Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Volume Management Device driver
4 * Copyright (c) 2015, Intel Corporation.
5 */
6
7#include <linux/device.h>
8#include <linux/interrupt.h>
9#include <linux/irq.h>
10#include <linux/kernel.h>
11#include <linux/module.h>
12#include <linux/msi.h>
13#include <linux/pci.h>
14#include <linux/srcu.h>
15#include <linux/rculist.h>
16#include <linux/rcupdate.h>
17
18#include <asm/irqdomain.h>
19#include <asm/device.h>
20#include <asm/msi.h>
21#include <asm/msidef.h>
22
23#define VMD_CFGBAR 0
24#define VMD_MEMBAR1 2
25#define VMD_MEMBAR2 4
26
27#define PCI_REG_VMCAP 0x40
28#define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
29#define PCI_REG_VMCONFIG 0x44
30#define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
31#define PCI_REG_VMLOCK 0x70
32#define MB2_SHADOW_EN(vmlock) (vmlock & 0x2)
33
34enum vmd_features {
35 /*
36 * Device may contain registers which hint the physical location of the
37 * membars, in order to allow proper address translation during
38 * resource assignment to enable guest virtualization
39 */
40 VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0),
41
42 /*
43 * Device may provide root port configuration information which limits
44 * bus numbering
45 */
46 VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1),
47};
48
49/*
50 * Lock for manipulating VMD IRQ lists.
51 */
52static DEFINE_RAW_SPINLOCK(list_lock);
53
54/**
55 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
56 * @node: list item for parent traversal.
57 * @irq: back pointer to parent.
58 * @enabled: true if driver enabled IRQ
59 * @virq: the virtual IRQ value provided to the requesting driver.
60 *
61 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
62 * a VMD IRQ using this structure.
63 */
64struct vmd_irq {
65 struct list_head node;
66 struct vmd_irq_list *irq;
67 bool enabled;
68 unsigned int virq;
69};
70
71/**
72 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
73 * @irq_list: the list of irq's the VMD one demuxes to.
74 * @srcu: SRCU struct for local synchronization.
75 * @count: number of child IRQs assigned to this vector; used to track
76 * sharing.
77 */
78struct vmd_irq_list {
79 struct list_head irq_list;
80 struct srcu_struct srcu;
81 unsigned int count;
82};
83
84struct vmd_dev {
85 struct pci_dev *dev;
86
87 spinlock_t cfg_lock;
88 char __iomem *cfgbar;
89
90 int msix_count;
91 struct vmd_irq_list *irqs;
92
93 struct pci_sysdata sysdata;
94 struct resource resources[3];
95 struct irq_domain *irq_domain;
96 struct pci_bus *bus;
97
98#ifdef CONFIG_X86_DEV_DMA_OPS
99 struct dma_map_ops dma_ops;
100 struct dma_domain dma_domain;
101#endif
102};
103
104static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
105{
106 return container_of(bus->sysdata, struct vmd_dev, sysdata);
107}
108
109static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
110 struct vmd_irq_list *irqs)
111{
112 return irqs - vmd->irqs;
113}
114
115/*
116 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
117 * but the MSI entry for the hardware it's driving will be programmed with a
118 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
119 * domain into one of its own, and the VMD driver de-muxes these for the
120 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
121 * and irq_chip to set this up.
122 */
123static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
124{
125 struct vmd_irq *vmdirq = data->chip_data;
126 struct vmd_irq_list *irq = vmdirq->irq;
127 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
128
129 msg->address_hi = MSI_ADDR_BASE_HI;
130 msg->address_lo = MSI_ADDR_BASE_LO |
131 MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
132 msg->data = 0;
133}
134
135/*
136 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
137 */
138static void vmd_irq_enable(struct irq_data *data)
139{
140 struct vmd_irq *vmdirq = data->chip_data;
141 unsigned long flags;
142
143 raw_spin_lock_irqsave(&list_lock, flags);
144 WARN_ON(vmdirq->enabled);
145 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
146 vmdirq->enabled = true;
147 raw_spin_unlock_irqrestore(&list_lock, flags);
148
149 data->chip->irq_unmask(data);
150}
151
152static void vmd_irq_disable(struct irq_data *data)
153{
154 struct vmd_irq *vmdirq = data->chip_data;
155 unsigned long flags;
156
157 data->chip->irq_mask(data);
158
159 raw_spin_lock_irqsave(&list_lock, flags);
160 if (vmdirq->enabled) {
161 list_del_rcu(&vmdirq->node);
162 vmdirq->enabled = false;
163 }
164 raw_spin_unlock_irqrestore(&list_lock, flags);
165}
166
167/*
168 * XXX: Stubbed until we develop acceptable way to not create conflicts with
169 * other devices sharing the same vector.
