Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20#include <linux/module.h>
21#include <linux/string.h>
22#include <linux/fs.h>
23#include <linux/time.h>
24#include <linux/vmalloc.h>
25#include <linux/slab.h>
26#include <linux/init.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
29#include <linux/parser.h>
30#include <linux/buffer_head.h>
31#include <linux/exportfs.h>
32#include <linux/vfs.h>
33#include <linux/random.h>
34#include <linux/mount.h>
35#include <linux/namei.h>
36#include <linux/quotaops.h>
37#include <linux/seq_file.h>
38#include <linux/ctype.h>
39#include <linux/log2.h>
40#include <linux/crc16.h>
41#include <linux/dax.h>
42#include <linux/cleancache.h>
43#include <linux/uaccess.h>
44#include <linux/iversion.h>
45
46#include <linux/kthread.h>
47#include <linux/freezer.h>
48
49#include "ext4.h"
50#include "ext4_extents.h" /* Needed for trace points definition */
51#include "ext4_jbd2.h"
52#include "xattr.h"
53#include "acl.h"
54#include "mballoc.h"
55#include "fsmap.h"
56
57#define CREATE_TRACE_POINTS
58#include <trace/events/ext4.h>
59
60static struct ext4_lazy_init *ext4_li_info;
61static struct mutex ext4_li_mtx;
62static struct ratelimit_state ext4_mount_msg_ratelimit;
63
64static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67static int ext4_commit_super(struct super_block *sb, int sync);
68static void ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70static void ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72static int ext4_sync_fs(struct super_block *sb, int wait);
73static int ext4_remount(struct super_block *sb, int *flags, char *data);
74static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75static int ext4_unfreeze(struct super_block *sb);
76static int ext4_freeze(struct super_block *sb);
77static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79static inline int ext2_feature_set_ok(struct super_block *sb);
80static inline int ext3_feature_set_ok(struct super_block *sb);
81static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82static void ext4_destroy_lazyinit_thread(void);
83static void ext4_unregister_li_request(struct super_block *sb);
84static void ext4_clear_request_list(void);
85static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87
88/*
89 * Lock ordering
90 *
91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
92 * i_mmap_rwsem (inode->i_mmap_rwsem)!
93 *
94 * page fault path:
95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
96 * page lock -> i_data_sem (rw)
97 *
98 * buffered write path:
99 * sb_start_write -> i_mutex -> mmap_sem
100 * sb_start_write -> i_mutex -> transaction start -> page lock ->
101 * i_data_sem (rw)
102 *
103 * truncate:
104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
106 * i_data_sem (rw)
107 *
108 * direct IO:
109 * sb_start_write -> i_mutex -> mmap_sem
110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
111 *
112 * writepages:
113 * transaction start -> page lock(s) -> i_data_sem (rw)
114 */
115
116#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117static struct file_system_type ext2_fs_type = {
118 .owner = THIS_MODULE,
119 .name = "ext2",
120 .mount = ext4_mount,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
123};
124MODULE_ALIAS_FS("ext2");
125MODULE_ALIAS("ext2");
126#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127#else
128#define IS_EXT2_SB(sb) (0)
129#endif
130
131
132static struct file_system_type ext3_fs_type = {
133 .owner = THIS_MODULE,
134 .name = "ext3",
135 .mount = ext4_mount,
136 .kill_sb = kill_block_super,
137 .fs_flags = FS_REQUIRES_DEV,
138};
139MODULE_ALIAS_FS("ext3");
140MODULE_ALIAS("ext3");
141#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
142
143/*
144 * This works like sb_bread() except it uses ERR_PTR for error
145 * returns. Currently with sb_bread it's impossible to distinguish
146 * between ENOMEM and EIO situations (since both result in a NULL
147 * return.
148 */
149struct buffer_head *
150ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
151{
152 struct buffer_head *bh = sb_getblk(sb, block);
153
154 if (bh == NULL)
155 return ERR_PTR(-ENOMEM);
156 if (buffer_uptodate(bh))
157 return bh;
158 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
159 wait_on_buffer(bh);
160 if (buffer_uptodate(bh))
161 return bh;
162 put_bh(bh);
163 return ERR_PTR(-EIO);
164}
165
166static int ext4_verify_csum_type(struct super_block *sb,
167 struct ext4_super_block *es)
168{
169 if (!ext4_has_feature_metadata_csum(sb))
170 return 1;
171
172 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
173}
174
175static __le32 ext4_superblock_csum(struct super_block *sb,
176 struct ext4_super_block *es)
177{
178 struct ext4_sb_info *sbi = EXT4_SB(sb);
179 int offset = offsetof(struct ext4_super_block, s_checksum);
180 __u32 csum;
181
182 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
183
184 return cpu_to_le32(csum);
185}
186
187static int ext4_superblock_csum_verify(struct super_block *sb,
188 struct ext4_super_block *es)
189{
190 if (!ext4_has_metadata_csum(sb))
191 return 1;
192
193 return es->s_checksum == ext4_superblock_csum(sb, es);
194}
195
196void ext4_superblock_csum_set(struct super_block *sb)
197{
198 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
199
200 if (!ext4_has_metadata_csum(sb))
201 return;
202
203 es->s_checksum = ext4_superblock_csum(sb, es);
204}
205
206void *ext4_kvmalloc(size_t size, gfp_t flags)
207{
208 void *ret;
209
210 ret = kmalloc(size, flags | __GFP_NOWARN);
211 if (!ret)
212 ret = __vmalloc(size, flags, PAGE_KERNEL);
213 return ret;
214}
215
216void *ext4_kvzalloc(size_t size, gfp_t flags)
217{
218 void *ret;
219
220 ret = kzalloc(size, flags | __GFP_NOWARN);
221 if (!ret)
222 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
223 return ret;
224}
225
226ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
227 struct ext4_group_desc *bg)
228{
229 return le32_to_cpu(bg->bg_block_bitmap_lo) |
230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
231 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
232}
233
234ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
235 struct ext4_group_desc *bg)
236{
237 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
238 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
239 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
240}
241
242ext4_fsblk_t ext4_inode_table(struct super_block *sb,
243 struct ext4_group_desc *bg)
244{
245 return le32_to_cpu(bg->bg_inode_table_lo) |
246 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
247 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
248}
249
250__u32 ext4_free_group_clusters(struct super_block *sb,
251 struct ext4_group_desc *bg)
252{
253 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
254 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
255 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
256}
257
258__u32 ext4_free_inodes_count(struct super_block *sb,
259 struct ext4_group_desc *bg)
260{
261 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
262 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
263 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
264}
265
266__u32 ext4_used_dirs_count(struct super_block *sb,
267 struct ext4_group_desc *bg)
268{
269 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
270 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
271 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
272}
273
274__u32 ext4_itable_unused_count(struct super_block *sb,
275 struct ext4_group_desc *bg)
276{
277 return le16_to_cpu(bg->bg_itable_unused_lo) |
278 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
279 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
280}
281
282void ext4_block_bitmap_set(struct super_block *sb,
283 struct ext4_group_desc *bg, ext4_fsblk_t blk)
284{
285 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
287 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
288}
289
290void ext4_inode_bitmap_set(struct super_block *sb,
291 struct ext4_group_desc *bg, ext4_fsblk_t blk)
292{
293 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
294 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
295 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
296}
297
298void ext4_inode_table_set(struct super_block *sb,
299 struct ext4_group_desc *bg, ext4_fsblk_t blk)
300{
301 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
302 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
303 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
304}
305
306void ext4_free_group_clusters_set(struct super_block *sb,
307 struct ext4_group_desc *bg, __u32 count)
308{
309 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
310 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
311 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
312}
313
314void ext4_free_inodes_set(struct super_block *sb,
315 struct ext4_group_desc *bg, __u32 count)
316{
317 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
318 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
319 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
320}
321
322void ext4_used_dirs_set(struct super_block *sb,
323 struct ext4_group_desc *bg, __u32 count)
324{
325 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
326 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
327 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
328}
329
330void ext4_itable_unused_set(struct super_block *sb,
331 struct ext4_group_desc *bg, __u32 count)
332{
333 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
334 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
335 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
336}
337
338static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
339{
340 time64_t now = ktime_get_real_seconds();
341
342 now = clamp_val(now, 0, (1ull << 40) - 1);
343
344 *lo = cpu_to_le32(lower_32_bits(now));
345 *hi = upper_32_bits(now);
346}
347
348static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
349{
350 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
351}
352#define ext4_update_tstamp(es, tstamp) \
353 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
354#define ext4_get_tstamp(es, tstamp) \
355 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
356
357static void __save_error_info(struct super_block *sb, const char *func,
358 unsigned int line)
359{
360 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
361
362 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
363 if (bdev_read_only(sb->s_bdev))
364 return;
365 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
366 ext4_update_tstamp(es, s_last_error_time);
367 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
368 es->s_last_error_line = cpu_to_le32(line);
369 if (!es->s_first_error_time) {
370 es->s_first_error_time = es->s_last_error_time;
371 es->s_first_error_time_hi = es->s_last_error_time_hi;
372 strncpy(es->s_first_error_func, func,
373 sizeof(es->s_first_error_func));
374 es->s_first_error_line = cpu_to_le32(line);
375 es->s_first_error_ino = es->s_last_error_ino;
376 es->s_first_error_block = es->s_last_error_block;
377 }
378 /*
379 * Start the daily error reporting function if it hasn't been
380 * started already
381 */
382 if (!es->s_error_count)
383 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
384 le32_add_cpu(&es->s_error_count, 1);
385}
386
387static void save_error_info(struct super_block *sb, const char *func,
388 unsigned int line)
389{
390 __save_error_info(sb, func, line);
391 ext4_commit_super(sb, 1);
392}
393
394/*
395 * The del_gendisk() function uninitializes the disk-specific data
396 * structures, including the bdi structure, without telling anyone
397 * else. Once this happens, any attempt to call mark_buffer_dirty()
398 * (for example, by ext4_commit_super), will cause a kernel OOPS.
399 * This is a kludge to prevent these oops until we can put in a proper
400 * hook in del_gendisk() to inform the VFS and file system layers.
401 */
402static int block_device_ejected(struct super_block *sb)
403{
404 struct inode *bd_inode = sb->s_bdev->bd_inode;
405 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
406
407 return bdi->dev == NULL;
408}
409
410static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
411{
412 struct super_block *sb = journal->j_private;
413 struct ext4_sb_info *sbi = EXT4_SB(sb);
414 int error = is_journal_aborted(journal);
415 struct ext4_journal_cb_entry *jce;
416
417 BUG_ON(txn->t_state == T_FINISHED);
418
419 ext4_process_freed_data(sb, txn->t_tid);
420
421 spin_lock(&sbi->s_md_lock);
422 while (!list_empty(&txn->t_private_list)) {
423 jce = list_entry(txn->t_private_list.next,
424 struct ext4_journal_cb_entry, jce_list);
425 list_del_init(&jce->jce_list);
426 spin_unlock(&sbi->s_md_lock);
427 jce->jce_func(sb, jce, error);
428 spin_lock(&sbi->s_md_lock);
429 }
430 spin_unlock(&sbi->s_md_lock);
431}
432
433/* Deal with the reporting of failure conditions on a filesystem such as
434 * inconsistencies detected or read IO failures.
435 *
436 * On ext2, we can store the error state of the filesystem in the
437 * superblock. That is not possible on ext4, because we may have other
438 * write ordering constraints on the superblock which prevent us from
439 * writing it out straight away; and given that the journal is about to
440 * be aborted, we can't rely on the current, or future, transactions to
441 * write out the superblock safely.
442 *
443 * We'll just use the jbd2_journal_abort() error code to record an error in
444 * the journal instead. On recovery, the journal will complain about
445 * that error until we've noted it down and cleared it.
446 */
447
448static void ext4_handle_error(struct super_block *sb)
449{
450 if (test_opt(sb, WARN_ON_ERROR))
451 WARN_ON_ONCE(1);
452
453 if (sb_rdonly(sb))
454 return;
455
456 if (!test_opt(sb, ERRORS_CONT)) {
457 journal_t *journal = EXT4_SB(sb)->s_journal;
458
459 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
460 if (journal)
461 jbd2_journal_abort(journal, -EIO);
462 }
463 if (test_opt(sb, ERRORS_RO)) {
464 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
465 /*
466 * Make sure updated value of ->s_mount_flags will be visible
467 * before ->s_flags update
468 */
469 smp_wmb();
470 sb->s_flags |= SB_RDONLY;
471 }
472 if (test_opt(sb, ERRORS_PANIC)) {
473 if (EXT4_SB(sb)->s_journal &&
474 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
475 return;
476 panic("EXT4-fs (device %s): panic forced after error\n",
477 sb->s_id);
478 }
479}
480
481#define ext4_error_ratelimit(sb) \
482 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
483 "EXT4-fs error")
484
485void __ext4_error(struct super_block *sb, const char *function,
486 unsigned int line, const char *fmt, ...)
487{
488 struct va_format vaf;
489 va_list args;
490
491 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
492 return;
493
494 trace_ext4_error(sb, function, line);
495 if (ext4_error_ratelimit(sb)) {
496 va_start(args, fmt);
497 vaf.fmt = fmt;
498 vaf.va = &args;
499 printk(KERN_CRIT
500 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
501 sb->s_id, function, line, current->comm, &vaf);
502 va_end(args);
503 }
504 save_error_info(sb, function, line);
505 ext4_handle_error(sb);
506}
507
508void __ext4_error_inode(struct inode *inode, const char *function,
509 unsigned int line, ext4_fsblk_t block,
510 const char *fmt, ...)
511{
512 va_list args;
513 struct va_format vaf;
514 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
515
516 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
517 return;
518
519 trace_ext4_error(inode->i_sb, function, line);
520 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
521 es->s_last_error_block = cpu_to_le64(block);
522 if (ext4_error_ratelimit(inode->i_sb)) {
523 va_start(args, fmt);
524 vaf.fmt = fmt;
525 vaf.va = &args;
526 if (block)
527 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
528 "inode #%lu: block %llu: comm %s: %pV\n",
529 inode->i_sb->s_id, function, line, inode->i_ino,
530 block, current->comm, &vaf);
531 else
532 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
533 "inode #%lu: comm %s: %pV\n",
534 inode->i_sb->s_id, function, line, inode->i_ino,
535 current->comm, &vaf);
536 va_end(args);
537 }
538 save_error_info(inode->i_sb, function, line);
539 ext4_handle_error(inode->i_sb);
540}
541
542void __ext4_error_file(struct file *file, const char *function,
543 unsigned int line, ext4_fsblk_t block,
544 const char *fmt, ...)
545{
546 va_list args;
547 struct va_format vaf;
548 struct ext4_super_block *es;
549 struct inode *inode = file_inode(file);
550 char pathname[80], *path;
551
552 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
553 return;
554
555 trace_ext4_error(inode->i_sb, function, line);
556 es = EXT4_SB(inode->i_sb)->s_es;
557 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
558 if (ext4_error_ratelimit(inode->i_sb)) {
559 path = file_path(file, pathname, sizeof(pathname));
560 if (IS_ERR(path))
561 path = "(unknown)";
562 va_start(args, fmt);
563 vaf.fmt = fmt;
564 vaf.va = &args;
565 if (block)
566 printk(KERN_CRIT
567 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
568 "block %llu: comm %s: path %s: %pV\n",
569 inode->i_sb->s_id, function, line, inode->i_ino,
570 block, current->comm, path, &vaf);
571 else
572 printk(KERN_CRIT
573 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
574 "comm %s: path %s: %pV\n",
575 inode->i_sb->s_id, function, line, inode->i_ino,
576 current->comm, path, &vaf);
577 va_end(args);
578 }
579 save_error_info(inode->i_sb, function, line);
580 ext4_handle_error(inode->i_sb);
581}
582
583const char *ext4_decode_error(struct super_block *sb, int errno,
584 char nbuf[16])
585{
586 char *errstr = NULL;
587
588 switch (errno) {
589 case -EFSCORRUPTED:
590 errstr = "Corrupt filesystem";
591 break;
592 case -EFSBADCRC:
593 errstr = "Filesystem failed CRC";
594 break;
595 case -EIO:
596 errstr = "IO failure";
597 break;
598 case -ENOMEM:
599 errstr = "Out of memory";
600 break;
601 case -EROFS:
602 if (!sb || (EXT4_SB(sb)->s_journal &&
603 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
604 errstr = "Journal has aborted";
605 else
606 errstr = "Readonly filesystem";
607 break;
608 default:
609 /* If the caller passed in an extra buffer for unknown
610 * errors, textualise them now. Else we just return
611 * NULL. */
612 if (nbuf) {
613 /* Check for truncated error codes... */
614 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
615 errstr = nbuf;
616 }
617 break;
618 }
619
620 return errstr;
621}
622
623/* __ext4_std_error decodes expected errors from journaling functions
624 * automatically and invokes the appropriate error response. */
625
626void __ext4_std_error(struct super_block *sb, const char *function,
627 unsigned int line, int errno)
628{
629 char nbuf[16];
630 const char *errstr;
631
632 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
633 return;
634
635 /* Special case: if the error is EROFS, and we're not already
636 * inside a transaction, then there's really no point in logging
637 * an error. */
638 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
639 return;
640
641 if (ext4_error_ratelimit(sb)) {
642 errstr = ext4_decode_error(sb, errno, nbuf);
643 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
644 sb->s_id, function, line, errstr);
645 }
646
647 save_error_info(sb, function, line);
648 ext4_handle_error(sb);
649}
650
651/*
652 * ext4_abort is a much stronger failure handler than ext4_error. The
653 * abort function may be used to deal with unrecoverable failures such
654 * as journal IO errors or ENOMEM at a critical moment in log management.
655 *
656 * We unconditionally force the filesystem into an ABORT|READONLY state,
657 * unless the error response on the fs has been set to panic in which
658 * case we take the easy way out and panic immediately.
659 */
660
661void __ext4_abort(struct super_block *sb, const char *function,
662 unsigned int line, const char *fmt, ...)
663{
664 struct va_format vaf;
665 va_list args;
666
667 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
668 return;
669
670 save_error_info(sb, function, line);
671 va_start(args, fmt);
672 vaf.fmt = fmt;
673 vaf.va = &args;
674 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
675 sb->s_id, function, line, &vaf);
676 va_end(args);
677
678 if (sb_rdonly(sb) == 0) {
679 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
680 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
681 /*
682 * Make sure updated value of ->s_mount_flags will be visible
683 * before ->s_flags update
684 */
685 smp_wmb();
686 sb->s_flags |= SB_RDONLY;
687 if (EXT4_SB(sb)->s_journal)
688 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
689 save_error_info(sb, function, line);
690 }
691 if (test_opt(sb, ERRORS_PANIC)) {
692 if (EXT4_SB(sb)->s_journal &&
693 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
694 return;
695 panic("EXT4-fs panic from previous error\n");
696 }
697}
698
699void __ext4_msg(struct super_block *sb,
700 const char *prefix, const char *fmt, ...)
701{
702 struct va_format vaf;
703 va_list args;
704
705 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
706 return;
707
708 va_start(args, fmt);
709 vaf.fmt = fmt;
710 vaf.va = &args;
711 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
712 va_end(args);
713}
714
715#define ext4_warning_ratelimit(sb) \
716 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
717 "EXT4-fs warning")
718
719void __ext4_warning(struct super_block *sb, const char *function,
720 unsigned int line, const char *fmt, ...)
721{
722 struct va_format vaf;
723 va_list args;
724
725 if (!ext4_warning_ratelimit(sb))
726 return;
727
728 va_start(args, fmt);
729 vaf.fmt = fmt;
730 vaf.va = &args;
731 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
732 sb->s_id, function, line, &vaf);
733 va_end(args);
734}
735
736void __ext4_warning_inode(const struct inode *inode, const char *function,
737 unsigned int line, const char *fmt, ...)
738{
739 struct va_format vaf;
740 va_list args;
741
742 if (!ext4_warning_ratelimit(inode->i_sb))
743 return;
744
745 va_start(args, fmt);
746 vaf.fmt = fmt;
747 vaf.va = &args;
748 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
749 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
750 function, line, inode->i_ino, current->comm, &vaf);
751 va_end(args);
752}
753
754void __ext4_grp_locked_error(const char *function, unsigned int line,
755 struct super_block *sb, ext4_group_t grp,
756 unsigned long ino, ext4_fsblk_t block,
757 const char *fmt, ...)
758__releases(bitlock)
759__acquires(bitlock)
760{
761 struct va_format vaf;
762 va_list args;
763 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
764
765 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
766 return;
767
768 trace_ext4_error(sb, function, line);
769 es->s_last_error_ino = cpu_to_le32(ino);
770 es->s_last_error_block = cpu_to_le64(block);
771 __save_error_info(sb, function, line);
772
773 if (ext4_error_ratelimit(sb)) {
774 va_start(args, fmt);
775 vaf.fmt = fmt;
776 vaf.va = &args;
777 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
778 sb->s_id, function, line, grp);
779 if (ino)
780 printk(KERN_CONT "inode %lu: ", ino);
781 if (block)
782 printk(KERN_CONT "block %llu:",
783 (unsigned long long) block);
784 printk(KERN_CONT "%pV\n", &vaf);
785 va_end(args);
786 }
787
788 if (test_opt(sb, WARN_ON_ERROR))
789 WARN_ON_ONCE(1);
790
791 if (test_opt(sb, ERRORS_CONT)) {
792 ext4_commit_super(sb, 0);
793 return;
794 }
795
796 ext4_unlock_group(sb, grp);
797 ext4_commit_super(sb, 1);
798 ext4_handle_error(sb);
799 /*
800 * We only get here in the ERRORS_RO case; relocking the group
801 * may be dangerous, but nothing bad will happen since the
802 * filesystem will have already been marked read/only and the
803 * journal has been aborted. We return 1 as a hint to callers
804 * who might what to use the return value from
805 * ext4_grp_locked_error() to distinguish between the
806 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
807 * aggressively from the ext4 function in question, with a
808 * more appropriate error code.
809 */
810 ext4_lock_group(sb, grp);
811 return;
812}
813
814void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
815 ext4_group_t group,
816 unsigned int flags)
817{
818 struct ext4_sb_info *sbi = EXT4_SB(sb);
819 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
820 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
821 int ret;
822
823 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
824 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
825 &grp->bb_state);
826 if (!ret)
827 percpu_counter_sub(&sbi->s_freeclusters_counter,
828 grp->bb_free);
829 }
830
831 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
832 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
833 &grp->bb_state);
834 if (!ret && gdp) {
835 int count;
836
837 count = ext4_free_inodes_count(sb, gdp);
838 percpu_counter_sub(&sbi->s_freeinodes_counter,
839 count);
840 }
841 }
842}
843
844void ext4_update_dynamic_rev(struct super_block *sb)
845{
846 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
847
848 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
849 return;
850
851 ext4_warning(sb,
852 "updating to rev %d because of new feature flag, "
853 "running e2fsck is recommended",
854 EXT4_DYNAMIC_REV);
855
856 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
857 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
858 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
859 /* leave es->s_feature_*compat flags alone */
860 /* es->s_uuid will be set by e2fsck if empty */
861
862 /*
863 * The rest of the superblock fields should be zero, and if not it
864 * means they are likely already in use, so leave them alone. We
865 * can leave it up to e2fsck to clean up any inconsistencies there.
