Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Generic OPP Interface
3 *
4 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
5 * Nishanth Menon
6 * Romit Dasgupta
7 * Kevin Hilman
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16#include <linux/clk.h>
17#include <linux/errno.h>
18#include <linux/err.h>
19#include <linux/slab.h>
20#include <linux/device.h>
21#include <linux/export.h>
22#include <linux/pm_domain.h>
23#include <linux/regulator/consumer.h>
24
25#include "opp.h"
26
27/*
28 * The root of the list of all opp-tables. All opp_table structures branch off
29 * from here, with each opp_table containing the list of opps it supports in
30 * various states of availability.
31 */
32LIST_HEAD(opp_tables);
33/* Lock to allow exclusive modification to the device and opp lists */
34DEFINE_MUTEX(opp_table_lock);
35
36static struct opp_device *_find_opp_dev(const struct device *dev,
37 struct opp_table *opp_table)
38{
39 struct opp_device *opp_dev;
40
41 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
42 if (opp_dev->dev == dev)
43 return opp_dev;
44
45 return NULL;
46}
47
48static struct opp_table *_find_opp_table_unlocked(struct device *dev)
49{
50 struct opp_table *opp_table;
51 bool found;
52
53 list_for_each_entry(opp_table, &opp_tables, node) {
54 mutex_lock(&opp_table->lock);
55 found = !!_find_opp_dev(dev, opp_table);
56 mutex_unlock(&opp_table->lock);
57
58 if (found) {
59 _get_opp_table_kref(opp_table);
60
61 return opp_table;
62 }
63 }
64
65 return ERR_PTR(-ENODEV);
66}
67
68/**
69 * _find_opp_table() - find opp_table struct using device pointer
70 * @dev: device pointer used to lookup OPP table
71 *
72 * Search OPP table for one containing matching device.
73 *
74 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
75 * -EINVAL based on type of error.
76 *
77 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
78 */
79struct opp_table *_find_opp_table(struct device *dev)
80{
81 struct opp_table *opp_table;
82
83 if (IS_ERR_OR_NULL(dev)) {
84 pr_err("%s: Invalid parameters\n", __func__);
85 return ERR_PTR(-EINVAL);
86 }
87
88 mutex_lock(&opp_table_lock);
89 opp_table = _find_opp_table_unlocked(dev);
90 mutex_unlock(&opp_table_lock);
91
92 return opp_table;
93}
94
95/**
96 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
97 * @opp: opp for which voltage has to be returned for
98 *
99 * Return: voltage in micro volt corresponding to the opp, else
100 * return 0
101 *
102 * This is useful only for devices with single power supply.
103 */
104unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
105{
106 if (IS_ERR_OR_NULL(opp)) {
107 pr_err("%s: Invalid parameters\n", __func__);
108 return 0;
109 }
110
111 return opp->supplies[0].u_volt;
112}
113EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
114
115/**
116 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
117 * @opp: opp for which frequency has to be returned for
118 *
119 * Return: frequency in hertz corresponding to the opp, else
120 * return 0
121 */
122unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
123{
124 if (IS_ERR_OR_NULL(opp) || !opp->available) {
125 pr_err("%s: Invalid parameters\n", __func__);
126 return 0;
127 }
128
129 return opp->rate;
130}
131EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
132
133/**
134 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
135 * @opp: opp for which turbo mode is being verified
136 *
137 * Turbo OPPs are not for normal use, and can be enabled (under certain
138 * conditions) for short duration of times to finish high throughput work
139 * quickly. Running on them for longer times may overheat the chip.
140 *
141 * Return: true if opp is turbo opp, else false.
142 */
143bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
144{
145 if (IS_ERR_OR_NULL(opp) || !opp->available) {
146 pr_err("%s: Invalid parameters\n", __func__);
147 return false;
148 }
149
150 return opp->turbo;
151}
152EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
153
154/**
155 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
156 * @dev: device for which we do this operation
157 *
158 * Return: This function returns the max clock latency in nanoseconds.
159 */
160unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
161{
162 struct opp_table *opp_table;
163 unsigned long clock_latency_ns;
164
165 opp_table = _find_opp_table(dev);
166 if (IS_ERR(opp_table))
167 return 0;
168
169 clock_latency_ns = opp_table->clock_latency_ns_max;
170
171 dev_pm_opp_put_opp_table(opp_table);
172
173 return clock_latency_ns;
174}
175EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
176
177/**
178 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
179 * @dev: device for which we do this operation
180 *
181 * Return: This function returns the max voltage latency in nanoseconds.
182 */
183unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
184{
185 struct opp_table *opp_table;
186 struct dev_pm_opp *opp;
187 struct regulator *reg;
188 unsigned long latency_ns = 0;
189 int ret, i, count;
190 struct {
191 unsigned long min;
192 unsigned long max;
193 } *uV;
194
195 opp_table = _find_opp_table(dev);
196 if (IS_ERR(opp_table))
197 return 0;
198
199 /* Regulator may not be required for the device */
200 if (!opp_table->regulators)
201 goto put_opp_table;
202
203 count = opp_table->regulator_count;
204
205 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
206 if (!uV)
207 goto put_opp_table;
208
209 mutex_lock(&opp_table->lock);
210
211 for (i = 0; i < count; i++) {
212 uV[i].min = ~0;
213 uV[i].max = 0;
214
215 list_for_each_entry(opp, &opp_table->opp_list, node) {
216 if (!opp->available)
217 continue;
218
219 if (opp->supplies[i].u_volt_min < uV[i].min)
220 uV[i].min = opp->supplies[i].u_volt_min;
221 if (opp->supplies[i].u_volt_max > uV[i].max)
222 uV[i].max = opp->supplies[i].u_volt_max;
223 }
224 }
225
226 mutex_unlock(&opp_table->lock);
227
228 /*
229 * The caller needs to ensure that opp_table (and hence the regulator)
230 * isn't freed, while we are executing this routine.
231 */
232 for (i = 0; i < count; i++) {
233 reg = opp_table->regulators[i];
234 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
235 if (ret > 0)
236 latency_ns += ret * 1000;
237 }
238
239 kfree(uV);
240put_opp_table:
241 dev_pm_opp_put_opp_table(opp_table);
242
243 return latency_ns;
244}
245EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
246
247/**
248 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
249 * nanoseconds
250 * @dev: device for which we do this operation
251 *
252 * Return: This function returns the max transition latency, in nanoseconds, to
253 * switch from one OPP to other.
254 */
255unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
256{
257 return dev_pm_opp_get_max_volt_latency(dev) +
258 dev_pm_opp_get_max_clock_latency(dev);
259}
260EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
261
262/**
263 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
264 * @dev: device for which we do this operation
265 *
266 * Return: This function returns the frequency of the OPP marked as suspend_opp
267 * if one is available, else returns 0;
268 */
269unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
270{
271 struct opp_table *opp_table;
272 unsigned long freq = 0;
273
274 opp_table = _find_opp_table(dev);
275 if (IS_ERR(opp_table))
276 return 0;
277
278 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
279 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
280
281 dev_pm_opp_put_opp_table(opp_table);
282
283 return freq;
284}
285EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
286
287int _get_opp_count(struct opp_table *opp_table)
288{
289 struct dev_pm_opp *opp;
290 int count = 0;
291
292 mutex_lock(&opp_table->lock);
293
294 list_for_each_entry(opp, &opp_table->opp_list, node) {
295 if (opp->available)
296 count++;
297 }
298
299 mutex_unlock(&opp_table->lock);
300
301 return count;
302}
303
304/**
305 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
306 * @dev: device for which we do this operation
307 *
308 * Return: This function returns the number of available opps if there are any,
309 * else returns 0 if none or the corresponding error value.