170 */
171static int vmd_irq_set_affinity(struct irq_data *data,
172 const struct cpumask *dest, bool force)
173{
174 return -EINVAL;
175}
176
177static struct irq_chip vmd_msi_controller = {
178 .name = "VMD-MSI",
179 .irq_enable = vmd_irq_enable,
180 .irq_disable = vmd_irq_disable,
181 .irq_compose_msi_msg = vmd_compose_msi_msg,
182 .irq_set_affinity = vmd_irq_set_affinity,
183};
184
185static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
186 msi_alloc_info_t *arg)
187{
188 return 0;
189}
190
191/*
192 * XXX: We can be even smarter selecting the best IRQ once we solve the
193 * affinity problem.
194 */
195static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
196{
197 int i, best = 1;
198 unsigned long flags;
199
200 if (vmd->msix_count == 1)
201 return &vmd->irqs[0];
202
203 /*
204 * White list for fast-interrupt handlers. All others will share the
205 * "slow" interrupt vector.
206 */
207 switch (msi_desc_to_pci_dev(desc)->class) {
208 case PCI_CLASS_STORAGE_EXPRESS:
209 break;
210 default:
211 return &vmd->irqs[0];
212 }
213
214 raw_spin_lock_irqsave(&list_lock, flags);
215 for (i = 1; i < vmd->msix_count; i++)
216 if (vmd->irqs[i].count < vmd->irqs[best].count)
217 best = i;
218 vmd->irqs[best].count++;
219 raw_spin_unlock_irqrestore(&list_lock, flags);
220
221 return &vmd->irqs[best];
222}
223
224static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
225 unsigned int virq, irq_hw_number_t hwirq,
226 msi_alloc_info_t *arg)
227{
228 struct msi_desc *desc = arg->desc;
229 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
230 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
231 unsigned int index, vector;
232
233 if (!vmdirq)
234 return -ENOMEM;
235
236 INIT_LIST_HEAD(&vmdirq->node);
237 vmdirq->irq = vmd_next_irq(vmd, desc);
238 vmdirq->virq = virq;
239 index = index_from_irqs(vmd, vmdirq->irq);
240 vector = pci_irq_vector(vmd->dev, index);
241
242 irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
243 handle_untracked_irq, vmd, NULL);
244 return 0;
245}
246
247static void vmd_msi_free(struct irq_domain *domain,
248 struct msi_domain_info *info, unsigned int virq)
249{
250 struct vmd_irq *vmdirq = irq_get_chip_data(virq);
251 unsigned long flags;
252
253 synchronize_srcu(&vmdirq->irq->srcu);
254
255 /* XXX: Potential optimization to rebalance */
256 raw_spin_lock_irqsave(&list_lock, flags);
257 vmdirq->irq->count--;
258 raw_spin_unlock_irqrestore(&list_lock, flags);
259
260 kfree(vmdirq);
261}
262
263static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
264 int nvec, msi_alloc_info_t *arg)
265{
266 struct pci_dev *pdev = to_pci_dev(dev);
267 struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
268
269 if (nvec > vmd->msix_count)
270 return vmd->msix_count;
271
272 memset(arg, 0, sizeof(*arg));
273 return 0;
274}
275
276static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
277{
278 arg->desc = desc;
279}
280
281static struct msi_domain_ops vmd_msi_domain_ops = {
282 .get_hwirq = vmd_get_hwirq,
283 .msi_init = vmd_msi_init,
284 .msi_free = vmd_msi_free,
285 .msi_prepare = vmd_msi_prepare,
286 .set_desc = vmd_set_desc,
287};
288
289static struct msi_domain_info vmd_msi_domain_info = {
290 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
291 MSI_FLAG_PCI_MSIX,
292 .ops = &vmd_msi_domain_ops,
293 .chip = &vmd_msi_controller,
294};
295
296#ifdef CONFIG_X86_DEV_DMA_OPS
297/*
298 * VMD replaces the requester ID with its own. DMA mappings for devices in a
299 * VMD domain need to be mapped for the VMD, not the device requiring
300 * the mapping.