866 */
867}
868
869/*
870 * Open the external journal device
871 */
872static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
873{
874 struct block_device *bdev;
875 char b[BDEVNAME_SIZE];
876
877 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
878 if (IS_ERR(bdev))
879 goto fail;
880 return bdev;
881
882fail:
883 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
884 __bdevname(dev, b), PTR_ERR(bdev));
885 return NULL;
886}
887
888/*
889 * Release the journal device
890 */
891static void ext4_blkdev_put(struct block_device *bdev)
892{
893 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
894}
895
896static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
897{
898 struct block_device *bdev;
899 bdev = sbi->journal_bdev;
900 if (bdev) {
901 ext4_blkdev_put(bdev);
902 sbi->journal_bdev = NULL;
903 }
904}
905
906static inline struct inode *orphan_list_entry(struct list_head *l)
907{
908 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
909}
910
911static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
912{
913 struct list_head *l;
914
915 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
916 le32_to_cpu(sbi->s_es->s_last_orphan));
917
918 printk(KERN_ERR "sb_info orphan list:\n");
919 list_for_each(l, &sbi->s_orphan) {
920 struct inode *inode = orphan_list_entry(l);
921 printk(KERN_ERR " "
922 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
923 inode->i_sb->s_id, inode->i_ino, inode,
924 inode->i_mode, inode->i_nlink,
925 NEXT_ORPHAN(inode));
926 }
927}
928
929#ifdef CONFIG_QUOTA
930static int ext4_quota_off(struct super_block *sb, int type);
931
932static inline void ext4_quota_off_umount(struct super_block *sb)
933{
934 int type;
935
936 /* Use our quota_off function to clear inode flags etc. */
937 for (type = 0; type < EXT4_MAXQUOTAS; type++)
938 ext4_quota_off(sb, type);
939}
940
941/*
942 * This is a helper function which is used in the mount/remount
943 * codepaths (which holds s_umount) to fetch the quota file name.
944 */
945static inline char *get_qf_name(struct super_block *sb,
946 struct ext4_sb_info *sbi,
947 int type)
948{
949 return rcu_dereference_protected(sbi->s_qf_names[type],
950 lockdep_is_held(&sb->s_umount));
951}
952#else
953static inline void ext4_quota_off_umount(struct super_block *sb)
954{
955}
956#endif
957
958static void ext4_put_super(struct super_block *sb)
959{
960 struct ext4_sb_info *sbi = EXT4_SB(sb);
961 struct ext4_super_block *es = sbi->s_es;
962 int aborted = 0;
963 int i, err;
964
965 ext4_unregister_li_request(sb);
966 ext4_quota_off_umount(sb);
967
968 destroy_workqueue(sbi->rsv_conversion_wq);
969
970 if (sbi->s_journal) {
971 aborted = is_journal_aborted(sbi->s_journal);
972 err = jbd2_journal_destroy(sbi->s_journal);
973 sbi->s_journal = NULL;
974 if ((err < 0) && !aborted)
975 ext4_abort(sb, "Couldn't clean up the journal");
976 }
977
978 ext4_unregister_sysfs(sb);
979 ext4_es_unregister_shrinker(sbi);
980 del_timer_sync(&sbi->s_err_report);
981 ext4_release_system_zone(sb);
982 ext4_mb_release(sb);
983 ext4_ext_release(sb);
984
985 if (!sb_rdonly(sb) && !aborted) {
986 ext4_clear_feature_journal_needs_recovery(sb);
987 es->s_state = cpu_to_le16(sbi->s_mount_state);
988 }
989 if (!sb_rdonly(sb))
990 ext4_commit_super(sb, 1);
991
992 for (i = 0; i < sbi->s_gdb_count; i++)
993 brelse(sbi->s_group_desc[i]);
994 kvfree(sbi->s_group_desc);
995 kvfree(sbi->s_flex_groups);
996 percpu_counter_destroy(&sbi->s_freeclusters_counter);
997 percpu_counter_destroy(&sbi->s_freeinodes_counter);
998 percpu_counter_destroy(&sbi->s_dirs_counter);
999 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1000 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
1001#ifdef CONFIG_QUOTA
1002 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1003 kfree(get_qf_name(sb, sbi, i));
1004#endif
1005
1006 /* Debugging code just in case the in-memory inode orphan list
1007 * isn't empty. The on-disk one can be non-empty if we've
1008 * detected an error and taken the fs readonly, but the
1009 * in-memory list had better be clean by this point. */
1010 if (!list_empty(&sbi->s_orphan))
1011 dump_orphan_list(sb, sbi);
1012 J_ASSERT(list_empty(&sbi->s_orphan));
1013
1014 sync_blockdev(sb->s_bdev);
1015 invalidate_bdev(sb->s_bdev);
1016 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1017 /*
1018 * Invalidate the journal device's buffers. We don't want them
1019 * floating about in memory - the physical journal device may
1020 * hotswapped, and it breaks the `ro-after' testing code.
1021 */
1022 sync_blockdev(sbi->journal_bdev);
1023 invalidate_bdev(sbi->journal_bdev);
1024 ext4_blkdev_remove(sbi);
1025 }
1026
1027 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1028 sbi->s_ea_inode_cache = NULL;
1029
1030 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1031 sbi->s_ea_block_cache = NULL;
1032
1033 if (sbi->s_mmp_tsk)
1034 kthread_stop(sbi->s_mmp_tsk);
1035 brelse(sbi->s_sbh);
1036 sb->s_fs_info = NULL;
1037 /*
1038 * Now that we are completely done shutting down the
1039 * superblock, we need to actually destroy the kobject.
1040 */
1041 kobject_put(&sbi->s_kobj);
1042 wait_for_completion(&sbi->s_kobj_unregister);
1043 if (sbi->s_chksum_driver)
1044 crypto_free_shash(sbi->s_chksum_driver);
1045 kfree(sbi->s_blockgroup_lock);
1046 fs_put_dax(sbi->s_daxdev);
1047 kfree(sbi);
1048}
1049
1050static struct kmem_cache *ext4_inode_cachep;
1051
1052/*
1053 * Called inside transaction, so use GFP_NOFS
1054 */
1055static struct inode *ext4_alloc_inode(struct super_block *sb)
1056{
1057 struct ext4_inode_info *ei;
1058
1059 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1060 if (!ei)
1061 return NULL;
1062
1063 inode_set_iversion(&ei->vfs_inode, 1);
1064 spin_lock_init(&ei->i_raw_lock);
1065 INIT_LIST_HEAD(&ei->i_prealloc_list);
1066 spin_lock_init(&ei->i_prealloc_lock);
1067 ext4_es_init_tree(&ei->i_es_tree);
1068 rwlock_init(&ei->i_es_lock);
1069 INIT_LIST_HEAD(&ei->i_es_list);
1070 ei->i_es_all_nr = 0;
1071 ei->i_es_shk_nr = 0;
1072 ei->i_es_shrink_lblk = 0;
1073 ei->i_reserved_data_blocks = 0;
1074 ei->i_da_metadata_calc_len = 0;
1075 ei->i_da_metadata_calc_last_lblock = 0;
1076 spin_lock_init(&(ei->i_block_reservation_lock));
1077 ext4_init_pending_tree(&ei->i_pending_tree);
1078#ifdef CONFIG_QUOTA
1079 ei->i_reserved_quota = 0;
1080 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1081#endif
1082 ei->jinode = NULL;
1083 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1084 spin_lock_init(&ei->i_completed_io_lock);
1085 ei->i_sync_tid = 0;
1086 ei->i_datasync_tid = 0;
1087 atomic_set(&ei->i_unwritten, 0);
1088 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1089 return &ei->vfs_inode;
1090}
1091
1092static int ext4_drop_inode(struct inode *inode)
1093{
1094 int drop = generic_drop_inode(inode);
1095
1096 trace_ext4_drop_inode(inode, drop);
1097 return drop;
1098}
1099
1100static void ext4_i_callback(struct rcu_head *head)
1101{
1102 struct inode *inode = container_of(head, struct inode, i_rcu);
1103 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1104}
1105
1106static void ext4_destroy_inode(struct inode *inode)
1107{
1108 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1109 ext4_msg(inode->i_sb, KERN_ERR,
1110 "Inode %lu (%p): orphan list check failed!",
1111 inode->i_ino, EXT4_I(inode));
1112 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1113 EXT4_I(inode), sizeof(struct ext4_inode_info),
1114 true);
1115 dump_stack();
1116 }
1117 call_rcu(&inode->i_rcu, ext4_i_callback);
1118}
1119
1120static void init_once(void *foo)
1121{
1122 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1123
1124 INIT_LIST_HEAD(&ei->i_orphan);
1125 init_rwsem(&ei->xattr_sem);
1126 init_rwsem(&ei->i_data_sem);
1127 init_rwsem(&ei->i_mmap_sem);
1128 inode_init_once(&ei->vfs_inode);
1129}
1130
1131static int __init init_inodecache(void)
1132{
1133 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1134 sizeof(struct ext4_inode_info), 0,
1135 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1136 SLAB_ACCOUNT),
1137 offsetof(struct ext4_inode_info, i_data),
1138 sizeof_field(struct ext4_inode_info, i_data),
1139 init_once);
1140 if (ext4_inode_cachep == NULL)
1141 return -ENOMEM;
1142 return 0;
1143}
1144
1145static void destroy_inodecache(void)
1146{
1147 /*
1148 * Make sure all delayed rcu free inodes are flushed before we
1149 * destroy cache.
1150 */
1151 rcu_barrier();
1152 kmem_cache_destroy(ext4_inode_cachep);
1153}
1154
1155void ext4_clear_inode(struct inode *inode)
1156{
1157 invalidate_inode_buffers(inode);
1158 clear_inode(inode);
1159 dquot_drop(inode);
1160 ext4_discard_preallocations(inode);
1161 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1162 if (EXT4_I(inode)->jinode) {
1163 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1164 EXT4_I(inode)->jinode);
1165 jbd2_free_inode(EXT4_I(inode)->jinode);
1166 EXT4_I(inode)->jinode = NULL;
1167 }
1168 fscrypt_put_encryption_info(inode);
1169}
1170
1171static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1172 u64 ino, u32 generation)
1173{
1174 struct inode *inode;
1175
1176 /*
1177 * Currently we don't know the generation for parent directory, so
1178 * a generation of 0 means "accept any"
1179 */
1180 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1181 if (IS_ERR(inode))
1182 return ERR_CAST(inode);
1183 if (generation && inode->i_generation != generation) {
1184 iput(inode);
1185 return ERR_PTR(-ESTALE);
1186 }
1187
1188 return inode;
1189}
1190
1191static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1192 int fh_len, int fh_type)
1193{
1194 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1195 ext4_nfs_get_inode);
1196}
1197
1198static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1199 int fh_len, int fh_type)
1200{
1201 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1202 ext4_nfs_get_inode);
1203}
1204
1205static int ext4_nfs_commit_metadata(struct inode *inode)
1206{
1207 struct writeback_control wbc = {
1208 .sync_mode = WB_SYNC_ALL
1209 };
1210
1211 trace_ext4_nfs_commit_metadata(inode);
1212 return ext4_write_inode(inode, &wbc);
1213}
1214
1215/*
1216 * Try to release metadata pages (indirect blocks, directories) which are
1217 * mapped via the block device. Since these pages could have journal heads
1218 * which would prevent try_to_free_buffers() from freeing them, we must use
1219 * jbd2 layer's try_to_free_buffers() function to release them.
1220 */
1221static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1222 gfp_t wait)
1223{
1224 journal_t *journal = EXT4_SB(sb)->s_journal;
1225
1226 WARN_ON(PageChecked(page));
1227 if (!page_has_buffers(page))
1228 return 0;
1229 if (journal)
1230 return jbd2_journal_try_to_free_buffers(journal, page,
1231 wait & ~__GFP_DIRECT_RECLAIM);
1232 return try_to_free_buffers(page);
1233}
1234
1235#ifdef CONFIG_EXT4_FS_ENCRYPTION
1236static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1237{
1238 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1239 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1240}
1241
1242static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1243 void *fs_data)
1244{
1245 handle_t *handle = fs_data;
1246 int res, res2, credits, retries = 0;
1247
1248 /*
1249 * Encrypting the root directory is not allowed because e2fsck expects
1250 * lost+found to exist and be unencrypted, and encrypting the root
1251 * directory would imply encrypting the lost+found directory as well as
1252 * the filename "lost+found" itself.
1253 */
1254 if (inode->i_ino == EXT4_ROOT_INO)
1255 return -EPERM;
1256
1257 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1258 return -EINVAL;
1259
1260 res = ext4_convert_inline_data(inode);
1261 if (res)
1262 return res;
1263
1264 /*
1265 * If a journal handle was specified, then the encryption context is
1266 * being set on a new inode via inheritance and is part of a larger
1267 * transaction to create the inode. Otherwise the encryption context is
1268 * being set on an existing inode in its own transaction. Only in the
1269 * latter case should the "retry on ENOSPC" logic be used.
1270 */
1271
1272 if (handle) {
1273 res = ext4_xattr_set_handle(handle, inode,
1274 EXT4_XATTR_INDEX_ENCRYPTION,
1275 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1276 ctx, len, 0);
1277 if (!res) {
1278 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1279 ext4_clear_inode_state(inode,
1280 EXT4_STATE_MAY_INLINE_DATA);
1281 /*
1282 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1283 * S_DAX may be disabled
1284 */
1285 ext4_set_inode_flags(inode);
1286 }
1287 return res;
1288 }
1289
1290 res = dquot_initialize(inode);
1291 if (res)
1292 return res;
1293retry:
1294 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1295 &credits);
1296 if (res)
1297 return res;
1298
1299 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1300 if (IS_ERR(handle))
1301 return PTR_ERR(handle);
1302
1303 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1304 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1305 ctx, len, 0);
1306 if (!res) {
1307 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1308 /*
1309 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1310 * S_DAX may be disabled
1311 */
1312 ext4_set_inode_flags(inode);
1313 res = ext4_mark_inode_dirty(handle, inode);
1314 if (res)
1315 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1316 }
1317 res2 = ext4_journal_stop(handle);
1318
1319 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1320 goto retry;
1321 if (!res)
1322 res = res2;
1323 return res;
1324}
1325
1326static bool ext4_dummy_context(struct inode *inode)
1327{
1328 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1329}
1330
1331static const struct fscrypt_operations ext4_cryptops = {
1332 .key_prefix = "ext4:",
1333 .get_context = ext4_get_context,
1334 .set_context = ext4_set_context,
1335 .dummy_context = ext4_dummy_context,
1336 .empty_dir = ext4_empty_dir,
1337 .max_namelen = EXT4_NAME_LEN,
1338};
1339#endif
1340
1341#ifdef CONFIG_QUOTA
1342static const char * const quotatypes[] = INITQFNAMES;
1343#define QTYPE2NAME(t) (quotatypes[t])
1344
1345static int ext4_write_dquot(struct dquot *dquot);
1346static int ext4_acquire_dquot(struct dquot *dquot);
1347static int ext4_release_dquot(struct dquot *dquot);
1348static int ext4_mark_dquot_dirty(struct dquot *dquot);
1349static int ext4_write_info(struct super_block *sb, int type);
1350static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1351 const struct path *path);
1352static int ext4_quota_on_mount(struct super_block *sb, int type);
1353static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1354 size_t len, loff_t off);
1355static ssize_t ext4_quota_write(struct super_block *sb, int type,
1356 const char *data, size_t len, loff_t off);
1357static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1358 unsigned int flags);
1359static int ext4_enable_quotas(struct super_block *sb);
1360static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1361
1362static struct dquot **ext4_get_dquots(struct inode *inode)
1363{
1364 return EXT4_I(inode)->i_dquot;
1365}
1366
1367static const struct dquot_operations ext4_quota_operations = {
1368 .get_reserved_space = ext4_get_reserved_space,
1369 .write_dquot = ext4_write_dquot,
1370 .acquire_dquot = ext4_acquire_dquot,
1371 .release_dquot = ext4_release_dquot,
1372 .mark_dirty = ext4_mark_dquot_dirty,
1373 .write_info = ext4_write_info,
1374 .alloc_dquot = dquot_alloc,
1375 .destroy_dquot = dquot_destroy,
1376 .get_projid = ext4_get_projid,
1377 .get_inode_usage = ext4_get_inode_usage,
1378 .get_next_id = ext4_get_next_id,
1379};
1380
1381static const struct quotactl_ops ext4_qctl_operations = {
1382 .quota_on = ext4_quota_on,
1383 .quota_off = ext4_quota_off,
1384 .quota_sync = dquot_quota_sync,
1385 .get_state = dquot_get_state,
1386 .set_info = dquot_set_dqinfo,
1387 .get_dqblk = dquot_get_dqblk,
1388 .set_dqblk = dquot_set_dqblk,
1389 .get_nextdqblk = dquot_get_next_dqblk,
1390};
1391#endif
1392
1393static const struct super_operations ext4_sops = {
1394 .alloc_inode = ext4_alloc_inode,
1395 .destroy_inode = ext4_destroy_inode,
1396 .write_inode = ext4_write_inode,
1397 .dirty_inode = ext4_dirty_inode,
1398 .drop_inode = ext4_drop_inode,
1399 .evict_inode = ext4_evict_inode,
1400 .put_super = ext4_put_super,
1401 .sync_fs = ext4_sync_fs,
1402 .freeze_fs = ext4_freeze,
1403 .unfreeze_fs = ext4_unfreeze,
1404 .statfs = ext4_statfs,
1405 .remount_fs = ext4_remount,
1406 .show_options = ext4_show_options,
1407#ifdef CONFIG_QUOTA
1408 .quota_read = ext4_quota_read,
1409 .quota_write = ext4_quota_write,
1410 .get_dquots = ext4_get_dquots,
1411#endif
1412 .bdev_try_to_free_page = bdev_try_to_free_page,
1413};
1414
1415static const struct export_operations ext4_export_ops = {
1416 .fh_to_dentry = ext4_fh_to_dentry,
1417 .fh_to_parent = ext4_fh_to_parent,
1418 .get_parent = ext4_get_parent,
1419 .commit_metadata = ext4_nfs_commit_metadata,
1420};
1421
1422enum {
1423 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1424 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1425 Opt_nouid32, Opt_debug, Opt_removed,
1426 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1427 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1428 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1429 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1430 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1431 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1432 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1433 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1434 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1435 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1436 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1437 Opt_nowarn_on_error, Opt_mblk_io_submit,
1438 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1439 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1440 Opt_inode_readahead_blks, Opt_journal_ioprio,
1441 Opt_dioread_nolock, Opt_dioread_lock,
1442 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1443 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1444};
1445
1446static const match_table_t tokens = {
1447 {Opt_bsd_df, "bsddf"},
1448 {Opt_minix_df, "minixdf"},
1449 {Opt_grpid, "grpid"},
1450 {Opt_grpid, "bsdgroups"},
1451 {Opt_nogrpid, "nogrpid"},
1452 {Opt_nogrpid, "sysvgroups"},
1453 {Opt_resgid, "resgid=%u"},
1454 {Opt_resuid, "resuid=%u"},
1455 {Opt_sb, "sb=%u"},
1456 {Opt_err_cont, "errors=continue"},
1457 {Opt_err_panic, "errors=panic"},
1458 {Opt_err_ro, "errors=remount-ro"},
1459 {Opt_nouid32, "nouid32"},
1460 {Opt_debug, "debug"},
1461 {Opt_removed, "oldalloc"},
1462 {Opt_removed, "orlov"},
1463 {Opt_user_xattr, "user_xattr"},
1464 {Opt_nouser_xattr, "nouser_xattr"},
1465 {Opt_acl, "acl"},
1466 {Opt_noacl, "noacl"},
1467 {Opt_noload, "norecovery"},
1468 {Opt_noload, "noload"},
1469 {Opt_removed, "nobh"},
1470 {Opt_removed, "bh"},
1471 {Opt_commit, "commit=%u"},
1472 {Opt_min_batch_time, "min_batch_time=%u"},
1473 {Opt_max_batch_time, "max_batch_time=%u"},
1474 {Opt_journal_dev, "journal_dev=%u"},
1475 {Opt_journal_path, "journal_path=%s"},
1476 {Opt_journal_checksum, "journal_checksum"},
1477 {Opt_nojournal_checksum, "nojournal_checksum"},
1478 {Opt_journal_async_commit, "journal_async_commit"},
1479 {Opt_abort, "abort"},
1480 {Opt_data_journal, "data=journal"},
1481 {Opt_data_ordered, "data=ordered"},
1482 {Opt_data_writeback, "data=writeback"},
1483 {Opt_data_err_abort, "data_err=abort"},
1484 {Opt_data_err_ignore, "data_err=ignore"},
1485 {Opt_offusrjquota, "usrjquota="},
1486 {Opt_usrjquota, "usrjquota=%s"},
1487 {Opt_offgrpjquota, "grpjquota="},
1488 {Opt_grpjquota, "grpjquota=%s"},
1489 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1490 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1491 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1492 {Opt_grpquota, "grpquota"},
1493 {Opt_noquota, "noquota"},
1494 {Opt_quota, "quota"},
1495 {Opt_usrquota, "usrquota"},
1496 {Opt_prjquota, "prjquota"},
1497 {Opt_barrier, "barrier=%u"},
1498 {Opt_barrier, "barrier"},
1499 {Opt_nobarrier, "nobarrier"},
1500 {Opt_i_version, "i_version"},
1501 {Opt_dax, "dax"},
1502 {Opt_stripe, "stripe=%u"},
1503 {Opt_delalloc, "delalloc"},
1504 {Opt_warn_on_error, "warn_on_error"},
1505 {Opt_nowarn_on_error, "nowarn_on_error"},
1506 {Opt_lazytime, "lazytime"},
1507 {Opt_nolazytime, "nolazytime"},
1508 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1509 {Opt_nodelalloc, "nodelalloc"},
1510 {Opt_removed, "mblk_io_submit"},
1511 {Opt_removed, "nomblk_io_submit"},
1512 {Opt_block_validity, "block_validity"},
1513 {Opt_noblock_validity, "noblock_validity"},
1514 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1515 {Opt_journal_ioprio, "journal_ioprio=%u"},
1516 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1517 {Opt_auto_da_alloc, "auto_da_alloc"},
1518 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1519 {Opt_dioread_nolock, "dioread_nolock"},
1520 {Opt_dioread_lock, "dioread_lock"},
1521 {Opt_discard, "discard"},
1522 {Opt_nodiscard, "nodiscard"},
1523 {Opt_init_itable, "init_itable=%u"},
1524 {Opt_init_itable, "init_itable"},
1525 {Opt_noinit_itable, "noinit_itable"},
1526 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1527 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1528 {Opt_nombcache, "nombcache"},
1529 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1530 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1531 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1532 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1533 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1534 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1535 {Opt_err, NULL},
1536};
1537
1538static ext4_fsblk_t get_sb_block(void **data)
1539{
1540 ext4_fsblk_t sb_block;
1541 char *options = (char *) *data;
1542
1543 if (!options || strncmp(options, "sb=", 3) != 0)
1544 return 1; /* Default location */
1545
1546 options += 3;
1547 /* TODO: use simple_strtoll with >32bit ext4 */
1548 sb_block = simple_strtoul(options, &options, 0);
1549 if (*options && *options != ',') {
1550 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1551 (char *) *data);
1552 return 1;
1553 }
1554 if (*options == ',')
1555 options++;
1556 *data = (void *) options;
1557
1558 return sb_block;
1559}
1560
1561#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1562static const char deprecated_msg[] =
1563 "Mount option \"%s\" will be removed by %s\n"
1564 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1565
1566#ifdef CONFIG_QUOTA
1567static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1568{
1569 struct ext4_sb_info *sbi = EXT4_SB(sb);
1570 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1571 int ret = -1;
1572
1573 if (sb_any_quota_loaded(sb) && !old_qname) {
1574 ext4_msg(sb, KERN_ERR,
1575 "Cannot change journaled "
1576 "quota options when quota turned on");
1577 return -1;
1578 }
1579 if (ext4_has_feature_quota(sb)) {
1580 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1581 "ignored when QUOTA feature is enabled");
1582 return 1;
1583 }
1584 qname = match_strdup(args);
1585 if (!qname) {
1586 ext4_msg(sb, KERN_ERR,
1587 "Not enough memory for storing quotafile name");
1588 return -1;
1589 }
1590 if (old_qname) {
1591 if (strcmp(old_qname, qname) == 0)
1592 ret = 1;
1593 else
1594 ext4_msg(sb, KERN_ERR,
1595 "%s quota file already specified",
1596 QTYPE2NAME(qtype));
1597 goto errout;
1598 }
1599 if (strchr(qname, '/')) {
1600 ext4_msg(sb, KERN_ERR,
