987 return status;
1988}
1989
1990static const struct dentry_operations tid_map_files_dentry_operations = {
1991 .d_revalidate = map_files_d_revalidate,
1992 .d_delete = pid_delete_dentry,
1993};
1994
1995static int map_files_get_link(struct dentry *dentry, struct path *path)
1996{
1997 unsigned long vm_start, vm_end;
1998 struct vm_area_struct *vma;
1999 struct task_struct *task;
2000 struct mm_struct *mm;
2001 int rc;
2002
2003 rc = -ENOENT;
2004 task = get_proc_task(d_inode(dentry));
2005 if (!task)
2006 goto out;
2007
2008 mm = get_task_mm(task);
2009 put_task_struct(task);
2010 if (!mm)
2011 goto out;
2012
2013 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2014 if (rc)
2015 goto out_mmput;
2016
2017 rc = -ENOENT;
2018 down_read(&mm->mmap_sem);
2019 vma = find_exact_vma(mm, vm_start, vm_end);
2020 if (vma && vma->vm_file) {
2021 *path = vma->vm_file->f_path;
2022 path_get(path);
2023 rc = 0;
2024 }
2025 up_read(&mm->mmap_sem);
2026
2027out_mmput:
2028 mmput(mm);
2029out:
2030 return rc;
2031}
2032
2033struct map_files_info {
2034 unsigned long start;
2035 unsigned long end;
2036 fmode_t mode;
2037};
2038
2039/*
2040 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2041 * symlinks may be used to bypass permissions on ancestor directories in the
2042 * path to the file in question.
2043 */
2044static const char *
2045proc_map_files_get_link(struct dentry *dentry,
2046 struct inode *inode,
2047 struct delayed_call *done)
2048{
2049 if (!capable(CAP_SYS_ADMIN))
2050 return ERR_PTR(-EPERM);
2051
2052 return proc_pid_get_link(dentry, inode, done);
2053}
2054
2055/*
2056 * Identical to proc_pid_link_inode_operations except for get_link()
2057 */
2058static const struct inode_operations proc_map_files_link_inode_operations = {
2059 .readlink = proc_pid_readlink,
2060 .get_link = proc_map_files_get_link,
2061 .setattr = proc_setattr,
2062};
2063
2064static struct dentry *
2065proc_map_files_instantiate(struct dentry *dentry,
2066 struct task_struct *task, const void *ptr)
2067{
2068 fmode_t mode = (fmode_t)(unsigned long)ptr;
2069 struct proc_inode *ei;
2070 struct inode *inode;
2071
2072 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2073 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2074 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2075 if (!inode)
2076 return ERR_PTR(-ENOENT);
2077
2078 ei = PROC_I(inode);
2079 ei->op.proc_get_link = map_files_get_link;
2080
2081 inode->i_op = &proc_map_files_link_inode_operations;
2082 inode->i_size = 64;
2083
2084 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2085 return d_splice_alias(inode, dentry);
2086}
2087
2088static struct dentry *proc_map_files_lookup(struct inode *dir,
2089 struct dentry *dentry, unsigned int flags)
2090{
2091 unsigned long vm_start, vm_end;
2092 struct vm_area_struct *vma;
2093 struct task_struct *task;
2094 struct dentry *result;
2095 struct mm_struct *mm;
2096
2097 result = ERR_PTR(-ENOENT);
2098 task = get_proc_task(dir);
2099 if (!task)
2100 goto out;
2101
2102 result = ERR_PTR(-EACCES);
2103 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2104 goto out_put_task;
2105
2106 result = ERR_PTR(-ENOENT);
2107 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2108 goto out_put_task;
2109
2110 mm = get_task_mm(task);
2111 if (!mm)
2112 goto out_put_task;
2113
2114 down_read(&mm->mmap_sem);
2115 vma = find_exact_vma(mm, vm_start, vm_end);
2116 if (!vma)
2117 goto out_no_vma;
2118
2119 if (vma->vm_file)
2120 result = proc_map_files_instantiate(dentry, task,
2121 (void *)(unsigned long)vma->vm_file->f_mode);
2122
2123out_no_vma:
2124 up_read(&mm->mmap_sem);
2125 mmput(mm);
2126out_put_task:
2127 put_task_struct(task);
2128out:
2129 return result;
2130}
2131
2132static const struct inode_operations proc_map_files_inode_operations = {
2133 .lookup = proc_map_files_lookup,
2134 .permission = proc_fd_permission,
2135 .setattr = proc_setattr,
2136};
2137
2138static int
2139proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2140{
2141 struct vm_area_struct *vma;
2142 struct task_struct *task;
2143 struct mm_struct *mm;
2144 unsigned long nr_files, pos, i;
2145 struct flex_array *fa = NULL;
2146 struct map_files_info info;
2147 struct map_files_info *p;
2148 int ret;
2149
2150 ret = -ENOENT;
2151 task = get_proc_task(file_inode(file));
2152 if (!task)
2153 goto out;
2154
2155 ret = -EACCES;
2156 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2157 goto out_put_task;
2158
2159 ret = 0;
2160 if (!dir_emit_dots(file, ctx))
2161 goto out_put_task;
2162
2163 mm = get_task_mm(task);
2164 if (!mm)
2165 goto out_put_task;
2166 down_read(&mm->mmap_sem);
2167
2168 nr_files = 0;
2169
2170 /*
2171 * We need two passes here:
2172 *
2173 * 1) Collect vmas of mapped files with mmap_sem taken
2174 * 2) Release mmap_sem and instantiate entries
2175 *
2176 * otherwise we get lockdep complained, since filldir()
2177 * routine might require mmap_sem taken in might_fault().