301 */
302static struct device *to_vmd_dev(struct device *dev)
303{
304 struct pci_dev *pdev = to_pci_dev(dev);
305 struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
306
307 return &vmd->dev->dev;
308}
309
310static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
311 gfp_t flag, unsigned long attrs)
312{
313 return dma_alloc_attrs(to_vmd_dev(dev), size, addr, flag, attrs);
314}
315
316static void vmd_free(struct device *dev, size_t size, void *vaddr,
317 dma_addr_t addr, unsigned long attrs)
318{
319 return dma_free_attrs(to_vmd_dev(dev), size, vaddr, addr, attrs);
320}
321
322static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
323 void *cpu_addr, dma_addr_t addr, size_t size,
324 unsigned long attrs)
325{
326 return dma_mmap_attrs(to_vmd_dev(dev), vma, cpu_addr, addr, size,
327 attrs);
328}
329
330static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
331 void *cpu_addr, dma_addr_t addr, size_t size,
332 unsigned long attrs)
333{
334 return dma_get_sgtable_attrs(to_vmd_dev(dev), sgt, cpu_addr, addr, size,
335 attrs);
336}
337
338static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
339 unsigned long offset, size_t size,
340 enum dma_data_direction dir,
341 unsigned long attrs)
342{
343 return dma_map_page_attrs(to_vmd_dev(dev), page, offset, size, dir,
344 attrs);
345}
346
347static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
348 enum dma_data_direction dir, unsigned long attrs)
349{
350 dma_unmap_page_attrs(to_vmd_dev(dev), addr, size, dir, attrs);
351}
352
353static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
354 enum dma_data_direction dir, unsigned long attrs)
355{
356 return dma_map_sg_attrs(to_vmd_dev(dev), sg, nents, dir, attrs);
357}
358
359static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
360 enum dma_data_direction dir, unsigned long attrs)
361{
362 dma_unmap_sg_attrs(to_vmd_dev(dev), sg, nents, dir, attrs);
363}
364
365static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
366 size_t size, enum dma_data_direction dir)
367{
368 dma_sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
369}
370
371static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
372 size_t size, enum dma_data_direction dir)
373{
374 dma_sync_single_for_device(to_vmd_dev(dev), addr, size, dir);
375}
376
377static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
378 int nents, enum dma_data_direction dir)
379{
380 dma_sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
381}
382
383static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
384 int nents, enum dma_data_direction dir)
385{
386 dma_sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
387}
388
389static int vmd_dma_supported(struct device *dev, u64 mask)
390{
391 return dma_supported(to_vmd_dev(dev), mask);
392}
393
394static u64 vmd_get_required_mask(struct device *dev)
395{
396 return dma_get_required_mask(to_vmd_dev(dev));
397}
398
399static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
400{
401 struct dma_domain *domain = &vmd->dma_domain;
402
403 if (get_dma_ops(&vmd->dev->dev))
404 del_dma_domain(domain);
405}
406
407#define ASSIGN_VMD_DMA_OPS(source, dest, fn) \
408 do { \
409 if (source->fn) \
410 dest->fn = vmd_##fn; \
411 } while (0)
412
413static void vmd_setup_dma_ops(struct vmd_dev *vmd)
414{
415 const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
416 struct dma_map_ops *dest = &vmd->dma_ops;
417 struct dma_domain *domain = &vmd->dma_domain;
418
419 domain->domain_nr = vmd->sysdata.domain;
420 domain->dma_ops = dest;
421
422 if (!source)
423 return;
424 ASSIGN_VMD_DMA_OPS(source, dest, alloc);
425 ASSIGN_VMD_DMA_OPS(source, dest, free);
426 ASSIGN_VMD_DMA_OPS(source, dest, mmap);
427 ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
428 ASSIGN_VMD_DMA_OPS(source, dest, map_page);
429 ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
430 ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
431 ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
432 ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
433 ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
434 ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
435 ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
436 ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
437 ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
438 add_dma_domain(domain);
439}
440#undef ASSIGN_VMD_DMA_OPS
441#else
442static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {}
443static void vmd_setup_dma_ops(struct vmd_dev *vmd) {}
444#endif
445
446static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
447 unsigned int devfn, int reg, int len)
448{
449 char __iomem *addr = vmd->cfgbar +
450 (bus->number << 20) + (devfn << 12) + reg;
451
452 if ((addr - vmd->cfgbar) + len >=
453 resource_size(&vmd->dev->resource[VMD_CFGBAR]))
454 return NULL;
455
456 return addr;
457}
458
459/*
460 * CPU may deadlock if config space is not serialized on some versions of this
461 * hardware, so all config space access is done under a spinlock.
