at v5.0-rc1 56 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/backing-dev.h> 18#include <linux/module.h> 19#include <linux/blkpg.h> 20#include <linux/magic.h> 21#include <linux/dax.h> 22#include <linux/buffer_head.h> 23#include <linux/swap.h> 24#include <linux/pagevec.h> 25#include <linux/writeback.h> 26#include <linux/mpage.h> 27#include <linux/mount.h> 28#include <linux/uio.h> 29#include <linux/namei.h> 30#include <linux/log2.h> 31#include <linux/cleancache.h> 32#include <linux/dax.h> 33#include <linux/badblocks.h> 34#include <linux/task_io_accounting_ops.h> 35#include <linux/falloc.h> 36#include <linux/uaccess.h> 37#include "internal.h" 38 39struct bdev_inode { 40 struct block_device bdev; 41 struct inode vfs_inode; 42}; 43 44static const struct address_space_operations def_blk_aops; 45 46static inline struct bdev_inode *BDEV_I(struct inode *inode) 47{ 48 return container_of(inode, struct bdev_inode, vfs_inode); 49} 50 51struct block_device *I_BDEV(struct inode *inode) 52{ 53 return &BDEV_I(inode)->bdev; 54} 55EXPORT_SYMBOL(I_BDEV); 56 57static void bdev_write_inode(struct block_device *bdev) 58{ 59 struct inode *inode = bdev->bd_inode; 60 int ret; 61 62 spin_lock(&inode->i_lock); 63 while (inode->i_state & I_DIRTY) { 64 spin_unlock(&inode->i_lock); 65 ret = write_inode_now(inode, true); 66 if (ret) { 67 char name[BDEVNAME_SIZE]; 68 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 69 "for block device %s (err=%d).\n", 70 bdevname(bdev, name), ret); 71 } 72 spin_lock(&inode->i_lock); 73 } 74 spin_unlock(&inode->i_lock); 75} 76 77/* Kill _all_ buffers and pagecache , dirty or not.. */ 78void kill_bdev(struct block_device *bdev) 79{ 80 struct address_space *mapping = bdev->bd_inode->i_mapping; 81 82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 83 return; 84 85 invalidate_bh_lrus(); 86 truncate_inode_pages(mapping, 0); 87} 88EXPORT_SYMBOL(kill_bdev); 89 90/* Invalidate clean unused buffers and pagecache. */ 91void invalidate_bdev(struct block_device *bdev) 92{ 93 struct address_space *mapping = bdev->bd_inode->i_mapping; 94 95 if (mapping->nrpages) { 96 invalidate_bh_lrus(); 97 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 98 invalidate_mapping_pages(mapping, 0, -1); 99 } 100 /* 99% of the time, we don't need to flush the cleancache on the bdev. 101 * But, for the strange corners, lets be cautious 102 */ 103 cleancache_invalidate_inode(mapping); 104} 105EXPORT_SYMBOL(invalidate_bdev); 106 107int set_blocksize(struct block_device *bdev, int size) 108{ 109 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 110 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 111 return -EINVAL; 112 113 /* Size cannot be smaller than the size supported by the device */ 114 if (size < bdev_logical_block_size(bdev)) 115 return -EINVAL; 116 117 /* Don't change the size if it is same as current */ 118 if (bdev->bd_block_size != size) { 119 sync_blockdev(bdev); 120 bdev->bd_block_size = size; 121 bdev->bd_inode->i_blkbits = blksize_bits(size); 122 kill_bdev(bdev); 123 } 124 return 0; 125} 126 127EXPORT_SYMBOL(set_blocksize); 128 129int sb_set_blocksize(struct super_block *sb, int size) 130{ 131 if (set_blocksize(sb->s_bdev, size)) 132 return 0; 133 /* If we get here, we know size is power of two 134 * and it's value is between 512 and PAGE_SIZE */ 135 sb->s_blocksize = size; 136 sb->s_blocksize_bits = blksize_bits(size); 137 return sb->s_blocksize; 138} 139 140EXPORT_SYMBOL(sb_set_blocksize); 141 142int sb_min_blocksize(struct super_block *sb, int size) 143{ 144 int minsize = bdev_logical_block_size(sb->s_bdev); 145 if (size < minsize) 146 size = minsize; 147 return sb_set_blocksize(sb, size); 148} 149 150EXPORT_SYMBOL(sb_min_blocksize); 151 152static int 153blkdev_get_block(struct inode *inode, sector_t iblock, 154 struct buffer_head *bh, int create) 155{ 156 bh->b_bdev = I_BDEV(inode); 157 bh->b_blocknr = iblock; 158 set_buffer_mapped(bh); 159 return 0; 160} 161 162static struct inode *bdev_file_inode(struct file *file) 163{ 164 return file->f_mapping->host; 165} 166 167static unsigned int dio_bio_write_op(struct kiocb *iocb) 168{ 169 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 170 171 /* avoid the need for a I/O completion work item */ 172 if (iocb->ki_flags & IOCB_DSYNC) 173 op |= REQ_FUA; 174 return op; 175} 176 177#define DIO_INLINE_BIO_VECS 4 178 179static void blkdev_bio_end_io_simple(struct bio *bio) 180{ 181 struct task_struct *waiter = bio->bi_private; 182 183 WRITE_ONCE(bio->bi_private, NULL); 184 blk_wake_io_task(waiter); 185} 186 187static ssize_t 188__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter, 189 int nr_pages) 190{ 191 struct file *file = iocb->ki_filp; 192 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 193 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec; 194 loff_t pos = iocb->ki_pos; 195 bool should_dirty = false; 196 struct bio bio; 197 ssize_t ret; 198 blk_qc_t qc; 199 int i; 200 201 if ((pos | iov_iter_alignment(iter)) & 202 (bdev_logical_block_size(bdev) - 1)) 203 return -EINVAL; 204 205 if (nr_pages <= DIO_INLINE_BIO_VECS) 206 vecs = inline_vecs; 207 else { 208 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec), 209 GFP_KERNEL); 210 if (!vecs) 211 return -ENOMEM; 212 } 213 214 bio_init(&bio, vecs, nr_pages); 215 bio_set_dev(&bio, bdev); 216 bio.bi_iter.bi_sector = pos >> 9; 217 bio.bi_write_hint = iocb->ki_hint; 218 bio.bi_private = current; 219 bio.bi_end_io = blkdev_bio_end_io_simple; 220 bio.bi_ioprio = iocb->ki_ioprio; 221 222 ret = bio_iov_iter_get_pages(&bio, iter); 223 if (unlikely(ret)) 224 goto out; 225 ret = bio.bi_iter.bi_size; 226 227 if (iov_iter_rw(iter) == READ) { 228 bio.bi_opf = REQ_OP_READ; 229 if (iter_is_iovec(iter)) 230 should_dirty = true; 231 } else { 232 bio.bi_opf = dio_bio_write_op(iocb); 233 task_io_account_write(ret); 234 } 235 if (iocb->ki_flags & IOCB_HIPRI) 236 bio.bi_opf |= REQ_HIPRI; 237 238 qc = submit_bio(&bio); 239 for (;;) { 240 set_current_state(TASK_UNINTERRUPTIBLE); 241 if (!READ_ONCE(bio.bi_private)) 242 break; 243 if (!(iocb->ki_flags & IOCB_HIPRI) || 244 !blk_poll(bdev_get_queue(bdev), qc, true)) 245 io_schedule(); 246 } 247 __set_current_state(TASK_RUNNING); 248 249 bio_for_each_segment_all(bvec, &bio, i) { 250 if (should_dirty && !PageCompound(bvec->bv_page)) 251 set_page_dirty_lock(bvec->bv_page); 252 put_page(bvec->bv_page); 253 } 254 255 if (unlikely(bio.bi_status)) 256 ret = blk_status_to_errno(bio.bi_status); 257 258out: 259 if (vecs != inline_vecs) 260 kfree(vecs); 261 262 bio_uninit(&bio); 263 264 return ret; 265} 266 267struct blkdev_dio { 268 union { 269 struct kiocb *iocb; 270 struct task_struct *waiter; 271 }; 272 size_t size; 273 atomic_t ref; 274 bool multi_bio : 1; 275 bool should_dirty : 1; 276 bool is_sync : 1; 277 struct bio bio; 278}; 279 280static struct bio_set blkdev_dio_pool; 281 282static void blkdev_bio_end_io(struct bio *bio) 283{ 284 struct blkdev_dio *dio = bio->bi_private; 285 bool should_dirty = dio->should_dirty; 286 287 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) { 288 if (bio->bi_status && !dio->bio.bi_status) 289 dio->bio.bi_status = bio->bi_status; 290 } else { 291 if (!dio->is_sync) { 292 struct kiocb *iocb = dio->iocb; 293 ssize_t ret; 294 295 if (likely(!dio->bio.bi_status)) { 296 ret = dio->size; 297 iocb->ki_pos += ret; 298 } else { 299 ret = blk_status_to_errno(dio->bio.bi_status); 300 } 301 302 dio->iocb->ki_complete(iocb, ret, 0); 303 if (dio->multi_bio) 304 bio_put(&dio->bio); 305 } else { 306 struct task_struct *waiter = dio->waiter; 307 308 WRITE_ONCE(dio->waiter, NULL); 309 blk_wake_io_task(waiter); 