Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52#include <linux/module.h>
53#include <linux/moduleparam.h>
54#include <linux/sched.h>
55#include <linux/fs.h>
56#include <linux/file.h>
57#include <linux/stat.h>
58#include <linux/errno.h>
59#include <linux/major.h>
60#include <linux/wait.h>
61#include <linux/blkdev.h>
62#include <linux/blkpg.h>
63#include <linux/init.h>
64#include <linux/swap.h>
65#include <linux/slab.h>
66#include <linux/compat.h>
67#include <linux/suspend.h>
68#include <linux/freezer.h>
69#include <linux/mutex.h>
70#include <linux/writeback.h>
71#include <linux/completion.h>
72#include <linux/highmem.h>
73#include <linux/kthread.h>
74#include <linux/splice.h>
75#include <linux/sysfs.h>
76#include <linux/miscdevice.h>
77#include <linux/falloc.h>
78#include <linux/uio.h>
79#include <linux/ioprio.h>
80#include <linux/blk-cgroup.h>
81
82#include "loop.h"
83
84#include <linux/uaccess.h>
85
86static DEFINE_IDR(loop_index_idr);
87static DEFINE_MUTEX(loop_ctl_mutex);
88
89static int max_part;
90static int part_shift;
91
92static int transfer_xor(struct loop_device *lo, int cmd,
93 struct page *raw_page, unsigned raw_off,
94 struct page *loop_page, unsigned loop_off,
95 int size, sector_t real_block)
96{
97 char *raw_buf = kmap_atomic(raw_page) + raw_off;
98 char *loop_buf = kmap_atomic(loop_page) + loop_off;
99 char *in, *out, *key;
100 int i, keysize;
101
102 if (cmd == READ) {
103 in = raw_buf;
104 out = loop_buf;
105 } else {
106 in = loop_buf;
107 out = raw_buf;
108 }
109
110 key = lo->lo_encrypt_key;
111 keysize = lo->lo_encrypt_key_size;
112 for (i = 0; i < size; i++)
113 *out++ = *in++ ^ key[(i & 511) % keysize];
114
115 kunmap_atomic(loop_buf);
116 kunmap_atomic(raw_buf);
117 cond_resched();
118 return 0;
119}
120
121static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
122{
123 if (unlikely(info->lo_encrypt_key_size <= 0))
124 return -EINVAL;
125 return 0;
126}
127
128static struct loop_func_table none_funcs = {
129 .number = LO_CRYPT_NONE,
130};
131
132static struct loop_func_table xor_funcs = {
133 .number = LO_CRYPT_XOR,
134 .transfer = transfer_xor,
135 .init = xor_init
136};
137
138/* xfer_funcs[0] is special - its release function is never called */
139static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
140 &none_funcs,
141 &xor_funcs
142};
143
144static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
145{
146 loff_t loopsize;
147
148 /* Compute loopsize in bytes */
149 loopsize = i_size_read(file->f_mapping->host);
150 if (offset > 0)
151 loopsize -= offset;
152 /* offset is beyond i_size, weird but possible */
153 if (loopsize < 0)
154 return 0;
155
156 if (sizelimit > 0 && sizelimit < loopsize)
157 loopsize = sizelimit;
158 /*
159 * Unfortunately, if we want to do I/O on the device,
160 * the number of 512-byte sectors has to fit into a sector_t.
161 */
162 return loopsize >> 9;
163}
164
165static loff_t get_loop_size(struct loop_device *lo, struct file *file)
166{
167 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
168}
169
170static void __loop_update_dio(struct loop_device *lo, bool dio)
171{
172 struct file *file = lo->lo_backing_file;
173 struct address_space *mapping = file->f_mapping;
174 struct inode *inode = mapping->host;
175 unsigned short sb_bsize = 0;
176 unsigned dio_align = 0;
177 bool use_dio;
178
179 if (inode->i_sb->s_bdev) {
180 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
181 dio_align = sb_bsize - 1;
182 }
183
184 /*
185 * We support direct I/O only if lo_offset is aligned with the
186 * logical I/O size of backing device, and the logical block
187 * size of loop is bigger than the backing device's and the loop
188 * needn't transform transfer.