462 */
463static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
464 int len, u32 *value)
465{
466 struct vmd_dev *vmd = vmd_from_bus(bus);
467 char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
468 unsigned long flags;
469 int ret = 0;
470
471 if (!addr)
472 return -EFAULT;
473
474 spin_lock_irqsave(&vmd->cfg_lock, flags);
475 switch (len) {
476 case 1:
477 *value = readb(addr);
478 break;
479 case 2:
480 *value = readw(addr);
481 break;
482 case 4:
483 *value = readl(addr);
484 break;
485 default:
486 ret = -EINVAL;
487 break;
488 }
489 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
490 return ret;
491}
492
493/*
494 * VMD h/w converts non-posted config writes to posted memory writes. The
495 * read-back in this function forces the completion so it returns only after
496 * the config space was written, as expected.
497 */
498static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
499 int len, u32 value)
500{
501 struct vmd_dev *vmd = vmd_from_bus(bus);
502 char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
503 unsigned long flags;
504 int ret = 0;
505
506 if (!addr)
507 return -EFAULT;
508
509 spin_lock_irqsave(&vmd->cfg_lock, flags);
510 switch (len) {
511 case 1:
512 writeb(value, addr);
513 readb(addr);
514 break;
515 case 2:
516 writew(value, addr);
517 readw(addr);
518 break;
519 case 4:
520 writel(value, addr);
521 readl(addr);
522 break;
523 default:
524 ret = -EINVAL;
525 break;
526 }
527 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
528 return ret;
529}
530
531static struct pci_ops vmd_ops = {
532 .read = vmd_pci_read,
533 .write = vmd_pci_write,
534};
535
536static void vmd_attach_resources(struct vmd_dev *vmd)
537{
538 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
539 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
540}
541
542static void vmd_detach_resources(struct vmd_dev *vmd)
543{
544 vmd->dev->resource[VMD_MEMBAR1].child = NULL;
545 vmd->dev->resource[VMD_MEMBAR2].child = NULL;
546}
547
548/*
549 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
550 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower
551 * 16 bits are the PCI Segment Group (domain) number. Other bits are
552 * currently reserved.
553 */
554static int vmd_find_free_domain(void)
555{
556 int domain = 0xffff;
557 struct pci_bus *bus = NULL;
558
559 while ((bus = pci_find_next_bus(bus)) != NULL)
560 domain = max_t(int, domain, pci_domain_nr(bus));
561 return domain + 1;
562}
563
564static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
565{
566 struct pci_sysdata *sd = &vmd->sysdata;
567 struct fwnode_handle *fn;
568 struct resource *res;
569 u32 upper_bits;
570 unsigned long flags;
571 LIST_HEAD(resources);
572 resource_size_t offset[2] = {0};
573 resource_size_t membar2_offset = 0x2000, busn_start = 0;
574
575 /*
576 * Shadow registers may exist in certain VMD device ids which allow
577 * guests to correctly assign host physical addresses to the root ports
578 * and child devices. These registers will either return the host value
579 * or 0, depending on an enable bit in the VMD device.