310 } 311 } 312 313 if (should_dirty) { 314 bio_check_pages_dirty(bio); 315 } else { 316 struct bio_vec *bvec; 317 int i; 318 319 bio_for_each_segment_all(bvec, bio, i) 320 put_page(bvec->bv_page); 321 bio_put(bio); 322 } 323} 324 325static ssize_t 326__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages) 327{ 328 struct file *file = iocb->ki_filp; 329 struct inode *inode = bdev_file_inode(file); 330 struct block_device *bdev = I_BDEV(inode); 331 struct blk_plug plug; 332 struct blkdev_dio *dio; 333 struct bio *bio; 334 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0; 335 bool is_read = (iov_iter_rw(iter) == READ), is_sync; 336 loff_t pos = iocb->ki_pos; 337 blk_qc_t qc = BLK_QC_T_NONE; 338 int ret = 0; 339 340 if ((pos | iov_iter_alignment(iter)) & 341 (bdev_logical_block_size(bdev) - 1)) 342 return -EINVAL; 343 344 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool); 345 346 dio = container_of(bio, struct blkdev_dio, bio); 347 dio->is_sync = is_sync = is_sync_kiocb(iocb); 348 if (dio->is_sync) { 349 dio->waiter = current; 350 bio_get(bio); 351 } else { 352 dio->iocb = iocb; 353 } 354 355 dio->size = 0; 356 dio->multi_bio = false; 357 dio->should_dirty = is_read && iter_is_iovec(iter); 358 359 /* 360 * Don't plug for HIPRI/polled IO, as those should go straight 361 * to issue 362 */ 363 if (!is_poll) 364 blk_start_plug(&plug); 365 366 for (;;) { 367 bio_set_dev(bio, bdev); 368 bio->bi_iter.bi_sector = pos >> 9; 369 bio->bi_write_hint = iocb->ki_hint; 370 bio->bi_private = dio; 371 bio->bi_end_io = blkdev_bio_end_io; 372 bio->bi_ioprio = iocb->ki_ioprio; 373 374 ret = bio_iov_iter_get_pages(bio, iter); 375 if (unlikely(ret)) { 376 bio->bi_status = BLK_STS_IOERR; 377 bio_endio(bio); 378 break; 379 } 380 381 if (is_read) { 382 bio->bi_opf = REQ_OP_READ; 383 if (dio->should_dirty) 384 bio_set_pages_dirty(bio); 385 } else { 386 bio->bi_opf = dio_bio_write_op(iocb); 387 task_io_account_write(bio->bi_iter.bi_size); 388 } 389 390 dio->size += bio->bi_iter.bi_size; 391 pos += bio->bi_iter.bi_size; 392 393 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES); 394 if (!nr_pages) { 395 if (iocb->ki_flags & IOCB_HIPRI) 396 bio->bi_opf |= REQ_HIPRI; 397 398 qc = submit_bio(bio); 399 break; 400 } 401 402 if (!dio->multi_bio) { 403 /* 404 * AIO needs an extra reference to ensure the dio 405 * structure which is embedded into the first bio 406 * stays around. 407 */ 408 if (!is_sync) 409 bio_get(bio); 410 dio->multi_bio = true; 411 atomic_set(&dio->ref, 2); 412 } else { 413 atomic_inc(&dio->ref); 414 } 415 416 submit_bio(bio); 417 bio = bio_alloc(GFP_KERNEL, nr_pages); 418 } 419 420 if (!is_poll) 421 blk_finish_plug(&plug); 422 423 if (!is_sync) 424 return -EIOCBQUEUED; 425 426 for (;;) { 427 set_current_state(TASK_UNINTERRUPTIBLE); 428 if (!READ_ONCE(dio->waiter)) 429 break; 430 431 if (!(iocb->ki_flags & IOCB_HIPRI) || 432 !blk_poll(bdev_get_queue(bdev), qc, true)) 433 io_schedule(); 434 } 435 __set_current_state(TASK_RUNNING); 436 437 if (!ret) 438 ret = blk_status_to_errno(dio->bio.bi_status); 439 if (likely(!ret)) 440 ret = dio->size; 441 442 bio_put(&dio->bio); 443 return ret; 444} 445 446static ssize_t 447blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 448{ 449 int nr_pages; 450 451 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1); 452 if (!nr_pages) 453 return 0; 454 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES) 455 return __blkdev_direct_IO_simple(iocb, iter, nr_pages); 456 457 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES)); 458} 459 460static __init int blkdev_init(void) 461{ 462 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS); 463} 464module_init(blkdev_init); 465 466int __sync_blockdev(struct block_device *bdev, int wait) 467{ 468 if (!bdev) 469 return 0; 470 if (!wait) 471 return filemap_flush(bdev->bd_inode->i_mapping); 472 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 473} 474 475/* 476 * Write out and wait upon all the dirty data associated with a block 477 * device via its mapping. Does not take the superblock lock. 478 */ 479int sync_blockdev(struct block_device *bdev) 480{ 481 return __sync_blockdev(bdev, 1); 482} 483EXPORT_SYMBOL(sync_blockdev); 484 485/* 486 * Write out and wait upon all dirty data associated with this 487 * device. Filesystem data as well as the underlying block 488 * device. Takes the superblock lock. 489 */ 490int fsync_bdev(struct block_device *bdev) 491{ 492 struct super_block *sb = get_super(bdev); 493 if (sb) { 494 int res = sync_filesystem(sb); 495 drop_super(sb); 496 return res; 497 } 498 return sync_blockdev(bdev); 499} 500EXPORT_SYMBOL(fsync_bdev); 501 502/** 503 * freeze_bdev -- lock a filesystem and force it into a consistent state 504 * @bdev: blockdevice to lock 505 * 506 * If a superblock is found on this device, we take the s_umount semaphore 507 * on it to make sure nobody unmounts until the snapshot creation is done. 508 * The reference counter (bd_fsfreeze_count) guarantees that only the last 509 * unfreeze process can unfreeze the frozen filesystem actually when multiple 510 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 511 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 512 * actually. 513 */ 514struct super_block *freeze_bdev(struct block_device *bdev) 515{ 516 struct super_block *sb; 517 int error = 0; 518 519 mutex_lock(&bdev->bd_fsfreeze_mutex); 520 if (++bdev->bd_fsfreeze_count > 1) { 521 /* 522 * We don't even need to grab a reference - the first call 523 * to freeze_bdev grab an active reference and only the last 524 * thaw_bdev drops it. 525 */ 526 sb = get_super(bdev); 527 if (sb) 528 drop_super(sb); 529 mutex_unlock(&bdev->bd_fsfreeze_mutex); 530 return sb; 531 } 532 533 sb = get_active_super(bdev); 534 if (!sb) 535 goto out; 536 if (sb->s_op->freeze_super) 537 error = sb->s_op->freeze_super(sb); 538 else 539 error = freeze_super(sb); 540 if (error) { 541 deactivate_super(sb); 542 bdev->bd_fsfreeze_count--; 543 mutex_unlock(&bdev->bd_fsfreeze_mutex); 544 return ERR_PTR(error); 545 } 546 deactivate_super(sb); 547 out: 548 sync_blockdev(bdev); 549 mutex_unlock(&bdev->bd_fsfreeze_mutex); 550 return sb; /* thaw_bdev releases s->s_umount */ 551} 552EXPORT_SYMBOL(freeze_bdev); 553 554/** 555 * thaw_bdev -- unlock filesystem 556 * @bdev: blockdevice to unlock 557 * @sb: associated superblock 558 * 559 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 560 */ 561int thaw_bdev(struct block_device *bdev, struct super_block *sb) 562{ 563 int error = -EINVAL; 564 565 mutex_lock(&bdev->bd_fsfreeze_mutex); 566 if (!bdev->bd_fsfreeze_count) 567 goto out; 568 569 error = 0; 570 if (--bdev->bd_fsfreeze_count > 0) 571 goto out; 572 573 if (!sb) 574 goto out; 575 576 if (sb->s_op->thaw_super) 577 error = sb->s_op->thaw_super(sb); 578 else 579 error = thaw_super(sb); 580 if (error) 581 bdev->bd_fsfreeze_count++; 582out: 583 mutex_unlock(&bdev->bd_fsfreeze_mutex); 584 return error; 585} 586EXPORT_SYMBOL(thaw_bdev); 587 588static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 589{ 590 return block_write_full_page(page, blkdev_get_block, wbc); 591} 592 593static int blkdev_readpage(struct file * file, struct page * page) 594{ 595 return block_read_full_page(page, blkdev_get_block); 596} 597 598static int blkdev_readpages(struct file *file, struct address_space *mapping, 599 struct list_head *pages, unsigned nr_pages) 600{ 601 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 602} 603 604static int blkdev_write_begin(struct file *file, struct address_space *mapping, 605 loff_t pos, unsigned len, unsigned flags, 606 struct page **pagep, void **fsdata) 607{ 608 return block_write_begin(mapping, pos, len, flags, pagep, 609 blkdev_get_block); 610} 611 612static int blkdev_write_end(struct file *file, struct address_space *mapping, 613 loff_t pos, unsigned len, unsigned copied, 614 struct page *page, void *fsdata) 615{ 616 int ret; 617 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 618 619 unlock_page(page); 620 put_page(page); 621 622 return ret; 623} 624 625/* 626 * private llseek: 627 * for a block special file file_inode(file)->i_size is zero 628 * so we compute the size by hand (just as in block_read/write above) 629 */ 630static loff_t block_llseek(struct file *file, loff_t offset, int whence) 631{ 632 struct inode *bd_inode = bdev_file_inode(file); 633 loff_t retval; 634 635 inode_lock(bd_inode); 636 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 637 inode_unlock(bd_inode); 638 return retval; 639} 640 641int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 642{ 643 struct inode *bd_inode = bdev_file_inode(filp); 644 struct block_device *bdev = I_BDEV(bd_inode); 645 int error; 646 647 error = file_write_and_wait_range(filp, start, end); 648 if (error) 649 return error; 650 651 /* 652 * There is no need to serialise calls to blkdev_issue_flush with 653 * i_mutex and doing so causes performance issues with concurrent 654 * O_SYNC writers to a block device. 655 */ 656 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 657 if (error == -EOPNOTSUPP) 658 error = 0; 659 660 return error; 661} 662EXPORT_SYMBOL(blkdev_fsync); 663 664/** 665 * bdev_read_page() - Start reading a page from a block device 666 * @bdev: The device to read the page from 667 * @sector: The offset on the device to read the page to (need not be aligned) 668 * @page: The page to read 669 * 670 * On entry, the page should be locked. It will be unlocked when the page 671 * has been read. If the block driver implements rw_page synchronously, 672 * that will be true on exit from this function, but it need not be. 673 * 674 * Errors returned by this function are usually "soft", eg out of memory, or 675 * queue full; callers should try a different route to read this page rather 676 * than propagate an error back up the stack. 677 * 678 * Return: negative errno if an error occurs, 0 if submission was successful. 679 */ 680int bdev_read_page(struct block_device *bdev, sector_t sector, 681 struct page *page) 682{ 683 const struct block_device_operations *ops = bdev->bd_disk->fops; 684 int result = -EOPNOTSUPP; 685 686 if (!ops->rw_page || bdev_get_integrity(bdev)) 687 return result; 688 689 result = blk_queue_enter(bdev->bd_queue, 0); 690 if (result) 691 return result; 692 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, 693 REQ_OP_READ); 694 blk_queue_exit(bdev->bd_queue); 695 return result; 696} 697EXPORT_SYMBOL_GPL(bdev_read_page); 698 699/** 700 * bdev_write_page() - Start writing a page to a block device 701 * @bdev: The device to write the page to 702 * @sector: The offset on the device to write the page to (need not be aligned) 703 * @page: The page to write 704 * @wbc: The writeback_control for the write 705 * 706 * On entry, the page should be locked and not currently under writeback. 707 * On exit, if the write started successfully, the page will be unlocked and 708 * under writeback. If the write failed already (eg the driver failed to 709 * queue the page to the device), the page will still be locked. If the 710 * caller is a ->writepage implementation, it will need to unlock the page. 711 * 712 * Errors returned by this function are usually "soft", eg out of memory, or 713 * queue full; callers should try a different route to write this page rather 714 * than propagate an error back up the stack. 715 * 716 * Return: negative errno if an error occurs, 0 if submission was successful. 717 */ 718int bdev_write_page(struct block_device *bdev, sector_t sector, 719 struct page *page, struct writeback_control *wbc) 720{ 721 int result; 722 const struct block_device_operations *ops = bdev->bd_disk->fops; 723 724 if (!ops->rw_page || bdev_get_integrity(bdev)) 725 return -EOPNOTSUPP; 726 result = blk_queue_enter(bdev->bd_queue, 0); 727 if (result) 728 return result; 729 730 set_page_writeback(page); 731 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, 732 REQ_OP_WRITE); 733 if (result) { 734 end_page_writeback(page); 735 } else { 736 clean_page_buffers(page); 737 unlock_page(page); 738 } 739 blk_queue_exit(bdev->bd_queue); 740 return result; 741} 742EXPORT_SYMBOL_GPL(bdev_write_page); 743 744/* 745 * pseudo-fs 746 */ 747 748static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 749static struct kmem_cache * bdev_cachep __read_mostly; 750 751static struct inode *bdev_alloc_inode(struct super_block *sb) 752{ 753 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 754 if (!ei) 755 return NULL; 756 return &ei->vfs_inode; 757} 758 759static void bdev_i_callback(struct rcu_head *head) 760{ 761 struct inode *inode = container_of(head, struct inode, i_rcu); 762 struct bdev_inode *bdi = BDEV_I(inode); 763 764 kmem_cache_free(bdev_cachep, bdi); 765} 766 767static void bdev_destroy_inode(struct inode *inode) 768{ 769 call_rcu(&inode->i_rcu, bdev_i_callback); 770} 771 772static void init_once(void *foo) 773{ 774 struct bdev_inode *ei = (struct bdev_inode *) foo; 775 struct block_device *bdev = &ei->bdev; 776 777 memset(bdev, 0, sizeof(*bdev)); 778 mutex_init(&bdev->bd_mutex); 779 INIT_LIST_HEAD(&bdev->bd_list); 780#ifdef CONFIG_SYSFS 781 INIT_LIST_HEAD(&bdev->bd_holder_disks); 782#endif 783 bdev->bd_bdi = &noop_backing_dev_info; 784 inode_init_once(&ei->vfs_inode); 785 /* Initialize mutex for freeze. */ 786 mutex_init(&bdev->bd_fsfreeze_mutex); 787} 788 789static void bdev_evict_inode(struct inode *inode) 790{ 791 struct block_device *bdev = &BDEV_I(inode)->bdev; 792 truncate_inode_pages_final(&inode->i_data); 793 invalidate_inode_buffers(inode); /* is it needed here? */ 794 clear_inode(inode); 795 spin_lock(&bdev_lock); 796 list_del_init(&bdev->bd_list); 797 spin_unlock(&bdev_lock); 798 /* Detach inode from wb early as bdi_put() may free bdi->wb */ 799 inode_detach_wb(inode); 800 if (bdev->bd_bdi != &noop_backing_dev_info) { 801 bdi_put(bdev->bd_bdi); 802 bdev->bd_bdi = &noop_backing_dev_info; 803 } 804} 805 806static const struct super_operations bdev_sops = { 807 .statfs = simple_statfs, 808 .alloc_inode = bdev_alloc_inode, 809 .destroy_inode = bdev_destroy_inode, 810 .drop_inode = generic_delete_inode, 811 .evict_inode = bdev_evict_inode, 812}; 813 814static struct dentry *bd_mount(struct file_system_type *fs_type, 815 int flags, const char *dev_name, void *data) 816{ 817 struct dentry *dent; 818 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 819 if (!IS_ERR(dent)) 820 dent->d_sb->s_iflags |= SB_I_CGROUPWB; 821 return dent; 822} 823 824static struct file_system_type bd_type = { 825 .name = "bdev", 826 .mount = bd_mount, 827 .kill_sb = kill_anon_super, 828}; 829 830struct super_block *blockdev_superblock __read_mostly; 831EXPORT_SYMBOL_GPL(blockdev_superblock); 832 833void __init bdev_cache_init(void) 834{ 835 int err; 836 static struct vfsmount *bd_mnt; 837 838 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 839 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 840 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 841 init_once); 842 err = register_filesystem(&bd_type); 843 if (err) 844 panic("Cannot register bdev pseudo-fs"); 845 bd_mnt = kern_mount(&bd_type); 846 if (IS_ERR(bd_mnt)) 847 panic("Cannot create bdev pseudo-fs"); 848 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 849} 850 851/* 852 * Most likely _very_ bad one - but then it's hardly critical for small 853 * /dev and can be fixed when somebody will need really large one. 854 * Keep in mind that it will be fed through icache hash function too. 855 */ 856static inline unsigned long hash(dev_t dev) 857{ 858 return MAJOR(dev)+MINOR(dev); 859} 860 861static int bdev_test(struct inode *inode, void *data) 862{ 863 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 864} 865 866static int bdev_set(struct inode *inode, void *data) 867{ 868 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 869 return 0; 870} 871 872static LIST_HEAD(all_bdevs); 873 874/* 875 * If there is a bdev inode for this device, unhash it so that it gets evicted 876 * as soon as last inode reference is dropped. 