1601 "quotafile must be on filesystem root");
1602 goto errout;
1603 }
1604 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1605 set_opt(sb, QUOTA);
1606 return 1;
1607errout:
1608 kfree(qname);
1609 return ret;
1610}
1611
1612static int clear_qf_name(struct super_block *sb, int qtype)
1613{
1614
1615 struct ext4_sb_info *sbi = EXT4_SB(sb);
1616 char *old_qname = get_qf_name(sb, sbi, qtype);
1617
1618 if (sb_any_quota_loaded(sb) && old_qname) {
1619 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1620 " when quota turned on");
1621 return -1;
1622 }
1623 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1624 synchronize_rcu();
1625 kfree(old_qname);
1626 return 1;
1627}
1628#endif
1629
1630#define MOPT_SET 0x0001
1631#define MOPT_CLEAR 0x0002
1632#define MOPT_NOSUPPORT 0x0004
1633#define MOPT_EXPLICIT 0x0008
1634#define MOPT_CLEAR_ERR 0x0010
1635#define MOPT_GTE0 0x0020
1636#ifdef CONFIG_QUOTA
1637#define MOPT_Q 0
1638#define MOPT_QFMT 0x0040
1639#else
1640#define MOPT_Q MOPT_NOSUPPORT
1641#define MOPT_QFMT MOPT_NOSUPPORT
1642#endif
1643#define MOPT_DATAJ 0x0080
1644#define MOPT_NO_EXT2 0x0100
1645#define MOPT_NO_EXT3 0x0200
1646#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1647#define MOPT_STRING 0x0400
1648
1649static const struct mount_opts {
1650 int token;
1651 int mount_opt;
1652 int flags;
1653} ext4_mount_opts[] = {
1654 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1655 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1656 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1657 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1658 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1659 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1660 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1661 MOPT_EXT4_ONLY | MOPT_SET},
1662 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1663 MOPT_EXT4_ONLY | MOPT_CLEAR},
1664 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1665 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1666 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1667 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1668 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1669 MOPT_EXT4_ONLY | MOPT_CLEAR},
1670 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1671 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1672 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1673 MOPT_EXT4_ONLY | MOPT_CLEAR},
1674 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1675 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1676 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1677 EXT4_MOUNT_JOURNAL_CHECKSUM),
1678 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1679 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1680 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1681 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1682 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1683 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1684 MOPT_NO_EXT2},
1685 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1686 MOPT_NO_EXT2},
1687 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1688 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1689 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1690 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1691 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1692 {Opt_commit, 0, MOPT_GTE0},
1693 {Opt_max_batch_time, 0, MOPT_GTE0},
1694 {Opt_min_batch_time, 0, MOPT_GTE0},
1695 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1696 {Opt_init_itable, 0, MOPT_GTE0},
1697 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1698 {Opt_stripe, 0, MOPT_GTE0},
1699 {Opt_resuid, 0, MOPT_GTE0},
1700 {Opt_resgid, 0, MOPT_GTE0},
1701 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1702 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1703 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1704 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1705 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1706 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1707 MOPT_NO_EXT2 | MOPT_DATAJ},
1708 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1709 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1710#ifdef CONFIG_EXT4_FS_POSIX_ACL
1711 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1712 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1713#else
1714 {Opt_acl, 0, MOPT_NOSUPPORT},
1715 {Opt_noacl, 0, MOPT_NOSUPPORT},
1716#endif
1717 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1718 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1719 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1720 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1721 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1722 MOPT_SET | MOPT_Q},
1723 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1724 MOPT_SET | MOPT_Q},
1725 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1726 MOPT_SET | MOPT_Q},
1727 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1728 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1729 MOPT_CLEAR | MOPT_Q},
1730 {Opt_usrjquota, 0, MOPT_Q},
1731 {Opt_grpjquota, 0, MOPT_Q},
1732 {Opt_offusrjquota, 0, MOPT_Q},
1733 {Opt_offgrpjquota, 0, MOPT_Q},
1734 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1735 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1736 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1737 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1738 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1739 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1740 {Opt_err, 0, 0}
1741};
1742
1743static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1744 substring_t *args, unsigned long *journal_devnum,
1745 unsigned int *journal_ioprio, int is_remount)
1746{
1747 struct ext4_sb_info *sbi = EXT4_SB(sb);
1748 const struct mount_opts *m;
1749 kuid_t uid;
1750 kgid_t gid;
1751 int arg = 0;
1752
1753#ifdef CONFIG_QUOTA
1754 if (token == Opt_usrjquota)
1755 return set_qf_name(sb, USRQUOTA, &args[0]);
1756 else if (token == Opt_grpjquota)
1757 return set_qf_name(sb, GRPQUOTA, &args[0]);
1758 else if (token == Opt_offusrjquota)
1759 return clear_qf_name(sb, USRQUOTA);
1760 else if (token == Opt_offgrpjquota)
1761 return clear_qf_name(sb, GRPQUOTA);
1762#endif
1763 switch (token) {
1764 case Opt_noacl:
1765 case Opt_nouser_xattr:
1766 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1767 break;
1768 case Opt_sb:
1769 return 1; /* handled by get_sb_block() */
1770 case Opt_removed:
1771 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1772 return 1;
1773 case Opt_abort:
1774 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1775 return 1;
1776 case Opt_i_version:
1777 sb->s_flags |= SB_I_VERSION;
1778 return 1;
1779 case Opt_lazytime:
1780 sb->s_flags |= SB_LAZYTIME;
1781 return 1;
1782 case Opt_nolazytime:
1783 sb->s_flags &= ~SB_LAZYTIME;
1784 return 1;
1785 }
1786
1787 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1788 if (token == m->token)
1789 break;
1790
1791 if (m->token == Opt_err) {
1792 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1793 "or missing value", opt);
1794 return -1;
1795 }
1796
1797 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1798 ext4_msg(sb, KERN_ERR,
1799 "Mount option \"%s\" incompatible with ext2", opt);
1800 return -1;
1801 }
1802 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1803 ext4_msg(sb, KERN_ERR,
1804 "Mount option \"%s\" incompatible with ext3", opt);
1805 return -1;
1806 }
1807
1808 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1809 return -1;
1810 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1811 return -1;
1812 if (m->flags & MOPT_EXPLICIT) {
1813 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1814 set_opt2(sb, EXPLICIT_DELALLOC);
1815 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1816 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1817 } else
1818 return -1;
1819 }
1820 if (m->flags & MOPT_CLEAR_ERR)
1821 clear_opt(sb, ERRORS_MASK);
1822 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1823 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1824 "options when quota turned on");
1825 return -1;
1826 }
1827
1828 if (m->flags & MOPT_NOSUPPORT) {
1829 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1830 } else if (token == Opt_commit) {
1831 if (arg == 0)
1832 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1833 sbi->s_commit_interval = HZ * arg;
1834 } else if (token == Opt_debug_want_extra_isize) {
1835 sbi->s_want_extra_isize = arg;
1836 } else if (token == Opt_max_batch_time) {
1837 sbi->s_max_batch_time = arg;
1838 } else if (token == Opt_min_batch_time) {
1839 sbi->s_min_batch_time = arg;
1840 } else if (token == Opt_inode_readahead_blks) {
1841 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1842 ext4_msg(sb, KERN_ERR,
1843 "EXT4-fs: inode_readahead_blks must be "
1844 "0 or a power of 2 smaller than 2^31");
1845 return -1;
1846 }
1847 sbi->s_inode_readahead_blks = arg;
1848 } else if (token == Opt_init_itable) {
1849 set_opt(sb, INIT_INODE_TABLE);
1850 if (!args->from)
1851 arg = EXT4_DEF_LI_WAIT_MULT;
1852 sbi->s_li_wait_mult = arg;
1853 } else if (token == Opt_max_dir_size_kb) {
1854 sbi->s_max_dir_size_kb = arg;
1855 } else if (token == Opt_stripe) {
1856 sbi->s_stripe = arg;
1857 } else if (token == Opt_resuid) {
1858 uid = make_kuid(current_user_ns(), arg);
1859 if (!uid_valid(uid)) {
1860 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1861 return -1;
1862 }
1863 sbi->s_resuid = uid;
1864 } else if (token == Opt_resgid) {
1865 gid = make_kgid(current_user_ns(), arg);
1866 if (!gid_valid(gid)) {
1867 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1868 return -1;
1869 }
1870 sbi->s_resgid = gid;
1871 } else if (token == Opt_journal_dev) {
1872 if (is_remount) {
1873 ext4_msg(sb, KERN_ERR,
1874 "Cannot specify journal on remount");
1875 return -1;
1876 }
1877 *journal_devnum = arg;
1878 } else if (token == Opt_journal_path) {
1879 char *journal_path;
1880 struct inode *journal_inode;
1881 struct path path;
1882 int error;
1883
1884 if (is_remount) {
1885 ext4_msg(sb, KERN_ERR,
1886 "Cannot specify journal on remount");
1887 return -1;
1888 }
1889 journal_path = match_strdup(&args[0]);
1890 if (!journal_path) {
1891 ext4_msg(sb, KERN_ERR, "error: could not dup "
1892 "journal device string");
1893 return -1;
1894 }
1895
1896 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1897 if (error) {
1898 ext4_msg(sb, KERN_ERR, "error: could not find "
1899 "journal device path: error %d", error);
1900 kfree(journal_path);
1901 return -1;
1902 }
1903
1904 journal_inode = d_inode(path.dentry);
1905 if (!S_ISBLK(journal_inode->i_mode)) {
1906 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1907 "is not a block device", journal_path);
1908 path_put(&path);
1909 kfree(journal_path);
1910 return -1;
1911 }
1912
1913 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1914 path_put(&path);
1915 kfree(journal_path);
1916 } else if (token == Opt_journal_ioprio) {
1917 if (arg > 7) {
1918 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1919 " (must be 0-7)");
1920 return -1;
1921 }
1922 *journal_ioprio =
1923 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1924 } else if (token == Opt_test_dummy_encryption) {
1925#ifdef CONFIG_EXT4_FS_ENCRYPTION
1926 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1927 ext4_msg(sb, KERN_WARNING,
1928 "Test dummy encryption mode enabled");
1929#else
1930 ext4_msg(sb, KERN_WARNING,
1931 "Test dummy encryption mount option ignored");
1932#endif
1933 } else if (m->flags & MOPT_DATAJ) {
1934 if (is_remount) {
1935 if (!sbi->s_journal)
1936 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1937 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1938 ext4_msg(sb, KERN_ERR,
1939 "Cannot change data mode on remount");
1940 return -1;
1941 }
1942 } else {
1943 clear_opt(sb, DATA_FLAGS);
1944 sbi->s_mount_opt |= m->mount_opt;
1945 }
1946#ifdef CONFIG_QUOTA
1947 } else if (m->flags & MOPT_QFMT) {
1948 if (sb_any_quota_loaded(sb) &&
1949 sbi->s_jquota_fmt != m->mount_opt) {
1950 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1951 "quota options when quota turned on");
1952 return -1;
1953 }
1954 if (ext4_has_feature_quota(sb)) {
1955 ext4_msg(sb, KERN_INFO,
1956 "Quota format mount options ignored "
1957 "when QUOTA feature is enabled");
1958 return 1;
1959 }
1960 sbi->s_jquota_fmt = m->mount_opt;
1961#endif
1962 } else if (token == Opt_dax) {
1963#ifdef CONFIG_FS_DAX
1964 ext4_msg(sb, KERN_WARNING,
1965 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1966 sbi->s_mount_opt |= m->mount_opt;
1967#else
1968 ext4_msg(sb, KERN_INFO, "dax option not supported");
1969 return -1;
1970#endif
1971 } else if (token == Opt_data_err_abort) {
1972 sbi->s_mount_opt |= m->mount_opt;
1973 } else if (token == Opt_data_err_ignore) {
1974 sbi->s_mount_opt &= ~m->mount_opt;
1975 } else {
1976 if (!args->from)
1977 arg = 1;
1978 if (m->flags & MOPT_CLEAR)
1979 arg = !arg;
1980 else if (unlikely(!(m->flags & MOPT_SET))) {
1981 ext4_msg(sb, KERN_WARNING,
1982 "buggy handling of option %s", opt);
1983 WARN_ON(1);
1984 return -1;
1985 }
1986 if (arg != 0)
1987 sbi->s_mount_opt |= m->mount_opt;
1988 else
1989 sbi->s_mount_opt &= ~m->mount_opt;
1990 }
1991 return 1;
1992}
1993
1994static int parse_options(char *options, struct super_block *sb,
1995 unsigned long *journal_devnum,
1996 unsigned int *journal_ioprio,
1997 int is_remount)
1998{
1999 struct ext4_sb_info *sbi = EXT4_SB(sb);
2000 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2001 substring_t args[MAX_OPT_ARGS];
2002 int token;
2003
2004 if (!options)
2005 return 1;
2006
2007 while ((p = strsep(&options, ",")) != NULL) {
2008 if (!*p)
2009 continue;
2010 /*
2011 * Initialize args struct so we know whether arg was
2012 * found; some options take optional arguments.
2013 */
2014 args[0].to = args[0].from = NULL;
2015 token = match_token(p, tokens, args);
2016 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2017 journal_ioprio, is_remount) < 0)
2018 return 0;
2019 }
2020#ifdef CONFIG_QUOTA
2021 /*
2022 * We do the test below only for project quotas. 'usrquota' and
2023 * 'grpquota' mount options are allowed even without quota feature
2024 * to support legacy quotas in quota files.
2025 */
2026 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2027 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2028 "Cannot enable project quota enforcement.");
2029 return 0;
2030 }
2031 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2032 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2033 if (usr_qf_name || grp_qf_name) {
2034 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2035 clear_opt(sb, USRQUOTA);
2036
2037 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2038 clear_opt(sb, GRPQUOTA);
2039
2040 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2041 ext4_msg(sb, KERN_ERR, "old and new quota "
2042 "format mixing");
2043 return 0;
2044 }
2045
2046 if (!sbi->s_jquota_fmt) {
2047 ext4_msg(sb, KERN_ERR, "journaled quota format "
2048 "not specified");
2049 return 0;
2050 }
2051 }
2052#endif
2053 if (test_opt(sb, DIOREAD_NOLOCK)) {
2054 int blocksize =
2055 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2056
2057 if (blocksize < PAGE_SIZE) {
2058 ext4_msg(sb, KERN_ERR, "can't mount with "
2059 "dioread_nolock if block size != PAGE_SIZE");
2060 return 0;
2061 }
2062 }
2063 return 1;
2064}
2065
2066static inline void ext4_show_quota_options(struct seq_file *seq,
2067 struct super_block *sb)
2068{
2069#if defined(CONFIG_QUOTA)
2070 struct ext4_sb_info *sbi = EXT4_SB(sb);
2071 char *usr_qf_name, *grp_qf_name;
2072
2073 if (sbi->s_jquota_fmt) {
2074 char *fmtname = "";
2075
2076 switch (sbi->s_jquota_fmt) {
2077 case QFMT_VFS_OLD:
2078 fmtname = "vfsold";
2079 break;
2080 case QFMT_VFS_V0:
2081 fmtname = "vfsv0";
2082 break;
2083 case QFMT_VFS_V1:
2084 fmtname = "vfsv1";
2085 break;
2086 }
2087 seq_printf(seq, ",jqfmt=%s", fmtname);
2088 }
2089
2090 rcu_read_lock();
2091 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2092 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2093 if (usr_qf_name)
2094 seq_show_option(seq, "usrjquota", usr_qf_name);
2095 if (grp_qf_name)
2096 seq_show_option(seq, "grpjquota", grp_qf_name);
2097 rcu_read_unlock();
2098#endif
2099}
2100
2101static const char *token2str(int token)
2102{
2103 const struct match_token *t;
2104
2105 for (t = tokens; t->token != Opt_err; t++)
2106 if (t->token == token && !strchr(t->pattern, '='))
2107 break;
2108 return t->pattern;
2109}
2110
2111/*
2112 * Show an option if
2113 * - it's set to a non-default value OR
2114 * - if the per-sb default is different from the global default
2115 */
2116static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2117 int nodefs)
2118{
2119 struct ext4_sb_info *sbi = EXT4_SB(sb);
2120 struct ext4_super_block *es = sbi->s_es;
2121 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2122 const struct mount_opts *m;
2123 char sep = nodefs ? '\n' : ',';
2124
2125#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2126#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2127
2128 if (sbi->s_sb_block != 1)
2129 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2130
2131 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2132 int want_set = m->flags & MOPT_SET;
2133 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2134 (m->flags & MOPT_CLEAR_ERR))
2135 continue;
2136 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2137 continue; /* skip if same as the default */
2138 if ((want_set &&
2139 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2140 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2141 continue; /* select Opt_noFoo vs Opt_Foo */
2142 SEQ_OPTS_PRINT("%s", token2str(m->token));
2143 }
2144
2145 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2146 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2147 SEQ_OPTS_PRINT("resuid=%u",
2148 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2149 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2150 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2151 SEQ_OPTS_PRINT("resgid=%u",
2152 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2153 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2154 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2155 SEQ_OPTS_PUTS("errors=remount-ro");
2156 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2157 SEQ_OPTS_PUTS("errors=continue");
2158 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2159 SEQ_OPTS_PUTS("errors=panic");
2160 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2161 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2162 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2163 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2164 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2165 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2166 if (sb->s_flags & SB_I_VERSION)
2167 SEQ_OPTS_PUTS("i_version");
2168 if (nodefs || sbi->s_stripe)
2169 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2170 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2171 (sbi->s_mount_opt ^ def_mount_opt)) {
2172 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2173 SEQ_OPTS_PUTS("data=journal");
2174 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2175 SEQ_OPTS_PUTS("data=ordered");
2176 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2177 SEQ_OPTS_PUTS("data=writeback");
2178 }
2179 if (nodefs ||
2180 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2181 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2182 sbi->s_inode_readahead_blks);
2183
2184 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2185 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2186 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2187 if (nodefs || sbi->s_max_dir_size_kb)
2188 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2189 if (test_opt(sb, DATA_ERR_ABORT))
2190 SEQ_OPTS_PUTS("data_err=abort");
2191 if (DUMMY_ENCRYPTION_ENABLED(sbi))
2192 SEQ_OPTS_PUTS("test_dummy_encryption");
2193
2194 ext4_show_quota_options(seq, sb);
2195 return 0;
2196}
2197
2198static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2199{
2200 return _ext4_show_options(seq, root->d_sb, 0);
2201}
2202
2203int ext4_seq_options_show(struct seq_file *seq, void *offset)
2204{
2205 struct super_block *sb = seq->private;
2206 int rc;
2207
2208 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2209 rc = _ext4_show_options(seq, sb, 1);
2210 seq_puts(seq, "\n");
2211 return rc;
2212}
2213
2214static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2215 int read_only)
2216{
2217 struct ext4_sb_info *sbi = EXT4_SB(sb);
2218 int err = 0;
2219
2220 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2221 ext4_msg(sb, KERN_ERR, "revision level too high, "
2222 "forcing read-only mode");
2223 err = -EROFS;
2224 }
2225 if (read_only)
2226 goto done;
2227 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2228 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2229 "running e2fsck is recommended");
2230 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2231 ext4_msg(sb, KERN_WARNING,
2232 "warning: mounting fs with errors, "
2233 "running e2fsck is recommended");
2234 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2235 le16_to_cpu(es->s_mnt_count) >=
2236 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2237 ext4_msg(sb, KERN_WARNING,
2238 "warning: maximal mount count reached, "
2239 "running e2fsck is recommended");
2240 else if (le32_to_cpu(es->s_checkinterval) &&
2241 (ext4_get_tstamp(es, s_lastcheck) +
2242 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2243 ext4_msg(sb, KERN_WARNING,
2244 "warning: checktime reached, "
2245 "running e2fsck is recommended");
2246 if (!sbi->s_journal)
2247 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2248 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2249 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2250 le16_add_cpu(&es->s_mnt_count, 1);
2251 ext4_update_tstamp(es, s_mtime);
2252 ext4_update_dynamic_rev(sb);
2253 if (sbi->s_journal)
2254 ext4_set_feature_journal_needs_recovery(sb);
2255
2256 err = ext4_commit_super(sb, 1);
2257done:
2258 if (test_opt(sb, DEBUG))
2259 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2260 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2261 sb->s_blocksize,
2262 sbi->s_groups_count,
2263 EXT4_BLOCKS_PER_GROUP(sb),
2264 EXT4_INODES_PER_GROUP(sb),
2265 sbi->s_mount_opt, sbi->s_mount_opt2);
2266
2267 cleancache_init_fs(sb);
2268 return err;
2269}
2270
2271int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2272{
2273 struct ext4_sb_info *sbi = EXT4_SB(sb);
2274 struct flex_groups *new_groups;
2275 int size;
2276
2277 if (!sbi->s_log_groups_per_flex)
2278 return 0;
2279
2280 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2281 if (size <= sbi->s_flex_groups_allocated)
2282 return 0;
2283
2284 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2285 new_groups = kvzalloc(size, GFP_KERNEL);
2286 if (!new_groups) {
2287 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2288 size / (int) sizeof(struct flex_groups));
2289 return -ENOMEM;
2290 }
2291
2292 if (sbi->s_flex_groups) {
2293 memcpy(new_groups, sbi->s_flex_groups,
2294 (sbi->s_flex_groups_allocated *
2295 sizeof(struct flex_groups)));
2296 kvfree(sbi->s_flex_groups);
2297 }
2298 sbi->s_flex_groups = new_groups;
2299 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2300 return 0;
2301}
2302
2303static int ext4_fill_flex_info(struct super_block *sb)