580 */
581 if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
582 u32 vmlock;
583 int ret;
584
585 membar2_offset = 0x2018;
586 ret = pci_read_config_dword(vmd->dev, PCI_REG_VMLOCK, &vmlock);
587 if (ret || vmlock == ~0)
588 return -ENODEV;
589
590 if (MB2_SHADOW_EN(vmlock)) {
591 void __iomem *membar2;
592
593 membar2 = pci_iomap(vmd->dev, VMD_MEMBAR2, 0);
594 if (!membar2)
595 return -ENOMEM;
596 offset[0] = vmd->dev->resource[VMD_MEMBAR1].start -
597 readq(membar2 + 0x2008);
598 offset[1] = vmd->dev->resource[VMD_MEMBAR2].start -
599 readq(membar2 + 0x2010);
600 pci_iounmap(vmd->dev, membar2);
601 }
602 }
603
604 /*
605 * Certain VMD devices may have a root port configuration option which
606 * limits the bus range to between 0-127 or 128-255
607 */
608 if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
609 u32 vmcap, vmconfig;
610
611 pci_read_config_dword(vmd->dev, PCI_REG_VMCAP, &vmcap);
612 pci_read_config_dword(vmd->dev, PCI_REG_VMCONFIG, &vmconfig);
613 if (BUS_RESTRICT_CAP(vmcap) &&
614 (BUS_RESTRICT_CFG(vmconfig) == 0x1))
615 busn_start = 128;
616 }
617
618 res = &vmd->dev->resource[VMD_CFGBAR];
619 vmd->resources[0] = (struct resource) {
620 .name = "VMD CFGBAR",
621 .start = busn_start,
622 .end = busn_start + (resource_size(res) >> 20) - 1,
623 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
624 };
625
626 /*
627 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
628 * put 32-bit resources in the window.
629 *
630 * There's no hardware reason why a 64-bit window *couldn't*
631 * contain a 32-bit resource, but pbus_size_mem() computes the
632 * bridge window size assuming a 64-bit window will contain no
633 * 32-bit resources. __pci_assign_resource() enforces that
634 * artificial restriction to make sure everything will fit.
635 *
636 * The only way we could use a 64-bit non-prefechable MEMBAR is
637 * if its address is <4GB so that we can convert it to a 32-bit
638 * resource. To be visible to the host OS, all VMD endpoints must
639 * be initially configured by platform BIOS, which includes setting
640 * up these resources. We can assume the device is configured
641 * according to the platform needs.
642 */
643 res = &vmd->dev->resource[VMD_MEMBAR1];
644 upper_bits = upper_32_bits(res->end);
645 flags = res->flags & ~IORESOURCE_SIZEALIGN;
646 if (!upper_bits)
647 flags &= ~IORESOURCE_MEM_64;
648 vmd->resources[1] = (struct resource) {
649 .name = "VMD MEMBAR1",
650 .start = res->start,
651 .end = res->end,
652 .flags = flags,
653 .parent = res,
654 };
655
656 res = &vmd->dev->resource[VMD_MEMBAR2];
657 upper_bits = upper_32_bits(res->end);
658 flags = res->flags & ~IORESOURCE_SIZEALIGN;
659 if (!upper_bits)
660 flags &= ~IORESOURCE_MEM_64;
661 vmd->resources[2] = (struct resource) {
662 .name = "VMD MEMBAR2",
663 .start = res->start + membar2_offset,
664 .end = res->end,
665 .flags = flags,
666 .parent = res,
667 };
668
669 sd->vmd_domain = true;
670 sd->domain = vmd_find_free_domain();
671 if (sd->domain < 0)
672 return sd->domain;
673
674 sd->node = pcibus_to_node(vmd->dev->bus);
675
676 fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
677 if (!fn)
678 return -ENODEV;
679
680 vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info,
681 x86_vector_domain);
682 irq_domain_free_fwnode(fn);
683 if (!vmd->irq_domain)
684 return -ENODEV;
685
686 pci_add_resource(&resources, &vmd->resources[0]);
687 pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
688 pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
689
690 vmd->bus = pci_create_root_bus(&vmd->dev->dev, busn_start, &vmd_ops,
691 sd, &resources);
692 if (!vmd->bus) {
693 pci_free_resource_list(&resources);
694 irq_domain_remove(vmd->irq_domain);
695 return -ENODEV;
696 }
697
698 vmd_attach_resources(vmd);
699 vmd_setup_dma_ops(vmd);
700 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
701 pci_rescan_bus(vmd->bus);
702
703 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
704 "domain"), "Can't create symlink to domain\n");