2178 */
2179
2180 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2181 if (vma->vm_file && ++pos > ctx->pos)
2182 nr_files++;
2183 }
2184
2185 if (nr_files) {
2186 fa = flex_array_alloc(sizeof(info), nr_files,
2187 GFP_KERNEL);
2188 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2189 GFP_KERNEL)) {
2190 ret = -ENOMEM;
2191 if (fa)
2192 flex_array_free(fa);
2193 up_read(&mm->mmap_sem);
2194 mmput(mm);
2195 goto out_put_task;
2196 }
2197 for (i = 0, vma = mm->mmap, pos = 2; vma;
2198 vma = vma->vm_next) {
2199 if (!vma->vm_file)
2200 continue;
2201 if (++pos <= ctx->pos)
2202 continue;
2203
2204 info.start = vma->vm_start;
2205 info.end = vma->vm_end;
2206 info.mode = vma->vm_file->f_mode;
2207 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2208 BUG();
2209 }
2210 }
2211 up_read(&mm->mmap_sem);
2212 mmput(mm);
2213
2214 for (i = 0; i < nr_files; i++) {
2215 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2216 unsigned int len;
2217
2218 p = flex_array_get(fa, i);
2219 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2220 if (!proc_fill_cache(file, ctx,
2221 buf, len,
2222 proc_map_files_instantiate,
2223 task,
2224 (void *)(unsigned long)p->mode))
2225 break;
2226 ctx->pos++;
2227 }
2228 if (fa)
2229 flex_array_free(fa);
2230
2231out_put_task:
2232 put_task_struct(task);
2233out:
2234 return ret;
2235}
2236
2237static const struct file_operations proc_map_files_operations = {
2238 .read = generic_read_dir,
2239 .iterate_shared = proc_map_files_readdir,
2240 .llseek = generic_file_llseek,
2241};
2242
2243#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2244struct timers_private {
2245 struct pid *pid;
2246 struct task_struct *task;
2247 struct sighand_struct *sighand;
2248 struct pid_namespace *ns;
2249 unsigned long flags;
2250};
2251
2252static void *timers_start(struct seq_file *m, loff_t *pos)
2253{
2254 struct timers_private *tp = m->private;
2255
2256 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2257 if (!tp->task)
2258 return ERR_PTR(-ESRCH);
2259
2260 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2261 if (!tp->sighand)
2262 return ERR_PTR(-ESRCH);
2263
2264 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2265}
2266
2267static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2268{
2269 struct timers_private *tp = m->private;
2270 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2271}
2272
2273static void timers_stop(struct seq_file *m, void *v)
2274{
2275 struct timers_private *tp = m->private;
2276
2277 if (tp->sighand) {
2278 unlock_task_sighand(tp->task, &tp->flags);
2279 tp->sighand = NULL;
2280 }
2281
2282 if (tp->task) {
2283 put_task_struct(tp->task);
2284 tp->task = NULL;
2285 }
2286}
2287
2288static int show_timer(struct seq_file *m, void *v)
2289{
2290 struct k_itimer *timer;
2291 struct timers_private *tp = m->private;
2292 int notify;
2293 static const char * const nstr[] = {
2294 [SIGEV_SIGNAL] = "signal",
2295 [SIGEV_NONE] = "none",
2296 [SIGEV_THREAD] = "thread",
2297 };
2298
2299 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2300 notify = timer->it_sigev_notify;
2301
2302 seq_printf(m, "ID: %d\n", timer->it_id);
2303 seq_printf(m, "signal: %d/%px\n",
2304 timer->sigq->info.si_signo,
2305 timer->sigq->info.si_value.sival_ptr);
2306 seq_printf(m, "notify: %s/%s.%d\n",
2307 nstr[notify & ~SIGEV_THREAD_ID],
2308 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2309 pid_nr_ns(timer->it_pid, tp->ns));
2310 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2311
2312 return 0;
2313}
2314
2315static const struct seq_operations proc_timers_seq_ops = {
2316 .start = timers_start,
2317 .next = timers_next,
2318 .stop = timers_stop,
2319 .show = show_timer,
2320};
2321
2322static int proc_timers_open(struct inode *inode, struct file *file)
2323{
2324 struct timers_private *tp;
2325
2326 tp = __seq_open_private(file, &proc_timers_seq_ops,
2327 sizeof(struct timers_private));
2328 if (!tp)
2329 return -ENOMEM;
2330
2331 tp->pid = proc_pid(inode);
2332 tp->ns = proc_pid_ns(inode);
2333 return 0;
2334}
2335
2336static const struct file_operations proc_timers_operations = {
2337 .open = proc_timers_open,
2338 .read = seq_read,
2339 .llseek = seq_lseek,
2340 .release = seq_release_private,
2341};
2342#endif
2343
2344static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2345 size_t count, loff_t *offset)
2346{
2347 struct inode *inode = file_inode(file);
2348 struct task_struct *p;
2349 u64 slack_ns;
2350 int err;
2351
2352 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2353 if (err < 0)
2354 return err;
2355
2356 p = get_proc_task(inode);
2357 if (!p)
2358 return -ESRCH;
2359
2360 if (p != current) {
2361 rcu_read_lock();
2362 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2363 rcu_read_unlock();
2364 count = -EPERM;
2365 goto out;
2366 }
2367 rcu_read_unlock();
2368
2369 err = security_task_setscheduler(p);
2370 if (err) {
2371 count = err;
2372 goto out;
2373 }
2374 }
2375
2376 task_lock(p);
2377 if (slack_ns == 0)
2378 p->timer_slack_ns = p->default_timer_slack_ns;
2379 else
2380 p->timer_slack_ns = slack_ns;
2381 task_unlock(p);
2382
2383out:
2384 put_task_struct(p);
2385
2386 return count;
2387}
2388
2389static int timerslack_ns_show(struct seq_file *m, void *v)
2390{
2391 struct inode *inode = m->private;
2392 struct task_struct *p;
2393 int err = 0;
2394
2395 p = get_proc_task(inode);
2396 if (!p)
2397 return -ESRCH;
2398
2399 if (p != current) {
2400 rcu_read_lock();
2401 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2402 rcu_read_unlock();
2403 err = -EPERM;
2404 goto out;
2405 }
2406 rcu_read_unlock();
2407
2408 err = security_task_getscheduler(p);
2409 if (err)
2410 goto out;
2411 }
2412
2413 task_lock(p);
2414 seq_printf(m, "%llu\n", p->timer_slack_ns);
2415 task_unlock(p);
2416
2417out:
2418 put_task_struct(p);
2419
2420 return err;
2421}
2422
2423static int timerslack_ns_open(struct inode *inode, struct file *filp)
2424{
2425 return single_open(filp, timerslack_ns_show, inode);
2426}
2427
2428static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2429 .open = timerslack_ns_open,
2430 .read = seq_read,
2431 .write = timerslack_ns_write,
2432 .llseek = seq_lseek,
2433 .release = single_release,
2434};
2435
2436static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2437 struct task_struct *task, const void *ptr)
2438{
2439 const struct pid_entry *p = ptr;
2440 struct inode *inode;
2441 struct proc_inode *ei;
2442
2443 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2444 if (!inode)
2445 return ERR_PTR(-ENOENT);
2446
2447 ei = PROC_I(inode);
2448 if (S_ISDIR(inode->i_mode))
2449 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2450 if (p->iop)
2451 inode->i_op = p->iop;
2452 if (p->fop)
2453 inode->i_fop = p->fop;
2454 ei->op = p->op;
2455 pid_update_inode(task, inode);
2456 d_set_d_op(dentry, &pid_dentry_operations);
2457 return d_splice_alias(inode, dentry);
2458}
2459
2460static struct dentry *proc_pident_lookup(struct inode *dir,
2461 struct dentry *dentry,
2462 const struct pid_entry *ents,
2463 unsigned int nents)
2464{
2465 struct task_struct *task = get_proc_task(dir);
2466 const struct pid_entry *p, *last;
2467 struct dentry *res = ERR_PTR(-ENOENT);
2468
2469 if (!task)
2470 goto out_no_task;
2471
2472 /*
2473 * Yes, it does not scale. And it should not. Don't add
2474 * new entries into /proc/<tgid>/ without very good reasons.