310 */
311int dev_pm_opp_get_opp_count(struct device *dev)
312{
313 struct opp_table *opp_table;
314 int count;
315
316 opp_table = _find_opp_table(dev);
317 if (IS_ERR(opp_table)) {
318 count = PTR_ERR(opp_table);
319 dev_dbg(dev, "%s: OPP table not found (%d)\n",
320 __func__, count);
321 return count;
322 }
323
324 count = _get_opp_count(opp_table);
325 dev_pm_opp_put_opp_table(opp_table);
326
327 return count;
328}
329EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
330
331/**
332 * dev_pm_opp_find_freq_exact() - search for an exact frequency
333 * @dev: device for which we do this operation
334 * @freq: frequency to search for
335 * @available: true/false - match for available opp
336 *
337 * Return: Searches for exact match in the opp table and returns pointer to the
338 * matching opp if found, else returns ERR_PTR in case of error and should
339 * be handled using IS_ERR. Error return values can be:
340 * EINVAL: for bad pointer
341 * ERANGE: no match found for search
342 * ENODEV: if device not found in list of registered devices
343 *
344 * Note: available is a modifier for the search. if available=true, then the
345 * match is for exact matching frequency and is available in the stored OPP
346 * table. if false, the match is for exact frequency which is not available.
347 *
348 * This provides a mechanism to enable an opp which is not available currently
349 * or the opposite as well.
350 *
351 * The callers are required to call dev_pm_opp_put() for the returned OPP after
352 * use.
353 */
354struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
355 unsigned long freq,
356 bool available)
357{
358 struct opp_table *opp_table;
359 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
360
361 opp_table = _find_opp_table(dev);
362 if (IS_ERR(opp_table)) {
363 int r = PTR_ERR(opp_table);
364
365 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
366 return ERR_PTR(r);
367 }
368
369 mutex_lock(&opp_table->lock);
370
371 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
372 if (temp_opp->available == available &&
373 temp_opp->rate == freq) {
374 opp = temp_opp;
375
376 /* Increment the reference count of OPP */
377 dev_pm_opp_get(opp);
378 break;
379 }
380 }
381
382 mutex_unlock(&opp_table->lock);
383 dev_pm_opp_put_opp_table(opp_table);
384
385 return opp;
386}
387EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
388
389static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
390 unsigned long *freq)
391{
392 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
393
394 mutex_lock(&opp_table->lock);
395
396 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
397 if (temp_opp->available && temp_opp->rate >= *freq) {
398 opp = temp_opp;
399 *freq = opp->rate;
400
401 /* Increment the reference count of OPP */
402 dev_pm_opp_get(opp);
403 break;
404 }
405 }
406
407 mutex_unlock(&opp_table->lock);
408
409 return opp;
410}
411
412/**
413 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
414 * @dev: device for which we do this operation
415 * @freq: Start frequency
416 *
417 * Search for the matching ceil *available* OPP from a starting freq
418 * for a device.
419 *
420 * Return: matching *opp and refreshes *freq accordingly, else returns
421 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
422 * values can be:
423 * EINVAL: for bad pointer
424 * ERANGE: no match found for search
425 * ENODEV: if device not found in list of registered devices
426 *
427 * The callers are required to call dev_pm_opp_put() for the returned OPP after
428 * use.
429 */
430struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
431 unsigned long *freq)
432{
433 struct opp_table *opp_table;
434 struct dev_pm_opp *opp;
435
436 if (!dev || !freq) {
437 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
438 return ERR_PTR(-EINVAL);
439 }
440
441 opp_table = _find_opp_table(dev);
442 if (IS_ERR(opp_table))
443 return ERR_CAST(opp_table);
444
445 opp = _find_freq_ceil(opp_table, freq);
446
447 dev_pm_opp_put_opp_table(opp_table);
448
449 return opp;
450}
451EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
452
453/**
454 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
455 * @dev: device for which we do this operation
456 * @freq: Start frequency
457 *
458 * Search for the matching floor *available* OPP from a starting freq
459 * for a device.
460 *
461 * Return: matching *opp and refreshes *freq accordingly, else returns
462 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
463 * values can be:
464 * EINVAL: for bad pointer
465 * ERANGE: no match found for search
466 * ENODEV: if device not found in list of registered devices
467 *
468 * The callers are required to call dev_pm_opp_put() for the returned OPP after
469 * use.
470 */
471struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
472 unsigned long *freq)
473{
474 struct opp_table *opp_table;
475 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
476
477 if (!dev || !freq) {
478 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
479 return ERR_PTR(-EINVAL);
480 }
481
482 opp_table = _find_opp_table(dev);
483 if (IS_ERR(opp_table))
484 return ERR_CAST(opp_table);
485
486 mutex_lock(&opp_table->lock);
487
488 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
489 if (temp_opp->available) {
490 /* go to the next node, before choosing prev */
491 if (temp_opp->rate > *freq)
492 break;
493 else
494 opp = temp_opp;
495 }
496 }
497
498 /* Increment the reference count of OPP */
499 if (!IS_ERR(opp))
500 dev_pm_opp_get(opp);
501 mutex_unlock(&opp_table->lock);
502 dev_pm_opp_put_opp_table(opp_table);
503
504 if (!IS_ERR(opp))
505 *freq = opp->rate;
506
507 return opp;
508}
509EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
510
511static int _set_opp_voltage(struct device *dev, struct regulator *reg,
512 struct dev_pm_opp_supply *supply)
513{
514 int ret;
515
516 /* Regulator not available for device */
517 if (IS_ERR(reg)) {
518 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
519 PTR_ERR(reg));
520 return 0;
521 }
522
523 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
524 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
525
526 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
527 supply->u_volt, supply->u_volt_max);
528 if (ret)
529 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
530 __func__, supply->u_volt_min, supply->u_volt,
531 supply->u_volt_max, ret);
532
533 return ret;
534}
535
536static inline int
537_generic_set_opp_clk_only(struct device *dev, struct clk *clk,
538 unsigned long old_freq, unsigned long freq)
539{
540 int ret;
541
542 ret = clk_set_rate(clk, freq);
543 if (ret) {
544 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
545 ret);
546 }
547
548 return ret;
549}
550
551static int _generic_set_opp_regulator(const struct opp_table *opp_table,
552 struct device *dev,
553 unsigned long old_freq,
554 unsigned long freq,
555 struct dev_pm_opp_supply *old_supply,
556 struct dev_pm_opp_supply *new_supply)
557{
558 struct regulator *reg = opp_table->regulators[0];
559 int ret;
560
561 /* This function only supports single regulator per device */
562 if (WARN_ON(opp_table->regulator_count > 1)) {
563 dev_err(dev, "multiple regulators are not supported\n");
564 return -EINVAL;
565 }
566
567 /* Scaling up? Scale voltage before frequency */