877 */ 878void bdev_unhash_inode(dev_t dev) 879{ 880 struct inode *inode; 881 882 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev); 883 if (inode) { 884 remove_inode_hash(inode); 885 iput(inode); 886 } 887} 888 889struct block_device *bdget(dev_t dev) 890{ 891 struct block_device *bdev; 892 struct inode *inode; 893 894 inode = iget5_locked(blockdev_superblock, hash(dev), 895 bdev_test, bdev_set, &dev); 896 897 if (!inode) 898 return NULL; 899 900 bdev = &BDEV_I(inode)->bdev; 901 902 if (inode->i_state & I_NEW) { 903 bdev->bd_contains = NULL; 904 bdev->bd_super = NULL; 905 bdev->bd_inode = inode; 906 bdev->bd_block_size = i_blocksize(inode); 907 bdev->bd_part_count = 0; 908 bdev->bd_invalidated = 0; 909 inode->i_mode = S_IFBLK; 910 inode->i_rdev = dev; 911 inode->i_bdev = bdev; 912 inode->i_data.a_ops = &def_blk_aops; 913 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 914 spin_lock(&bdev_lock); 915 list_add(&bdev->bd_list, &all_bdevs); 916 spin_unlock(&bdev_lock); 917 unlock_new_inode(inode); 918 } 919 return bdev; 920} 921 922EXPORT_SYMBOL(bdget); 923 924/** 925 * bdgrab -- Grab a reference to an already referenced block device 926 * @bdev: Block device to grab a reference to. 927 */ 928struct block_device *bdgrab(struct block_device *bdev) 929{ 930 ihold(bdev->bd_inode); 931 return bdev; 932} 933EXPORT_SYMBOL(bdgrab); 934 935long nr_blockdev_pages(void) 936{ 937 struct block_device *bdev; 938 long ret = 0; 939 spin_lock(&bdev_lock); 940 list_for_each_entry(bdev, &all_bdevs, bd_list) { 941 ret += bdev->bd_inode->i_mapping->nrpages; 942 } 943 spin_unlock(&bdev_lock); 944 return ret; 945} 946 947void bdput(struct block_device *bdev) 948{ 949 iput(bdev->bd_inode); 950} 951 952EXPORT_SYMBOL(bdput); 953 954static struct block_device *bd_acquire(struct inode *inode) 955{ 956 struct block_device *bdev; 957 958 spin_lock(&bdev_lock); 959 bdev = inode->i_bdev; 960 if (bdev && !inode_unhashed(bdev->bd_inode)) { 961 bdgrab(bdev); 962 spin_unlock(&bdev_lock); 963 return bdev; 964 } 965 spin_unlock(&bdev_lock); 966 967 /* 968 * i_bdev references block device inode that was already shut down 969 * (corresponding device got removed). Remove the reference and look 970 * up block device inode again just in case new device got 971 * reestablished under the same device number. 972 */ 973 if (bdev) 974 bd_forget(inode); 975 976 bdev = bdget(inode->i_rdev); 977 if (bdev) { 978 spin_lock(&bdev_lock); 979 if (!inode->i_bdev) { 980 /* 981 * We take an additional reference to bd_inode, 982 * and it's released in clear_inode() of inode. 983 * So, we can access it via ->i_mapping always 984 * without igrab(). 985 */ 986 bdgrab(bdev); 987 inode->i_bdev = bdev; 988 inode->i_mapping = bdev->bd_inode->i_mapping; 989 } 990 spin_unlock(&bdev_lock); 991 } 992 return bdev; 993} 994 995/* Call when you free inode */ 996 997void bd_forget(struct inode *inode) 998{ 999 struct block_device *bdev = NULL; 1000 1001 spin_lock(&bdev_lock); 1002 if (!sb_is_blkdev_sb(inode->i_sb)) 1003 bdev = inode->i_bdev; 1004 inode->i_bdev = NULL; 1005 inode->i_mapping = &inode->i_data; 1006 spin_unlock(&bdev_lock); 1007 1008 if (bdev) 1009 bdput(bdev); 1010} 1011 1012/** 1013 * bd_may_claim - test whether a block device can be claimed 1014 * @bdev: block device of interest 1015 * @whole: whole block device containing @bdev, may equal @bdev 1016 * @holder: holder trying to claim @bdev 1017 * 1018 * Test whether @bdev can be claimed by @holder. 1019 * 1020 * CONTEXT: 1021 * spin_lock(&bdev_lock). 1022 * 1023 * RETURNS: 1024 * %true if @bdev can be claimed, %false otherwise. 1025 */ 1026static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 1027 void *holder) 1028{ 1029 if (bdev->bd_holder == holder) 1030 return true; /* already a holder */ 1031 else if (bdev->bd_holder != NULL) 1032 return false; /* held by someone else */ 1033 else if (whole == bdev) 1034 return true; /* is a whole device which isn't held */ 1035 1036 else if (whole->bd_holder == bd_may_claim) 1037 return true; /* is a partition of a device that is being partitioned */ 1038 else if (whole->bd_holder != NULL) 1039 return false; /* is a partition of a held device */ 1040 else 1041 return true; /* is a partition of an un-held device */ 1042} 1043 1044/** 1045 * bd_prepare_to_claim - prepare to claim a block device 1046 * @bdev: block device of interest 1047 * @whole: the whole device containing @bdev, may equal @bdev 1048 * @holder: holder trying to claim @bdev 1049 * 1050 * Prepare to claim @bdev. This function fails if @bdev is already 1051 * claimed by another holder and waits if another claiming is in 1052 * progress. This function doesn't actually claim. On successful 1053 * return, the caller has ownership of bd_claiming and bd_holder[s]. 1054 * 1055 * CONTEXT: 1056 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 1057 * it multiple times. 1058 * 1059 * RETURNS: 1060 * 0 if @bdev can be claimed, -EBUSY otherwise. 1061 */ 1062static int bd_prepare_to_claim(struct block_device *bdev, 1063 struct block_device *whole, void *holder) 1064{ 1065retry: 1066 /* if someone else claimed, fail */ 1067 if (!bd_may_claim(bdev, whole, holder)) 1068 return -EBUSY; 1069 1070 /* if claiming is already in progress, wait for it to finish */ 1071 if (whole->bd_claiming) { 1072 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 1073 DEFINE_WAIT(wait); 1074 1075 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 1076 spin_unlock(&bdev_lock); 1077 schedule(); 1078 finish_wait(wq, &wait); 1079 spin_lock(&bdev_lock); 1080 goto retry; 1081 } 1082 1083 /* yay, all mine */ 1084 return 0; 1085} 1086 1087static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno) 1088{ 1089 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno); 1090 1091 if (!disk) 1092 return NULL; 1093 /* 1094 * Now that we hold gendisk reference we make sure bdev we looked up is 1095 * not stale. If it is, it means device got removed and created before 1096 * we looked up gendisk and we fail open in such case. Associating 1097 * unhashed bdev with newly created gendisk could lead to two bdevs 1098 * (and thus two independent caches) being associated with one device 1099 * which is bad. 1100 */ 1101 if (inode_unhashed(bdev->bd_inode)) { 1102 put_disk_and_module(disk); 1103 return NULL; 1104 } 1105 return disk; 1106} 1107 1108/** 1109 * bd_start_claiming - start claiming a block device 1110 * @bdev: block device of interest 1111 * @holder: holder trying to claim @bdev 1112 * 1113 * @bdev is about to be opened exclusively. Check @bdev can be opened 1114 * exclusively and mark that an exclusive open is in progress. Each 1115 * successful call to this function must be matched with a call to 1116 * either bd_finish_claiming() or bd_abort_claiming() (which do not 1117 * fail). 