2304{
2305 struct ext4_sb_info *sbi = EXT4_SB(sb);
2306 struct ext4_group_desc *gdp = NULL;
2307 ext4_group_t flex_group;
2308 int i, err;
2309
2310 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2311 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2312 sbi->s_log_groups_per_flex = 0;
2313 return 1;
2314 }
2315
2316 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2317 if (err)
2318 goto failed;
2319
2320 for (i = 0; i < sbi->s_groups_count; i++) {
2321 gdp = ext4_get_group_desc(sb, i, NULL);
2322
2323 flex_group = ext4_flex_group(sbi, i);
2324 atomic_add(ext4_free_inodes_count(sb, gdp),
2325 &sbi->s_flex_groups[flex_group].free_inodes);
2326 atomic64_add(ext4_free_group_clusters(sb, gdp),
2327 &sbi->s_flex_groups[flex_group].free_clusters);
2328 atomic_add(ext4_used_dirs_count(sb, gdp),
2329 &sbi->s_flex_groups[flex_group].used_dirs);
2330 }
2331
2332 return 1;
2333failed:
2334 return 0;
2335}
2336
2337static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2338 struct ext4_group_desc *gdp)
2339{
2340 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2341 __u16 crc = 0;
2342 __le32 le_group = cpu_to_le32(block_group);
2343 struct ext4_sb_info *sbi = EXT4_SB(sb);
2344
2345 if (ext4_has_metadata_csum(sbi->s_sb)) {
2346 /* Use new metadata_csum algorithm */
2347 __u32 csum32;
2348 __u16 dummy_csum = 0;
2349
2350 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2351 sizeof(le_group));
2352 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2353 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2354 sizeof(dummy_csum));
2355 offset += sizeof(dummy_csum);
2356 if (offset < sbi->s_desc_size)
2357 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2358 sbi->s_desc_size - offset);
2359
2360 crc = csum32 & 0xFFFF;
2361 goto out;
2362 }
2363
2364 /* old crc16 code */
2365 if (!ext4_has_feature_gdt_csum(sb))
2366 return 0;
2367
2368 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2369 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2370 crc = crc16(crc, (__u8 *)gdp, offset);
2371 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2372 /* for checksum of struct ext4_group_desc do the rest...*/
2373 if (ext4_has_feature_64bit(sb) &&
2374 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2375 crc = crc16(crc, (__u8 *)gdp + offset,
2376 le16_to_cpu(sbi->s_es->s_desc_size) -
2377 offset);
2378
2379out:
2380 return cpu_to_le16(crc);
2381}
2382
2383int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2384 struct ext4_group_desc *gdp)
2385{
2386 if (ext4_has_group_desc_csum(sb) &&
2387 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2388 return 0;
2389
2390 return 1;
2391}
2392
2393void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2394 struct ext4_group_desc *gdp)
2395{
2396 if (!ext4_has_group_desc_csum(sb))
2397 return;
2398 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2399}
2400
2401/* Called at mount-time, super-block is locked */
2402static int ext4_check_descriptors(struct super_block *sb,
2403 ext4_fsblk_t sb_block,
2404 ext4_group_t *first_not_zeroed)
2405{
2406 struct ext4_sb_info *sbi = EXT4_SB(sb);
2407 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2408 ext4_fsblk_t last_block;
2409 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2410 ext4_fsblk_t block_bitmap;
2411 ext4_fsblk_t inode_bitmap;
2412 ext4_fsblk_t inode_table;
2413 int flexbg_flag = 0;
2414 ext4_group_t i, grp = sbi->s_groups_count;
2415
2416 if (ext4_has_feature_flex_bg(sb))
2417 flexbg_flag = 1;
2418
2419 ext4_debug("Checking group descriptors");
2420
2421 for (i = 0; i < sbi->s_groups_count; i++) {
2422 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2423
2424 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2425 last_block = ext4_blocks_count(sbi->s_es) - 1;
2426 else
2427 last_block = first_block +
2428 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2429
2430 if ((grp == sbi->s_groups_count) &&
2431 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2432 grp = i;
2433
2434 block_bitmap = ext4_block_bitmap(sb, gdp);
2435 if (block_bitmap == sb_block) {
2436 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2437 "Block bitmap for group %u overlaps "
2438 "superblock", i);
2439 if (!sb_rdonly(sb))
2440 return 0;
2441 }
2442 if (block_bitmap >= sb_block + 1 &&
2443 block_bitmap <= last_bg_block) {
2444 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2445 "Block bitmap for group %u overlaps "
2446 "block group descriptors", i);
2447 if (!sb_rdonly(sb))
2448 return 0;
2449 }
2450 if (block_bitmap < first_block || block_bitmap > last_block) {
2451 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2452 "Block bitmap for group %u not in group "
2453 "(block %llu)!", i, block_bitmap);
2454 return 0;
2455 }
2456 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2457 if (inode_bitmap == sb_block) {
2458 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2459 "Inode bitmap for group %u overlaps "
2460 "superblock", i);
2461 if (!sb_rdonly(sb))
2462 return 0;
2463 }
2464 if (inode_bitmap >= sb_block + 1 &&
2465 inode_bitmap <= last_bg_block) {
2466 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2467 "Inode bitmap for group %u overlaps "
2468 "block group descriptors", i);
2469 if (!sb_rdonly(sb))
2470 return 0;
2471 }
2472 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2473 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2474 "Inode bitmap for group %u not in group "
2475 "(block %llu)!", i, inode_bitmap);
2476 return 0;
2477 }
2478 inode_table = ext4_inode_table(sb, gdp);
2479 if (inode_table == sb_block) {
2480 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2481 "Inode table for group %u overlaps "
2482 "superblock", i);
2483 if (!sb_rdonly(sb))
2484 return 0;
2485 }
2486 if (inode_table >= sb_block + 1 &&
2487 inode_table <= last_bg_block) {
2488 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2489 "Inode table for group %u overlaps "
2490 "block group descriptors", i);
2491 if (!sb_rdonly(sb))
2492 return 0;
2493 }
2494 if (inode_table < first_block ||
2495 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2496 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2497 "Inode table for group %u not in group "
2498 "(block %llu)!", i, inode_table);
2499 return 0;
2500 }
2501 ext4_lock_group(sb, i);
2502 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2503 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2504 "Checksum for group %u failed (%u!=%u)",
2505 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2506 gdp)), le16_to_cpu(gdp->bg_checksum));
2507 if (!sb_rdonly(sb)) {
2508 ext4_unlock_group(sb, i);
2509 return 0;
2510 }
2511 }
2512 ext4_unlock_group(sb, i);
2513 if (!flexbg_flag)
2514 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2515 }
2516 if (NULL != first_not_zeroed)
2517 *first_not_zeroed = grp;
2518 return 1;
2519}
2520
2521/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2522 * the superblock) which were deleted from all directories, but held open by
2523 * a process at the time of a crash. We walk the list and try to delete these
2524 * inodes at recovery time (only with a read-write filesystem).
2525 *
2526 * In order to keep the orphan inode chain consistent during traversal (in
2527 * case of crash during recovery), we link each inode into the superblock
2528 * orphan list_head and handle it the same way as an inode deletion during
2529 * normal operation (which journals the operations for us).
2530 *
2531 * We only do an iget() and an iput() on each inode, which is very safe if we
2532 * accidentally point at an in-use or already deleted inode. The worst that
2533 * can happen in this case is that we get a "bit already cleared" message from
2534 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2535 * e2fsck was run on this filesystem, and it must have already done the orphan
2536 * inode cleanup for us, so we can safely abort without any further action.
2537 */
2538static void ext4_orphan_cleanup(struct super_block *sb,
2539 struct ext4_super_block *es)
2540{
2541 unsigned int s_flags = sb->s_flags;
2542 int ret, nr_orphans = 0, nr_truncates = 0;
2543#ifdef CONFIG_QUOTA
2544 int quota_update = 0;
2545 int i;
2546#endif
2547 if (!es->s_last_orphan) {
2548 jbd_debug(4, "no orphan inodes to clean up\n");
2549 return;
2550 }
2551
2552 if (bdev_read_only(sb->s_bdev)) {
2553 ext4_msg(sb, KERN_ERR, "write access "
2554 "unavailable, skipping orphan cleanup");
2555 return;
2556 }
2557
2558 /* Check if feature set would not allow a r/w mount */
2559 if (!ext4_feature_set_ok(sb, 0)) {
2560 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2561 "unknown ROCOMPAT features");
2562 return;
2563 }
2564
2565 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2566 /* don't clear list on RO mount w/ errors */
2567 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2568 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2569 "clearing orphan list.\n");
2570 es->s_last_orphan = 0;
2571 }
2572 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2573 return;
2574 }
2575
2576 if (s_flags & SB_RDONLY) {
2577 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2578 sb->s_flags &= ~SB_RDONLY;
2579 }
2580#ifdef CONFIG_QUOTA
2581 /* Needed for iput() to work correctly and not trash data */
2582 sb->s_flags |= SB_ACTIVE;
2583
2584 /*
2585 * Turn on quotas which were not enabled for read-only mounts if
2586 * filesystem has quota feature, so that they are updated correctly.
2587 */
2588 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2589 int ret = ext4_enable_quotas(sb);
2590
2591 if (!ret)
2592 quota_update = 1;
2593 else
2594 ext4_msg(sb, KERN_ERR,
2595 "Cannot turn on quotas: error %d", ret);
2596 }
2597
2598 /* Turn on journaled quotas used for old sytle */
2599 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2600 if (EXT4_SB(sb)->s_qf_names[i]) {
2601 int ret = ext4_quota_on_mount(sb, i);
2602
2603 if (!ret)
2604 quota_update = 1;
2605 else
2606 ext4_msg(sb, KERN_ERR,
2607 "Cannot turn on journaled "
2608 "quota: type %d: error %d", i, ret);
2609 }
2610 }
2611#endif
2612
2613 while (es->s_last_orphan) {
2614 struct inode *inode;
2615
2616 /*
2617 * We may have encountered an error during cleanup; if
2618 * so, skip the rest.
2619 */
2620 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2621 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2622 es->s_last_orphan = 0;
2623 break;
2624 }
2625
2626 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2627 if (IS_ERR(inode)) {
2628 es->s_last_orphan = 0;
2629 break;
2630 }
2631
2632 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2633 dquot_initialize(inode);
2634 if (inode->i_nlink) {
2635 if (test_opt(sb, DEBUG))
2636 ext4_msg(sb, KERN_DEBUG,
2637 "%s: truncating inode %lu to %lld bytes",
2638 __func__, inode->i_ino, inode->i_size);
2639 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2640 inode->i_ino, inode->i_size);
2641 inode_lock(inode);
2642 truncate_inode_pages(inode->i_mapping, inode->i_size);
2643 ret = ext4_truncate(inode);
2644 if (ret)
2645 ext4_std_error(inode->i_sb, ret);
2646 inode_unlock(inode);
2647 nr_truncates++;
2648 } else {
2649 if (test_opt(sb, DEBUG))
2650 ext4_msg(sb, KERN_DEBUG,
2651 "%s: deleting unreferenced inode %lu",
2652 __func__, inode->i_ino);
2653 jbd_debug(2, "deleting unreferenced inode %lu\n",
2654 inode->i_ino);
2655 nr_orphans++;
2656 }
2657 iput(inode); /* The delete magic happens here! */
2658 }
2659
2660#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2661
2662 if (nr_orphans)
2663 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2664 PLURAL(nr_orphans));
2665 if (nr_truncates)
2666 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2667 PLURAL(nr_truncates));
2668#ifdef CONFIG_QUOTA
2669 /* Turn off quotas if they were enabled for orphan cleanup */
2670 if (quota_update) {
2671 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2672 if (sb_dqopt(sb)->files[i])
2673 dquot_quota_off(sb, i);
2674 }
2675 }
2676#endif
2677 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2678}
2679
2680/*
2681 * Maximal extent format file size.
2682 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2683 * extent format containers, within a sector_t, and within i_blocks
2684 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2685 * so that won't be a limiting factor.
2686 *
2687 * However there is other limiting factor. We do store extents in the form
2688 * of starting block and length, hence the resulting length of the extent
2689 * covering maximum file size must fit into on-disk format containers as
2690 * well. Given that length is always by 1 unit bigger than max unit (because
2691 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2692 *
2693 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2694 */
2695static loff_t ext4_max_size(int blkbits, int has_huge_files)
2696{
2697 loff_t res;
2698 loff_t upper_limit = MAX_LFS_FILESIZE;
2699
2700 /* small i_blocks in vfs inode? */
2701 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2702 /*
2703 * CONFIG_LBDAF is not enabled implies the inode
2704 * i_block represent total blocks in 512 bytes
2705 * 32 == size of vfs inode i_blocks * 8
2706 */
2707 upper_limit = (1LL << 32) - 1;
2708
2709 /* total blocks in file system block size */
2710 upper_limit >>= (blkbits - 9);
2711 upper_limit <<= blkbits;
2712 }
2713
2714 /*
2715 * 32-bit extent-start container, ee_block. We lower the maxbytes
2716 * by one fs block, so ee_len can cover the extent of maximum file
2717 * size
2718 */
2719 res = (1LL << 32) - 1;
2720 res <<= blkbits;
2721
2722 /* Sanity check against vm- & vfs- imposed limits */
2723 if (res > upper_limit)
2724 res = upper_limit;
2725
2726 return res;
2727}
2728
2729/*
2730 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2731 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2732 * We need to be 1 filesystem block less than the 2^48 sector limit.
2733 */
2734static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2735{
2736 loff_t res = EXT4_NDIR_BLOCKS;
2737 int meta_blocks;
2738 loff_t upper_limit;
2739 /* This is calculated to be the largest file size for a dense, block
2740 * mapped file such that the file's total number of 512-byte sectors,
2741 * including data and all indirect blocks, does not exceed (2^48 - 1).
2742 *
2743 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2744 * number of 512-byte sectors of the file.
2745 */
2746
2747 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2748 /*
2749 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2750 * the inode i_block field represents total file blocks in
2751 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2752 */
2753 upper_limit = (1LL << 32) - 1;
2754
2755 /* total blocks in file system block size */
2756 upper_limit >>= (bits - 9);
2757
2758 } else {
2759 /*
2760 * We use 48 bit ext4_inode i_blocks
2761 * With EXT4_HUGE_FILE_FL set the i_blocks
2762 * represent total number of blocks in
2763 * file system block size
2764 */
2765 upper_limit = (1LL << 48) - 1;
2766
2767 }
2768
2769 /* indirect blocks */
2770 meta_blocks = 1;
2771 /* double indirect blocks */
2772 meta_blocks += 1 + (1LL << (bits-2));
2773 /* tripple indirect blocks */
2774 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2775
2776 upper_limit -= meta_blocks;
2777 upper_limit <<= bits;
2778
2779 res += 1LL << (bits-2);
2780 res += 1LL << (2*(bits-2));
2781 res += 1LL << (3*(bits-2));
2782 res <<= bits;
2783 if (res > upper_limit)
2784 res = upper_limit;
2785
2786 if (res > MAX_LFS_FILESIZE)
2787 res = MAX_LFS_FILESIZE;
2788
2789 return res;
2790}
2791
2792static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2793 ext4_fsblk_t logical_sb_block, int nr)
2794{
2795 struct ext4_sb_info *sbi = EXT4_SB(sb);
2796 ext4_group_t bg, first_meta_bg;
2797 int has_super = 0;
2798
2799 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2800
2801 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2802 return logical_sb_block + nr + 1;
2803 bg = sbi->s_desc_per_block * nr;
2804 if (ext4_bg_has_super(sb, bg))
2805 has_super = 1;
2806
2807 /*
2808 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2809 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2810 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2811 * compensate.
2812 */
2813 if (sb->s_blocksize == 1024 && nr == 0 &&
2814 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2815 has_super++;
2816
2817 return (has_super + ext4_group_first_block_no(sb, bg));
2818}
2819
2820/**
2821 * ext4_get_stripe_size: Get the stripe size.
2822 * @sbi: In memory super block info
2823 *
2824 * If we have specified it via mount option, then
2825 * use the mount option value. If the value specified at mount time is
2826 * greater than the blocks per group use the super block value.
2827 * If the super block value is greater than blocks per group return 0.
2828 * Allocator needs it be less than blocks per group.
2829 *
2830 */
2831static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2832{
2833 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2834 unsigned long stripe_width =
2835 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2836 int ret;
2837
2838 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2839 ret = sbi->s_stripe;
2840 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2841 ret = stripe_width;
2842 else if (stride && stride <= sbi->s_blocks_per_group)
2843 ret = stride;
2844 else
2845 ret = 0;
2846
2847 /*
2848 * If the stripe width is 1, this makes no sense and
2849 * we set it to 0 to turn off stripe handling code.
2850 */
2851 if (ret <= 1)
2852 ret = 0;
2853
2854 return ret;
2855}
2856
2857/*
2858 * Check whether this filesystem can be mounted based on
2859 * the features present and the RDONLY/RDWR mount requested.
2860 * Returns 1 if this filesystem can be mounted as requested,
2861 * 0 if it cannot be.
2862 */
2863static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2864{
2865 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2866 ext4_msg(sb, KERN_ERR,
2867 "Couldn't mount because of "
2868 "unsupported optional features (%x)",
2869 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2870 ~EXT4_FEATURE_INCOMPAT_SUPP));
2871 return 0;
2872 }
2873
2874 if (readonly)
2875 return 1;
2876
2877 if (ext4_has_feature_readonly(sb)) {
2878 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2879 sb->s_flags |= SB_RDONLY;
2880 return 1;
2881 }
2882
2883 /* Check that feature set is OK for a read-write mount */
2884 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2885 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2886 "unsupported optional features (%x)",
2887 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2888 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2889 return 0;
2890 }
2891 /*
2892 * Large file size enabled file system can only be mounted
2893 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2894 */
2895 if (ext4_has_feature_huge_file(sb)) {
2896 if (sizeof(blkcnt_t) < sizeof(u64)) {
2897 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2898 "cannot be mounted RDWR without "
2899 "CONFIG_LBDAF");
2900 return 0;
2901 }
2902 }
2903 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2904 ext4_msg(sb, KERN_ERR,
2905 "Can't support bigalloc feature without "
2906 "extents feature\n");
2907 return 0;
2908 }
2909
2910#ifndef CONFIG_QUOTA
2911 if (ext4_has_feature_quota(sb) && !readonly) {
2912 ext4_msg(sb, KERN_ERR,
2913 "Filesystem with quota feature cannot be mounted RDWR "
2914 "without CONFIG_QUOTA");
2915 return 0;
2916 }
2917 if (ext4_has_feature_project(sb) && !readonly) {
2918 ext4_msg(sb, KERN_ERR,
2919 "Filesystem with project quota feature cannot be mounted RDWR "
2920 "without CONFIG_QUOTA");
2921 return 0;
2922 }
2923#endif /* CONFIG_QUOTA */
2924 return 1;
2925}
2926
2927/*
2928 * This function is called once a day if we have errors logged
2929 * on the file system
2930 */
2931static void print_daily_error_info(struct timer_list *t)
2932{
2933 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2934 struct super_block *sb = sbi->s_sb;
2935 struct ext4_super_block *es = sbi->s_es;
2936
2937 if (es->s_error_count)
2938 /* fsck newer than v1.41.13 is needed to clean this condition. */
2939 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2940 le32_to_cpu(es->s_error_count));
2941 if (es->s_first_error_time) {
2942 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
2943 sb->s_id,
2944 ext4_get_tstamp(es, s_first_error_time),
2945 (int) sizeof(es->s_first_error_func),
2946 es->s_first_error_func,
2947 le32_to_cpu(es->s_first_error_line));
2948 if (es->s_first_error_ino)
2949 printk(KERN_CONT ": inode %u",
2950 le32_to_cpu(es->s_first_error_ino));
2951 if (es->s_first_error_block)
2952 printk(KERN_CONT ": block %llu", (unsigned long long)
2953 le64_to_cpu(es->s_first_error_block));
2954 printk(KERN_CONT "\n");
2955 }
2956 if (es->s_last_error_time) {
2957 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
2958 sb->s_id,
2959 ext4_get_tstamp(es, s_last_error_time),
2960 (int) sizeof(es->s_last_error_func),
2961 es->s_last_error_func,
2962 le32_to_cpu(es->s_last_error_line));
2963 if (es->s_last_error_ino)
2964 printk(KERN_CONT ": inode %u",
2965 le32_to_cpu(es->s_last_error_ino));
2966 if (es->s_last_error_block)
2967 printk(KERN_CONT ": block %llu", (unsigned long long)
2968 le64_to_cpu(es->s_last_error_block));
2969 printk(KERN_CONT "\n");
2970 }
2971 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2972}
2973
2974/* Find next suitable group and run ext4_init_inode_table */
2975static int ext4_run_li_request(struct ext4_li_request *elr)
2976{
2977 struct ext4_group_desc *gdp = NULL;
2978 ext4_group_t group, ngroups;
2979 struct super_block *sb;
2980 unsigned long timeout = 0;
2981 int ret = 0;
2982
2983 sb = elr->lr_super;
2984 ngroups = EXT4_SB(sb)->s_groups_count;
2985
2986 for (group = elr->lr_next_group; group < ngroups; group++) {
2987 gdp = ext4_get_group_desc(sb, group, NULL);
2988 if (!gdp) {
2989 ret = 1;
2990 break;
2991 }
2992
2993 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2994 break;
2995 }
2996
2997 if (group >= ngroups)
2998 ret = 1;
2999
3000 if (!ret) {
3001 timeout = jiffies;
3002 ret = ext4_init_inode_table(sb, group,
3003 elr->lr_timeout ? 0 : 1);
3004 if (elr->lr_timeout == 0) {
3005 timeout = (jiffies - timeout) *
3006 elr->lr_sbi->s_li_wait_mult;
3007 elr->lr_timeout = timeout;
3008 }
3009 elr->lr_next_sched = jiffies + elr->lr_timeout;
3010 elr->lr_next_group = group + 1;
3011 }
3012 return ret;
3013}
3014
3015/*
3016 * Remove lr_request from the list_request and free the
3017 * request structure. Should be called with li_list_mtx held
3018 */
3019static void ext4_remove_li_request(struct ext4_li_request *elr)
3020{
3021 struct ext4_sb_info *sbi;
3022
3023 if (!elr)
3024 return;
3025
3026 sbi = elr->lr_sbi;
3027
3028 list_del(&elr->lr_request);
3029 sbi->s_li_request = NULL;
3030 kfree(elr);
3031}
3032
3033static void ext4_unregister_li_request(struct super_block *sb)
3034{
3035 mutex_lock(&ext4_li_mtx);
3036 if (!ext4_li_info) {
3037 mutex_unlock(&ext4_li_mtx);
3038 return;
3039 }
3040
3041 mutex_lock(&ext4_li_info->li_list_mtx);
3042 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3043 mutex_unlock(&ext4_li_info->li_list_mtx);
3044 mutex_unlock(&ext4_li_mtx);
3045}
3046
3047static struct task_struct *ext4_lazyinit_task;
3048
3049/*
3050 * This is the function where ext4lazyinit thread lives. It walks
3051 * through the request list searching for next scheduled filesystem.