2475 */
2476 last = &ents[nents];
2477 for (p = ents; p < last; p++) {
2478 if (p->len != dentry->d_name.len)
2479 continue;
2480 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2481 res = proc_pident_instantiate(dentry, task, p);
2482 break;
2483 }
2484 }
2485 put_task_struct(task);
2486out_no_task:
2487 return res;
2488}
2489
2490static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2491 const struct pid_entry *ents, unsigned int nents)
2492{
2493 struct task_struct *task = get_proc_task(file_inode(file));
2494 const struct pid_entry *p;
2495
2496 if (!task)
2497 return -ENOENT;
2498
2499 if (!dir_emit_dots(file, ctx))
2500 goto out;
2501
2502 if (ctx->pos >= nents + 2)
2503 goto out;
2504
2505 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2506 if (!proc_fill_cache(file, ctx, p->name, p->len,
2507 proc_pident_instantiate, task, p))
2508 break;
2509 ctx->pos++;
2510 }
2511out:
2512 put_task_struct(task);
2513 return 0;
2514}
2515
2516#ifdef CONFIG_SECURITY
2517static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2518 size_t count, loff_t *ppos)
2519{
2520 struct inode * inode = file_inode(file);
2521 char *p = NULL;
2522 ssize_t length;
2523 struct task_struct *task = get_proc_task(inode);
2524
2525 if (!task)
2526 return -ESRCH;
2527
2528 length = security_getprocattr(task,
2529 (char*)file->f_path.dentry->d_name.name,
2530 &p);
2531 put_task_struct(task);
2532 if (length > 0)
2533 length = simple_read_from_buffer(buf, count, ppos, p, length);
2534 kfree(p);
2535 return length;
2536}
2537
2538static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2539 size_t count, loff_t *ppos)
2540{
2541 struct inode * inode = file_inode(file);
2542 struct task_struct *task;
2543 void *page;
2544 int rv;
2545
2546 rcu_read_lock();
2547 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2548 if (!task) {
2549 rcu_read_unlock();
2550 return -ESRCH;
2551 }
2552 /* A task may only write its own attributes. */
2553 if (current != task) {
2554 rcu_read_unlock();
2555 return -EACCES;
2556 }
2557 rcu_read_unlock();
2558
2559 if (count > PAGE_SIZE)
2560 count = PAGE_SIZE;
2561
2562 /* No partial writes. */
2563 if (*ppos != 0)
2564 return -EINVAL;
2565
2566 page = memdup_user(buf, count);
2567 if (IS_ERR(page)) {
2568 rv = PTR_ERR(page);
2569 goto out;
2570 }
2571
2572 /* Guard against adverse ptrace interaction */
2573 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex);
2574 if (rv < 0)
2575 goto out_free;
2576
2577 rv = security_setprocattr(file->f_path.dentry->d_name.name, page, count);
2578 mutex_unlock(¤t->signal->cred_guard_mutex);
2579out_free:
2580 kfree(page);
2581out:
2582 return rv;
2583}
2584
2585static const struct file_operations proc_pid_attr_operations = {
2586 .read = proc_pid_attr_read,
2587 .write = proc_pid_attr_write,
2588 .llseek = generic_file_llseek,
2589};
2590
2591static const struct pid_entry attr_dir_stuff[] = {
2592 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2593 REG("prev", S_IRUGO, proc_pid_attr_operations),
2594 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2595 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2596 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2597 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2598};
2599
2600static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2601{
2602 return proc_pident_readdir(file, ctx,
2603 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2604}
2605
2606static const struct file_operations proc_attr_dir_operations = {
2607 .read = generic_read_dir,
2608 .iterate_shared = proc_attr_dir_readdir,
2609 .llseek = generic_file_llseek,
2610};
2611
2612static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2613 struct dentry *dentry, unsigned int flags)
2614{
2615 return proc_pident_lookup(dir, dentry,
2616 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2617}
2618
2619static const struct inode_operations proc_attr_dir_inode_operations = {
2620 .lookup = proc_attr_dir_lookup,
2621 .getattr = pid_getattr,
2622 .setattr = proc_setattr,
2623};
2624
2625#endif
2626
2627#ifdef CONFIG_ELF_CORE
2628static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2629 size_t count, loff_t *ppos)
2630{
2631 struct task_struct *task = get_proc_task(file_inode(file));
2632 struct mm_struct *mm;
2633 char buffer[PROC_NUMBUF];
2634 size_t len;
2635 int ret;
2636
2637 if (!task)
2638 return -ESRCH;
2639
2640 ret = 0;
2641 mm = get_task_mm(task);
2642 if (mm) {
2643 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2644 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2645 MMF_DUMP_FILTER_SHIFT));
2646 mmput(mm);
2647 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2648 }
2649
2650 put_task_struct(task);
2651
2652 return ret;
2653}
2654
2655static ssize_t proc_coredump_filter_write(struct file *file,
2656 const char __user *buf,
2657 size_t count,
2658 loff_t *ppos)
2659{
2660 struct task_struct *task;
2661 struct mm_struct *mm;
2662 unsigned int val;
2663 int ret;
2664 int i;
2665 unsigned long mask;
2666
2667 ret = kstrtouint_from_user(buf, count, 0, &val);
2668 if (ret < 0)
2669 return ret;
2670
2671 ret = -ESRCH;
2672 task = get_proc_task(file_inode(file));
2673 if (!task)
2674 goto out_no_task;
2675
2676 mm = get_task_mm(task);
2677 if (!mm)
2678 goto out_no_mm;
2679 ret = 0;
2680
2681 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2682 if (val & mask)
2683 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2684 else
2685 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2686 }
2687
2688 mmput(mm);
2689 out_no_mm:
2690 put_task_struct(task);
2691 out_no_task:
2692 if (ret < 0)
2693 return ret;
2694 return count;
2695}
2696
2697static const struct file_operations proc_coredump_filter_operations = {
2698 .read = proc_coredump_filter_read,
2699 .write = proc_coredump_filter_write,
2700 .llseek = generic_file_llseek,
2701};
2702#endif
2703
2704#ifdef CONFIG_TASK_IO_ACCOUNTING
2705static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2706{
2707 struct task_io_accounting acct = task->ioac;