1118 * 1119 * This function is used to gain exclusive access to the block device 1120 * without actually causing other exclusive open attempts to fail. It 1121 * should be used when the open sequence itself requires exclusive 1122 * access but may subsequently fail. 1123 * 1124 * CONTEXT: 1125 * Might sleep. 1126 * 1127 * RETURNS: 1128 * Pointer to the block device containing @bdev on success, ERR_PTR() 1129 * value on failure. 1130 */ 1131static struct block_device *bd_start_claiming(struct block_device *bdev, 1132 void *holder) 1133{ 1134 struct gendisk *disk; 1135 struct block_device *whole; 1136 int partno, err; 1137 1138 might_sleep(); 1139 1140 /* 1141 * @bdev might not have been initialized properly yet, look up 1142 * and grab the outer block device the hard way. 1143 */ 1144 disk = bdev_get_gendisk(bdev, &partno); 1145 if (!disk) 1146 return ERR_PTR(-ENXIO); 1147 1148 /* 1149 * Normally, @bdev should equal what's returned from bdget_disk() 1150 * if partno is 0; however, some drivers (floppy) use multiple 1151 * bdev's for the same physical device and @bdev may be one of the 1152 * aliases. Keep @bdev if partno is 0. This means claimer 1153 * tracking is broken for those devices but it has always been that 1154 * way. 1155 */ 1156 if (partno) 1157 whole = bdget_disk(disk, 0); 1158 else 1159 whole = bdgrab(bdev); 1160 1161 put_disk_and_module(disk); 1162 if (!whole) 1163 return ERR_PTR(-ENOMEM); 1164 1165 /* prepare to claim, if successful, mark claiming in progress */ 1166 spin_lock(&bdev_lock); 1167 1168 err = bd_prepare_to_claim(bdev, whole, holder); 1169 if (err == 0) { 1170 whole->bd_claiming = holder; 1171 spin_unlock(&bdev_lock); 1172 return whole; 1173 } else { 1174 spin_unlock(&bdev_lock); 1175 bdput(whole); 1176 return ERR_PTR(err); 1177 } 1178} 1179 1180#ifdef CONFIG_SYSFS 1181struct bd_holder_disk { 1182 struct list_head list; 1183 struct gendisk *disk; 1184 int refcnt; 1185}; 1186 1187static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 1188 struct gendisk *disk) 1189{ 1190 struct bd_holder_disk *holder; 1191 1192 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 1193 if (holder->disk == disk) 1194 return holder; 1195 return NULL; 1196} 1197 1198static int add_symlink(struct kobject *from, struct kobject *to) 1199{ 1200 return sysfs_create_link(from, to, kobject_name(to)); 1201} 1202 1203static void del_symlink(struct kobject *from, struct kobject *to) 1204{ 1205 sysfs_remove_link(from, kobject_name(to)); 1206} 1207 1208/** 1209 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 1210 * @bdev: the claimed slave bdev 1211 * @disk: the holding disk 1212 * 1213 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1214 * 1215 * This functions creates the following sysfs symlinks. 1216 * 1217 * - from "slaves" directory of the holder @disk to the claimed @bdev 1218 * - from "holders" directory of the @bdev to the holder @disk 1219 * 1220 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 1221 * passed to bd_link_disk_holder(), then: 1222 * 1223 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 1224 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 1225 * 1226 * The caller must have claimed @bdev before calling this function and 1227 * ensure that both @bdev and @disk are valid during the creation and 1228 * lifetime of these symlinks. 1229 * 1230 * CONTEXT: 1231 * Might sleep. 1232 * 1233 * RETURNS: 1234 * 0 on success, -errno on failure. 1235 */ 1236int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 1237{ 1238 struct bd_holder_disk *holder; 1239 int ret = 0; 1240 1241 mutex_lock(&bdev->bd_mutex); 1242 1243 WARN_ON_ONCE(!bdev->bd_holder); 1244 1245 /* FIXME: remove the following once add_disk() handles errors */ 1246 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 1247 goto out_unlock; 1248 1249 holder = bd_find_holder_disk(bdev, disk); 1250 if (holder) { 1251 holder->refcnt++; 1252 goto out_unlock; 1253 } 1254 1255 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 1256 if (!holder) { 1257 ret = -ENOMEM; 1258 goto out_unlock; 1259 } 1260 1261 INIT_LIST_HEAD(&holder->list); 1262 holder->disk = disk; 1263 holder->refcnt = 1; 1264 1265 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1266 if (ret) 1267 goto out_free; 1268 1269 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 1270 if (ret) 1271 goto out_del; 1272 /* 1273 * bdev could be deleted beneath us which would implicitly destroy 1274 * the holder directory. Hold on to it. 1275 */ 1276 kobject_get(bdev->bd_part->holder_dir); 1277 1278 list_add(&holder->list, &bdev->bd_holder_disks); 1279 goto out_unlock; 1280 1281out_del: 1282 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1283out_free: 1284 kfree(holder); 1285out_unlock: 1286 mutex_unlock(&bdev->bd_mutex); 1287 return ret; 1288} 1289EXPORT_SYMBOL_GPL(bd_link_disk_holder); 1290 1291/** 1292 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 1293 * @bdev: the calimed slave bdev 1294 * @disk: the holding disk 1295 * 1296 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1297 * 1298 * CONTEXT: 1299 * Might sleep. 1300 */ 1301void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 1302{ 1303 struct bd_holder_disk *holder; 1304 1305 mutex_lock(&bdev->bd_mutex); 1306 1307 holder = bd_find_holder_disk(bdev, disk); 1308 1309 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 1310 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1311 del_symlink(bdev->bd_part->holder_dir, 1312 &disk_to_dev(disk)->kobj); 1313 kobject_put(bdev->bd_part->holder_dir); 1314 list_del_init(&holder->list); 1315 kfree(holder); 1316 } 1317 1318 mutex_unlock(&bdev->bd_mutex); 1319} 1320EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1321#endif 1322 1323/** 1324 * flush_disk - invalidates all buffer-cache entries on a disk 1325 * 1326 * @bdev: struct block device to be flushed 1327 * @kill_dirty: flag to guide handling of dirty inodes 1328 * 1329 * Invalidates all buffer-cache entries on a disk. It should be called 1330 * when a disk has been changed -- either by a media change or online 1331 * resize. 1332 */ 1333static void flush_disk(struct block_device *bdev, bool kill_dirty) 1334{ 1335 if (__invalidate_device(bdev, kill_dirty)) { 1336 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1337 "resized disk %s\n", 1338 bdev->bd_disk ? bdev->bd_disk->disk_name : ""); 1339 } 1340 1341 if (!bdev->bd_disk) 1342 return; 1343 if (disk_part_scan_enabled(bdev->bd_disk)) 1344 bdev->bd_invalidated = 1; 1345} 1346 1347/** 1348 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1349 * @disk: struct gendisk to check 1350 * @bdev: struct bdev to adjust. 1351 * @verbose: if %true log a message about a size change if there is any 1352 * 1353 * This routine checks to see if the bdev size does not match the disk size 1354 * and adjusts it if it differs. When shrinking the bdev size, its all caches 1355 * are freed. 1356 */ 1357void check_disk_size_change(struct gendisk *disk, struct block_device *bdev, 1358 bool verbose) 1359{ 1360 loff_t disk_size, bdev_size; 1361 1362 disk_size = (loff_t)get_capacity(disk) << 9; 1363 bdev_size = i_size_read(bdev->bd_inode); 1364 if (disk_size != bdev_size) { 1365 if (verbose) { 1366 printk(KERN_INFO 1367 "%s: detected capacity change from %lld to %lld\n", 1368 disk->disk_name, bdev_size, disk_size); 1369 } 1370 i_size_write(bdev->bd_inode, disk_size); 1371 if (bdev_size > disk_size) 1372 flush_disk(bdev, false); 1373 } 1374} 1375 1376/** 1377 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1378 * @disk: struct gendisk to be revalidated 1379 * 1380 * This routine is a wrapper for lower-level driver's revalidate_disk 1381 * call-backs. It is used to do common pre and post operations needed 1382 * for all revalidate_disk operations. 