189 *
190 * TODO: the above condition may be loosed in the future, and
191 * direct I/O may be switched runtime at that time because most
192 * of requests in sane applications should be PAGE_SIZE aligned
193 */
194 if (dio) {
195 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
196 !(lo->lo_offset & dio_align) &&
197 mapping->a_ops->direct_IO &&
198 !lo->transfer)
199 use_dio = true;
200 else
201 use_dio = false;
202 } else {
203 use_dio = false;
204 }
205
206 if (lo->use_dio == use_dio)
207 return;
208
209 /* flush dirty pages before changing direct IO */
210 vfs_fsync(file, 0);
211
212 /*
213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 * will get updated by ioctl(LOOP_GET_STATUS)
216 */
217 blk_mq_freeze_queue(lo->lo_queue);
218 lo->use_dio = use_dio;
219 if (use_dio) {
220 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
221 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
222 } else {
223 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
224 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
225 }
226 blk_mq_unfreeze_queue(lo->lo_queue);
227}
228
229static int
230figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
231{
232 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
233 sector_t x = (sector_t)size;
234 struct block_device *bdev = lo->lo_device;
235
236 if (unlikely((loff_t)x != size))
237 return -EFBIG;
238 if (lo->lo_offset != offset)
239 lo->lo_offset = offset;
240 if (lo->lo_sizelimit != sizelimit)
241 lo->lo_sizelimit = sizelimit;
242 set_capacity(lo->lo_disk, x);
243 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
244 /* let user-space know about the new size */
245 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
246 return 0;
247}
248
249static inline int
250lo_do_transfer(struct loop_device *lo, int cmd,
251 struct page *rpage, unsigned roffs,
252 struct page *lpage, unsigned loffs,
253 int size, sector_t rblock)
254{
255 int ret;
256
257 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
258 if (likely(!ret))
259 return 0;
260
261 printk_ratelimited(KERN_ERR
262 "loop: Transfer error at byte offset %llu, length %i.\n",
263 (unsigned long long)rblock << 9, size);
264 return ret;
265}
266
267static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
268{
269 struct iov_iter i;
270 ssize_t bw;
271
272 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
273
274 file_start_write(file);
275 bw = vfs_iter_write(file, &i, ppos, 0);
276 file_end_write(file);
277
278 if (likely(bw == bvec->bv_len))
279 return 0;
280
281 printk_ratelimited(KERN_ERR
282 "loop: Write error at byte offset %llu, length %i.\n",
283 (unsigned long long)*ppos, bvec->bv_len);
284 if (bw >= 0)
285 bw = -EIO;
286 return bw;
287}
288
289static int lo_write_simple(struct loop_device *lo, struct request *rq,
290 loff_t pos)
291{
292 struct bio_vec bvec;
293 struct req_iterator iter;
294 int ret = 0;
295
296 rq_for_each_segment(bvec, rq, iter) {
297 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
298 if (ret < 0)
299 break;
300 cond_resched();
301 }
302
303 return ret;
304}
305
306/*
307 * This is the slow, transforming version that needs to double buffer the
308 * data as it cannot do the transformations in place without having direct
309 * access to the destination pages of the backing file.