2708 unsigned long flags;
2709 int result;
2710
2711 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2712 if (result)
2713 return result;
2714
2715 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2716 result = -EACCES;
2717 goto out_unlock;
2718 }
2719
2720 if (whole && lock_task_sighand(task, &flags)) {
2721 struct task_struct *t = task;
2722
2723 task_io_accounting_add(&acct, &task->signal->ioac);
2724 while_each_thread(task, t)
2725 task_io_accounting_add(&acct, &t->ioac);
2726
2727 unlock_task_sighand(task, &flags);
2728 }
2729 seq_printf(m,
2730 "rchar: %llu\n"
2731 "wchar: %llu\n"
2732 "syscr: %llu\n"
2733 "syscw: %llu\n"
2734 "read_bytes: %llu\n"
2735 "write_bytes: %llu\n"
2736 "cancelled_write_bytes: %llu\n",
2737 (unsigned long long)acct.rchar,
2738 (unsigned long long)acct.wchar,
2739 (unsigned long long)acct.syscr,
2740 (unsigned long long)acct.syscw,
2741 (unsigned long long)acct.read_bytes,
2742 (unsigned long long)acct.write_bytes,
2743 (unsigned long long)acct.cancelled_write_bytes);
2744 result = 0;
2745
2746out_unlock:
2747 mutex_unlock(&task->signal->cred_guard_mutex);
2748 return result;
2749}
2750
2751static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2752 struct pid *pid, struct task_struct *task)
2753{
2754 return do_io_accounting(task, m, 0);
2755}
2756
2757static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2758 struct pid *pid, struct task_struct *task)
2759{
2760 return do_io_accounting(task, m, 1);
2761}
2762#endif /* CONFIG_TASK_IO_ACCOUNTING */
2763
2764#ifdef CONFIG_USER_NS
2765static int proc_id_map_open(struct inode *inode, struct file *file,
2766 const struct seq_operations *seq_ops)
2767{
2768 struct user_namespace *ns = NULL;
2769 struct task_struct *task;
2770 struct seq_file *seq;
2771 int ret = -EINVAL;
2772
2773 task = get_proc_task(inode);
2774 if (task) {
2775 rcu_read_lock();
2776 ns = get_user_ns(task_cred_xxx(task, user_ns));
2777 rcu_read_unlock();
2778 put_task_struct(task);
2779 }
2780 if (!ns)
2781 goto err;
2782
2783 ret = seq_open(file, seq_ops);
2784 if (ret)
2785 goto err_put_ns;
2786
2787 seq = file->private_data;
2788 seq->private = ns;
2789
2790 return 0;
2791err_put_ns:
2792 put_user_ns(ns);
2793err:
2794 return ret;
2795}
2796
2797static int proc_id_map_release(struct inode *inode, struct file *file)
2798{
2799 struct seq_file *seq = file->private_data;
2800 struct user_namespace *ns = seq->private;
2801 put_user_ns(ns);
2802 return seq_release(inode, file);
2803}
2804
2805static int proc_uid_map_open(struct inode *inode, struct file *file)
2806{
2807 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2808}
2809
2810static int proc_gid_map_open(struct inode *inode, struct file *file)
2811{
2812 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2813}
2814
2815static int proc_projid_map_open(struct inode *inode, struct file *file)
2816{
2817 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2818}
2819
2820static const struct file_operations proc_uid_map_operations = {
2821 .open = proc_uid_map_open,
2822 .write = proc_uid_map_write,
2823 .read = seq_read,
2824 .llseek = seq_lseek,
2825 .release = proc_id_map_release,
2826};
2827
2828static const struct file_operations proc_gid_map_operations = {
2829 .open = proc_gid_map_open,
2830 .write = proc_gid_map_write,
2831 .read = seq_read,
2832 .llseek = seq_lseek,
2833 .release = proc_id_map_release,
2834};
2835
2836static const struct file_operations proc_projid_map_operations = {
2837 .open = proc_projid_map_open,
2838 .write = proc_projid_map_write,
2839 .read = seq_read,
2840 .llseek = seq_lseek,
2841 .release = proc_id_map_release,
2842};
2843
2844static int proc_setgroups_open(struct inode *inode, struct file *file)
2845{
2846 struct user_namespace *ns = NULL;
2847 struct task_struct *task;
2848 int ret;
2849
2850 ret = -ESRCH;
2851 task = get_proc_task(inode);
2852 if (task) {
2853 rcu_read_lock();
2854 ns = get_user_ns(task_cred_xxx(task, user_ns));
2855 rcu_read_unlock();
2856 put_task_struct(task);
2857 }
2858 if (!ns)
2859 goto err;
2860
2861 if (file->f_mode & FMODE_WRITE) {
2862 ret = -EACCES;
2863 if (!ns_capable(ns, CAP_SYS_ADMIN))
2864 goto err_put_ns;
2865 }
2866
2867 ret = single_open(file, &proc_setgroups_show, ns);
2868 if (ret)
2869 goto err_put_ns;
2870
2871 return 0;
2872err_put_ns:
2873 put_user_ns(ns);
2874err:
2875 return ret;
2876}
2877
2878static int proc_setgroups_release(struct inode *inode, struct file *file)
2879{
2880 struct seq_file *seq = file->private_data;
2881 struct user_namespace *ns = seq->private;
2882 int ret = single_release(inode, file);
2883 put_user_ns(ns);
2884 return ret;
2885}
2886
2887static const struct file_operations proc_setgroups_operations = {
2888 .open = proc_setgroups_open,
2889 .write = proc_setgroups_write,
2890 .read = seq_read,
2891 .llseek = seq_lseek,
2892 .release = proc_setgroups_release,
2893};
2894#endif /* CONFIG_USER_NS */
2895
2896static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2897 struct pid *pid, struct task_struct *task)
2898{
2899 int err = lock_trace(task);
2900 if (!err) {
2901 seq_printf(m, "%08x\n", task->personality);
2902 unlock_trace(task);
2903 }
2904 return err;
2905}
2906
2907#ifdef CONFIG_LIVEPATCH
2908static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2909 struct pid *pid, struct task_struct *task)
2910{
2911 seq_printf(m, "%d\n", task->patch_state);
2912 return 0;
2913}
2914#endif /* CONFIG_LIVEPATCH */
2915
2916#ifdef CONFIG_STACKLEAK_METRICS
2917static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
2918 struct pid *pid, struct task_struct *task)
2919{
2920 unsigned long prev_depth = THREAD_SIZE -
2921 (task->prev_lowest_stack & (THREAD_SIZE - 1));
2922 unsigned long depth = THREAD_SIZE -
2923 (task->lowest_stack & (THREAD_SIZE - 1));
2924
2925 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
2926 prev_depth, depth);
2927 return 0;
2928}
2929#endif /* CONFIG_STACKLEAK_METRICS */
2930
2931/*
2932 * Thread groups
2933 */