568 if (freq >= old_freq) {
569 ret = _set_opp_voltage(dev, reg, new_supply);
570 if (ret)
571 goto restore_voltage;
572 }
573
574 /* Change frequency */
575 ret = _generic_set_opp_clk_only(dev, opp_table->clk, old_freq, freq);
576 if (ret)
577 goto restore_voltage;
578
579 /* Scaling down? Scale voltage after frequency */
580 if (freq < old_freq) {
581 ret = _set_opp_voltage(dev, reg, new_supply);
582 if (ret)
583 goto restore_freq;
584 }
585
586 return 0;
587
588restore_freq:
589 if (_generic_set_opp_clk_only(dev, opp_table->clk, freq, old_freq))
590 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
591 __func__, old_freq);
592restore_voltage:
593 /* This shouldn't harm even if the voltages weren't updated earlier */
594 if (old_supply)
595 _set_opp_voltage(dev, reg, old_supply);
596
597 return ret;
598}
599
600static int _set_opp_custom(const struct opp_table *opp_table,
601 struct device *dev, unsigned long old_freq,
602 unsigned long freq,
603 struct dev_pm_opp_supply *old_supply,
604 struct dev_pm_opp_supply *new_supply)
605{
606 struct dev_pm_set_opp_data *data;
607 int size;
608
609 data = opp_table->set_opp_data;
610 data->regulators = opp_table->regulators;
611 data->regulator_count = opp_table->regulator_count;
612 data->clk = opp_table->clk;
613 data->dev = dev;
614
615 data->old_opp.rate = old_freq;
616 size = sizeof(*old_supply) * opp_table->regulator_count;
617 if (IS_ERR(old_supply))
618 memset(data->old_opp.supplies, 0, size);
619 else
620 memcpy(data->old_opp.supplies, old_supply, size);
621
622 data->new_opp.rate = freq;
623 memcpy(data->new_opp.supplies, new_supply, size);
624
625 return opp_table->set_opp(data);
626}
627
628/* This is only called for PM domain for now */
629static int _set_required_opps(struct device *dev,
630 struct opp_table *opp_table,
631 struct dev_pm_opp *opp)
632{
633 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
634 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
635 unsigned int pstate;
636 int i, ret = 0;
637
638 if (!required_opp_tables)
639 return 0;
640
641 /* Single genpd case */
642 if (!genpd_virt_devs) {
643 pstate = opp->required_opps[0]->pstate;
644 ret = dev_pm_genpd_set_performance_state(dev, pstate);
645 if (ret) {
646 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
647 dev_name(dev), pstate, ret);
648 }
649 return ret;
650 }
651
652 /* Multiple genpd case */
653
654 /*
655 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
656 * after it is freed from another thread.
657 */
658 mutex_lock(&opp_table->genpd_virt_dev_lock);
659
660 for (i = 0; i < opp_table->required_opp_count; i++) {
661 pstate = opp->required_opps[i]->pstate;
662
663 if (!genpd_virt_devs[i])
664 continue;
665
666 ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
667 if (ret) {
668 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
669 dev_name(genpd_virt_devs[i]), pstate, ret);
670 break;
671 }
672 }
673 mutex_unlock(&opp_table->genpd_virt_dev_lock);
674
675 return ret;
676}
677
678/**
679 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
680 * @dev: device for which we do this operation
681 * @target_freq: frequency to achieve
682 *
683 * This configures the power-supplies and clock source to the levels specified
684 * by the OPP corresponding to the target_freq.
685 */
686int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
687{
688 struct opp_table *opp_table;
689 unsigned long freq, old_freq;
690 struct dev_pm_opp *old_opp, *opp;
691 struct clk *clk;
692 int ret;
693
694 if (unlikely(!target_freq)) {
695 dev_err(dev, "%s: Invalid target frequency %lu\n", __func__,
696 target_freq);
697 return -EINVAL;
698 }
699
700 opp_table = _find_opp_table(dev);
701 if (IS_ERR(opp_table)) {
702 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
703 return PTR_ERR(opp_table);
704 }
705
706 clk = opp_table->clk;
707 if (IS_ERR(clk)) {
708 dev_err(dev, "%s: No clock available for the device\n",
709 __func__);
710 ret = PTR_ERR(clk);
711 goto put_opp_table;
712 }
713
714 freq = clk_round_rate(clk, target_freq);
715 if ((long)freq <= 0)
716 freq = target_freq;
717
718 old_freq = clk_get_rate(clk);
719
720 /* Return early if nothing to do */
721 if (old_freq == freq) {
722 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
723 __func__, freq);
724 ret = 0;
725 goto put_opp_table;
726 }
727
728 old_opp = _find_freq_ceil(opp_table, &old_freq);
729 if (IS_ERR(old_opp)) {
730 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
731 __func__, old_freq, PTR_ERR(old_opp));
732 }
733
734 opp = _find_freq_ceil(opp_table, &freq);
735 if (IS_ERR(opp)) {
736 ret = PTR_ERR(opp);
737 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
738 __func__, freq, ret);
739 goto put_old_opp;
740 }
741
742 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
743 old_freq, freq);
744
745 /* Scaling up? Configure required OPPs before frequency */
746 if (freq > old_freq) {
747 ret = _set_required_opps(dev, opp_table, opp);
748 if (ret)
749 goto put_opp;
750 }
751
752 if (opp_table->set_opp) {
753 ret = _set_opp_custom(opp_table, dev, old_freq, freq,
754 IS_ERR(old_opp) ? NULL : old_opp->supplies,
755 opp->supplies);
756 } else if (opp_table->regulators) {
757 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
758 IS_ERR(old_opp) ? NULL : old_opp->supplies,
759 opp->supplies);
760 } else {
761 /* Only frequency scaling */
762 ret = _generic_set_opp_clk_only(dev, clk, old_freq, freq);
763 }
764
765 /* Scaling down? Configure required OPPs after frequency */
766 if (!ret && freq < old_freq) {
767 ret = _set_required_opps(dev, opp_table, opp);
768 if (ret)
769 dev_err(dev, "Failed to set required opps: %d\n", ret);
770 }
771
772put_opp:
773 dev_pm_opp_put(opp);
774put_old_opp:
775 if (!IS_ERR(old_opp))
776 dev_pm_opp_put(old_opp);
777put_opp_table:
778 dev_pm_opp_put_opp_table(opp_table);
779 return ret;
780}
781EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
782
783/* OPP-dev Helpers */
784static void _remove_opp_dev(struct opp_device *opp_dev,
785 struct opp_table *opp_table)
786{
787 opp_debug_unregister(opp_dev, opp_table);
788 list_del(&opp_dev->node);
789 kfree(opp_dev);
790}
791
792static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
793 struct opp_table *opp_table)
794{
795 struct opp_device *opp_dev;
796 int ret;
797
798 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
799 if (!opp_dev)
800 return NULL;
801
802 /* Initialize opp-dev */
803 opp_dev->dev = dev;
804
805 list_add(&opp_dev->node, &opp_table->dev_list);
806
807 /* Create debugfs entries for the opp_table */
808 ret = opp_debug_register(opp_dev, opp_table);
809 if (ret)
810 dev_err(dev, "%s: Failed to register opp debugfs (%d)\n",
811 __func__, ret);
812
813 return opp_dev;
814}
815
816struct opp_device *_add_opp_dev(const struct device *dev,
817 struct opp_table *opp_table)
818{
819 struct opp_device *opp_dev;
820
821 mutex_lock(&opp_table->lock);
822 opp_dev = _add_opp_dev_unlocked(dev, opp_table);
823 mutex_unlock(&opp_table->lock);
824
825 return opp_dev;
826}
827
828static struct opp_table *_allocate_opp_table(struct device *dev, int index)
829{
830 struct opp_table *opp_table;
831 struct opp_device *opp_dev;
832 int ret;
833
834 /*
835 * Allocate a new OPP table. In the infrequent case where a new
836 * device is needed to be added, we pay this penalty.