3052 * When such a fs is found, run the lazy initialization request
3053 * (ext4_rn_li_request) and keep track of the time spend in this
3054 * function. Based on that time we compute next schedule time of
3055 * the request. When walking through the list is complete, compute
3056 * next waking time and put itself into sleep.
3057 */
3058static int ext4_lazyinit_thread(void *arg)
3059{
3060 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3061 struct list_head *pos, *n;
3062 struct ext4_li_request *elr;
3063 unsigned long next_wakeup, cur;
3064
3065 BUG_ON(NULL == eli);
3066
3067cont_thread:
3068 while (true) {
3069 next_wakeup = MAX_JIFFY_OFFSET;
3070
3071 mutex_lock(&eli->li_list_mtx);
3072 if (list_empty(&eli->li_request_list)) {
3073 mutex_unlock(&eli->li_list_mtx);
3074 goto exit_thread;
3075 }
3076 list_for_each_safe(pos, n, &eli->li_request_list) {
3077 int err = 0;
3078 int progress = 0;
3079 elr = list_entry(pos, struct ext4_li_request,
3080 lr_request);
3081
3082 if (time_before(jiffies, elr->lr_next_sched)) {
3083 if (time_before(elr->lr_next_sched, next_wakeup))
3084 next_wakeup = elr->lr_next_sched;
3085 continue;
3086 }
3087 if (down_read_trylock(&elr->lr_super->s_umount)) {
3088 if (sb_start_write_trylock(elr->lr_super)) {
3089 progress = 1;
3090 /*
3091 * We hold sb->s_umount, sb can not
3092 * be removed from the list, it is
3093 * now safe to drop li_list_mtx
3094 */
3095 mutex_unlock(&eli->li_list_mtx);
3096 err = ext4_run_li_request(elr);
3097 sb_end_write(elr->lr_super);
3098 mutex_lock(&eli->li_list_mtx);
3099 n = pos->next;
3100 }
3101 up_read((&elr->lr_super->s_umount));
3102 }
3103 /* error, remove the lazy_init job */
3104 if (err) {
3105 ext4_remove_li_request(elr);
3106 continue;
3107 }
3108 if (!progress) {
3109 elr->lr_next_sched = jiffies +
3110 (prandom_u32()
3111 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3112 }
3113 if (time_before(elr->lr_next_sched, next_wakeup))
3114 next_wakeup = elr->lr_next_sched;
3115 }
3116 mutex_unlock(&eli->li_list_mtx);
3117
3118 try_to_freeze();
3119
3120 cur = jiffies;
3121 if ((time_after_eq(cur, next_wakeup)) ||
3122 (MAX_JIFFY_OFFSET == next_wakeup)) {
3123 cond_resched();
3124 continue;
3125 }
3126
3127 schedule_timeout_interruptible(next_wakeup - cur);
3128
3129 if (kthread_should_stop()) {
3130 ext4_clear_request_list();
3131 goto exit_thread;
3132 }
3133 }
3134
3135exit_thread:
3136 /*
3137 * It looks like the request list is empty, but we need
3138 * to check it under the li_list_mtx lock, to prevent any
3139 * additions into it, and of course we should lock ext4_li_mtx
3140 * to atomically free the list and ext4_li_info, because at
3141 * this point another ext4 filesystem could be registering
3142 * new one.
3143 */
3144 mutex_lock(&ext4_li_mtx);
3145 mutex_lock(&eli->li_list_mtx);
3146 if (!list_empty(&eli->li_request_list)) {
3147 mutex_unlock(&eli->li_list_mtx);
3148 mutex_unlock(&ext4_li_mtx);
3149 goto cont_thread;
3150 }
3151 mutex_unlock(&eli->li_list_mtx);
3152 kfree(ext4_li_info);
3153 ext4_li_info = NULL;
3154 mutex_unlock(&ext4_li_mtx);
3155
3156 return 0;
3157}
3158
3159static void ext4_clear_request_list(void)
3160{
3161 struct list_head *pos, *n;
3162 struct ext4_li_request *elr;
3163
3164 mutex_lock(&ext4_li_info->li_list_mtx);
3165 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3166 elr = list_entry(pos, struct ext4_li_request,
3167 lr_request);
3168 ext4_remove_li_request(elr);
3169 }
3170 mutex_unlock(&ext4_li_info->li_list_mtx);
3171}
3172
3173static int ext4_run_lazyinit_thread(void)
3174{
3175 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3176 ext4_li_info, "ext4lazyinit");
3177 if (IS_ERR(ext4_lazyinit_task)) {
3178 int err = PTR_ERR(ext4_lazyinit_task);
3179 ext4_clear_request_list();
3180 kfree(ext4_li_info);
3181 ext4_li_info = NULL;
3182 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3183 "initialization thread\n",
3184 err);
3185 return err;
3186 }
3187 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3188 return 0;
3189}
3190
3191/*
3192 * Check whether it make sense to run itable init. thread or not.
3193 * If there is at least one uninitialized inode table, return
3194 * corresponding group number, else the loop goes through all
3195 * groups and return total number of groups.
3196 */
3197static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3198{
3199 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3200 struct ext4_group_desc *gdp = NULL;
3201
3202 if (!ext4_has_group_desc_csum(sb))
3203 return ngroups;
3204
3205 for (group = 0; group < ngroups; group++) {
3206 gdp = ext4_get_group_desc(sb, group, NULL);
3207 if (!gdp)
3208 continue;
3209
3210 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3211 break;
3212 }
3213
3214 return group;
3215}
3216
3217static int ext4_li_info_new(void)
3218{
3219 struct ext4_lazy_init *eli = NULL;
3220
3221 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3222 if (!eli)
3223 return -ENOMEM;
3224
3225 INIT_LIST_HEAD(&eli->li_request_list);
3226 mutex_init(&eli->li_list_mtx);
3227
3228 eli->li_state |= EXT4_LAZYINIT_QUIT;
3229
3230 ext4_li_info = eli;
3231
3232 return 0;
3233}
3234
3235static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3236 ext4_group_t start)
3237{
3238 struct ext4_sb_info *sbi = EXT4_SB(sb);
3239 struct ext4_li_request *elr;
3240
3241 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3242 if (!elr)
3243 return NULL;
3244
3245 elr->lr_super = sb;
3246 elr->lr_sbi = sbi;
3247 elr->lr_next_group = start;
3248
3249 /*
3250 * Randomize first schedule time of the request to
3251 * spread the inode table initialization requests
3252 * better.
3253 */
3254 elr->lr_next_sched = jiffies + (prandom_u32() %
3255 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3256 return elr;
3257}
3258
3259int ext4_register_li_request(struct super_block *sb,
3260 ext4_group_t first_not_zeroed)
3261{
3262 struct ext4_sb_info *sbi = EXT4_SB(sb);
3263 struct ext4_li_request *elr = NULL;
3264 ext4_group_t ngroups = sbi->s_groups_count;
3265 int ret = 0;
3266
3267 mutex_lock(&ext4_li_mtx);
3268 if (sbi->s_li_request != NULL) {
3269 /*
3270 * Reset timeout so it can be computed again, because
3271 * s_li_wait_mult might have changed.
3272 */
3273 sbi->s_li_request->lr_timeout = 0;
3274 goto out;
3275 }
3276
3277 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3278 !test_opt(sb, INIT_INODE_TABLE))
3279 goto out;
3280
3281 elr = ext4_li_request_new(sb, first_not_zeroed);
3282 if (!elr) {
3283 ret = -ENOMEM;
3284 goto out;
3285 }
3286
3287 if (NULL == ext4_li_info) {
3288 ret = ext4_li_info_new();
3289 if (ret)
3290 goto out;
3291 }
3292
3293 mutex_lock(&ext4_li_info->li_list_mtx);
3294 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3295 mutex_unlock(&ext4_li_info->li_list_mtx);
3296
3297 sbi->s_li_request = elr;
3298 /*
3299 * set elr to NULL here since it has been inserted to
3300 * the request_list and the removal and free of it is
3301 * handled by ext4_clear_request_list from now on.
3302 */
3303 elr = NULL;
3304
3305 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3306 ret = ext4_run_lazyinit_thread();
3307 if (ret)
3308 goto out;
3309 }
3310out:
3311 mutex_unlock(&ext4_li_mtx);
3312 if (ret)
3313 kfree(elr);
3314 return ret;
3315}
3316
3317/*
3318 * We do not need to lock anything since this is called on
3319 * module unload.
3320 */
3321static void ext4_destroy_lazyinit_thread(void)
3322{
3323 /*
3324 * If thread exited earlier
3325 * there's nothing to be done.
3326 */
3327 if (!ext4_li_info || !ext4_lazyinit_task)
3328 return;
3329
3330 kthread_stop(ext4_lazyinit_task);
3331}
3332
3333static int set_journal_csum_feature_set(struct super_block *sb)
3334{
3335 int ret = 1;
3336 int compat, incompat;
3337 struct ext4_sb_info *sbi = EXT4_SB(sb);
3338
3339 if (ext4_has_metadata_csum(sb)) {
3340 /* journal checksum v3 */
3341 compat = 0;
3342 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3343 } else {
3344 /* journal checksum v1 */
3345 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3346 incompat = 0;
3347 }
3348
3349 jbd2_journal_clear_features(sbi->s_journal,
3350 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3351 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3352 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3353 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3354 ret = jbd2_journal_set_features(sbi->s_journal,
3355 compat, 0,
3356 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3357 incompat);
3358 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3359 ret = jbd2_journal_set_features(sbi->s_journal,
3360 compat, 0,
3361 incompat);
3362 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3363 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3364 } else {
3365 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3366 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3367 }
3368
3369 return ret;
3370}
3371
3372/*
3373 * Note: calculating the overhead so we can be compatible with
3374 * historical BSD practice is quite difficult in the face of
3375 * clusters/bigalloc. This is because multiple metadata blocks from
3376 * different block group can end up in the same allocation cluster.
3377 * Calculating the exact overhead in the face of clustered allocation
3378 * requires either O(all block bitmaps) in memory or O(number of block
3379 * groups**2) in time. We will still calculate the superblock for
3380 * older file systems --- and if we come across with a bigalloc file
3381 * system with zero in s_overhead_clusters the estimate will be close to
3382 * correct especially for very large cluster sizes --- but for newer
3383 * file systems, it's better to calculate this figure once at mkfs
3384 * time, and store it in the superblock. If the superblock value is
3385 * present (even for non-bigalloc file systems), we will use it.
3386 */
3387static int count_overhead(struct super_block *sb, ext4_group_t grp,
3388 char *buf)
3389{
3390 struct ext4_sb_info *sbi = EXT4_SB(sb);
3391 struct ext4_group_desc *gdp;
3392 ext4_fsblk_t first_block, last_block, b;
3393 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3394 int s, j, count = 0;
3395
3396 if (!ext4_has_feature_bigalloc(sb))
3397 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3398 sbi->s_itb_per_group + 2);
3399
3400 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3401 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3402 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3403 for (i = 0; i < ngroups; i++) {
3404 gdp = ext4_get_group_desc(sb, i, NULL);
3405 b = ext4_block_bitmap(sb, gdp);
3406 if (b >= first_block && b <= last_block) {
3407 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3408 count++;
3409 }
3410 b = ext4_inode_bitmap(sb, gdp);
3411 if (b >= first_block && b <= last_block) {
3412 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3413 count++;
3414 }
3415 b = ext4_inode_table(sb, gdp);
3416 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3417 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3418 int c = EXT4_B2C(sbi, b - first_block);
3419 ext4_set_bit(c, buf);
3420 count++;
3421 }
3422 if (i != grp)
3423 continue;
3424 s = 0;
3425 if (ext4_bg_has_super(sb, grp)) {
3426 ext4_set_bit(s++, buf);
3427 count++;
3428 }
3429 j = ext4_bg_num_gdb(sb, grp);
3430 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3431 ext4_error(sb, "Invalid number of block group "
3432 "descriptor blocks: %d", j);
3433 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3434 }
3435 count += j;
3436 for (; j > 0; j--)
3437 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3438 }
3439 if (!count)
3440 return 0;
3441 return EXT4_CLUSTERS_PER_GROUP(sb) -
3442 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3443}
3444
3445/*
3446 * Compute the overhead and stash it in sbi->s_overhead
3447 */
3448int ext4_calculate_overhead(struct super_block *sb)
3449{
3450 struct ext4_sb_info *sbi = EXT4_SB(sb);
3451 struct ext4_super_block *es = sbi->s_es;
3452 struct inode *j_inode;
3453 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3454 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3455 ext4_fsblk_t overhead = 0;
3456 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3457
3458 if (!buf)
3459 return -ENOMEM;
3460
3461 /*
3462 * Compute the overhead (FS structures). This is constant
3463 * for a given filesystem unless the number of block groups
3464 * changes so we cache the previous value until it does.
3465 */
3466
3467 /*
3468 * All of the blocks before first_data_block are overhead
3469 */
3470 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3471
3472 /*
3473 * Add the overhead found in each block group
3474 */
3475 for (i = 0; i < ngroups; i++) {
3476 int blks;
3477
3478 blks = count_overhead(sb, i, buf);
3479 overhead += blks;
3480 if (blks)
3481 memset(buf, 0, PAGE_SIZE);
3482 cond_resched();
3483 }
3484
3485 /*
3486 * Add the internal journal blocks whether the journal has been
3487 * loaded or not
3488 */
3489 if (sbi->s_journal && !sbi->journal_bdev)
3490 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3491 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3492 j_inode = ext4_get_journal_inode(sb, j_inum);
3493 if (j_inode) {
3494 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3495 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3496 iput(j_inode);
3497 } else {
3498 ext4_msg(sb, KERN_ERR, "can't get journal size");
3499 }
3500 }
3501 sbi->s_overhead = overhead;
3502 smp_wmb();
3503 free_page((unsigned long) buf);
3504 return 0;
3505}
3506
3507static void ext4_set_resv_clusters(struct super_block *sb)
3508{
3509 ext4_fsblk_t resv_clusters;
3510 struct ext4_sb_info *sbi = EXT4_SB(sb);
3511
3512 /*
3513 * There's no need to reserve anything when we aren't using extents.
3514 * The space estimates are exact, there are no unwritten extents,
3515 * hole punching doesn't need new metadata... This is needed especially
3516 * to keep ext2/3 backward compatibility.
3517 */
3518 if (!ext4_has_feature_extents(sb))
3519 return;
3520 /*
3521 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3522 * This should cover the situations where we can not afford to run
3523 * out of space like for example punch hole, or converting
3524 * unwritten extents in delalloc path. In most cases such
3525 * allocation would require 1, or 2 blocks, higher numbers are
3526 * very rare.
3527 */
3528 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3529 sbi->s_cluster_bits);
3530
3531 do_div(resv_clusters, 50);
3532 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3533
3534 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3535}
3536
3537static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3538{
3539 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3540 char *orig_data = kstrdup(data, GFP_KERNEL);
3541 struct buffer_head *bh;
3542 struct ext4_super_block *es = NULL;
3543 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3544 ext4_fsblk_t block;
3545 ext4_fsblk_t sb_block = get_sb_block(&data);
3546 ext4_fsblk_t logical_sb_block;
3547 unsigned long offset = 0;
3548 unsigned long journal_devnum = 0;
3549 unsigned long def_mount_opts;
3550 struct inode *root;
3551 const char *descr;
3552 int ret = -ENOMEM;
3553 int blocksize, clustersize;
3554 unsigned int db_count;
3555 unsigned int i;
3556 int needs_recovery, has_huge_files, has_bigalloc;
3557 __u64 blocks_count;
3558 int err = 0;
3559 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3560 ext4_group_t first_not_zeroed;
3561
3562 if ((data && !orig_data) || !sbi)
3563 goto out_free_base;
3564
3565 sbi->s_daxdev = dax_dev;
3566 sbi->s_blockgroup_lock =
3567 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3568 if (!sbi->s_blockgroup_lock)
3569 goto out_free_base;
3570
3571 sb->s_fs_info = sbi;
3572 sbi->s_sb = sb;
3573 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3574 sbi->s_sb_block = sb_block;
3575 if (sb->s_bdev->bd_part)
3576 sbi->s_sectors_written_start =
3577 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3578
3579 /* Cleanup superblock name */
3580 strreplace(sb->s_id, '/', '!');
3581
3582 /* -EINVAL is default */
3583 ret = -EINVAL;
3584 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3585 if (!blocksize) {
3586 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3587 goto out_fail;
3588 }
3589
3590 /*
3591 * The ext4 superblock will not be buffer aligned for other than 1kB
3592 * block sizes. We need to calculate the offset from buffer start.
3593 */
3594 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3595 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3596 offset = do_div(logical_sb_block, blocksize);
3597 } else {
3598 logical_sb_block = sb_block;
3599 }
3600
3601 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3602 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3603 goto out_fail;
3604 }
3605 /*
3606 * Note: s_es must be initialized as soon as possible because
3607 * some ext4 macro-instructions depend on its value
3608 */
3609 es = (struct ext4_super_block *) (bh->b_data + offset);
3610 sbi->s_es = es;
3611 sb->s_magic = le16_to_cpu(es->s_magic);
3612 if (sb->s_magic != EXT4_SUPER_MAGIC)
3613 goto cantfind_ext4;
3614 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3615
3616 /* Warn if metadata_csum and gdt_csum are both set. */
3617 if (ext4_has_feature_metadata_csum(sb) &&
3618 ext4_has_feature_gdt_csum(sb))
3619 ext4_warning(sb, "metadata_csum and uninit_bg are "
3620 "redundant flags; please run fsck.");
3621
3622 /* Check for a known checksum algorithm */
3623 if (!ext4_verify_csum_type(sb, es)) {
3624 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3625 "unknown checksum algorithm.");
3626 silent = 1;
3627 goto cantfind_ext4;
3628 }
3629
3630 /* Load the checksum driver */
3631 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3632 if (IS_ERR(sbi->s_chksum_driver)) {
3633 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3634 ret = PTR_ERR(sbi->s_chksum_driver);
3635 sbi->s_chksum_driver = NULL;
3636 goto failed_mount;
3637 }
3638
3639 /* Check superblock checksum */
3640 if (!ext4_superblock_csum_verify(sb, es)) {
3641 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3642 "invalid superblock checksum. Run e2fsck?");
3643 silent = 1;
3644 ret = -EFSBADCRC;
3645 goto cantfind_ext4;
3646 }
3647
3648 /* Precompute checksum seed for all metadata */
3649 if (ext4_has_feature_csum_seed(sb))
3650 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3651 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3652 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3653 sizeof(es->s_uuid));
3654
3655 /* Set defaults before we parse the mount options */
3656 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3657 set_opt(sb, INIT_INODE_TABLE);
3658 if (def_mount_opts & EXT4_DEFM_DEBUG)
3659 set_opt(sb, DEBUG);
3660 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3661 set_opt(sb, GRPID);
3662 if (def_mount_opts & EXT4_DEFM_UID16)
3663 set_opt(sb, NO_UID32);
3664 /* xattr user namespace & acls are now defaulted on */
3665 set_opt(sb, XATTR_USER);
3666#ifdef CONFIG_EXT4_FS_POSIX_ACL
3667 set_opt(sb, POSIX_ACL);
3668#endif
3669 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3670 if (ext4_has_metadata_csum(sb))
3671 set_opt(sb, JOURNAL_CHECKSUM);
3672
3673 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3674 set_opt(sb, JOURNAL_DATA);
3675 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3676 set_opt(sb, ORDERED_DATA);
3677 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3678 set_opt(sb, WRITEBACK_DATA);
3679
3680 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3681 set_opt(sb, ERRORS_PANIC);
3682 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3683 set_opt(sb, ERRORS_CONT);
3684 else
3685 set_opt(sb, ERRORS_RO);
3686 /* block_validity enabled by default; disable with noblock_validity */
3687 set_opt(sb, BLOCK_VALIDITY);
3688 if (def_mount_opts & EXT4_DEFM_DISCARD)
3689 set_opt(sb, DISCARD);
3690
3691 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3692 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3693 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3694 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3695 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3696
3697 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3698 set_opt(sb, BARRIER);
3699
3700 /*
3701 * enable delayed allocation by default
3702 * Use -o nodelalloc to turn it off
3703 */
3704 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3705 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3706 set_opt(sb, DELALLOC);
3707
3708 /*
3709 * set default s_li_wait_mult for lazyinit, for the case there is
3710 * no mount option specified.
3711 */
3712 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3713
3714 if (sbi->s_es->s_mount_opts[0]) {
3715 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3716 sizeof(sbi->s_es->s_mount_opts),
3717 GFP_KERNEL);
3718 if (!s_mount_opts)
3719 goto failed_mount;
3720 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3721 &journal_ioprio, 0)) {
3722 ext4_msg(sb, KERN_WARNING,
3723 "failed to parse options in superblock: %s",
3724 s_mount_opts);
3725 }
3726 kfree(s_mount_opts);
3727 }
3728 sbi->s_def_mount_opt = sbi->s_mount_opt;
3729 if (!parse_options((char *) data, sb, &journal_devnum,
3730 &journal_ioprio, 0))
3731 goto failed_mount;
3732
3733 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3734 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3735 "with data=journal disables delayed "
3736 "allocation and O_DIRECT support!\n");
3737 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3738 ext4_msg(sb, KERN_ERR, "can't mount with "
3739 "both data=journal and delalloc");
3740 goto failed_mount;
3741 }
3742 if (test_opt(sb, DIOREAD_NOLOCK)) {
3743 ext4_msg(sb, KERN_ERR, "can't mount with "
3744 "both data=journal and dioread_nolock");
3745 goto failed_mount;
3746 }
3747 if (test_opt(sb, DAX)) {
3748 ext4_msg(sb, KERN_ERR, "can't mount with "
3749 "both data=journal and dax");
3750 goto failed_mount;
3751 }
3752 if (ext4_has_feature_encrypt(sb)) {
3753 ext4_msg(sb, KERN_WARNING,
3754 "encrypted files will use data=ordered "
3755 "instead of data journaling mode");
3756 }
3757 if (test_opt(sb, DELALLOC))
3758 clear_opt(sb, DELALLOC);
3759 } else {
3760 sb->s_iflags |= SB_I_CGROUPWB;
3761 }
3762
3763 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3764 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3765
3766 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3767 (ext4_has_compat_features(sb) ||
3768 ext4_has_ro_compat_features(sb) ||
3769 ext4_has_incompat_features(sb)))
3770 ext4_msg(sb, KERN_WARNING,
3771 "feature flags set on rev 0 fs, "
3772 "running e2fsck is recommended");
3773
3774 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3775 set_opt2(sb, HURD_COMPAT);
3776 if (ext4_has_feature_64bit(sb)) {
3777 ext4_msg(sb, KERN_ERR,
3778 "The Hurd can't support 64-bit file systems");
3779 goto failed_mount;
3780 }
3781
3782 /*
3783 * ea_inode feature uses l_i_version field which is not
3784 * available in HURD_COMPAT mode.