2934static const struct file_operations proc_task_operations;
2935static const struct inode_operations proc_task_inode_operations;
2936
2937static const struct pid_entry tgid_base_stuff[] = {
2938 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2939 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2940 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2941 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2942 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2943#ifdef CONFIG_NET
2944 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2945#endif
2946 REG("environ", S_IRUSR, proc_environ_operations),
2947 REG("auxv", S_IRUSR, proc_auxv_operations),
2948 ONE("status", S_IRUGO, proc_pid_status),
2949 ONE("personality", S_IRUSR, proc_pid_personality),
2950 ONE("limits", S_IRUGO, proc_pid_limits),
2951#ifdef CONFIG_SCHED_DEBUG
2952 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2953#endif
2954#ifdef CONFIG_SCHED_AUTOGROUP
2955 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2956#endif
2957 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2958#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2959 ONE("syscall", S_IRUSR, proc_pid_syscall),
2960#endif
2961 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
2962 ONE("stat", S_IRUGO, proc_tgid_stat),
2963 ONE("statm", S_IRUGO, proc_pid_statm),
2964 REG("maps", S_IRUGO, proc_pid_maps_operations),
2965#ifdef CONFIG_NUMA
2966 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2967#endif
2968 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2969 LNK("cwd", proc_cwd_link),
2970 LNK("root", proc_root_link),
2971 LNK("exe", proc_exe_link),
2972 REG("mounts", S_IRUGO, proc_mounts_operations),
2973 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2974 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2975#ifdef CONFIG_PROC_PAGE_MONITOR
2976 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2977 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
2978 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
2979 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2980#endif
2981#ifdef CONFIG_SECURITY
2982 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2983#endif
2984#ifdef CONFIG_KALLSYMS
2985 ONE("wchan", S_IRUGO, proc_pid_wchan),
2986#endif
2987#ifdef CONFIG_STACKTRACE
2988 ONE("stack", S_IRUSR, proc_pid_stack),
2989#endif
2990#ifdef CONFIG_SCHED_INFO
2991 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
2992#endif
2993#ifdef CONFIG_LATENCYTOP
2994 REG("latency", S_IRUGO, proc_lstats_operations),
2995#endif
2996#ifdef CONFIG_PROC_PID_CPUSET
2997 ONE("cpuset", S_IRUGO, proc_cpuset_show),
2998#endif
2999#ifdef CONFIG_CGROUPS
3000 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3001#endif
3002 ONE("oom_score", S_IRUGO, proc_oom_score),
3003 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3004 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3005#ifdef CONFIG_AUDITSYSCALL
3006 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3007 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3008#endif
3009#ifdef CONFIG_FAULT_INJECTION
3010 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3011 REG("fail-nth", 0644, proc_fail_nth_operations),
3012#endif
3013#ifdef CONFIG_ELF_CORE
3014 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3015#endif
3016#ifdef CONFIG_TASK_IO_ACCOUNTING
3017 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3018#endif
3019#ifdef CONFIG_USER_NS
3020 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3021 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3022 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3023 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3024#endif
3025#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3026 REG("timers", S_IRUGO, proc_timers_operations),
3027#endif
3028 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3029#ifdef CONFIG_LIVEPATCH
3030 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3031#endif
3032#ifdef CONFIG_STACKLEAK_METRICS
3033 ONE("stack_depth", S_IRUGO, proc_stack_depth),
3034#endif
3035};
3036
3037static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3038{
3039 return proc_pident_readdir(file, ctx,
3040 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3041}
3042
3043static const struct file_operations proc_tgid_base_operations = {
3044 .read = generic_read_dir,
3045 .iterate_shared = proc_tgid_base_readdir,
3046 .llseek = generic_file_llseek,
3047};
3048
3049static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3050{
3051 return proc_pident_lookup(dir, dentry,
3052 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3053}
3054
3055static const struct inode_operations proc_tgid_base_inode_operations = {
3056 .lookup = proc_tgid_base_lookup,
3057 .getattr = pid_getattr,
3058 .setattr = proc_setattr,
3059 .permission = proc_pid_permission,
3060};
3061
3062static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3063{
3064 struct dentry *dentry, *leader, *dir;
3065 char buf[10 + 1];
3066 struct qstr name;
3067
3068 name.name = buf;
3069 name.len = snprintf(buf, sizeof(buf), "%u", pid);
3070 /* no ->d_hash() rejects on procfs */
3071 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3072 if (dentry) {
3073 d_invalidate(dentry);
3074 dput(dentry);
3075 }
3076
3077 if (pid == tgid)
3078 return;
3079
3080 name.name = buf;
3081 name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3082 leader = d_hash_and_lookup(mnt->mnt_root, &name);
3083 if (!leader)
3084 goto out;
3085
3086 name.name = "task";
3087 name.len = strlen(name.name);
3088 dir = d_hash_and_lookup(leader, &name);
3089 if (!dir)
3090 goto out_put_leader;
3091
3092 name.name = buf;
3093 name.len = snprintf(buf, sizeof(buf), "%u", pid);
3094 dentry = d_hash_and_lookup(dir, &name);
3095 if (dentry) {
3096 d_invalidate(dentry);
3097 dput(dentry);
3098 }
3099
3100 dput(dir);
3101out_put_leader:
3102 dput(leader);
3103out:
3104 return;
3105}
3106
3107/**
3108 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
3109 * @task: task that should be flushed.