837 */
838 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
839 if (!opp_table)
840 return NULL;
841
842 mutex_init(&opp_table->lock);
843 mutex_init(&opp_table->genpd_virt_dev_lock);
844 INIT_LIST_HEAD(&opp_table->dev_list);
845
846 /* Mark regulator count uninitialized */
847 opp_table->regulator_count = -1;
848
849 opp_dev = _add_opp_dev(dev, opp_table);
850 if (!opp_dev) {
851 kfree(opp_table);
852 return NULL;
853 }
854
855 _of_init_opp_table(opp_table, dev, index);
856
857 /* Find clk for the device */
858 opp_table->clk = clk_get(dev, NULL);
859 if (IS_ERR(opp_table->clk)) {
860 ret = PTR_ERR(opp_table->clk);
861 if (ret != -EPROBE_DEFER)
862 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
863 ret);
864 }
865
866 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
867 INIT_LIST_HEAD(&opp_table->opp_list);
868 kref_init(&opp_table->kref);
869
870 /* Secure the device table modification */
871 list_add(&opp_table->node, &opp_tables);
872 return opp_table;
873}
874
875void _get_opp_table_kref(struct opp_table *opp_table)
876{
877 kref_get(&opp_table->kref);
878}
879
880static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
881{
882 struct opp_table *opp_table;
883
884 /* Hold our table modification lock here */
885 mutex_lock(&opp_table_lock);
886
887 opp_table = _find_opp_table_unlocked(dev);
888 if (!IS_ERR(opp_table))
889 goto unlock;
890
891 opp_table = _managed_opp(dev, index);
892 if (opp_table) {
893 if (!_add_opp_dev_unlocked(dev, opp_table)) {
894 dev_pm_opp_put_opp_table(opp_table);
895 opp_table = NULL;
896 }
897 goto unlock;
898 }
899
900 opp_table = _allocate_opp_table(dev, index);
901
902unlock:
903 mutex_unlock(&opp_table_lock);
904
905 return opp_table;
906}
907
908struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
909{
910 return _opp_get_opp_table(dev, 0);
911}
912EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
913
914struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
915 int index)
916{
917 return _opp_get_opp_table(dev, index);
918}
919
920static void _opp_table_kref_release(struct kref *kref)
921{
922 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
923 struct opp_device *opp_dev, *temp;
924
925 _of_clear_opp_table(opp_table);
926
927 /* Release clk */
928 if (!IS_ERR(opp_table->clk))
929 clk_put(opp_table->clk);
930
931 WARN_ON(!list_empty(&opp_table->opp_list));
932
933 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
934 /*
935 * The OPP table is getting removed, drop the performance state
936 * constraints.
937 */
938 if (opp_table->genpd_performance_state)
939 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
940
941 _remove_opp_dev(opp_dev, opp_table);
942 }
943
944 mutex_destroy(&opp_table->genpd_virt_dev_lock);
945 mutex_destroy(&opp_table->lock);
946 list_del(&opp_table->node);
947 kfree(opp_table);
948
949 mutex_unlock(&opp_table_lock);
950}
951
952void _opp_remove_all_static(struct opp_table *opp_table)
953{
954 struct dev_pm_opp *opp, *tmp;
955
956 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
957 if (!opp->dynamic)
958 dev_pm_opp_put(opp);
959 }
960
961 opp_table->parsed_static_opps = false;
962}
963
964static void _opp_table_list_kref_release(struct kref *kref)
965{
966 struct opp_table *opp_table = container_of(kref, struct opp_table,
967 list_kref);
968
969 _opp_remove_all_static(opp_table);
970 mutex_unlock(&opp_table_lock);
971}
972
973void _put_opp_list_kref(struct opp_table *opp_table)
974{
975 kref_put_mutex(&opp_table->list_kref, _opp_table_list_kref_release,
976 &opp_table_lock);
977}
978
979void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
980{
981 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
982 &opp_table_lock);
983}
984EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
985
986void _opp_free(struct dev_pm_opp *opp)
987{
988 kfree(opp);
989}
990
991static void _opp_kref_release(struct kref *kref)
992{
993 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
994 struct opp_table *opp_table = opp->opp_table;
995
996 /*
997 * Notify the changes in the availability of the operable
998 * frequency/voltage list.
999 */
1000 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1001 _of_opp_free_required_opps(opp_table, opp);
1002 opp_debug_remove_one(opp);
1003 list_del(&opp->node);
1004 kfree(opp);
1005
1006 mutex_unlock(&opp_table->lock);
1007}
1008
1009void dev_pm_opp_get(struct dev_pm_opp *opp)
1010{
1011 kref_get(&opp->kref);
1012}
1013
1014void dev_pm_opp_put(struct dev_pm_opp *opp)
1015{
1016 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1017}
1018EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1019
1020/**
1021 * dev_pm_opp_remove() - Remove an OPP from OPP table
1022 * @dev: device for which we do this operation
1023 * @freq: OPP to remove with matching 'freq'
1024 *
1025 * This function removes an opp from the opp table.
1026 */
1027void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1028{
1029 struct dev_pm_opp *opp;
1030 struct opp_table *opp_table;
1031 bool found = false;
1032
1033 opp_table = _find_opp_table(dev);
1034 if (IS_ERR(opp_table))
1035 return;
1036
1037 mutex_lock(&opp_table->lock);
1038
1039 list_for_each_entry(opp, &opp_table->opp_list, node) {
1040 if (opp->rate == freq) {
1041 found = true;
1042 break;
1043 }
1044 }
1045
1046 mutex_unlock(&opp_table->lock);
1047
1048 if (found) {
1049 dev_pm_opp_put(opp);
1050
1051 /* Drop the reference taken by dev_pm_opp_add() */
1052 dev_pm_opp_put_opp_table(opp_table);
1053 } else {
1054 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1055 __func__, freq);
1056 }
1057
1058 /* Drop the reference taken by _find_opp_table() */
1059 dev_pm_opp_put_opp_table(opp_table);
1060}
1061EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1062
1063struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1064{
1065 struct dev_pm_opp *opp;
1066 int count, supply_size;
1067
1068 /* Allocate space for at least one supply */
1069 count = table->regulator_count > 0 ? table->regulator_count : 1;
1070 supply_size = sizeof(*opp->supplies) * count;
1071
1072 /* allocate new OPP node and supplies structures */
1073 opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL);
1074 if (!opp)
1075 return NULL;
1076
1077 /* Put the supplies at the end of the OPP structure as an empty array */
1078 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1079 INIT_LIST_HEAD(&opp->node);
1080
1081 return opp;
1082}
1083
1084static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1085 struct opp_table *opp_table)
1086{
1087 struct regulator *reg;
1088 int i;
1089
1090 if (!opp_table->regulators)
1091 return true;
1092
1093 for (i = 0; i < opp_table->regulator_count; i++) {
1094 reg = opp_table->regulators[i];
1095
1096 if (!regulator_is_supported_voltage(reg,
1097 opp->supplies[i].u_volt_min,
1098 opp->supplies[i].u_volt_max)) {
1099 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1100 __func__, opp->supplies[i].u_volt_min,
1101 opp->supplies[i].u_volt_max);
1102 return false;
1103 }
1104 }
1105
1106 return true;
1107}
1108
1109static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1110 struct opp_table *opp_table,
1111 struct list_head **head)
1112{
1113 struct dev_pm_opp *opp;
1114
1115 /*
1116 * Insert new OPP in order of increasing frequency and discard if
1117 * already present.