1383 */ 1384int revalidate_disk(struct gendisk *disk) 1385{ 1386 struct block_device *bdev; 1387 int ret = 0; 1388 1389 if (disk->fops->revalidate_disk) 1390 ret = disk->fops->revalidate_disk(disk); 1391 bdev = bdget_disk(disk, 0); 1392 if (!bdev) 1393 return ret; 1394 1395 mutex_lock(&bdev->bd_mutex); 1396 check_disk_size_change(disk, bdev, ret == 0); 1397 bdev->bd_invalidated = 0; 1398 mutex_unlock(&bdev->bd_mutex); 1399 bdput(bdev); 1400 return ret; 1401} 1402EXPORT_SYMBOL(revalidate_disk); 1403 1404/* 1405 * This routine checks whether a removable media has been changed, 1406 * and invalidates all buffer-cache-entries in that case. This 1407 * is a relatively slow routine, so we have to try to minimize using 1408 * it. Thus it is called only upon a 'mount' or 'open'. This 1409 * is the best way of combining speed and utility, I think. 1410 * People changing diskettes in the middle of an operation deserve 1411 * to lose :-) 1412 */ 1413int check_disk_change(struct block_device *bdev) 1414{ 1415 struct gendisk *disk = bdev->bd_disk; 1416 const struct block_device_operations *bdops = disk->fops; 1417 unsigned int events; 1418 1419 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1420 DISK_EVENT_EJECT_REQUEST); 1421 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1422 return 0; 1423 1424 flush_disk(bdev, true); 1425 if (bdops->revalidate_disk) 1426 bdops->revalidate_disk(bdev->bd_disk); 1427 return 1; 1428} 1429 1430EXPORT_SYMBOL(check_disk_change); 1431 1432void bd_set_size(struct block_device *bdev, loff_t size) 1433{ 1434 unsigned bsize = bdev_logical_block_size(bdev); 1435 1436 inode_lock(bdev->bd_inode); 1437 i_size_write(bdev->bd_inode, size); 1438 inode_unlock(bdev->bd_inode); 1439 while (bsize < PAGE_SIZE) { 1440 if (size & bsize) 1441 break; 1442 bsize <<= 1; 1443 } 1444 bdev->bd_block_size = bsize; 1445 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1446} 1447EXPORT_SYMBOL(bd_set_size); 1448 1449static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1450 1451/* 1452 * bd_mutex locking: 1453 * 1454 * mutex_lock(part->bd_mutex) 1455 * mutex_lock_nested(whole->bd_mutex, 1) 1456 */ 1457 1458static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1459{ 1460 struct gendisk *disk; 1461 int ret; 1462 int partno; 1463 int perm = 0; 1464 bool first_open = false; 1465 1466 if (mode & FMODE_READ) 1467 perm |= MAY_READ; 1468 if (mode & FMODE_WRITE) 1469 perm |= MAY_WRITE; 1470 /* 1471 * hooks: /n/, see "layering violations". 1472 */ 1473 if (!for_part) { 1474 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1475 if (ret != 0) { 1476 bdput(bdev); 1477 return ret; 1478 } 1479 } 1480 1481 restart: 1482 1483 ret = -ENXIO; 1484 disk = bdev_get_gendisk(bdev, &partno); 1485 if (!disk) 1486 goto out; 1487 1488 disk_block_events(disk); 1489 mutex_lock_nested(&bdev->bd_mutex, for_part); 1490 if (!bdev->bd_openers) { 1491 first_open = true; 1492 bdev->bd_disk = disk; 1493 bdev->bd_queue = disk->queue; 1494 bdev->bd_contains = bdev; 1495 bdev->bd_partno = partno; 1496 1497 if (!partno) { 1498 ret = -ENXIO; 1499 bdev->bd_part = disk_get_part(disk, partno); 1500 if (!bdev->bd_part) 1501 goto out_clear; 1502 1503 ret = 0; 1504 if (disk->fops->open) { 1505 ret = disk->fops->open(bdev, mode); 1506 if (ret == -ERESTARTSYS) { 1507 /* Lost a race with 'disk' being 1508 * deleted, try again. 1509 * See md.c 1510 */ 1511 disk_put_part(bdev->bd_part); 1512 bdev->bd_part = NULL; 1513 bdev->bd_disk = NULL; 1514 bdev->bd_queue = NULL; 1515 mutex_unlock(&bdev->bd_mutex); 1516 disk_unblock_events(disk); 1517 put_disk_and_module(disk); 1518 goto restart; 1519 } 1520 } 1521 1522 if (!ret) 1523 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1524 1525 /* 1526 * If the device is invalidated, rescan partition 1527 * if open succeeded or failed with -ENOMEDIUM. 1528 * The latter is necessary to prevent ghost 1529 * partitions on a removed medium. 1530 */ 1531 if (bdev->bd_invalidated) { 1532 if (!ret) 1533 rescan_partitions(disk, bdev); 1534 else if (ret == -ENOMEDIUM) 1535 invalidate_partitions(disk, bdev); 1536 } 1537 1538 if (ret) 1539 goto out_clear; 1540 } else { 1541 struct block_device *whole; 1542 whole = bdget_disk(disk, 0); 1543 ret = -ENOMEM; 1544 if (!whole) 1545 goto out_clear; 1546 BUG_ON(for_part); 1547 ret = __blkdev_get(whole, mode, 1); 1548 if (ret) 1549 goto out_clear; 1550 bdev->bd_contains = whole; 1551 bdev->bd_part = disk_get_part(disk, partno); 1552 if (!(disk->flags & GENHD_FL_UP) || 1553 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1554 ret = -ENXIO; 1555 goto out_clear; 1556 } 1557 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1558 } 1559 1560 if (bdev->bd_bdi == &noop_backing_dev_info) 1561 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info); 1562 } else { 1563 if (bdev->bd_contains == bdev) { 1564 ret = 0; 1565 if (bdev->bd_disk->fops->open) 1566 ret = bdev->bd_disk->fops->open(bdev, mode); 1567 /* the same as first opener case, read comment there */ 1568 if (bdev->bd_invalidated) { 1569 if (!ret) 1570 rescan_partitions(bdev->bd_disk, bdev); 1571 else if (ret == -ENOMEDIUM) 1572 invalidate_partitions(bdev->bd_disk, bdev); 1573 } 1574 if (ret) 1575 goto out_unlock_bdev; 1576 } 1577 } 1578 bdev->bd_openers++; 1579 if (for_part) 1580 bdev->bd_part_count++; 1581 mutex_unlock(&bdev->bd_mutex); 1582 disk_unblock_events(disk); 1583 /* only one opener holds refs to the module and disk */ 1584 if (!first_open) 1585 put_disk_and_module(disk); 1586 return 0; 1587 1588 out_clear: 1589 disk_put_part(bdev->bd_part); 1590 bdev->bd_disk = NULL; 1591 bdev->bd_part = NULL; 1592 bdev->bd_queue = NULL; 1593 if (bdev != bdev->bd_contains) 1594 __blkdev_put(bdev->bd_contains, mode, 1); 1595 bdev->bd_contains = NULL; 1596 out_unlock_bdev: 1597 mutex_unlock(&bdev->bd_mutex); 1598 disk_unblock_events(disk); 1599 put_disk_and_module(disk); 1600 out: 1601 bdput(bdev); 1602 1603 return ret; 1604} 1605 1606/** 1607 * blkdev_get - open a block device 1608 * @bdev: block_device to open 1609 * @mode: FMODE_* mask 1610 * @holder: exclusive holder identifier 1611 * 1612 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1613 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1614 * @holder is invalid. Exclusive opens may nest for the same @holder. 1615 * 1616 * On success, the reference count of @bdev is unchanged. On failure, 1617 * @bdev is put. 1618 * 1619 * CONTEXT: 1620 * Might sleep. 1621 * 1622 * RETURNS: 1623 * 0 on success, -errno on failure. 1624 */ 1625int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1626{ 1627 struct block_device *whole = NULL; 1628 int res; 1629 1630 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1631 1632 if ((mode & FMODE_EXCL) && holder) { 1633 whole = bd_start_claiming(bdev, holder); 1634 if (IS_ERR(whole)) { 1635 bdput(bdev); 1636 return PTR_ERR(whole); 1637 } 1638 } 1639 1640 res = __blkdev_get(bdev, mode, 0); 1641 1642 if (whole) { 1643 struct gendisk *disk = whole->bd_disk; 1644 1645 /* finish claiming */ 1646 mutex_lock(&bdev->bd_mutex); 1647 spin_lock(&bdev_lock); 1648 1649 if (!res) { 1650 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1651 /* 1652 * Note that for a whole device bd_holders 1653 * will be incremented twice, and bd_holder 1654 * will be set to bd_may_claim before being 1655 * set to holder 1656 */ 1657 whole->bd_holders++; 1658 whole->bd_holder = bd_may_claim; 1659 bdev->bd_holders++; 1660 bdev->bd_holder = holder; 1661 } 1662 1663 /* tell others that we're done */ 1664 BUG_ON(whole->bd_claiming != holder); 1665 whole->bd_claiming = NULL; 1666 wake_up_bit(&whole->bd_claiming, 0); 1667 1668 spin_unlock(&bdev_lock); 1669 1670 /* 1671 * Block event polling for write claims if requested. Any 1672 * write holder makes the write_holder state stick until 1673 * all are released. This is good enough and tracking 1674 * individual writeable reference is too fragile given the 1675 * way @mode is used in blkdev_get/put(). 