3110 *
3111 * When flushing dentries from proc, one needs to flush them from global
3112 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3113 * in. This call is supposed to do all of this job.
3114 *
3115 * Looks in the dcache for
3116 * /proc/@pid
3117 * /proc/@tgid/task/@pid
3118 * if either directory is present flushes it and all of it'ts children
3119 * from the dcache.
3120 *
3121 * It is safe and reasonable to cache /proc entries for a task until
3122 * that task exits. After that they just clog up the dcache with
3123 * useless entries, possibly causing useful dcache entries to be
3124 * flushed instead. This routine is proved to flush those useless
3125 * dcache entries at process exit time.
3126 *
3127 * NOTE: This routine is just an optimization so it does not guarantee
3128 * that no dcache entries will exist at process exit time it
3129 * just makes it very unlikely that any will persist.
3130 */
3131
3132void proc_flush_task(struct task_struct *task)
3133{
3134 int i;
3135 struct pid *pid, *tgid;
3136 struct upid *upid;
3137
3138 pid = task_pid(task);
3139 tgid = task_tgid(task);
3140
3141 for (i = 0; i <= pid->level; i++) {
3142 upid = &pid->numbers[i];
3143 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3144 tgid->numbers[i].nr);
3145 }
3146}
3147
3148static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3149 struct task_struct *task, const void *ptr)
3150{
3151 struct inode *inode;
3152
3153 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3154 if (!inode)
3155 return ERR_PTR(-ENOENT);
3156
3157 inode->i_op = &proc_tgid_base_inode_operations;
3158 inode->i_fop = &proc_tgid_base_operations;
3159 inode->i_flags|=S_IMMUTABLE;
3160
3161 set_nlink(inode, nlink_tgid);
3162 pid_update_inode(task, inode);
3163
3164 d_set_d_op(dentry, &pid_dentry_operations);
3165 return d_splice_alias(inode, dentry);
3166}
3167
3168struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3169{
3170 struct task_struct *task;
3171 unsigned tgid;
3172 struct pid_namespace *ns;
3173 struct dentry *result = ERR_PTR(-ENOENT);
3174
3175 tgid = name_to_int(&dentry->d_name);
3176 if (tgid == ~0U)
3177 goto out;
3178
3179 ns = dentry->d_sb->s_fs_info;
3180 rcu_read_lock();
3181 task = find_task_by_pid_ns(tgid, ns);
3182 if (task)
3183 get_task_struct(task);
3184 rcu_read_unlock();
3185 if (!task)
3186 goto out;
3187
3188 result = proc_pid_instantiate(dentry, task, NULL);
3189 put_task_struct(task);
3190out:
3191 return result;
3192}
3193
3194/*
3195 * Find the first task with tgid >= tgid
3196 *
3197 */
3198struct tgid_iter {
3199 unsigned int tgid;
3200 struct task_struct *task;
3201};
3202static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3203{
3204 struct pid *pid;
3205
3206 if (iter.task)
3207 put_task_struct(iter.task);
3208 rcu_read_lock();
3209retry:
3210 iter.task = NULL;
3211 pid = find_ge_pid(iter.tgid, ns);
3212 if (pid) {
3213 iter.tgid = pid_nr_ns(pid, ns);
3214 iter.task = pid_task(pid, PIDTYPE_PID);
3215 /* What we to know is if the pid we have find is the
3216 * pid of a thread_group_leader. Testing for task
3217 * being a thread_group_leader is the obvious thing
3218 * todo but there is a window when it fails, due to
3219 * the pid transfer logic in de_thread.
3220 *
3221 * So we perform the straight forward test of seeing
3222 * if the pid we have found is the pid of a thread
3223 * group leader, and don't worry if the task we have
3224 * found doesn't happen to be a thread group leader.
3225 * As we don't care in the case of readdir.