1118 *
1119 * Need to use &opp_table->opp_list in the condition part of the 'for'
1120 * loop, don't replace it with head otherwise it will become an infinite
1121 * loop.
1122 */
1123 list_for_each_entry(opp, &opp_table->opp_list, node) {
1124 if (new_opp->rate > opp->rate) {
1125 *head = &opp->node;
1126 continue;
1127 }
1128
1129 if (new_opp->rate < opp->rate)
1130 return 0;
1131
1132 /* Duplicate OPPs */
1133 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1134 __func__, opp->rate, opp->supplies[0].u_volt,
1135 opp->available, new_opp->rate,
1136 new_opp->supplies[0].u_volt, new_opp->available);
1137
1138 /* Should we compare voltages for all regulators here ? */
1139 return opp->available &&
1140 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1141 }
1142
1143 return 0;
1144}
1145
1146/*
1147 * Returns:
1148 * 0: On success. And appropriate error message for duplicate OPPs.
1149 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1150 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1151 * sure we don't print error messages unnecessarily if different parts of
1152 * kernel try to initialize the OPP table.
1153 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1154 * should be considered an error by the callers of _opp_add().
1155 */
1156int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1157 struct opp_table *opp_table, bool rate_not_available)
1158{
1159 struct list_head *head;
1160 int ret;
1161
1162 mutex_lock(&opp_table->lock);
1163 head = &opp_table->opp_list;
1164
1165 if (likely(!rate_not_available)) {
1166 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1167 if (ret) {
1168 mutex_unlock(&opp_table->lock);
1169 return ret;
1170 }
1171 }
1172
1173 list_add(&new_opp->node, head);
1174 mutex_unlock(&opp_table->lock);
1175
1176 new_opp->opp_table = opp_table;
1177 kref_init(&new_opp->kref);
1178
1179 ret = opp_debug_create_one(new_opp, opp_table);
1180 if (ret)
1181 dev_err(dev, "%s: Failed to register opp to debugfs (%d)\n",
1182 __func__, ret);
1183
1184 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1185 new_opp->available = false;
1186 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1187 __func__, new_opp->rate);
1188 }
1189
1190 return 0;
1191}
1192
1193/**
1194 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1195 * @opp_table: OPP table
1196 * @dev: device for which we do this operation
1197 * @freq: Frequency in Hz for this OPP
1198 * @u_volt: Voltage in uVolts for this OPP
1199 * @dynamic: Dynamically added OPPs.
1200 *
1201 * This function adds an opp definition to the opp table and returns status.
1202 * The opp is made available by default and it can be controlled using
1203 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1204 *
1205 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1206 * and freed by dev_pm_opp_of_remove_table.
1207 *
1208 * Return:
1209 * 0 On success OR
1210 * Duplicate OPPs (both freq and volt are same) and opp->available
1211 * -EEXIST Freq are same and volt are different OR
1212 * Duplicate OPPs (both freq and volt are same) and !opp->available
1213 * -ENOMEM Memory allocation failure
1214 */
1215int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1216 unsigned long freq, long u_volt, bool dynamic)
1217{
1218 struct dev_pm_opp *new_opp;
1219 unsigned long tol;
1220 int ret;
1221
1222 new_opp = _opp_allocate(opp_table);
1223 if (!new_opp)
1224 return -ENOMEM;
1225
1226 /* populate the opp table */
1227 new_opp->rate = freq;
1228 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1229 new_opp->supplies[0].u_volt = u_volt;
1230 new_opp->supplies[0].u_volt_min = u_volt - tol;
1231 new_opp->supplies[0].u_volt_max = u_volt + tol;
1232 new_opp->available = true;
1233 new_opp->dynamic = dynamic;
1234
1235 ret = _opp_add(dev, new_opp, opp_table, false);
1236 if (ret) {
1237 /* Don't return error for duplicate OPPs */
1238 if (ret == -EBUSY)
1239 ret = 0;
1240 goto free_opp;
1241 }
1242
1243 /*
1244 * Notify the changes in the availability of the operable
1245 * frequency/voltage list.
1246 */
1247 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1248 return 0;
1249
1250free_opp:
1251 _opp_free(new_opp);
1252
1253 return ret;
1254}
1255
1256/**
1257 * dev_pm_opp_set_supported_hw() - Set supported platforms
1258 * @dev: Device for which supported-hw has to be set.
1259 * @versions: Array of hierarchy of versions to match.
1260 * @count: Number of elements in the array.
1261 *
1262 * This is required only for the V2 bindings, and it enables a platform to
1263 * specify the hierarchy of versions it supports. OPP layer will then enable
1264 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1265 * property.
1266 */
1267struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1268 const u32 *versions, unsigned int count)
1269{
1270 struct opp_table *opp_table;
1271
1272 opp_table = dev_pm_opp_get_opp_table(dev);
1273 if (!opp_table)
1274 return ERR_PTR(-ENOMEM);
1275
1276 /* Make sure there are no concurrent readers while updating opp_table */
1277 WARN_ON(!list_empty(&opp_table->opp_list));
1278
1279 /* Another CPU that shares the OPP table has set the property ? */
1280 if (opp_table->supported_hw)
1281 return opp_table;
1282
1283 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1284 GFP_KERNEL);
1285 if (!opp_table->supported_hw) {
1286 dev_pm_opp_put_opp_table(opp_table);
1287 return ERR_PTR(-ENOMEM);
1288 }
1289
1290 opp_table->supported_hw_count = count;
1291
1292 return opp_table;
1293}
1294EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1295
1296/**
1297 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1298 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1299 *
1300 * This is required only for the V2 bindings, and is called for a matching
1301 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1302 * will not be freed.
1303 */
1304void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1305{
1306 /* Make sure there are no concurrent readers while updating opp_table */
1307 WARN_ON(!list_empty(&opp_table->opp_list));
1308
1309 kfree(opp_table->supported_hw);
1310 opp_table->supported_hw = NULL;
1311 opp_table->supported_hw_count = 0;
1312
1313 dev_pm_opp_put_opp_table(opp_table);
1314}
1315EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1316
1317/**
1318 * dev_pm_opp_set_prop_name() - Set prop-extn name
1319 * @dev: Device for which the prop-name has to be set.
1320 * @name: name to postfix to properties.