1676 */ 1677 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1678 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1679 bdev->bd_write_holder = true; 1680 disk_block_events(disk); 1681 } 1682 1683 mutex_unlock(&bdev->bd_mutex); 1684 bdput(whole); 1685 } 1686 1687 return res; 1688} 1689EXPORT_SYMBOL(blkdev_get); 1690 1691/** 1692 * blkdev_get_by_path - open a block device by name 1693 * @path: path to the block device to open 1694 * @mode: FMODE_* mask 1695 * @holder: exclusive holder identifier 1696 * 1697 * Open the blockdevice described by the device file at @path. @mode 1698 * and @holder are identical to blkdev_get(). 1699 * 1700 * On success, the returned block_device has reference count of one. 1701 * 1702 * CONTEXT: 1703 * Might sleep. 1704 * 1705 * RETURNS: 1706 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1707 */ 1708struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1709 void *holder) 1710{ 1711 struct block_device *bdev; 1712 int err; 1713 1714 bdev = lookup_bdev(path); 1715 if (IS_ERR(bdev)) 1716 return bdev; 1717 1718 err = blkdev_get(bdev, mode, holder); 1719 if (err) 1720 return ERR_PTR(err); 1721 1722 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1723 blkdev_put(bdev, mode); 1724 return ERR_PTR(-EACCES); 1725 } 1726 1727 return bdev; 1728} 1729EXPORT_SYMBOL(blkdev_get_by_path); 1730 1731/** 1732 * blkdev_get_by_dev - open a block device by device number 1733 * @dev: device number of block device to open 1734 * @mode: FMODE_* mask 1735 * @holder: exclusive holder identifier 1736 * 1737 * Open the blockdevice described by device number @dev. @mode and 1738 * @holder are identical to blkdev_get(). 1739 * 1740 * Use it ONLY if you really do not have anything better - i.e. when 1741 * you are behind a truly sucky interface and all you are given is a 1742 * device number. _Never_ to be used for internal purposes. If you 1743 * ever need it - reconsider your API. 1744 * 1745 * On success, the returned block_device has reference count of one. 1746 * 1747 * CONTEXT: 1748 * Might sleep. 1749 * 1750 * RETURNS: 1751 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1752 */ 1753struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1754{ 1755 struct block_device *bdev; 1756 int err; 1757 1758 bdev = bdget(dev); 1759 if (!bdev) 1760 return ERR_PTR(-ENOMEM); 1761 1762 err = blkdev_get(bdev, mode, holder); 1763 if (err) 1764 return ERR_PTR(err); 1765 1766 return bdev; 1767} 1768EXPORT_SYMBOL(blkdev_get_by_dev); 1769 1770static int blkdev_open(struct inode * inode, struct file * filp) 1771{ 1772 struct block_device *bdev; 1773 1774 /* 1775 * Preserve backwards compatibility and allow large file access 1776 * even if userspace doesn't ask for it explicitly. Some mkfs 1777 * binary needs it. We might want to drop this workaround 1778 * during an unstable branch. 1779 */ 1780 filp->f_flags |= O_LARGEFILE; 1781 1782 filp->f_mode |= FMODE_NOWAIT; 1783 1784 if (filp->f_flags & O_NDELAY) 1785 filp->f_mode |= FMODE_NDELAY; 1786 if (filp->f_flags & O_EXCL) 1787 filp->f_mode |= FMODE_EXCL; 1788 if ((filp->f_flags & O_ACCMODE) == 3) 1789 filp->f_mode |= FMODE_WRITE_IOCTL; 1790 1791 bdev = bd_acquire(inode); 1792 if (bdev == NULL) 1793 return -ENOMEM; 1794 1795 filp->f_mapping = bdev->bd_inode->i_mapping; 1796 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping); 1797 1798 return blkdev_get(bdev, filp->f_mode, filp); 1799} 1800 1801static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1802{ 1803 struct gendisk *disk = bdev->bd_disk; 1804 struct block_device *victim = NULL; 1805 1806 mutex_lock_nested(&bdev->bd_mutex, for_part); 1807 if (for_part) 1808 bdev->bd_part_count--; 1809 1810 if (!--bdev->bd_openers) { 1811 WARN_ON_ONCE(bdev->bd_holders); 1812 sync_blockdev(bdev); 1813 kill_bdev(bdev); 1814 1815 bdev_write_inode(bdev); 1816 } 1817 if (bdev->bd_contains == bdev) { 1818 if (disk->fops->release) 1819 disk->fops->release(disk, mode); 1820 } 1821 if (!bdev->bd_openers) { 1822 disk_put_part(bdev->bd_part); 1823 bdev->bd_part = NULL; 1824 bdev->bd_disk = NULL; 1825 if (bdev != bdev->bd_contains) 1826 victim = bdev->bd_contains; 1827 bdev->bd_contains = NULL; 1828 1829 put_disk_and_module(disk); 1830 } 1831 mutex_unlock(&bdev->bd_mutex); 1832 bdput(bdev); 1833 if (victim) 1834 __blkdev_put(victim, mode, 1); 1835} 1836 1837void blkdev_put(struct block_device *bdev, fmode_t mode) 1838{ 1839 mutex_lock(&bdev->bd_mutex); 1840 1841 if (mode & FMODE_EXCL) { 1842 bool bdev_free; 1843 1844 /* 1845 * Release a claim on the device. The holder fields 1846 * are protected with bdev_lock. bd_mutex is to 1847 * synchronize disk_holder unlinking. 1848 */ 1849 spin_lock(&bdev_lock); 1850 1851 WARN_ON_ONCE(--bdev->bd_holders < 0); 1852 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1853 1854 /* bd_contains might point to self, check in a separate step */ 1855 if ((bdev_free = !bdev->bd_holders)) 1856 bdev->bd_holder = NULL; 1857 if (!bdev->bd_contains->bd_holders) 1858 bdev->bd_contains->bd_holder = NULL; 1859 1860 spin_unlock(&bdev_lock); 1861 1862 /* 1863 * If this was the last claim, remove holder link and 1864 * unblock evpoll if it was a write holder. 1865 */ 1866 if (bdev_free && bdev->bd_write_holder) { 1867 disk_unblock_events(bdev->bd_disk); 1868 bdev->bd_write_holder = false; 1869 } 1870 } 1871 1872 /* 1873 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1874 * event. This is to ensure detection of media removal commanded 1875 * from userland - e.g. eject(1). 1876 */ 1877 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1878 1879 mutex_unlock(&bdev->bd_mutex); 1880 1881 __blkdev_put(bdev, mode, 0); 1882} 1883EXPORT_SYMBOL(blkdev_put); 1884 1885static int blkdev_close(struct inode * inode, struct file * filp) 1886{ 1887 struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); 1888 blkdev_put(bdev, filp->f_mode); 1889 return 0; 1890} 1891 1892static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1893{ 1894 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1895 fmode_t mode = file->f_mode; 1896 1897 /* 1898 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1899 * to updated it before every ioctl. 1900 */ 1901 if (file->f_flags & O_NDELAY) 1902 mode |= FMODE_NDELAY; 1903 else 1904 mode &= ~FMODE_NDELAY; 1905 1906 return blkdev_ioctl(bdev, mode, cmd, arg); 1907} 1908 1909/* 1910 * Write data to the block device. Only intended for the block device itself 1911 * and the raw driver which basically is a fake block device. 