3226 */
3227 if (!iter.task || !has_group_leader_pid(iter.task)) {
3228 iter.tgid += 1;
3229 goto retry;
3230 }
3231 get_task_struct(iter.task);
3232 }
3233 rcu_read_unlock();
3234 return iter;
3235}
3236
3237#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3238
3239/* for the /proc/ directory itself, after non-process stuff has been done */
3240int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3241{
3242 struct tgid_iter iter;
3243 struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3244 loff_t pos = ctx->pos;
3245
3246 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3247 return 0;
3248
3249 if (pos == TGID_OFFSET - 2) {
3250 struct inode *inode = d_inode(ns->proc_self);
3251 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3252 return 0;
3253 ctx->pos = pos = pos + 1;
3254 }
3255 if (pos == TGID_OFFSET - 1) {
3256 struct inode *inode = d_inode(ns->proc_thread_self);
3257 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3258 return 0;
3259 ctx->pos = pos = pos + 1;
3260 }
3261 iter.tgid = pos - TGID_OFFSET;
3262 iter.task = NULL;
3263 for (iter = next_tgid(ns, iter);
3264 iter.task;
3265 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3266 char name[10 + 1];
3267 unsigned int len;
3268
3269 cond_resched();
3270 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3271 continue;
3272
3273 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3274 ctx->pos = iter.tgid + TGID_OFFSET;
3275 if (!proc_fill_cache(file, ctx, name, len,
3276 proc_pid_instantiate, iter.task, NULL)) {
3277 put_task_struct(iter.task);
3278 return 0;
3279 }
3280 }
3281 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3282 return 0;
3283}
3284
3285/*
3286 * proc_tid_comm_permission is a special permission function exclusively
3287 * used for the node /proc/<pid>/task/<tid>/comm.
3288 * It bypasses generic permission checks in the case where a task of the same
3289 * task group attempts to access the node.
3290 * The rationale behind this is that glibc and bionic access this node for
3291 * cross thread naming (pthread_set/getname_np(!self)). However, if
3292 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3293 * which locks out the cross thread naming implementation.
3294 * This function makes sure that the node is always accessible for members of
3295 * same thread group.
3296 */
3297static int proc_tid_comm_permission(struct inode *inode, int mask)
3298{
3299 bool is_same_tgroup;
3300 struct task_struct *task;
3301
3302 task = get_proc_task(inode);
3303 if (!task)
3304 return -ESRCH;
3305 is_same_tgroup = same_thread_group(current, task);
3306 put_task_struct(task);
3307
3308 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3309 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3310 * read or written by the members of the corresponding
3311 * thread group.
3312 */
3313 return 0;
3314 }
3315
3316 return generic_permission(inode, mask);
3317}
3318
3319static const struct inode_operations proc_tid_comm_inode_operations = {
3320 .permission = proc_tid_comm_permission,
3321};
3322
3323/*
3324 * Tasks
3325 */
3326static const struct pid_entry tid_base_stuff[] = {
3327 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3328 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3329 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3330#ifdef CONFIG_NET
3331 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3332#endif
3333 REG("environ", S_IRUSR, proc_environ_operations),
3334 REG("auxv", S_IRUSR, proc_auxv_operations),
3335 ONE("status", S_IRUGO, proc_pid_status),
3336 ONE("personality", S_IRUSR, proc_pid_personality),
3337 ONE("limits", S_IRUGO, proc_pid_limits),
3338#ifdef CONFIG_SCHED_DEBUG
3339 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3340#endif
3341 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3342 &proc_tid_comm_inode_operations,
3343 &proc_pid_set_comm_operations, {}),
3344#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3345 ONE("syscall", S_IRUSR, proc_pid_syscall),
3346#endif
3347 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3348 ONE("stat", S_IRUGO, proc_tid_stat),
3349 ONE("statm", S_IRUGO, proc_pid_statm),
3350 REG("maps", S_IRUGO, proc_pid_maps_operations),
3351#ifdef CONFIG_PROC_CHILDREN
3352 REG("children", S_IRUGO, proc_tid_children_operations),
3353#endif
3354#ifdef CONFIG_NUMA
3355 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3356#endif
3357 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3358 LNK("cwd", proc_cwd_link),
3359 LNK("root", proc_root_link),
3360 LNK("exe", proc_exe_link),
3361 REG("mounts", S_IRUGO, proc_mounts_operations),
3362 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3363#ifdef CONFIG_PROC_PAGE_MONITOR
3364 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3365 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3366 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3367 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3368#endif
3369#ifdef CONFIG_SECURITY
3370 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3371#endif
3372#ifdef CONFIG_KALLSYMS
3373 ONE("wchan", S_IRUGO, proc_pid_wchan),
3374#endif
3375#ifdef CONFIG_STACKTRACE
3376 ONE("stack", S_IRUSR, proc_pid_stack),
3377#endif
3378#ifdef CONFIG_SCHED_INFO
3379 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3380#endif
3381#ifdef CONFIG_LATENCYTOP
3382 REG("latency", S_IRUGO, proc_lstats_operations),
3383#endif
3384#ifdef CONFIG_PROC_PID_CPUSET
3385 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3386#endif
3387#ifdef CONFIG_CGROUPS
3388 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3389#endif
3390 ONE("oom_score", S_IRUGO, proc_oom_score),
3391 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3392 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3393#ifdef CONFIG_AUDITSYSCALL
3394 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3395 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3396#endif
3397#ifdef CONFIG_FAULT_INJECTION
3398 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3399 REG("fail-nth", 0644, proc_fail_nth_operations),
3400#endif
3401#ifdef CONFIG_TASK_IO_ACCOUNTING
3402 ONE("io", S_IRUSR, proc_tid_io_accounting),
3403#endif
3404#ifdef CONFIG_USER_NS
3405 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3406 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3407 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3408 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3409#endif
3410#ifdef CONFIG_LIVEPATCH
3411 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3412#endif
3413};
3414
3415static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3416{
3417 return proc_pident_readdir(file, ctx,
3418 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3419}
3420
3421static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3422{
3423 return proc_pident_lookup(dir, dentry,
3424 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3425}
3426
3427static const struct file_operations proc_tid_base_operations = {
3428 .read = generic_read_dir,
3429 .iterate_shared = proc_tid_base_readdir,
3430 .llseek = generic_file_llseek,
3431};
3432
3433static const struct inode_operations proc_tid_base_inode_operations = {
3434 .lookup = proc_tid_base_lookup,
3435 .getattr = pid_getattr,
3436 .setattr = proc_setattr,
3437};
3438
3439static struct dentry *proc_task_instantiate(struct dentry *dentry,
3440 struct task_struct *task, const void *ptr)
3441{
3442 struct inode *inode;
3443 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3444 if (!inode)
3445 return ERR_PTR(-ENOENT);
3446
3447 inode->i_op = &proc_tid_base_inode_operations;
3448 inode->i_fop = &proc_tid_base_operations;
3449 inode->i_flags |= S_IMMUTABLE;
3450
3451 set_nlink(inode, nlink_tid);
3452 pid_update_inode(task, inode);
3453
3454 d_set_d_op(dentry, &pid_dentry_operations);
3455 return d_splice_alias(inode, dentry);
3456}
3457
3458static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3459{
3460 struct task_struct *task;
3461 struct task_struct *leader = get_proc_task(dir);
3462 unsigned tid;
3463 struct pid_namespace *ns;
3464 struct dentry *result = ERR_PTR(-ENOENT);
3465
3466 if (!leader)
3467 goto out_no_task;
3468
3469 tid = name_to_int(&dentry->d_name);
3470 if (tid == ~0U)
3471 goto out;
3472
3473 ns = dentry->d_sb->s_fs_info;
3474 rcu_read_lock();
3475 task = find_task_by_pid_ns(tid, ns);
3476 if (task)
3477 get_task_struct(task);
3478 rcu_read_unlock();
3479 if (!task)
3480 goto out;
3481 if (!same_thread_group(leader, task))
3482 goto out_drop_task;
3483
3484 result = proc_task_instantiate(dentry, task, NULL);
3485out_drop_task:
3486 put_task_struct(task);
3487out:
3488 put_task_struct(leader);
3489out_no_task:
3490 return result;
3491}
3492
3493/*
3494 * Find the first tid of a thread group to return to user space.