1321 *
1322 * This is required only for the V2 bindings, and it enables a platform to
1323 * specify the extn to be used for certain property names. The properties to
1324 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1325 * should postfix the property name with -<name> while looking for them.
1326 */
1327struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1328{
1329 struct opp_table *opp_table;
1330
1331 opp_table = dev_pm_opp_get_opp_table(dev);
1332 if (!opp_table)
1333 return ERR_PTR(-ENOMEM);
1334
1335 /* Make sure there are no concurrent readers while updating opp_table */
1336 WARN_ON(!list_empty(&opp_table->opp_list));
1337
1338 /* Another CPU that shares the OPP table has set the property ? */
1339 if (opp_table->prop_name)
1340 return opp_table;
1341
1342 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1343 if (!opp_table->prop_name) {
1344 dev_pm_opp_put_opp_table(opp_table);
1345 return ERR_PTR(-ENOMEM);
1346 }
1347
1348 return opp_table;
1349}
1350EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1351
1352/**
1353 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1354 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1355 *
1356 * This is required only for the V2 bindings, and is called for a matching
1357 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1358 * will not be freed.
1359 */
1360void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1361{
1362 /* Make sure there are no concurrent readers while updating opp_table */
1363 WARN_ON(!list_empty(&opp_table->opp_list));
1364
1365 kfree(opp_table->prop_name);
1366 opp_table->prop_name = NULL;
1367
1368 dev_pm_opp_put_opp_table(opp_table);
1369}
1370EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1371
1372static int _allocate_set_opp_data(struct opp_table *opp_table)
1373{
1374 struct dev_pm_set_opp_data *data;
1375 int len, count = opp_table->regulator_count;
1376
1377 if (WARN_ON(!opp_table->regulators))
1378 return -EINVAL;
1379
1380 /* space for set_opp_data */
1381 len = sizeof(*data);
1382
1383 /* space for old_opp.supplies and new_opp.supplies */
1384 len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1385
1386 data = kzalloc(len, GFP_KERNEL);
1387 if (!data)
1388 return -ENOMEM;
1389
1390 data->old_opp.supplies = (void *)(data + 1);
1391 data->new_opp.supplies = data->old_opp.supplies + count;
1392
1393 opp_table->set_opp_data = data;
1394
1395 return 0;
1396}
1397
1398static void _free_set_opp_data(struct opp_table *opp_table)
1399{
1400 kfree(opp_table->set_opp_data);
1401 opp_table->set_opp_data = NULL;
1402}
1403
1404/**
1405 * dev_pm_opp_set_regulators() - Set regulator names for the device
1406 * @dev: Device for which regulator name is being set.
1407 * @names: Array of pointers to the names of the regulator.
1408 * @count: Number of regulators.
1409 *
1410 * In order to support OPP switching, OPP layer needs to know the name of the
1411 * device's regulators, as the core would be required to switch voltages as
1412 * well.
1413 *
1414 * This must be called before any OPPs are initialized for the device.
1415 */
1416struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1417 const char * const names[],
1418 unsigned int count)
1419{
1420 struct opp_table *opp_table;
1421 struct regulator *reg;
1422 int ret, i;
1423
1424 opp_table = dev_pm_opp_get_opp_table(dev);
1425 if (!opp_table)
1426 return ERR_PTR(-ENOMEM);
1427
1428 /* This should be called before OPPs are initialized */
1429 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1430 ret = -EBUSY;
1431 goto err;
1432 }
1433
1434 /* Another CPU that shares the OPP table has set the regulators ? */
1435 if (opp_table->regulators)
1436 return opp_table;
1437
1438 opp_table->regulators = kmalloc_array(count,
1439 sizeof(*opp_table->regulators),
1440 GFP_KERNEL);
1441 if (!opp_table->regulators) {
1442 ret = -ENOMEM;
1443 goto err;
1444 }
1445
1446 for (i = 0; i < count; i++) {
1447 reg = regulator_get_optional(dev, names[i]);
1448 if (IS_ERR(reg)) {
1449 ret = PTR_ERR(reg);
1450 if (ret != -EPROBE_DEFER)
1451 dev_err(dev, "%s: no regulator (%s) found: %d\n",
1452 __func__, names[i], ret);
1453 goto free_regulators;
1454 }
1455
1456 opp_table->regulators[i] = reg;
1457 }
1458
1459 opp_table->regulator_count = count;
1460
1461 /* Allocate block only once to pass to set_opp() routines */
1462 ret = _allocate_set_opp_data(opp_table);
1463 if (ret)
1464 goto free_regulators;
1465
1466 return opp_table;
1467
1468free_regulators:
1469 while (i != 0)
1470 regulator_put(opp_table->regulators[--i]);
1471
1472 kfree(opp_table->regulators);
1473 opp_table->regulators = NULL;
1474 opp_table->regulator_count = -1;
1475err:
1476 dev_pm_opp_put_opp_table(opp_table);
1477
1478 return ERR_PTR(ret);
1479}
1480EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1481
1482/**
1483 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1484 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1485 */
1486void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1487{
1488 int i;
1489
1490 if (!opp_table->regulators)
1491 goto put_opp_table;
1492
1493 /* Make sure there are no concurrent readers while updating opp_table */
1494 WARN_ON(!list_empty(&opp_table->opp_list));
1495
1496 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1497 regulator_put(opp_table->regulators[i]);
1498
1499 _free_set_opp_data(opp_table);
1500
1501 kfree(opp_table->regulators);
1502 opp_table->regulators = NULL;
1503 opp_table->regulator_count = -1;
1504
1505put_opp_table:
1506 dev_pm_opp_put_opp_table(opp_table);
1507}
1508EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1509
1510/**
1511 * dev_pm_opp_set_clkname() - Set clk name for the device
1512 * @dev: Device for which clk name is being set.
1513 * @name: Clk name.
1514 *
1515 * In order to support OPP switching, OPP layer needs to get pointer to the
1516 * clock for the device. Simple cases work fine without using this routine (i.e.
1517 * by passing connection-id as NULL), but for a device with multiple clocks
1518 * available, the OPP core needs to know the exact name of the clk to use.
1519 *
1520 * This must be called before any OPPs are initialized for the device.
1521 */
1522struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1523{
1524 struct opp_table *opp_table;
1525 int ret;
1526
1527 opp_table = dev_pm_opp_get_opp_table(dev);
1528 if (!opp_table)
1529 return ERR_PTR(-ENOMEM);
1530
1531 /* This should be called before OPPs are initialized */
1532 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1533 ret = -EBUSY;
1534 goto err;
1535 }
1536
1537 /* Already have default clk set, free it */
1538 if (!IS_ERR(opp_table->clk))
1539 clk_put(opp_table->clk);
1540
1541 /* Find clk for the device */
1542 opp_table->clk = clk_get(dev, name);
1543 if (IS_ERR(opp_table->clk)) {
1544 ret = PTR_ERR(opp_table->clk);
1545 if (ret != -EPROBE_DEFER) {
1546 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1547 ret);
1548 }
1549 goto err;
1550 }
1551
1552 return opp_table;
1553
1554err:
1555 dev_pm_opp_put_opp_table(opp_table);
1556
1557 return ERR_PTR(ret);
1558}
1559EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1560
1561/**
1562 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1563 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1564 */
1565void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1566{
1567 /* Make sure there are no concurrent readers while updating opp_table */
1568 WARN_ON(!list_empty(&opp_table->opp_list));
1569
1570 clk_put(opp_table->clk);
1571 opp_table->clk = ERR_PTR(-EINVAL);
1572
1573 dev_pm_opp_put_opp_table(opp_table);
1574}
1575EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1576
1577/**
1578 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1579 * @dev: Device for which the helper is getting registered.