1912 * 1913 * Does not take i_mutex for the write and thus is not for general purpose 1914 * use. 1915 */ 1916ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1917{ 1918 struct file *file = iocb->ki_filp; 1919 struct inode *bd_inode = bdev_file_inode(file); 1920 loff_t size = i_size_read(bd_inode); 1921 struct blk_plug plug; 1922 ssize_t ret; 1923 1924 if (bdev_read_only(I_BDEV(bd_inode))) 1925 return -EPERM; 1926 1927 if (!iov_iter_count(from)) 1928 return 0; 1929 1930 if (iocb->ki_pos >= size) 1931 return -ENOSPC; 1932 1933 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT) 1934 return -EOPNOTSUPP; 1935 1936 iov_iter_truncate(from, size - iocb->ki_pos); 1937 1938 blk_start_plug(&plug); 1939 ret = __generic_file_write_iter(iocb, from); 1940 if (ret > 0) 1941 ret = generic_write_sync(iocb, ret); 1942 blk_finish_plug(&plug); 1943 return ret; 1944} 1945EXPORT_SYMBOL_GPL(blkdev_write_iter); 1946 1947ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1948{ 1949 struct file *file = iocb->ki_filp; 1950 struct inode *bd_inode = bdev_file_inode(file); 1951 loff_t size = i_size_read(bd_inode); 1952 loff_t pos = iocb->ki_pos; 1953 1954 if (pos >= size) 1955 return 0; 1956 1957 size -= pos; 1958 iov_iter_truncate(to, size); 1959 return generic_file_read_iter(iocb, to); 1960} 1961EXPORT_SYMBOL_GPL(blkdev_read_iter); 1962 1963/* 1964 * Try to release a page associated with block device when the system 1965 * is under memory pressure. 1966 */ 1967static int blkdev_releasepage(struct page *page, gfp_t wait) 1968{ 1969 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1970 1971 if (super && super->s_op->bdev_try_to_free_page) 1972 return super->s_op->bdev_try_to_free_page(super, page, wait); 1973 1974 return try_to_free_buffers(page); 1975} 1976 1977static int blkdev_writepages(struct address_space *mapping, 1978 struct writeback_control *wbc) 1979{ 1980 return generic_writepages(mapping, wbc); 1981} 1982 1983static const struct address_space_operations def_blk_aops = { 1984 .readpage = blkdev_readpage, 1985 .readpages = blkdev_readpages, 1986 .writepage = blkdev_writepage, 1987 .write_begin = blkdev_write_begin, 1988 .write_end = blkdev_write_end, 1989 .writepages = blkdev_writepages, 1990 .releasepage = blkdev_releasepage, 1991 .direct_IO = blkdev_direct_IO, 1992 .migratepage = buffer_migrate_page_norefs, 1993 .is_dirty_writeback = buffer_check_dirty_writeback, 1994}; 1995 1996#define BLKDEV_FALLOC_FL_SUPPORTED \ 1997 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 1998 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE) 1999 2000static long blkdev_fallocate(struct file *file, int mode, loff_t start, 2001 loff_t len) 2002{ 2003 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 2004 struct address_space *mapping; 2005 loff_t end = start + len - 1; 2006 loff_t isize; 2007 int error; 2008 2009 /* Fail if we don't recognize the flags. */ 2010 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED) 2011 return -EOPNOTSUPP; 2012 2013 /* Don't go off the end of the device. */ 2014 isize = i_size_read(bdev->bd_inode); 2015 if (start >= isize) 2016 return -EINVAL; 2017 if (end >= isize) { 2018 if (mode & FALLOC_FL_KEEP_SIZE) { 2019 len = isize - start; 2020 end = start + len - 1; 2021 } else 2022 return -EINVAL; 2023 } 2024 2025 /* 2026 * Don't allow IO that isn't aligned to logical block size. 2027 */ 2028 if ((start | len) & (bdev_logical_block_size(bdev) - 1)) 2029 return -EINVAL; 2030 2031 /* Invalidate the page cache, including dirty pages. */ 2032 mapping = bdev->bd_inode->i_mapping; 2033 truncate_inode_pages_range(mapping, start, end); 2034 2035 switch (mode) { 2036 case FALLOC_FL_ZERO_RANGE: 2037 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE: 2038 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2039 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP); 2040 break; 2041 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE: 2042 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2043 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK); 2044 break; 2045 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE: 2046 error = blkdev_issue_discard(bdev, start >> 9, len >> 9, 2047 GFP_KERNEL, 0); 2048 break; 2049 default: 2050 return -EOPNOTSUPP; 2051 } 2052 if (error) 2053 return error; 2054 2055 /* 2056 * Invalidate again; if someone wandered in and dirtied a page, 2057 * the caller will be given -EBUSY. The third argument is 2058 * inclusive, so the rounding here is safe. 2059 */ 2060 return invalidate_inode_pages2_range(mapping, 2061 start >> PAGE_SHIFT, 2062 end >> PAGE_SHIFT); 2063} 2064 2065const struct file_operations def_blk_fops = { 2066 .open = blkdev_open, 2067 .release = blkdev_close, 2068 .llseek = block_llseek, 2069 .read_iter = blkdev_read_iter, 2070 .write_iter = blkdev_write_iter, 2071 .mmap = generic_file_mmap, 2072 .fsync = blkdev_fsync, 2073 .unlocked_ioctl = block_ioctl, 2074#ifdef CONFIG_COMPAT 2075 .compat_ioctl = compat_blkdev_ioctl, 2076#endif 2077 .splice_read = generic_file_splice_read, 2078 .splice_write = iter_file_splice_write, 2079 .fallocate = blkdev_fallocate, 2080}; 2081 2082int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 2083{ 2084 int res; 2085 mm_segment_t old_fs = get_fs(); 2086 set_fs(KERNEL_DS); 2087 res = blkdev_ioctl(bdev, 0, cmd, arg); 2088 set_fs(old_fs); 2089 return res; 2090} 2091 2092EXPORT_SYMBOL(ioctl_by_bdev); 2093 2094/** 2095 * lookup_bdev - lookup a struct block_device by name 2096 * @pathname: special file representing the block device 2097 * 2098 * Get a reference to the blockdevice at @pathname in the current 2099 * namespace if possible and return it. Return ERR_PTR(error) 2100 * otherwise. 2101 */ 2102struct block_device *lookup_bdev(const char *pathname) 2103{ 2104 struct block_device *bdev; 2105 struct inode *inode; 2106 struct path path; 2107 int error; 2108 2109 if (!pathname || !*pathname) 2110 return ERR_PTR(-EINVAL); 2111 2112 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 2113 if (error) 2114 return ERR_PTR(error); 2115 2116 inode = d_backing_inode(path.dentry); 2117 error = -ENOTBLK; 2118 if (!S_ISBLK(inode->i_mode)) 2119 goto fail; 2120 error = -EACCES; 2121 if (!may_open_dev(&path)) 2122 goto fail; 2123 error = -ENOMEM; 2124 bdev = bd_acquire(inode); 2125 if (!bdev) 2126 goto fail; 2127out: 2128 path_put(&path); 2129 return bdev; 2130fail: 2131 bdev = ERR_PTR(error); 2132 goto out; 2133} 2134EXPORT_SYMBOL(lookup_bdev); 2135 2136int __invalidate_device(struct block_device *bdev, bool kill_dirty) 2137{ 2138 struct super_block *sb = get_super(bdev); 2139 int res = 0; 2140 2141 if (sb) { 2142 /* 2143 * no need to lock the super, get_super holds the 2144 * read mutex so the filesystem cannot go away 2145 * under us (->put_super runs with the write lock 2146 * hold). 2147 */ 2148 shrink_dcache_sb(sb); 2149 res = invalidate_inodes(sb, kill_dirty); 2150 drop_super(sb); 2151 } 2152 invalidate_bdev(bdev); 2153 return res; 2154} 2155EXPORT_SYMBOL(__invalidate_device); 2156 2157void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 2158{ 2159 struct inode *inode, *old_inode = NULL; 2160 2161 spin_lock(&blockdev_superblock->s_inode_list_lock); 2162 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 2163 struct address_space *mapping = inode->i_mapping; 2164 struct block_device *bdev; 2165 2166 spin_lock(&inode->i_lock); 2167 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 2168 mapping->nrpages == 0) { 2169 spin_unlock(&inode->i_lock); 2170 continue; 2171 } 2172 __iget(inode); 2173 spin_unlock(&inode->i_lock); 2174 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2175 /* 2176 * We hold a reference to 'inode' so it couldn't have been 2177 * removed from s_inodes list while we dropped the 2178 * s_inode_list_lock We cannot iput the inode now as we can 2179 * be holding the last reference and we cannot iput it under 2180 * s_inode_list_lock. So we keep the reference and iput it 2181 * later. 2182 */ 2183 iput(old_inode); 2184 old_inode = inode; 2185 bdev = I_BDEV(inode); 2186 2187 mutex_lock(&bdev->bd_mutex); 2188 if (bdev->bd_openers) 2189 func(bdev, arg); 2190 mutex_unlock(&bdev->bd_mutex); 2191 2192 spin_lock(&blockdev_superblock->s_inode_list_lock); 2193 } 2194 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2195 iput(old_inode); 2196}