3495 *
3496 * Usually this is just the thread group leader, but if the users
3497 * buffer was too small or there was a seek into the middle of the
3498 * directory we have more work todo.
3499 *
3500 * In the case of a short read we start with find_task_by_pid.
3501 *
3502 * In the case of a seek we start with the leader and walk nr
3503 * threads past it.
3504 */
3505static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3506 struct pid_namespace *ns)
3507{
3508 struct task_struct *pos, *task;
3509 unsigned long nr = f_pos;
3510
3511 if (nr != f_pos) /* 32bit overflow? */
3512 return NULL;
3513
3514 rcu_read_lock();
3515 task = pid_task(pid, PIDTYPE_PID);
3516 if (!task)
3517 goto fail;
3518
3519 /* Attempt to start with the tid of a thread */
3520 if (tid && nr) {
3521 pos = find_task_by_pid_ns(tid, ns);
3522 if (pos && same_thread_group(pos, task))
3523 goto found;
3524 }
3525
3526 /* If nr exceeds the number of threads there is nothing todo */
3527 if (nr >= get_nr_threads(task))
3528 goto fail;
3529
3530 /* If we haven't found our starting place yet start
3531 * with the leader and walk nr threads forward.
3532 */
3533 pos = task = task->group_leader;
3534 do {
3535 if (!nr--)
3536 goto found;
3537 } while_each_thread(task, pos);
3538fail:
3539 pos = NULL;
3540 goto out;
3541found:
3542 get_task_struct(pos);
3543out:
3544 rcu_read_unlock();
3545 return pos;
3546}
3547
3548/*
3549 * Find the next thread in the thread list.
3550 * Return NULL if there is an error or no next thread.
3551 *
3552 * The reference to the input task_struct is released.
3553 */
3554static struct task_struct *next_tid(struct task_struct *start)
3555{
3556 struct task_struct *pos = NULL;
3557 rcu_read_lock();
3558 if (pid_alive(start)) {
3559 pos = next_thread(start);
3560 if (thread_group_leader(pos))
3561 pos = NULL;
3562 else
3563 get_task_struct(pos);
3564 }
3565 rcu_read_unlock();
3566 put_task_struct(start);
3567 return pos;
3568}
3569
3570/* for the /proc/TGID/task/ directories */
3571static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3572{
3573 struct inode *inode = file_inode(file);
3574 struct task_struct *task;
3575 struct pid_namespace *ns;
3576 int tid;
3577
3578 if (proc_inode_is_dead(inode))
3579 return -ENOENT;
3580
3581 if (!dir_emit_dots(file, ctx))
3582 return 0;
3583
3584 /* f_version caches the tgid value that the last readdir call couldn't
3585 * return. lseek aka telldir automagically resets f_version to 0.
3586 */
3587 ns = proc_pid_ns(inode);
3588 tid = (int)file->f_version;
3589 file->f_version = 0;
3590 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3591 task;
3592 task = next_tid(task), ctx->pos++) {
3593 char name[10 + 1];
3594 unsigned int len;
3595 tid = task_pid_nr_ns(task, ns);
3596 len = snprintf(name, sizeof(name), "%u", tid);
3597 if (!proc_fill_cache(file, ctx, name, len,
3598 proc_task_instantiate, task, NULL)) {
3599 /* returning this tgid failed, save it as the first
3600 * pid for the next readir call */
3601 file->f_version = (u64)tid;
3602 put_task_struct(task);
3603 break;
3604 }
3605 }
3606
3607 return 0;
3608}
3609
3610static int proc_task_getattr(const struct path *path, struct kstat *stat,
3611 u32 request_mask, unsigned int query_flags)
3612{
3613 struct inode *inode = d_inode(path->dentry);
3614 struct task_struct *p = get_proc_task(inode);
3615 generic_fillattr(inode, stat);
3616
3617 if (p) {
3618 stat->nlink += get_nr_threads(p);
3619 put_task_struct(p);
3620 }
3621
3622 return 0;
3623}
3624
3625static const struct inode_operations proc_task_inode_operations = {
3626 .lookup = proc_task_lookup,
3627 .getattr = proc_task_getattr,
3628 .setattr = proc_setattr,
3629 .permission = proc_pid_permission,
3630};
3631
3632static const struct file_operations proc_task_operations = {
3633 .read = generic_read_dir,
3634 .iterate_shared = proc_task_readdir,
3635 .llseek = generic_file_llseek,
3636};
3637
3638void __init set_proc_pid_nlink(void)
3639{
3640 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3641 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3642}