1580 * @set_opp: Custom set OPP helper.
1581 *
1582 * This is useful to support complex platforms (like platforms with multiple
1583 * regulators per device), instead of the generic OPP set rate helper.
1584 *
1585 * This must be called before any OPPs are initialized for the device.
1586 */
1587struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1588 int (*set_opp)(struct dev_pm_set_opp_data *data))
1589{
1590 struct opp_table *opp_table;
1591
1592 if (!set_opp)
1593 return ERR_PTR(-EINVAL);
1594
1595 opp_table = dev_pm_opp_get_opp_table(dev);
1596 if (!opp_table)
1597 return ERR_PTR(-ENOMEM);
1598
1599 /* This should be called before OPPs are initialized */
1600 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1601 dev_pm_opp_put_opp_table(opp_table);
1602 return ERR_PTR(-EBUSY);
1603 }
1604
1605 /* Another CPU that shares the OPP table has set the helper ? */
1606 if (!opp_table->set_opp)
1607 opp_table->set_opp = set_opp;
1608
1609 return opp_table;
1610}
1611EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1612
1613/**
1614 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1615 * set_opp helper
1616 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1617 *
1618 * Release resources blocked for platform specific set_opp helper.
1619 */
1620void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1621{
1622 /* Make sure there are no concurrent readers while updating opp_table */
1623 WARN_ON(!list_empty(&opp_table->opp_list));
1624
1625 opp_table->set_opp = NULL;
1626 dev_pm_opp_put_opp_table(opp_table);
1627}
1628EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1629
1630/**
1631 * dev_pm_opp_set_genpd_virt_dev - Set virtual genpd device for an index
1632 * @dev: Consumer device for which the genpd device is getting set.
1633 * @virt_dev: virtual genpd device.
1634 * @index: index.
1635 *
1636 * Multiple generic power domains for a device are supported with the help of
1637 * virtual genpd devices, which are created for each consumer device - genpd
1638 * pair. These are the device structures which are attached to the power domain
1639 * and are required by the OPP core to set the performance state of the genpd.
1640 *
1641 * This helper will normally be called by the consumer driver of the device
1642 * "dev", as only that has details of the genpd devices.
1643 *
1644 * This helper needs to be called once for each of those virtual devices, but
1645 * only if multiple domains are available for a device. Otherwise the original
1646 * device structure will be used instead by the OPP core.
1647 */
1648struct opp_table *dev_pm_opp_set_genpd_virt_dev(struct device *dev,
1649 struct device *virt_dev,
1650 int index)
1651{
1652 struct opp_table *opp_table;
1653
1654 opp_table = dev_pm_opp_get_opp_table(dev);
1655 if (!opp_table)
1656 return ERR_PTR(-ENOMEM);
1657
1658 mutex_lock(&opp_table->genpd_virt_dev_lock);
1659
1660 if (unlikely(!opp_table->genpd_virt_devs ||
1661 index >= opp_table->required_opp_count ||
1662 opp_table->genpd_virt_devs[index])) {
1663
1664 dev_err(dev, "Invalid request to set required device\n");
1665 dev_pm_opp_put_opp_table(opp_table);
1666 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1667
1668 return ERR_PTR(-EINVAL);
1669 }
1670
1671 opp_table->genpd_virt_devs[index] = virt_dev;
1672 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1673
1674 return opp_table;
1675}
1676
1677/**
1678 * dev_pm_opp_put_genpd_virt_dev() - Releases resources blocked for genpd device.
1679 * @opp_table: OPP table returned by dev_pm_opp_set_genpd_virt_dev().
1680 * @virt_dev: virtual genpd device.
1681 *
1682 * This releases the resource previously acquired with a call to
1683 * dev_pm_opp_set_genpd_virt_dev(). The consumer driver shall call this helper
1684 * if it doesn't want OPP core to update performance state of a power domain
1685 * anymore.
1686 */
1687void dev_pm_opp_put_genpd_virt_dev(struct opp_table *opp_table,
1688 struct device *virt_dev)
1689{
1690 int i;
1691
1692 /*
1693 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
1694 * used in parallel.
1695 */
1696 mutex_lock(&opp_table->genpd_virt_dev_lock);
1697
1698 for (i = 0; i < opp_table->required_opp_count; i++) {
1699 if (opp_table->genpd_virt_devs[i] != virt_dev)
1700 continue;
1701
1702 opp_table->genpd_virt_devs[i] = NULL;
1703 dev_pm_opp_put_opp_table(opp_table);
1704
1705 /* Drop the vote */
1706 dev_pm_genpd_set_performance_state(virt_dev, 0);
1707 break;
1708 }
1709
1710 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1711
1712 if (unlikely(i == opp_table->required_opp_count))
1713 dev_err(virt_dev, "Failed to find required device entry\n");
1714}
1715
1716/**
1717 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
1718 * @src_table: OPP table which has dst_table as one of its required OPP table.
1719 * @dst_table: Required OPP table of the src_table.
1720 * @pstate: Current performance state of the src_table.
1721 *
1722 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
1723 * "required-opps" property of the OPP (present in @src_table) which has
1724 * performance state set to @pstate.
1725 *
1726 * Return: Zero or positive performance state on success, otherwise negative
1727 * value on errors.
1728 */
1729int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
1730 struct opp_table *dst_table,
1731 unsigned int pstate)
1732{
1733 struct dev_pm_opp *opp;
1734 int dest_pstate = -EINVAL;
1735 int i;
1736
1737 if (!pstate)
1738 return 0;
1739
1740 /*
1741 * Normally the src_table will have the "required_opps" property set to
1742 * point to one of the OPPs in the dst_table, but in some cases the
1743 * genpd and its master have one to one mapping of performance states
1744 * and so none of them have the "required-opps" property set. Return the
1745 * pstate of the src_table as it is in such cases.
1746 */
1747 if (!src_table->required_opp_count)
1748 return pstate;
1749
1750 for (i = 0; i < src_table->required_opp_count; i++) {
1751 if (src_table->required_opp_tables[i]->np == dst_table->np)
1752 break;
1753 }
1754
1755 if (unlikely(i == src_table->required_opp_count)) {
1756 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
1757 __func__, src_table, dst_table);
1758 return -EINVAL;
1759 }
1760
1761 mutex_lock(&src_table->lock);
1762
1763 list_for_each_entry(opp, &src_table->opp_list, node) {
1764 if (opp->pstate == pstate) {
1765 dest_pstate = opp->required_opps[i]->pstate;
1766 goto unlock;
1767 }
1768 }
1769
1770 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
1771 dst_table);
1772
1773unlock:
1774 mutex_unlock(&src_table->lock);
1775
1776 return dest_pstate;
1777}
1778
1779/**
1780 * dev_pm_opp_add() - Add an OPP table from a table definitions
1781 * @dev: device for which we do this operation
1782 * @freq: Frequency in Hz for this OPP
1783 * @u_volt: Voltage in uVolts for this OPP
1784 *
1785 * This function adds an opp definition to the opp table and returns status.