705 return 0;
706}
707
708static irqreturn_t vmd_irq(int irq, void *data)
709{
710 struct vmd_irq_list *irqs = data;
711 struct vmd_irq *vmdirq;
712 int idx;
713
714 idx = srcu_read_lock(&irqs->srcu);
715 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
716 generic_handle_irq(vmdirq->virq);
717 srcu_read_unlock(&irqs->srcu, idx);
718
719 return IRQ_HANDLED;
720}
721
722static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
723{
724 struct vmd_dev *vmd;
725 int i, err;
726
727 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
728 return -ENOMEM;
729
730 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
731 if (!vmd)
732 return -ENOMEM;
733
734 vmd->dev = dev;
735 err = pcim_enable_device(dev);
736 if (err < 0)
737 return err;
738
739 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
740 if (!vmd->cfgbar)
741 return -ENOMEM;
742
743 pci_set_master(dev);
744 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
745 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
746 return -ENODEV;
747
748 vmd->msix_count = pci_msix_vec_count(dev);
749 if (vmd->msix_count < 0)
750 return -ENODEV;
751
752 vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
753 PCI_IRQ_MSIX);
754 if (vmd->msix_count < 0)
755 return vmd->msix_count;
756
757 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
758 GFP_KERNEL);
759 if (!vmd->irqs)
760 return -ENOMEM;
761
762 for (i = 0; i < vmd->msix_count; i++) {
763 err = init_srcu_struct(&vmd->irqs[i].srcu);
764 if (err)
765 return err;
766
767 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
768 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
769 vmd_irq, IRQF_NO_THREAD,
770 "vmd", &vmd->irqs[i]);
771 if (err)
772 return err;
773 }
774
775 spin_lock_init(&vmd->cfg_lock);
776 pci_set_drvdata(dev, vmd);
777 err = vmd_enable_domain(vmd, (unsigned long) id->driver_data);
778 if (err)
779 return err;
780
781 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
782 vmd->sysdata.domain);
783 return 0;
784}
785
786static void vmd_cleanup_srcu(struct vmd_dev *vmd)
787{
788 int i;
789
790 for (i = 0; i < vmd->msix_count; i++)
791 cleanup_srcu_struct(&vmd->irqs[i].srcu);
792}
793
794static void vmd_remove(struct pci_dev *dev)
795{
796 struct vmd_dev *vmd = pci_get_drvdata(dev);
797
798 sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
799 pci_stop_root_bus(vmd->bus);
800 pci_remove_root_bus(vmd->bus);
801 vmd_cleanup_srcu(vmd);
802 vmd_teardown_dma_ops(vmd);
803 vmd_detach_resources(vmd);
804 irq_domain_remove(vmd->irq_domain);
805}
806
807#ifdef CONFIG_PM_SLEEP
808static int vmd_suspend(struct device *dev)
809{
810 struct pci_dev *pdev = to_pci_dev(dev);
811 struct vmd_dev *vmd = pci_get_drvdata(pdev);
812 int i;
813
814 for (i = 0; i < vmd->msix_count; i++)
815 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
816
817 pci_save_state(pdev);
818 return 0;
819}
820
821static int vmd_resume(struct device *dev)
822{
823 struct pci_dev *pdev = to_pci_dev(dev);
824 struct vmd_dev *vmd = pci_get_drvdata(pdev);
825 int err, i;
826
827 for (i = 0; i < vmd->msix_count; i++) {
828 err = devm_request_irq(dev, pci_irq_vector(pdev, i),
829 vmd_irq, IRQF_NO_THREAD,
830 "vmd", &vmd->irqs[i]);
831 if (err)
832 return err;
833 }
834
835 pci_restore_state(pdev);
836 return 0;
837}
838#endif
839static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
840
841static const struct pci_device_id vmd_ids[] = {
842 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),},
843 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
844 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
845 VMD_FEAT_HAS_BUS_RESTRICTIONS,},
846 {0,}
847};
848MODULE_DEVICE_TABLE(pci, vmd_ids);
849
850static struct pci_driver vmd_drv = {
851 .name = "vmd",
852 .id_table = vmd_ids,
853 .probe = vmd_probe,
854 .remove = vmd_remove,
855 .driver = {
856 .pm = &vmd_dev_pm_ops,
857 },
858};
859module_pci_driver(vmd_drv);
860
861MODULE_AUTHOR("Intel Corporation");
862MODULE_LICENSE("GPL v2");
863MODULE_VERSION("0.6");