3785 */
3786 if (ext4_has_feature_ea_inode(sb)) {
3787 ext4_msg(sb, KERN_ERR,
3788 "ea_inode feature is not supported for Hurd");
3789 goto failed_mount;
3790 }
3791 }
3792
3793 if (IS_EXT2_SB(sb)) {
3794 if (ext2_feature_set_ok(sb))
3795 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3796 "using the ext4 subsystem");
3797 else {
3798 /*
3799 * If we're probing be silent, if this looks like
3800 * it's actually an ext[34] filesystem.
3801 */
3802 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3803 goto failed_mount;
3804 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3805 "to feature incompatibilities");
3806 goto failed_mount;
3807 }
3808 }
3809
3810 if (IS_EXT3_SB(sb)) {
3811 if (ext3_feature_set_ok(sb))
3812 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3813 "using the ext4 subsystem");
3814 else {
3815 /*
3816 * If we're probing be silent, if this looks like
3817 * it's actually an ext4 filesystem.
3818 */
3819 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3820 goto failed_mount;
3821 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3822 "to feature incompatibilities");
3823 goto failed_mount;
3824 }
3825 }
3826
3827 /*
3828 * Check feature flags regardless of the revision level, since we
3829 * previously didn't change the revision level when setting the flags,
3830 * so there is a chance incompat flags are set on a rev 0 filesystem.
3831 */
3832 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3833 goto failed_mount;
3834
3835 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3836 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3837 blocksize > EXT4_MAX_BLOCK_SIZE) {
3838 ext4_msg(sb, KERN_ERR,
3839 "Unsupported filesystem blocksize %d (%d log_block_size)",
3840 blocksize, le32_to_cpu(es->s_log_block_size));
3841 goto failed_mount;
3842 }
3843 if (le32_to_cpu(es->s_log_block_size) >
3844 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3845 ext4_msg(sb, KERN_ERR,
3846 "Invalid log block size: %u",
3847 le32_to_cpu(es->s_log_block_size));
3848 goto failed_mount;
3849 }
3850 if (le32_to_cpu(es->s_log_cluster_size) >
3851 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3852 ext4_msg(sb, KERN_ERR,
3853 "Invalid log cluster size: %u",
3854 le32_to_cpu(es->s_log_cluster_size));
3855 goto failed_mount;
3856 }
3857
3858 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3859 ext4_msg(sb, KERN_ERR,
3860 "Number of reserved GDT blocks insanely large: %d",
3861 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3862 goto failed_mount;
3863 }
3864
3865 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3866 if (ext4_has_feature_inline_data(sb)) {
3867 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3868 " that may contain inline data");
3869 goto failed_mount;
3870 }
3871 if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
3872 ext4_msg(sb, KERN_ERR,
3873 "DAX unsupported by block device.");
3874 goto failed_mount;
3875 }
3876 }
3877
3878 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3879 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3880 es->s_encryption_level);
3881 goto failed_mount;
3882 }
3883
3884 if (sb->s_blocksize != blocksize) {
3885 /* Validate the filesystem blocksize */
3886 if (!sb_set_blocksize(sb, blocksize)) {
3887 ext4_msg(sb, KERN_ERR, "bad block size %d",
3888 blocksize);
3889 goto failed_mount;
3890 }
3891
3892 brelse(bh);
3893 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3894 offset = do_div(logical_sb_block, blocksize);
3895 bh = sb_bread_unmovable(sb, logical_sb_block);
3896 if (!bh) {
3897 ext4_msg(sb, KERN_ERR,
3898 "Can't read superblock on 2nd try");
3899 goto failed_mount;
3900 }
3901 es = (struct ext4_super_block *)(bh->b_data + offset);
3902 sbi->s_es = es;
3903 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3904 ext4_msg(sb, KERN_ERR,
3905 "Magic mismatch, very weird!");
3906 goto failed_mount;
3907 }
3908 }
3909
3910 has_huge_files = ext4_has_feature_huge_file(sb);
3911 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3912 has_huge_files);
3913 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3914
3915 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3916 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3917 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3918 } else {
3919 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3920 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3921 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3922 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3923 sbi->s_first_ino);
3924 goto failed_mount;
3925 }
3926 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3927 (!is_power_of_2(sbi->s_inode_size)) ||
3928 (sbi->s_inode_size > blocksize)) {
3929 ext4_msg(sb, KERN_ERR,
3930 "unsupported inode size: %d",
3931 sbi->s_inode_size);
3932 goto failed_mount;
3933 }
3934 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3935 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3936 }
3937
3938 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3939 if (ext4_has_feature_64bit(sb)) {
3940 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3941 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3942 !is_power_of_2(sbi->s_desc_size)) {
3943 ext4_msg(sb, KERN_ERR,
3944 "unsupported descriptor size %lu",
3945 sbi->s_desc_size);
3946 goto failed_mount;
3947 }
3948 } else
3949 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3950
3951 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3952 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3953
3954 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3955 if (sbi->s_inodes_per_block == 0)
3956 goto cantfind_ext4;
3957 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3958 sbi->s_inodes_per_group > blocksize * 8) {
3959 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3960 sbi->s_blocks_per_group);
3961 goto failed_mount;
3962 }
3963 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3964 sbi->s_inodes_per_block;
3965 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3966 sbi->s_sbh = bh;
3967 sbi->s_mount_state = le16_to_cpu(es->s_state);
3968 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3969 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3970
3971 for (i = 0; i < 4; i++)
3972 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3973 sbi->s_def_hash_version = es->s_def_hash_version;
3974 if (ext4_has_feature_dir_index(sb)) {
3975 i = le32_to_cpu(es->s_flags);
3976 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3977 sbi->s_hash_unsigned = 3;
3978 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3979#ifdef __CHAR_UNSIGNED__
3980 if (!sb_rdonly(sb))
3981 es->s_flags |=
3982 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3983 sbi->s_hash_unsigned = 3;
3984#else
3985 if (!sb_rdonly(sb))
3986 es->s_flags |=
3987 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3988#endif
3989 }
3990 }
3991
3992 /* Handle clustersize */
3993 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3994 has_bigalloc = ext4_has_feature_bigalloc(sb);
3995 if (has_bigalloc) {
3996 if (clustersize < blocksize) {
3997 ext4_msg(sb, KERN_ERR,
3998 "cluster size (%d) smaller than "
3999 "block size (%d)", clustersize, blocksize);
4000 goto failed_mount;
4001 }
4002 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4003 le32_to_cpu(es->s_log_block_size);
4004 sbi->s_clusters_per_group =
4005 le32_to_cpu(es->s_clusters_per_group);
4006 if (sbi->s_clusters_per_group > blocksize * 8) {
4007 ext4_msg(sb, KERN_ERR,
4008 "#clusters per group too big: %lu",
4009 sbi->s_clusters_per_group);
4010 goto failed_mount;
4011 }
4012 if (sbi->s_blocks_per_group !=
4013 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4014 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4015 "clusters per group (%lu) inconsistent",
4016 sbi->s_blocks_per_group,
4017 sbi->s_clusters_per_group);
4018 goto failed_mount;
4019 }
4020 } else {
4021 if (clustersize != blocksize) {
4022 ext4_msg(sb, KERN_ERR,
4023 "fragment/cluster size (%d) != "
4024 "block size (%d)", clustersize, blocksize);
4025 goto failed_mount;
4026 }
4027 if (sbi->s_blocks_per_group > blocksize * 8) {
4028 ext4_msg(sb, KERN_ERR,
4029 "#blocks per group too big: %lu",
4030 sbi->s_blocks_per_group);
4031 goto failed_mount;
4032 }
4033 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4034 sbi->s_cluster_bits = 0;
4035 }
4036 sbi->s_cluster_ratio = clustersize / blocksize;
4037
4038 /* Do we have standard group size of clustersize * 8 blocks ? */
4039 if (sbi->s_blocks_per_group == clustersize << 3)
4040 set_opt2(sb, STD_GROUP_SIZE);
4041
4042 /*
4043 * Test whether we have more sectors than will fit in sector_t,
4044 * and whether the max offset is addressable by the page cache.
4045 */
4046 err = generic_check_addressable(sb->s_blocksize_bits,
4047 ext4_blocks_count(es));
4048 if (err) {
4049 ext4_msg(sb, KERN_ERR, "filesystem"
4050 " too large to mount safely on this system");
4051 if (sizeof(sector_t) < 8)
4052 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
4053 goto failed_mount;
4054 }
4055
4056 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4057 goto cantfind_ext4;
4058
4059 /* check blocks count against device size */
4060 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4061 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4062 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4063 "exceeds size of device (%llu blocks)",
4064 ext4_blocks_count(es), blocks_count);
4065 goto failed_mount;
4066 }
4067
4068 /*
4069 * It makes no sense for the first data block to be beyond the end
4070 * of the filesystem.
4071 */
4072 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4073 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4074 "block %u is beyond end of filesystem (%llu)",
4075 le32_to_cpu(es->s_first_data_block),
4076 ext4_blocks_count(es));
4077 goto failed_mount;
4078 }
4079 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4080 (sbi->s_cluster_ratio == 1)) {
4081 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4082 "block is 0 with a 1k block and cluster size");
4083 goto failed_mount;
4084 }
4085
4086 blocks_count = (ext4_blocks_count(es) -
4087 le32_to_cpu(es->s_first_data_block) +
4088 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4089 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4090 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4091 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
4092 "(block count %llu, first data block %u, "
4093 "blocks per group %lu)", sbi->s_groups_count,
4094 ext4_blocks_count(es),
4095 le32_to_cpu(es->s_first_data_block),
4096 EXT4_BLOCKS_PER_GROUP(sb));
4097 goto failed_mount;
4098 }
4099 sbi->s_groups_count = blocks_count;
4100 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4101 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4102 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4103 le32_to_cpu(es->s_inodes_count)) {
4104 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4105 le32_to_cpu(es->s_inodes_count),
4106 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4107 ret = -EINVAL;
4108 goto failed_mount;
4109 }
4110 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4111 EXT4_DESC_PER_BLOCK(sb);
4112 if (ext4_has_feature_meta_bg(sb)) {
4113 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4114 ext4_msg(sb, KERN_WARNING,
4115 "first meta block group too large: %u "
4116 "(group descriptor block count %u)",
4117 le32_to_cpu(es->s_first_meta_bg), db_count);
4118 goto failed_mount;
4119 }
4120 }
4121 sbi->s_group_desc = kvmalloc_array(db_count,
4122 sizeof(struct buffer_head *),
4123 GFP_KERNEL);
4124 if (sbi->s_group_desc == NULL) {
4125 ext4_msg(sb, KERN_ERR, "not enough memory");
4126 ret = -ENOMEM;
4127 goto failed_mount;
4128 }
4129
4130 bgl_lock_init(sbi->s_blockgroup_lock);
4131
4132 /* Pre-read the descriptors into the buffer cache */
4133 for (i = 0; i < db_count; i++) {
4134 block = descriptor_loc(sb, logical_sb_block, i);
4135 sb_breadahead(sb, block);
4136 }
4137
4138 for (i = 0; i < db_count; i++) {
4139 block = descriptor_loc(sb, logical_sb_block, i);
4140 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
4141 if (!sbi->s_group_desc[i]) {
4142 ext4_msg(sb, KERN_ERR,
4143 "can't read group descriptor %d", i);
4144 db_count = i;
4145 goto failed_mount2;
4146 }
4147 }
4148 sbi->s_gdb_count = db_count;
4149 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4150 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4151 ret = -EFSCORRUPTED;
4152 goto failed_mount2;
4153 }
4154
4155 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4156
4157 /* Register extent status tree shrinker */
4158 if (ext4_es_register_shrinker(sbi))
4159 goto failed_mount3;
4160
4161 sbi->s_stripe = ext4_get_stripe_size(sbi);
4162 sbi->s_extent_max_zeroout_kb = 32;
4163
4164 /*
4165 * set up enough so that it can read an inode
4166 */
4167 sb->s_op = &ext4_sops;
4168 sb->s_export_op = &ext4_export_ops;
4169 sb->s_xattr = ext4_xattr_handlers;
4170#ifdef CONFIG_EXT4_FS_ENCRYPTION
4171 sb->s_cop = &ext4_cryptops;
4172#endif
4173#ifdef CONFIG_QUOTA
4174 sb->dq_op = &ext4_quota_operations;
4175 if (ext4_has_feature_quota(sb))
4176 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4177 else
4178 sb->s_qcop = &ext4_qctl_operations;
4179 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4180#endif
4181 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4182
4183 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4184 mutex_init(&sbi->s_orphan_lock);
4185
4186 sb->s_root = NULL;
4187
4188 needs_recovery = (es->s_last_orphan != 0 ||
4189 ext4_has_feature_journal_needs_recovery(sb));
4190
4191 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4192 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4193 goto failed_mount3a;
4194
4195 /*
4196 * The first inode we look at is the journal inode. Don't try
4197 * root first: it may be modified in the journal!
4198 */
4199 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4200 err = ext4_load_journal(sb, es, journal_devnum);
4201 if (err)
4202 goto failed_mount3a;
4203 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4204 ext4_has_feature_journal_needs_recovery(sb)) {
4205 ext4_msg(sb, KERN_ERR, "required journal recovery "
4206 "suppressed and not mounted read-only");
4207 goto failed_mount_wq;
4208 } else {
4209 /* Nojournal mode, all journal mount options are illegal */
4210 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4211 ext4_msg(sb, KERN_ERR, "can't mount with "
4212 "journal_checksum, fs mounted w/o journal");
4213 goto failed_mount_wq;
4214 }
4215 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4216 ext4_msg(sb, KERN_ERR, "can't mount with "
4217 "journal_async_commit, fs mounted w/o journal");
4218 goto failed_mount_wq;
4219 }
4220 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4221 ext4_msg(sb, KERN_ERR, "can't mount with "
4222 "commit=%lu, fs mounted w/o journal",
4223 sbi->s_commit_interval / HZ);
4224 goto failed_mount_wq;
4225 }
4226 if (EXT4_MOUNT_DATA_FLAGS &
4227 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4228 ext4_msg(sb, KERN_ERR, "can't mount with "
4229 "data=, fs mounted w/o journal");
4230 goto failed_mount_wq;
4231 }
4232 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4233 clear_opt(sb, JOURNAL_CHECKSUM);
4234 clear_opt(sb, DATA_FLAGS);
4235 sbi->s_journal = NULL;
4236 needs_recovery = 0;
4237 goto no_journal;
4238 }
4239
4240 if (ext4_has_feature_64bit(sb) &&
4241 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4242 JBD2_FEATURE_INCOMPAT_64BIT)) {
4243 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4244 goto failed_mount_wq;
4245 }
4246
4247 if (!set_journal_csum_feature_set(sb)) {
4248 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4249 "feature set");
4250 goto failed_mount_wq;
4251 }
4252
4253 /* We have now updated the journal if required, so we can
4254 * validate the data journaling mode. */
4255 switch (test_opt(sb, DATA_FLAGS)) {
4256 case 0:
4257 /* No mode set, assume a default based on the journal
4258 * capabilities: ORDERED_DATA if the journal can
4259 * cope, else JOURNAL_DATA
4260 */
4261 if (jbd2_journal_check_available_features
4262 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4263 set_opt(sb, ORDERED_DATA);
4264 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4265 } else {
4266 set_opt(sb, JOURNAL_DATA);
4267 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4268 }
4269 break;
4270
4271 case EXT4_MOUNT_ORDERED_DATA:
4272 case EXT4_MOUNT_WRITEBACK_DATA:
4273 if (!jbd2_journal_check_available_features
4274 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4275 ext4_msg(sb, KERN_ERR, "Journal does not support "
4276 "requested data journaling mode");
4277 goto failed_mount_wq;
4278 }
4279 default:
4280 break;
4281 }
4282
4283 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4284 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4285 ext4_msg(sb, KERN_ERR, "can't mount with "
4286 "journal_async_commit in data=ordered mode");
4287 goto failed_mount_wq;
4288 }
4289
4290 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4291
4292 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4293
4294no_journal:
4295 if (!test_opt(sb, NO_MBCACHE)) {
4296 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4297 if (!sbi->s_ea_block_cache) {
4298 ext4_msg(sb, KERN_ERR,
4299 "Failed to create ea_block_cache");
4300 goto failed_mount_wq;
4301 }
4302
4303 if (ext4_has_feature_ea_inode(sb)) {
4304 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4305 if (!sbi->s_ea_inode_cache) {
4306 ext4_msg(sb, KERN_ERR,
4307 "Failed to create ea_inode_cache");
4308 goto failed_mount_wq;
4309 }
4310 }
4311 }
4312
4313 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4314 (blocksize != PAGE_SIZE)) {
4315 ext4_msg(sb, KERN_ERR,
4316 "Unsupported blocksize for fs encryption");
4317 goto failed_mount_wq;
4318 }
4319
4320 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4321 !ext4_has_feature_encrypt(sb)) {
4322 ext4_set_feature_encrypt(sb);
4323 ext4_commit_super(sb, 1);
4324 }
4325
4326 /*
4327 * Get the # of file system overhead blocks from the
4328 * superblock if present.
4329 */
4330 if (es->s_overhead_clusters)
4331 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4332 else {
4333 err = ext4_calculate_overhead(sb);
4334 if (err)
4335 goto failed_mount_wq;
4336 }
4337
4338 /*
4339 * The maximum number of concurrent works can be high and
4340 * concurrency isn't really necessary. Limit it to 1.
4341 */
4342 EXT4_SB(sb)->rsv_conversion_wq =
4343 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4344 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4345 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4346 ret = -ENOMEM;
4347 goto failed_mount4;
4348 }
4349
4350 /*
4351 * The jbd2_journal_load will have done any necessary log recovery,
4352 * so we can safely mount the rest of the filesystem now.
4353 */
4354
4355 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4356 if (IS_ERR(root)) {
4357 ext4_msg(sb, KERN_ERR, "get root inode failed");
4358 ret = PTR_ERR(root);
4359 root = NULL;
4360 goto failed_mount4;
4361 }
4362 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4363 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4364 iput(root);
4365 goto failed_mount4;
4366 }
4367 sb->s_root = d_make_root(root);
4368 if (!sb->s_root) {
4369 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4370 ret = -ENOMEM;
4371 goto failed_mount4;
4372 }
4373
4374 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4375 if (ret == -EROFS) {
4376 sb->s_flags |= SB_RDONLY;
4377 ret = 0;
4378 } else if (ret)
4379 goto failed_mount4a;
4380
4381 /* determine the minimum size of new large inodes, if present */
4382 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4383 sbi->s_want_extra_isize == 0) {
4384 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4385 EXT4_GOOD_OLD_INODE_SIZE;
4386 if (ext4_has_feature_extra_isize(sb)) {
4387 if (sbi->s_want_extra_isize <
4388 le16_to_cpu(es->s_want_extra_isize))
4389 sbi->s_want_extra_isize =
4390 le16_to_cpu(es->s_want_extra_isize);
4391 if (sbi->s_want_extra_isize <
4392 le16_to_cpu(es->s_min_extra_isize))
4393 sbi->s_want_extra_isize =
4394 le16_to_cpu(es->s_min_extra_isize);
4395 }
4396 }
4397 /* Check if enough inode space is available */
4398 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4399 sbi->s_inode_size) {
4400 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4401 EXT4_GOOD_OLD_INODE_SIZE;
4402 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4403 "available");
4404 }
4405
4406 ext4_set_resv_clusters(sb);
4407
4408 err = ext4_setup_system_zone(sb);
4409 if (err) {
4410 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4411 "zone (%d)", err);
4412 goto failed_mount4a;
4413 }
4414
4415 ext4_ext_init(sb);
4416 err = ext4_mb_init(sb);
4417 if (err) {
4418 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4419 err);
4420 goto failed_mount5;
4421 }
4422
4423 block = ext4_count_free_clusters(sb);
4424 ext4_free_blocks_count_set(sbi->s_es,
4425 EXT4_C2B(sbi, block));
4426 ext4_superblock_csum_set(sb);
4427 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4428 GFP_KERNEL);
4429 if (!err) {
4430 unsigned long freei = ext4_count_free_inodes(sb);
4431 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4432 ext4_superblock_csum_set(sb);
4433 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4434 GFP_KERNEL);
4435 }
4436 if (!err)
4437 err = percpu_counter_init(&sbi->s_dirs_counter,
4438 ext4_count_dirs(sb), GFP_KERNEL);
4439 if (!err)
4440 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4441 GFP_KERNEL);
4442 if (!err)
4443 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4444
4445 if (err) {
4446 ext4_msg(sb, KERN_ERR, "insufficient memory");
4447 goto failed_mount6;
4448 }
4449
4450 if (ext4_has_feature_flex_bg(sb))
4451 if (!ext4_fill_flex_info(sb)) {
4452 ext4_msg(sb, KERN_ERR,
4453 "unable to initialize "
4454 "flex_bg meta info!");
4455 goto failed_mount6;
4456 }
4457
4458 err = ext4_register_li_request(sb, first_not_zeroed);
4459 if (err)
4460 goto failed_mount6;
4461
4462 err = ext4_register_sysfs(sb);
4463 if (err)
4464 goto failed_mount7;
4465
4466#ifdef CONFIG_QUOTA
4467 /* Enable quota usage during mount. */
4468 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4469 err = ext4_enable_quotas(sb);
4470 if (err)
4471 goto failed_mount8;
4472 }
4473#endif /* CONFIG_QUOTA */
4474
4475 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4476 ext4_orphan_cleanup(sb, es);
4477 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4478 if (needs_recovery) {
4479 ext4_msg(sb, KERN_INFO, "recovery complete");
4480 ext4_mark_recovery_complete(sb, es);
4481 }
4482 if (EXT4_SB(sb)->s_journal) {
4483 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4484 descr = " journalled data mode";
4485 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4486 descr = " ordered data mode";
4487 else
4488 descr = " writeback data mode";
4489 } else
4490 descr = "out journal";
4491
4492 if (test_opt(sb, DISCARD)) {
4493 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4494 if (!blk_queue_discard(q))
4495 ext4_msg(sb, KERN_WARNING,
4496 "mounting with \"discard\" option, but "
4497 "the device does not support discard");
4498 }
4499
4500 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4501 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4502 "Opts: %.*s%s%s", descr,
4503 (int) sizeof(sbi->s_es->s_mount_opts),
4504 sbi->s_es->s_mount_opts,
4505 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4506
4507 if (es->s_error_count)
4508 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4509
4510 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4511 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4512 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4513 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4514
4515 kfree(orig_data);
4516 return 0;
4517
4518cantfind_ext4:
4519 if (!silent)
4520 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4521 goto failed_mount;
4522
4523#ifdef CONFIG_QUOTA
4524failed_mount8:
4525 ext4_unregister_sysfs(sb);
4526#endif
4527failed_mount7:
4528 ext4_unregister_li_request(sb);
4529failed_mount6:
4530 ext4_mb_release(sb);
4531 if (sbi->s_flex_groups)
4532 kvfree(sbi->s_flex_groups);
4533 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4534 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4535 percpu_counter_destroy(&sbi->s_dirs_counter);
4536 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4537 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
4538failed_mount5:
4539 ext4_ext_release(sb);
4540 ext4_release_system_zone(sb);
4541failed_mount4a:
4542 dput(sb->s_root);
4543 sb->s_root = NULL;
4544failed_mount4:
4545 ext4_msg(sb, KERN_ERR, "mount failed");
4546 if (EXT4_SB(sb)->rsv_conversion_wq)
4547 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4548failed_mount_wq:
4549 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4550 sbi->s_ea_inode_cache = NULL;
4551
4552 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4553 sbi->s_ea_block_cache = NULL;
4554
4555 if (sbi->s_journal) {
4556 jbd2_journal_destroy(sbi->s_journal);
4557 sbi->s_journal = NULL;
4558 }
4559failed_mount3a:
4560 ext4_es_unregister_shrinker(sbi);
4561failed_mount3:
4562 del_timer_sync(&sbi->s_err_report);
4563 if (sbi->s_mmp_tsk)
4564 kthread_stop(sbi->s_mmp_tsk);
4565failed_mount2:
4566 for (i = 0; i < db_count; i++)
4567 brelse(sbi->s_group_desc[i]);
4568 kvfree(sbi->s_group_desc);
4569failed_mount:
4570 if (sbi->s_chksum_driver)
4571 crypto_free_shash(sbi->s_chksum_driver);
4572#ifdef CONFIG_QUOTA
4573 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4574 kfree(sbi->s_qf_names[i]);
4575#endif
4576 ext4_blkdev_remove(sbi);
4577 brelse(bh);
4578out_fail:
4579 sb->s_fs_info = NULL;
4580 kfree(sbi->s_blockgroup_lock);
4581out_free_base:
4582 kfree(sbi);
4583 kfree(orig_data);
4584 fs_put_dax(dax_dev);
4585 return err ? err : ret;
4586}
4587
4588/*
4589 * Setup any per-fs journal parameters now. We'll do this both on
4590 * initial mount, once the journal has been initialised but before we've
4591 * done any recovery; and again on any subsequent remount.