1786 * The opp is made available by default and it can be controlled using
1787 * dev_pm_opp_enable/disable functions.
1788 *
1789 * Return:
1790 * 0 On success OR
1791 * Duplicate OPPs (both freq and volt are same) and opp->available
1792 * -EEXIST Freq are same and volt are different OR
1793 * Duplicate OPPs (both freq and volt are same) and !opp->available
1794 * -ENOMEM Memory allocation failure
1795 */
1796int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
1797{
1798 struct opp_table *opp_table;
1799 int ret;
1800
1801 opp_table = dev_pm_opp_get_opp_table(dev);
1802 if (!opp_table)
1803 return -ENOMEM;
1804
1805 /* Fix regulator count for dynamic OPPs */
1806 opp_table->regulator_count = 1;
1807
1808 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
1809 if (ret)
1810 dev_pm_opp_put_opp_table(opp_table);
1811
1812 return ret;
1813}
1814EXPORT_SYMBOL_GPL(dev_pm_opp_add);
1815
1816/**
1817 * _opp_set_availability() - helper to set the availability of an opp
1818 * @dev: device for which we do this operation
1819 * @freq: OPP frequency to modify availability
1820 * @availability_req: availability status requested for this opp
1821 *
1822 * Set the availability of an OPP, opp_{enable,disable} share a common logic
1823 * which is isolated here.
1824 *
1825 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
1826 * copy operation, returns 0 if no modification was done OR modification was
1827 * successful.
1828 */
1829static int _opp_set_availability(struct device *dev, unsigned long freq,
1830 bool availability_req)
1831{
1832 struct opp_table *opp_table;
1833 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
1834 int r = 0;
1835
1836 /* Find the opp_table */
1837 opp_table = _find_opp_table(dev);
1838 if (IS_ERR(opp_table)) {
1839 r = PTR_ERR(opp_table);
1840 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
1841 return r;
1842 }
1843
1844 mutex_lock(&opp_table->lock);
1845
1846 /* Do we have the frequency? */
1847 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
1848 if (tmp_opp->rate == freq) {
1849 opp = tmp_opp;
1850 break;
1851 }
1852 }
1853
1854 if (IS_ERR(opp)) {
1855 r = PTR_ERR(opp);
1856 goto unlock;
1857 }
1858
1859 /* Is update really needed? */
1860 if (opp->available == availability_req)
1861 goto unlock;
1862
1863 opp->available = availability_req;
1864
1865 dev_pm_opp_get(opp);
1866 mutex_unlock(&opp_table->lock);
1867
1868 /* Notify the change of the OPP availability */
1869 if (availability_req)
1870 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
1871 opp);
1872 else
1873 blocking_notifier_call_chain(&opp_table->head,
1874 OPP_EVENT_DISABLE, opp);
1875
1876 dev_pm_opp_put(opp);
1877 goto put_table;
1878
1879unlock:
1880 mutex_unlock(&opp_table->lock);
1881put_table:
1882 dev_pm_opp_put_opp_table(opp_table);
1883 return r;
1884}
1885
1886/**
1887 * dev_pm_opp_enable() - Enable a specific OPP
1888 * @dev: device for which we do this operation
1889 * @freq: OPP frequency to enable
1890 *
1891 * Enables a provided opp. If the operation is valid, this returns 0, else the
1892 * corresponding error value. It is meant to be used for users an OPP available
1893 * after being temporarily made unavailable with dev_pm_opp_disable.
1894 *
1895 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
1896 * copy operation, returns 0 if no modification was done OR modification was
1897 * successful.
1898 */
1899int dev_pm_opp_enable(struct device *dev, unsigned long freq)
1900{
1901 return _opp_set_availability(dev, freq, true);
1902}
1903EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
1904
1905/**
1906 * dev_pm_opp_disable() - Disable a specific OPP
1907 * @dev: device for which we do this operation
1908 * @freq: OPP frequency to disable
1909 *
1910 * Disables a provided opp. If the operation is valid, this returns
1911 * 0, else the corresponding error value. It is meant to be a temporary
1912 * control by users to make this OPP not available until the circumstances are
1913 * right to make it available again (with a call to dev_pm_opp_enable).
1914 *
1915 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
1916 * copy operation, returns 0 if no modification was done OR modification was
1917 * successful.
1918 */
1919int dev_pm_opp_disable(struct device *dev, unsigned long freq)
1920{
1921 return _opp_set_availability(dev, freq, false);
1922}
1923EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
1924
1925/**
1926 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
1927 * @dev: Device for which notifier needs to be registered
1928 * @nb: Notifier block to be registered
1929 *
1930 * Return: 0 on success or a negative error value.
1931 */
1932int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
1933{
1934 struct opp_table *opp_table;
1935 int ret;
1936
1937 opp_table = _find_opp_table(dev);
1938 if (IS_ERR(opp_table))
1939 return PTR_ERR(opp_table);
1940
1941 ret = blocking_notifier_chain_register(&opp_table->head, nb);
1942
1943 dev_pm_opp_put_opp_table(opp_table);
1944
1945 return ret;
1946}
1947EXPORT_SYMBOL(dev_pm_opp_register_notifier);
1948
1949/**
1950 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
1951 * @dev: Device for which notifier needs to be unregistered
1952 * @nb: Notifier block to be unregistered
1953 *
1954 * Return: 0 on success or a negative error value.
1955 */
1956int dev_pm_opp_unregister_notifier(struct device *dev,
1957 struct notifier_block *nb)
1958{
1959 struct opp_table *opp_table;
1960 int ret;
1961
1962 opp_table = _find_opp_table(dev);
1963 if (IS_ERR(opp_table))
1964 return PTR_ERR(opp_table);
1965
1966 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
1967
1968 dev_pm_opp_put_opp_table(opp_table);
1969
1970 return ret;
1971}
1972EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
1973
1974void _dev_pm_opp_find_and_remove_table(struct device *dev)
1975{
1976 struct opp_table *opp_table;
1977
1978 /* Check for existing table for 'dev' */
1979 opp_table = _find_opp_table(dev);
1980 if (IS_ERR(opp_table)) {
1981 int error = PTR_ERR(opp_table);
1982
1983 if (error != -ENODEV)
1984 WARN(1, "%s: opp_table: %d\n",
1985 IS_ERR_OR_NULL(dev) ?
1986 "Invalid device" : dev_name(dev),
1987 error);
1988 return;
1989 }
1990
1991 _put_opp_list_kref(opp_table);
1992
1993 /* Drop reference taken by _find_opp_table() */
1994 dev_pm_opp_put_opp_table(opp_table);
1995
1996 /* Drop reference taken while the OPP table was added */
1997 dev_pm_opp_put_opp_table(opp_table);
1998}
1999
2000/**
2001 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2002 * @dev: device pointer used to lookup OPP table.
2003 *
2004 * Free both OPPs created using static entries present in DT and the
2005 * dynamically added entries.
2006 */
2007void dev_pm_opp_remove_table(struct device *dev)
2008{
2009 _dev_pm_opp_find_and_remove_table(dev);
2010}
2011EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);