4592 */
4593static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4594{
4595 struct ext4_sb_info *sbi = EXT4_SB(sb);
4596
4597 journal->j_commit_interval = sbi->s_commit_interval;
4598 journal->j_min_batch_time = sbi->s_min_batch_time;
4599 journal->j_max_batch_time = sbi->s_max_batch_time;
4600
4601 write_lock(&journal->j_state_lock);
4602 if (test_opt(sb, BARRIER))
4603 journal->j_flags |= JBD2_BARRIER;
4604 else
4605 journal->j_flags &= ~JBD2_BARRIER;
4606 if (test_opt(sb, DATA_ERR_ABORT))
4607 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4608 else
4609 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4610 write_unlock(&journal->j_state_lock);
4611}
4612
4613static struct inode *ext4_get_journal_inode(struct super_block *sb,
4614 unsigned int journal_inum)
4615{
4616 struct inode *journal_inode;
4617
4618 /*
4619 * Test for the existence of a valid inode on disk. Bad things
4620 * happen if we iget() an unused inode, as the subsequent iput()
4621 * will try to delete it.
4622 */
4623 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4624 if (IS_ERR(journal_inode)) {
4625 ext4_msg(sb, KERN_ERR, "no journal found");
4626 return NULL;
4627 }
4628 if (!journal_inode->i_nlink) {
4629 make_bad_inode(journal_inode);
4630 iput(journal_inode);
4631 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4632 return NULL;
4633 }
4634
4635 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4636 journal_inode, journal_inode->i_size);
4637 if (!S_ISREG(journal_inode->i_mode)) {
4638 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4639 iput(journal_inode);
4640 return NULL;
4641 }
4642 return journal_inode;
4643}
4644
4645static journal_t *ext4_get_journal(struct super_block *sb,
4646 unsigned int journal_inum)
4647{
4648 struct inode *journal_inode;
4649 journal_t *journal;
4650
4651 BUG_ON(!ext4_has_feature_journal(sb));
4652
4653 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4654 if (!journal_inode)
4655 return NULL;
4656
4657 journal = jbd2_journal_init_inode(journal_inode);
4658 if (!journal) {
4659 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4660 iput(journal_inode);
4661 return NULL;
4662 }
4663 journal->j_private = sb;
4664 ext4_init_journal_params(sb, journal);
4665 return journal;
4666}
4667
4668static journal_t *ext4_get_dev_journal(struct super_block *sb,
4669 dev_t j_dev)
4670{
4671 struct buffer_head *bh;
4672 journal_t *journal;
4673 ext4_fsblk_t start;
4674 ext4_fsblk_t len;
4675 int hblock, blocksize;
4676 ext4_fsblk_t sb_block;
4677 unsigned long offset;
4678 struct ext4_super_block *es;
4679 struct block_device *bdev;
4680
4681 BUG_ON(!ext4_has_feature_journal(sb));
4682
4683 bdev = ext4_blkdev_get(j_dev, sb);
4684 if (bdev == NULL)
4685 return NULL;
4686
4687 blocksize = sb->s_blocksize;
4688 hblock = bdev_logical_block_size(bdev);
4689 if (blocksize < hblock) {
4690 ext4_msg(sb, KERN_ERR,
4691 "blocksize too small for journal device");
4692 goto out_bdev;
4693 }
4694
4695 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4696 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4697 set_blocksize(bdev, blocksize);
4698 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4699 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4700 "external journal");
4701 goto out_bdev;
4702 }
4703
4704 es = (struct ext4_super_block *) (bh->b_data + offset);
4705 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4706 !(le32_to_cpu(es->s_feature_incompat) &
4707 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4708 ext4_msg(sb, KERN_ERR, "external journal has "
4709 "bad superblock");
4710 brelse(bh);
4711 goto out_bdev;
4712 }
4713
4714 if ((le32_to_cpu(es->s_feature_ro_compat) &
4715 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4716 es->s_checksum != ext4_superblock_csum(sb, es)) {
4717 ext4_msg(sb, KERN_ERR, "external journal has "
4718 "corrupt superblock");
4719 brelse(bh);
4720 goto out_bdev;
4721 }
4722
4723 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4724 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4725 brelse(bh);
4726 goto out_bdev;
4727 }
4728
4729 len = ext4_blocks_count(es);
4730 start = sb_block + 1;
4731 brelse(bh); /* we're done with the superblock */
4732
4733 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4734 start, len, blocksize);
4735 if (!journal) {
4736 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4737 goto out_bdev;
4738 }
4739 journal->j_private = sb;
4740 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4741 wait_on_buffer(journal->j_sb_buffer);
4742 if (!buffer_uptodate(journal->j_sb_buffer)) {
4743 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4744 goto out_journal;
4745 }
4746 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4747 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4748 "user (unsupported) - %d",
4749 be32_to_cpu(journal->j_superblock->s_nr_users));
4750 goto out_journal;
4751 }
4752 EXT4_SB(sb)->journal_bdev = bdev;
4753 ext4_init_journal_params(sb, journal);
4754 return journal;
4755
4756out_journal:
4757 jbd2_journal_destroy(journal);
4758out_bdev:
4759 ext4_blkdev_put(bdev);
4760 return NULL;
4761}
4762
4763static int ext4_load_journal(struct super_block *sb,
4764 struct ext4_super_block *es,
4765 unsigned long journal_devnum)
4766{
4767 journal_t *journal;
4768 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4769 dev_t journal_dev;
4770 int err = 0;
4771 int really_read_only;
4772
4773 BUG_ON(!ext4_has_feature_journal(sb));
4774
4775 if (journal_devnum &&
4776 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4777 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4778 "numbers have changed");
4779 journal_dev = new_decode_dev(journal_devnum);
4780 } else
4781 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4782
4783 really_read_only = bdev_read_only(sb->s_bdev);
4784
4785 /*
4786 * Are we loading a blank journal or performing recovery after a
4787 * crash? For recovery, we need to check in advance whether we
4788 * can get read-write access to the device.
4789 */
4790 if (ext4_has_feature_journal_needs_recovery(sb)) {
4791 if (sb_rdonly(sb)) {
4792 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4793 "required on readonly filesystem");
4794 if (really_read_only) {
4795 ext4_msg(sb, KERN_ERR, "write access "
4796 "unavailable, cannot proceed "
4797 "(try mounting with noload)");
4798 return -EROFS;
4799 }
4800 ext4_msg(sb, KERN_INFO, "write access will "
4801 "be enabled during recovery");
4802 }
4803 }
4804
4805 if (journal_inum && journal_dev) {
4806 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4807 "and inode journals!");
4808 return -EINVAL;
4809 }
4810
4811 if (journal_inum) {
4812 if (!(journal = ext4_get_journal(sb, journal_inum)))
4813 return -EINVAL;
4814 } else {
4815 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4816 return -EINVAL;
4817 }
4818
4819 if (!(journal->j_flags & JBD2_BARRIER))
4820 ext4_msg(sb, KERN_INFO, "barriers disabled");
4821
4822 if (!ext4_has_feature_journal_needs_recovery(sb))
4823 err = jbd2_journal_wipe(journal, !really_read_only);
4824 if (!err) {
4825 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4826 if (save)
4827 memcpy(save, ((char *) es) +
4828 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4829 err = jbd2_journal_load(journal);
4830 if (save)
4831 memcpy(((char *) es) + EXT4_S_ERR_START,
4832 save, EXT4_S_ERR_LEN);
4833 kfree(save);
4834 }
4835
4836 if (err) {
4837 ext4_msg(sb, KERN_ERR, "error loading journal");
4838 jbd2_journal_destroy(journal);
4839 return err;
4840 }
4841
4842 EXT4_SB(sb)->s_journal = journal;
4843 ext4_clear_journal_err(sb, es);
4844
4845 if (!really_read_only && journal_devnum &&
4846 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4847 es->s_journal_dev = cpu_to_le32(journal_devnum);
4848
4849 /* Make sure we flush the recovery flag to disk. */
4850 ext4_commit_super(sb, 1);
4851 }
4852
4853 return 0;
4854}
4855
4856static int ext4_commit_super(struct super_block *sb, int sync)
4857{
4858 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4859 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4860 int error = 0;
4861
4862 if (!sbh || block_device_ejected(sb))
4863 return error;
4864
4865 /*
4866 * The superblock bh should be mapped, but it might not be if the
4867 * device was hot-removed. Not much we can do but fail the I/O.
4868 */
4869 if (!buffer_mapped(sbh))
4870 return error;
4871
4872 /*
4873 * If the file system is mounted read-only, don't update the
4874 * superblock write time. This avoids updating the superblock
4875 * write time when we are mounting the root file system
4876 * read/only but we need to replay the journal; at that point,
4877 * for people who are east of GMT and who make their clock
4878 * tick in localtime for Windows bug-for-bug compatibility,
4879 * the clock is set in the future, and this will cause e2fsck
4880 * to complain and force a full file system check.
4881 */
4882 if (!(sb->s_flags & SB_RDONLY))
4883 ext4_update_tstamp(es, s_wtime);
4884 if (sb->s_bdev->bd_part)
4885 es->s_kbytes_written =
4886 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4887 ((part_stat_read(sb->s_bdev->bd_part,
4888 sectors[STAT_WRITE]) -
4889 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4890 else
4891 es->s_kbytes_written =
4892 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4893 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4894 ext4_free_blocks_count_set(es,
4895 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4896 &EXT4_SB(sb)->s_freeclusters_counter)));
4897 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4898 es->s_free_inodes_count =
4899 cpu_to_le32(percpu_counter_sum_positive(
4900 &EXT4_SB(sb)->s_freeinodes_counter));
4901 BUFFER_TRACE(sbh, "marking dirty");
4902 ext4_superblock_csum_set(sb);
4903 if (sync)
4904 lock_buffer(sbh);
4905 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
4906 /*
4907 * Oh, dear. A previous attempt to write the
4908 * superblock failed. This could happen because the
4909 * USB device was yanked out. Or it could happen to
4910 * be a transient write error and maybe the block will
4911 * be remapped. Nothing we can do but to retry the
4912 * write and hope for the best.
4913 */
4914 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4915 "superblock detected");
4916 clear_buffer_write_io_error(sbh);
4917 set_buffer_uptodate(sbh);
4918 }
4919 mark_buffer_dirty(sbh);
4920 if (sync) {
4921 unlock_buffer(sbh);
4922 error = __sync_dirty_buffer(sbh,
4923 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4924 if (buffer_write_io_error(sbh)) {
4925 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4926 "superblock");
4927 clear_buffer_write_io_error(sbh);
4928 set_buffer_uptodate(sbh);
4929 }
4930 }
4931 return error;
4932}
4933
4934/*
4935 * Have we just finished recovery? If so, and if we are mounting (or
4936 * remounting) the filesystem readonly, then we will end up with a
4937 * consistent fs on disk. Record that fact.
4938 */
4939static void ext4_mark_recovery_complete(struct super_block *sb,
4940 struct ext4_super_block *es)
4941{
4942 journal_t *journal = EXT4_SB(sb)->s_journal;
4943
4944 if (!ext4_has_feature_journal(sb)) {
4945 BUG_ON(journal != NULL);
4946 return;
4947 }
4948 jbd2_journal_lock_updates(journal);
4949 if (jbd2_journal_flush(journal) < 0)
4950 goto out;
4951
4952 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
4953 ext4_clear_feature_journal_needs_recovery(sb);
4954 ext4_commit_super(sb, 1);
4955 }
4956
4957out:
4958 jbd2_journal_unlock_updates(journal);
4959}
4960
4961/*
4962 * If we are mounting (or read-write remounting) a filesystem whose journal
4963 * has recorded an error from a previous lifetime, move that error to the
4964 * main filesystem now.
4965 */
4966static void ext4_clear_journal_err(struct super_block *sb,
4967 struct ext4_super_block *es)
4968{
4969 journal_t *journal;
4970 int j_errno;
4971 const char *errstr;
4972
4973 BUG_ON(!ext4_has_feature_journal(sb));
4974
4975 journal = EXT4_SB(sb)->s_journal;
4976
4977 /*
4978 * Now check for any error status which may have been recorded in the
4979 * journal by a prior ext4_error() or ext4_abort()
4980 */
4981
4982 j_errno = jbd2_journal_errno(journal);
4983 if (j_errno) {
4984 char nbuf[16];
4985
4986 errstr = ext4_decode_error(sb, j_errno, nbuf);
4987 ext4_warning(sb, "Filesystem error recorded "
4988 "from previous mount: %s", errstr);
4989 ext4_warning(sb, "Marking fs in need of filesystem check.");
4990
4991 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4992 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4993 ext4_commit_super(sb, 1);
4994
4995 jbd2_journal_clear_err(journal);
4996 jbd2_journal_update_sb_errno(journal);
4997 }
4998}
4999
5000/*
5001 * Force the running and committing transactions to commit,
5002 * and wait on the commit.
5003 */
5004int ext4_force_commit(struct super_block *sb)
5005{
5006 journal_t *journal;
5007
5008 if (sb_rdonly(sb))
5009 return 0;
5010
5011 journal = EXT4_SB(sb)->s_journal;
5012 return ext4_journal_force_commit(journal);
5013}
5014
5015static int ext4_sync_fs(struct super_block *sb, int wait)
5016{
5017 int ret = 0;
5018 tid_t target;
5019 bool needs_barrier = false;
5020 struct ext4_sb_info *sbi = EXT4_SB(sb);
5021
5022 if (unlikely(ext4_forced_shutdown(sbi)))
5023 return 0;
5024
5025 trace_ext4_sync_fs(sb, wait);
5026 flush_workqueue(sbi->rsv_conversion_wq);
5027 /*
5028 * Writeback quota in non-journalled quota case - journalled quota has
5029 * no dirty dquots
5030 */
5031 dquot_writeback_dquots(sb, -1);
5032 /*
5033 * Data writeback is possible w/o journal transaction, so barrier must
5034 * being sent at the end of the function. But we can skip it if
5035 * transaction_commit will do it for us.
5036 */
5037 if (sbi->s_journal) {
5038 target = jbd2_get_latest_transaction(sbi->s_journal);
5039 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5040 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5041 needs_barrier = true;
5042
5043 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5044 if (wait)
5045 ret = jbd2_log_wait_commit(sbi->s_journal,
5046 target);
5047 }
5048 } else if (wait && test_opt(sb, BARRIER))
5049 needs_barrier = true;
5050 if (needs_barrier) {
5051 int err;
5052 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5053 if (!ret)
5054 ret = err;
5055 }
5056
5057 return ret;
5058}
5059
5060/*
5061 * LVM calls this function before a (read-only) snapshot is created. This
5062 * gives us a chance to flush the journal completely and mark the fs clean.
5063 *
5064 * Note that only this function cannot bring a filesystem to be in a clean
5065 * state independently. It relies on upper layer to stop all data & metadata
5066 * modifications.
5067 */
5068static int ext4_freeze(struct super_block *sb)
5069{
5070 int error = 0;
5071 journal_t *journal;
5072
5073 if (sb_rdonly(sb))
5074 return 0;
5075
5076 journal = EXT4_SB(sb)->s_journal;
5077
5078 if (journal) {
5079 /* Now we set up the journal barrier. */
5080 jbd2_journal_lock_updates(journal);
5081
5082 /*
5083 * Don't clear the needs_recovery flag if we failed to
5084 * flush the journal.
5085 */
5086 error = jbd2_journal_flush(journal);
5087 if (error < 0)
5088 goto out;
5089
5090 /* Journal blocked and flushed, clear needs_recovery flag. */
5091 ext4_clear_feature_journal_needs_recovery(sb);
5092 }
5093
5094 error = ext4_commit_super(sb, 1);
5095out:
5096 if (journal)
5097 /* we rely on upper layer to stop further updates */
5098 jbd2_journal_unlock_updates(journal);
5099 return error;
5100}
5101
5102/*
5103 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5104 * flag here, even though the filesystem is not technically dirty yet.
5105 */
5106static int ext4_unfreeze(struct super_block *sb)
5107{
5108 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5109 return 0;
5110
5111 if (EXT4_SB(sb)->s_journal) {
5112 /* Reset the needs_recovery flag before the fs is unlocked. */
5113 ext4_set_feature_journal_needs_recovery(sb);
5114 }
5115
5116 ext4_commit_super(sb, 1);
5117 return 0;
5118}
5119
5120/*
5121 * Structure to save mount options for ext4_remount's benefit
5122 */
5123struct ext4_mount_options {
5124 unsigned long s_mount_opt;
5125 unsigned long s_mount_opt2;
5126 kuid_t s_resuid;
5127 kgid_t s_resgid;
5128 unsigned long s_commit_interval;
5129 u32 s_min_batch_time, s_max_batch_time;
5130#ifdef CONFIG_QUOTA
5131 int s_jquota_fmt;
5132 char *s_qf_names[EXT4_MAXQUOTAS];
5133#endif
5134};
5135
5136static int ext4_remount(struct super_block *sb, int *flags, char *data)
5137{
5138 struct ext4_super_block *es;
5139 struct ext4_sb_info *sbi = EXT4_SB(sb);
5140 unsigned long old_sb_flags;
5141 struct ext4_mount_options old_opts;
5142 int enable_quota = 0;
5143 ext4_group_t g;
5144 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5145 int err = 0;
5146#ifdef CONFIG_QUOTA
5147 int i, j;
5148 char *to_free[EXT4_MAXQUOTAS];
5149#endif
5150 char *orig_data = kstrdup(data, GFP_KERNEL);
5151
5152 if (data && !orig_data)
5153 return -ENOMEM;
5154
5155 /* Store the original options */
5156 old_sb_flags = sb->s_flags;
5157 old_opts.s_mount_opt = sbi->s_mount_opt;
5158 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5159 old_opts.s_resuid = sbi->s_resuid;
5160 old_opts.s_resgid = sbi->s_resgid;
5161 old_opts.s_commit_interval = sbi->s_commit_interval;
5162 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5163 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5164#ifdef CONFIG_QUOTA
5165 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5166 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5167 if (sbi->s_qf_names[i]) {
5168 char *qf_name = get_qf_name(sb, sbi, i);
5169
5170 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5171 if (!old_opts.s_qf_names[i]) {
5172 for (j = 0; j < i; j++)
5173 kfree(old_opts.s_qf_names[j]);
5174 kfree(orig_data);
5175 return -ENOMEM;
5176 }
5177 } else
5178 old_opts.s_qf_names[i] = NULL;
5179#endif
5180 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5181 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5182
5183 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5184 err = -EINVAL;
5185 goto restore_opts;
5186 }
5187
5188 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5189 test_opt(sb, JOURNAL_CHECKSUM)) {
5190 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5191 "during remount not supported; ignoring");
5192 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5193 }
5194
5195 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5196 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5197 ext4_msg(sb, KERN_ERR, "can't mount with "
5198 "both data=journal and delalloc");
5199 err = -EINVAL;
5200 goto restore_opts;
5201 }
5202 if (test_opt(sb, DIOREAD_NOLOCK)) {
5203 ext4_msg(sb, KERN_ERR, "can't mount with "
5204 "both data=journal and dioread_nolock");
5205 err = -EINVAL;
5206 goto restore_opts;
5207 }
5208 if (test_opt(sb, DAX)) {
5209 ext4_msg(sb, KERN_ERR, "can't mount with "
5210 "both data=journal and dax");
5211 err = -EINVAL;
5212 goto restore_opts;
5213 }
5214 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5215 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5216 ext4_msg(sb, KERN_ERR, "can't mount with "
5217 "journal_async_commit in data=ordered mode");
5218 err = -EINVAL;
5219 goto restore_opts;
5220 }
5221 }
5222
5223 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5224 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5225 err = -EINVAL;
5226 goto restore_opts;
5227 }
5228
5229 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5230 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5231 "dax flag with busy inodes while remounting");
5232 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5233 }
5234
5235 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5236 ext4_abort(sb, "Abort forced by user");
5237
5238 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5239 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5240
5241 es = sbi->s_es;
5242
5243 if (sbi->s_journal) {
5244 ext4_init_journal_params(sb, sbi->s_journal);
5245 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5246 }
5247
5248 if (*flags & SB_LAZYTIME)
5249 sb->s_flags |= SB_LAZYTIME;
5250
5251 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5252 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5253 err = -EROFS;
5254 goto restore_opts;
5255 }
5256
5257 if (*flags & SB_RDONLY) {
5258 err = sync_filesystem(sb);
5259 if (err < 0)
5260 goto restore_opts;
5261 err = dquot_suspend(sb, -1);
5262 if (err < 0)
5263 goto restore_opts;
5264
5265 /*
5266 * First of all, the unconditional stuff we have to do
5267 * to disable replay of the journal when we next remount
5268 */
5269 sb->s_flags |= SB_RDONLY;
5270
5271 /*
5272 * OK, test if we are remounting a valid rw partition
5273 * readonly, and if so set the rdonly flag and then
5274 * mark the partition as valid again.
5275 */
5276 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5277 (sbi->s_mount_state & EXT4_VALID_FS))
5278 es->s_state = cpu_to_le16(sbi->s_mount_state);
5279
5280 if (sbi->s_journal)
5281 ext4_mark_recovery_complete(sb, es);
5282 if (sbi->s_mmp_tsk)
5283 kthread_stop(sbi->s_mmp_tsk);
5284 } else {
5285 /* Make sure we can mount this feature set readwrite */
5286 if (ext4_has_feature_readonly(sb) ||
5287 !ext4_feature_set_ok(sb, 0)) {
5288 err = -EROFS;
5289 goto restore_opts;
5290 }
5291 /*
5292 * Make sure the group descriptor checksums
5293 * are sane. If they aren't, refuse to remount r/w.
5294 */
5295 for (g = 0; g < sbi->s_groups_count; g++) {
5296 struct ext4_group_desc *gdp =
5297 ext4_get_group_desc(sb, g, NULL);
5298
5299 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5300 ext4_msg(sb, KERN_ERR,
5301 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5302 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5303 le16_to_cpu(gdp->bg_checksum));
5304 err = -EFSBADCRC;
5305 goto restore_opts;
5306 }
5307 }
5308
5309 /*
5310 * If we have an unprocessed orphan list hanging
5311 * around from a previously readonly bdev mount,
5312 * require a full umount/remount for now.
5313 */
5314 if (es->s_last_orphan) {
5315 ext4_msg(sb, KERN_WARNING, "Couldn't "
5316 "remount RDWR because of unprocessed "
5317 "orphan inode list. Please "
5318 "umount/remount instead");
5319 err = -EINVAL;
5320 goto restore_opts;
5321 }
5322
5323 /*
5324 * Mounting a RDONLY partition read-write, so reread
5325 * and store the current valid flag. (It may have
5326 * been changed by e2fsck since we originally mounted
5327 * the partition.)
5328 */
5329 if (sbi->s_journal)
5330 ext4_clear_journal_err(sb, es);
5331 sbi->s_mount_state = le16_to_cpu(es->s_state);
5332
5333 err = ext4_setup_super(sb, es, 0);
5334 if (err)
5335 goto restore_opts;
5336
5337 sb->s_flags &= ~SB_RDONLY;
5338 if (ext4_has_feature_mmp(sb))
5339 if (ext4_multi_mount_protect(sb,
5340 le64_to_cpu(es->s_mmp_block))) {
5341 err = -EROFS;
5342 goto restore_opts;
5343 }
5344 enable_quota = 1;
5345 }
5346 }
5347
5348 /*
5349 * Reinitialize lazy itable initialization thread based on
5350 * current settings
5351 */
5352 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5353 ext4_unregister_li_request(sb);
5354 else {
5355 ext4_group_t first_not_zeroed;
5356 first_not_zeroed = ext4_has_uninit_itable(sb);
5357 ext4_register_li_request(sb, first_not_zeroed);
5358 }
5359
5360 ext4_setup_system_zone(sb);
5361 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5362 err = ext4_commit_super(sb, 1);
5363 if (err)
5364 goto restore_opts;
5365 }
5366
5367#ifdef CONFIG_QUOTA
5368 /* Release old quota file names */
5369 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5370 kfree(old_opts.s_qf_names[i]);
5371 if (enable_quota) {
5372 if (sb_any_quota_suspended(sb))
5373 dquot_resume(sb, -1);
5374 else if (ext4_has_feature_quota(sb)) {
5375 err = ext4_enable_quotas(sb);
5376 if (err)
5377 goto restore_opts;
5378 }
5379 }
5380#endif
5381
5382 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5383 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5384 kfree(orig_data);
5385 return 0;
5386
5387restore_opts:
5388 sb->s_flags = old_sb_flags;
5389 sbi->s_mount_opt = old_opts.s_mount_opt;
5390 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5391 sbi->s_resuid = old_opts.s_resuid;
5392 sbi->s_resgid = old_opts.s_resgid;
5393 sbi->s_commit_interval = old_opts.s_commit_interval;
5394 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5395 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5396#ifdef CONFIG_QUOTA
5397 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5398 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5399 to_free[i] = get_qf_name(sb, sbi, i);
5400 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5401 }
5402 synchronize_rcu();
5403 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5404 kfree(to_free[i]);
5405#endif
5406 kfree(orig_data);
5407 return err;
5408}
5409
5410#ifdef CONFIG_QUOTA
5411static int ext4_statfs_project(struct super_block *sb,
5412 kprojid_t projid, struct kstatfs *buf)
5413{
5414 struct kqid qid;
5415 struct dquot *dquot;
5416 u64 limit;
5417 u64 curblock;
5418
5419 qid = make_kqid_projid(projid);
5420 dquot = dqget(sb, qid);
5421 if (IS_ERR(dquot))
5422 return PTR_ERR(dquot);
5423 spin_lock(&dquot->dq_dqb_lock);
5424
5425 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5426 dquot->dq_dqb.dqb_bsoftlimit :
5427 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5428 if (limit && buf->f_blocks > limit) {
5429 curblock = (dquot->dq_dqb.dqb_curspace +
5430 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5431 buf->f_blocks = limit;
5432 buf->f_bfree = buf->f_bavail =
5433 (buf->f_blocks > curblock) ?
5434 (buf->f_blocks - curblock) : 0;
5435 }
5436
5437 limit = dquot->dq_dqb.dqb_isoftlimit ?
5438 dquot->dq_dqb.dqb_isoftlimit :
5439 dquot->dq_dqb.dqb_ihardlimit;
5440 if (limit && buf->f_files > limit) {
5441 buf->f_files = limit;
5442 buf->f_ffree =
5443 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5444 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5445 }
5446
5447 spin_unlock(&dquot->dq_dqb_lock);
5448 dqput(dquot);
5449 return 0;
5450}
5451#endif
5452
5453static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5454{
5455 struct super_block *sb = dentry->d_sb;
5456 struct ext4_sb_info *sbi = EXT4_SB(sb);
5457 struct ext4_super_block *es = sbi->s_es;
5458 ext4_fsblk_t overhead = 0, resv_blocks;
5459 u64 fsid;
5460 s64 bfree;
5461 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5462
5463 if (!test_opt(sb, MINIX_DF))
5464 overhead = sbi->s_overhead;
5465
5466 buf->f_type = EXT4_SUPER_MAGIC;
5467 buf->f_bsize = sb->s_blocksize;
5468 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5469 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5470 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5471 /* prevent underflow in case that few free space is available */
5472 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5473 buf->f_bavail = buf->f_bfree -
5474 (ext4_r_blocks_count(es) + resv_blocks);
5475 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5476 buf->f_bavail = 0;
5477 buf->f_files = le32_to_cpu(es->s_inodes_count);
5478 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5479 buf->f_namelen = EXT4_NAME_LEN;
5480 fsid = le64_to_cpup((void *)es->s_uuid) ^
5481 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5482 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5483 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5484
5485#ifdef CONFIG_QUOTA
5486 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5487 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5488 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5489#endif
5490 return 0;
5491}
5492
5493
5494#ifdef CONFIG_QUOTA
5495
5496/*
5497 * Helper functions so that transaction is started before we acquire dqio_sem
5498 * to keep correct lock ordering of transaction > dqio_sem
5499 */
5500static inline struct inode *dquot_to_inode(struct dquot *dquot)
5501{
5502 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5503}
5504
5505static int ext4_write_dquot(struct dquot *dquot)
5506{
5507 int ret, err;
5508 handle_t *handle;
5509 struct inode *inode;
5510
5511 inode = dquot_to_inode(dquot);
5512 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5513 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5514 if (IS_ERR(handle))
5515 return PTR_ERR(handle);
5516 ret = dquot_commit(dquot);
5517 err = ext4_journal_stop(handle);
5518 if (!ret)
5519 ret = err;
5520 return ret;
5521}
5522
5523static int ext4_acquire_dquot(struct dquot *dquot)
5524{
5525 int ret, err;
5526 handle_t *handle;
5527
5528 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5529 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5530 if (IS_ERR(handle))
5531 return PTR_ERR(handle);
5532 ret = dquot_acquire(dquot);
5533 err = ext4_journal_stop(handle);
5534 if (!ret)
5535 ret = err;
5536 return ret;
5537}
5538
5539static int ext4_release_dquot(struct dquot *dquot)
5540{
5541 int ret, err;
5542 handle_t *handle;
5543
5544 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5545 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5546 if (IS_ERR(handle)) {
5547 /* Release dquot anyway to avoid endless cycle in dqput() */
5548 dquot_release(dquot);
5549 return PTR_ERR(handle);
5550 }
5551 ret = dquot_release(dquot);
5552 err = ext4_journal_stop(handle);
5553 if (!ret)
5554 ret = err;
5555 return ret;
5556}
5557
5558static int ext4_mark_dquot_dirty(struct dquot *dquot)
5559{
5560 struct super_block *sb = dquot->dq_sb;
5561 struct ext4_sb_info *sbi = EXT4_SB(sb);
5562
5563 /* Are we journaling quotas? */
5564 if (ext4_has_feature_quota(sb) ||
5565 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5566 dquot_mark_dquot_dirty(dquot);
5567 return ext4_write_dquot(dquot);
5568 } else {
5569 return dquot_mark_dquot_dirty(dquot);
5570 }
5571}
5572
5573static int ext4_write_info(struct super_block *sb, int type)
5574{
5575 int ret, err;
5576 handle_t *handle;
5577
5578 /* Data block + inode block */
5579 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5580 if (IS_ERR(handle))
5581 return PTR_ERR(handle);
5582 ret = dquot_commit_info(sb, type);
5583 err = ext4_journal_stop(handle);
5584 if (!ret)
5585 ret = err;
5586 return ret;
5587}
5588
5589/*
5590 * Turn on quotas during mount time - we need to find
5591 * the quota file and such...
5592 */
5593static int ext4_quota_on_mount(struct super_block *sb, int type)
5594{
5595 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5596 EXT4_SB(sb)->s_jquota_fmt, type);
5597}
5598
5599static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5600{
5601 struct ext4_inode_info *ei = EXT4_I(inode);
5602
5603 /* The first argument of lockdep_set_subclass has to be
5604 * *exactly* the same as the argument to init_rwsem() --- in
5605 * this case, in init_once() --- or lockdep gets unhappy
5606 * because the name of the lock is set using the
5607 * stringification of the argument to init_rwsem().
5608 */
5609 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5610 lockdep_set_subclass(&ei->i_data_sem, subclass);
5611}
5612
5613/*
5614 * Standard function to be called on quota_on
5615 */
5616static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5617 const struct path *path)
5618{
5619 int err;
5620
5621 if (!test_opt(sb, QUOTA))
5622 return -EINVAL;
5623
5624 /* Quotafile not on the same filesystem? */
5625 if (path->dentry->d_sb != sb)
5626 return -EXDEV;
5627 /* Journaling quota? */
5628 if (EXT4_SB(sb)->s_qf_names[type]) {
5629 /* Quotafile not in fs root? */
5630 if (path->dentry->d_parent != sb->s_root)
5631 ext4_msg(sb, KERN_WARNING,
5632 "Quota file not on filesystem root. "
5633 "Journaled quota will not work");
5634 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5635 } else {
5636 /*
5637 * Clear the flag just in case mount options changed since
5638 * last time.
5639 */
5640 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5641 }
5642
5643 /*
5644 * When we journal data on quota file, we have to flush journal to see
5645 * all updates to the file when we bypass pagecache...
5646 */
5647 if (EXT4_SB(sb)->s_journal &&
5648 ext4_should_journal_data(d_inode(path->dentry))) {
5649 /*
5650 * We don't need to lock updates but journal_flush() could
5651 * otherwise be livelocked...
5652 */
5653 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5654 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5655 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5656 if (err)
5657 return err;
5658 }
5659
5660 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5661 err = dquot_quota_on(sb, type, format_id, path);
5662 if (err) {
5663 lockdep_set_quota_inode(path->dentry->d_inode,
5664 I_DATA_SEM_NORMAL);
5665 } else {
5666 struct inode *inode = d_inode(path->dentry);
5667 handle_t *handle;
5668
5669 /*
5670 * Set inode flags to prevent userspace from messing with quota
5671 * files. If this fails, we return success anyway since quotas
5672 * are already enabled and this is not a hard failure.
5673 */
5674 inode_lock(inode);
5675 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5676 if (IS_ERR(handle))
5677 goto unlock_inode;
5678 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5679 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5680 S_NOATIME | S_IMMUTABLE);
5681 ext4_mark_inode_dirty(handle, inode);
5682 ext4_journal_stop(handle);
5683 unlock_inode:
5684 inode_unlock(inode);
5685 }
5686 return err;
5687}
5688
5689static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5690 unsigned int flags)
5691{
5692 int err;
5693 struct inode *qf_inode;
5694 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5695 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5696 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5697 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5698 };
5699
5700 BUG_ON(!ext4_has_feature_quota(sb));
5701
5702 if (!qf_inums[type])
5703 return -EPERM;
5704
5705 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5706 if (IS_ERR(qf_inode)) {
5707 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5708 return PTR_ERR(qf_inode);
5709 }
5710
5711 /* Don't account quota for quota files to avoid recursion */
5712 qf_inode->i_flags |= S_NOQUOTA;
5713 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5714 err = dquot_enable(qf_inode, type, format_id, flags);
5715 if (err)
5716 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5717 iput(qf_inode);
5718
5719 return err;
5720}
5721
5722/* Enable usage tracking for all quota types. */
5723static int ext4_enable_quotas(struct super_block *sb)
5724{
5725 int type, err = 0;
5726 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5727 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5728 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5729 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5730 };
5731 bool quota_mopt[EXT4_MAXQUOTAS] = {
5732 test_opt(sb, USRQUOTA),
5733 test_opt(sb, GRPQUOTA),
5734 test_opt(sb, PRJQUOTA),
5735 };
5736
5737 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5738 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5739 if (qf_inums[type]) {
5740 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5741 DQUOT_USAGE_ENABLED |
5742 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5743 if (err) {
5744 ext4_warning(sb,
5745 "Failed to enable quota tracking "
5746 "(type=%d, err=%d). Please run "
5747 "e2fsck to fix.", type, err);
5748 for (type--; type >= 0; type--)
5749 dquot_quota_off(sb, type);
5750
5751 return err;
5752 }
5753 }
5754 }
5755 return 0;
5756}
5757
5758static int ext4_quota_off(struct super_block *sb, int type)
5759{
5760 struct inode *inode = sb_dqopt(sb)->files[type];
5761 handle_t *handle;
5762 int err;
5763
5764 /* Force all delayed allocation blocks to be allocated.
5765 * Caller already holds s_umount sem */
5766 if (test_opt(sb, DELALLOC))
5767 sync_filesystem(sb);
5768
5769 if (!inode || !igrab(inode))
5770 goto out;
5771
5772 err = dquot_quota_off(sb, type);
5773 if (err || ext4_has_feature_quota(sb))
5774 goto out_put;
5775
5776 inode_lock(inode);
5777 /*
5778 * Update modification times of quota files when userspace can
5779 * start looking at them. If we fail, we return success anyway since
5780 * this is not a hard failure and quotas are already disabled.
5781 */
5782 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5783 if (IS_ERR(handle))
5784 goto out_unlock;
5785 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5786 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5787 inode->i_mtime = inode->i_ctime = current_time(inode);
5788 ext4_mark_inode_dirty(handle, inode);
5789 ext4_journal_stop(handle);
5790out_unlock:
5791 inode_unlock(inode);
5792out_put:
5793 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5794 iput(inode);
5795 return err;
5796out:
5797 return dquot_quota_off(sb, type);
5798}
5799
5800/* Read data from quotafile - avoid pagecache and such because we cannot afford
5801 * acquiring the locks... As quota files are never truncated and quota code
5802 * itself serializes the operations (and no one else should touch the files)
5803 * we don't have to be afraid of races */
5804static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5805 size_t len, loff_t off)
5806{
5807 struct inode *inode = sb_dqopt(sb)->files[type];
5808 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5809 int offset = off & (sb->s_blocksize - 1);
5810 int tocopy;
5811 size_t toread;
5812 struct buffer_head *bh;
5813 loff_t i_size = i_size_read(inode);
5814
5815 if (off > i_size)
5816 return 0;
5817 if (off+len > i_size)
5818 len = i_size-off;
5819 toread = len;
5820 while (toread > 0) {
5821 tocopy = sb->s_blocksize - offset < toread ?
5822 sb->s_blocksize - offset : toread;
5823 bh = ext4_bread(NULL, inode, blk, 0);
5824 if (IS_ERR(bh))
5825 return PTR_ERR(bh);
5826 if (!bh) /* A hole? */
5827 memset(data, 0, tocopy);
5828 else
5829 memcpy(data, bh->b_data+offset, tocopy);
5830 brelse(bh);
5831 offset = 0;
5832 toread -= tocopy;
5833 data += tocopy;
5834 blk++;
5835 }
5836 return len;
5837}
5838
5839/* Write to quotafile (we know the transaction is already started and has
5840 * enough credits) */
5841static ssize_t ext4_quota_write(struct super_block *sb, int type,
5842 const char *data, size_t len, loff_t off)
5843{
5844 struct inode *inode = sb_dqopt(sb)->files[type];
5845 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5846 int err, offset = off & (sb->s_blocksize - 1);
5847 int retries = 0;
5848 struct buffer_head *bh;
5849 handle_t *handle = journal_current_handle();
5850
5851 if (EXT4_SB(sb)->s_journal && !handle) {
5852 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5853 " cancelled because transaction is not started",
5854 (unsigned long long)off, (unsigned long long)len);
5855 return -EIO;
5856 }
5857 /*
5858 * Since we account only one data block in transaction credits,
5859 * then it is impossible to cross a block boundary.
5860 */
5861 if (sb->s_blocksize - offset < len) {
5862 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5863 " cancelled because not block aligned",
5864 (unsigned long long)off, (unsigned long long)len);
5865 return -EIO;
5866 }
5867
5868 do {
5869 bh = ext4_bread(handle, inode, blk,
5870 EXT4_GET_BLOCKS_CREATE |
5871 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5872 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5873 ext4_should_retry_alloc(inode->i_sb, &retries));
5874 if (IS_ERR(bh))
5875 return PTR_ERR(bh);
5876 if (!bh)
5877 goto out;
5878 BUFFER_TRACE(bh, "get write access");
5879 err = ext4_journal_get_write_access(handle, bh);
5880 if (err) {
5881 brelse(bh);
5882 return err;
5883 }
5884 lock_buffer(bh);
5885 memcpy(bh->b_data+offset, data, len);
5886 flush_dcache_page(bh->b_page);
5887 unlock_buffer(bh);
5888 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5889 brelse(bh);
5890out:
5891 if (inode->i_size < off + len) {
5892 i_size_write(inode, off + len);
5893 EXT4_I(inode)->i_disksize = inode->i_size;
5894 ext4_mark_inode_dirty(handle, inode);
5895 }
5896 return len;
5897}
5898
5899static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5900{
5901 const struct quota_format_ops *ops;
5902
5903 if (!sb_has_quota_loaded(sb, qid->type))
5904 return -ESRCH;
5905 ops = sb_dqopt(sb)->ops[qid->type];
5906 if (!ops || !ops->get_next_id)
5907 return -ENOSYS;
5908 return dquot_get_next_id(sb, qid);
5909}
5910#endif
5911
5912static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5913 const char *dev_name, void *data)
5914{
5915 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5916}
5917
5918#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5919static inline void register_as_ext2(void)
5920{
5921 int err = register_filesystem(&ext2_fs_type);
5922 if (err)
5923 printk(KERN_WARNING
5924 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5925}
5926
5927static inline void unregister_as_ext2(void)
5928{
5929 unregister_filesystem(&ext2_fs_type);
5930}
5931
5932static inline int ext2_feature_set_ok(struct super_block *sb)
5933{
5934 if (ext4_has_unknown_ext2_incompat_features(sb))
5935 return 0;
5936 if (sb_rdonly(sb))
5937 return 1;
5938 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5939 return 0;
5940 return 1;
5941}
5942#else
5943static inline void register_as_ext2(void) { }
5944static inline void unregister_as_ext2(void) { }
5945static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5946#endif
5947
5948static inline void register_as_ext3(void)
5949{
5950 int err = register_filesystem(&ext3_fs_type);
5951 if (err)
5952 printk(KERN_WARNING
5953 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5954}
5955
5956static inline void unregister_as_ext3(void)
5957{
5958 unregister_filesystem(&ext3_fs_type);
5959}
5960
5961static inline int ext3_feature_set_ok(struct super_block *sb)
5962{
5963 if (ext4_has_unknown_ext3_incompat_features(sb))
5964 return 0;
5965 if (!ext4_has_feature_journal(sb))
5966 return 0;
5967 if (sb_rdonly(sb))
5968 return 1;
5969 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5970 return 0;
5971 return 1;
5972}
5973
5974static struct file_system_type ext4_fs_type = {
5975 .owner = THIS_MODULE,
5976 .name = "ext4",
5977 .mount = ext4_mount,
5978 .kill_sb = kill_block_super,
5979 .fs_flags = FS_REQUIRES_DEV,
5980};
5981MODULE_ALIAS_FS("ext4");
5982
5983/* Shared across all ext4 file systems */
5984wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5985
5986static int __init ext4_init_fs(void)
5987{
5988 int i, err;
5989
5990 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5991 ext4_li_info = NULL;
5992 mutex_init(&ext4_li_mtx);
5993
5994 /* Build-time check for flags consistency */
5995 ext4_check_flag_values();
5996
5997 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5998 init_waitqueue_head(&ext4__ioend_wq[i]);
5999
6000 err = ext4_init_es();
6001 if (err)
6002 return err;
6003
6004 err = ext4_init_pending();
6005 if (err)
6006 goto out6;
6007
6008 err = ext4_init_pageio();
6009 if (err)
6010 goto out5;
6011
6012 err = ext4_init_system_zone();
6013 if (err)
6014 goto out4;
6015
6016 err = ext4_init_sysfs();
6017 if (err)
6018 goto out3;
6019
6020 err = ext4_init_mballoc();
6021 if (err)
6022 goto out2;
6023 err = init_inodecache();
6024 if (err)
6025 goto out1;
6026 register_as_ext3();
6027 register_as_ext2();
6028 err = register_filesystem(&ext4_fs_type);
6029 if (err)
6030 goto out;
6031
6032 return 0;
6033out:
6034 unregister_as_ext2();
6035 unregister_as_ext3();
6036 destroy_inodecache();
6037out1:
6038 ext4_exit_mballoc();
6039out2:
6040 ext4_exit_sysfs();
6041out3:
6042 ext4_exit_system_zone();
6043out4:
6044 ext4_exit_pageio();
6045out5:
6046 ext4_exit_pending();
6047out6:
6048 ext4_exit_es();
6049
6050 return err;
6051}
6052
6053static void __exit ext4_exit_fs(void)
6054{
6055 ext4_destroy_lazyinit_thread();
6056 unregister_as_ext2();
6057 unregister_as_ext3();
6058 unregister_filesystem(&ext4_fs_type);
6059 destroy_inodecache();
6060 ext4_exit_mballoc();
6061 ext4_exit_sysfs();
6062 ext4_exit_system_zone();
6063 ext4_exit_pageio();
6064 ext4_exit_es();
6065 ext4_exit_pending();
6066}
6067
6068MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6069MODULE_DESCRIPTION("Fourth Extended Filesystem");
6070MODULE_LICENSE("GPL");
6071MODULE_SOFTDEP("pre: crc32c");
6072module_init(ext4_init_fs)
6073module_exit(ext4_exit_fs)