310 */
311static int lo_write_transfer(struct loop_device *lo, struct request *rq,
312 loff_t pos)
313{
314 struct bio_vec bvec, b;
315 struct req_iterator iter;
316 struct page *page;
317 int ret = 0;
318
319 page = alloc_page(GFP_NOIO);
320 if (unlikely(!page))
321 return -ENOMEM;
322
323 rq_for_each_segment(bvec, rq, iter) {
324 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
325 bvec.bv_offset, bvec.bv_len, pos >> 9);
326 if (unlikely(ret))
327 break;
328
329 b.bv_page = page;
330 b.bv_offset = 0;
331 b.bv_len = bvec.bv_len;
332 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
333 if (ret < 0)
334 break;
335 }
336
337 __free_page(page);
338 return ret;
339}
340
341static int lo_read_simple(struct loop_device *lo, struct request *rq,
342 loff_t pos)
343{
344 struct bio_vec bvec;
345 struct req_iterator iter;
346 struct iov_iter i;
347 ssize_t len;
348
349 rq_for_each_segment(bvec, rq, iter) {
350 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
351 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
352 if (len < 0)
353 return len;
354
355 flush_dcache_page(bvec.bv_page);
356
357 if (len != bvec.bv_len) {
358 struct bio *bio;
359
360 __rq_for_each_bio(bio, rq)
361 zero_fill_bio(bio);
362 break;
363 }
364 cond_resched();
365 }
366
367 return 0;
368}
369
370static int lo_read_transfer(struct loop_device *lo, struct request *rq,
371 loff_t pos)
372{
373 struct bio_vec bvec, b;
374 struct req_iterator iter;
375 struct iov_iter i;
376 struct page *page;
377 ssize_t len;
378 int ret = 0;
379
380 page = alloc_page(GFP_NOIO);
381 if (unlikely(!page))
382 return -ENOMEM;
383
384 rq_for_each_segment(bvec, rq, iter) {
385 loff_t offset = pos;
386
387 b.bv_page = page;
388 b.bv_offset = 0;
389 b.bv_len = bvec.bv_len;
390
391 iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
392 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
393 if (len < 0) {
394 ret = len;
395 goto out_free_page;
396 }
397
398 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
399 bvec.bv_offset, len, offset >> 9);
400 if (ret)
401 goto out_free_page;
402
403 flush_dcache_page(bvec.bv_page);
404
405 if (len != bvec.bv_len) {
406 struct bio *bio;
407
408 __rq_for_each_bio(bio, rq)
409 zero_fill_bio(bio);
410 break;
411 }
412 }
413
414 ret = 0;
415out_free_page:
416 __free_page(page);
417 return ret;
418}
419
420static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
421{
422 /*
423 * We use punch hole to reclaim the free space used by the
424 * image a.k.a. discard. However we do not support discard if
425 * encryption is enabled, because it may give an attacker
426 * useful information.
427 */
428 struct file *file = lo->lo_backing_file;
429 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
430 int ret;
431
432 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
433 ret = -EOPNOTSUPP;
434 goto out;
435 }
436
437 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
438 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
439 ret = -EIO;
440 out:
441 return ret;
442}
443
444static int lo_req_flush(struct loop_device *lo, struct request *rq)
445{
446 struct file *file = lo->lo_backing_file;
447 int ret = vfs_fsync(file, 0);
448 if (unlikely(ret && ret != -EINVAL))
449 ret = -EIO;
450
451 return ret;
452}
453
454static void lo_complete_rq(struct request *rq)
455{
456 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
457 blk_status_t ret = BLK_STS_OK;
458
459 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
460 req_op(rq) != REQ_OP_READ) {
461 if (cmd->ret < 0)
462 ret = BLK_STS_IOERR;
463 goto end_io;
464 }
465
466 /*
467 * Short READ - if we got some data, advance our request and
468 * retry it. If we got no data, end the rest with EIO.
469 */
470 if (cmd->ret) {
471 blk_update_request(rq, BLK_STS_OK, cmd->ret);
472 cmd->ret = 0;
473 blk_mq_requeue_request(rq, true);
474 } else {
475 if (cmd->use_aio) {
476 struct bio *bio = rq->bio;
477
478 while (bio) {
479 zero_fill_bio(bio);
480 bio = bio->bi_next;
481 }
482 }
483 ret = BLK_STS_IOERR;
484end_io:
485 blk_mq_end_request(rq, ret);
486 }
487}
488
489static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
490{
491 struct request *rq = blk_mq_rq_from_pdu(cmd);
492
493 if (!atomic_dec_and_test(&cmd->ref))
494 return;
495 kfree(cmd->bvec);
496 cmd->bvec = NULL;
497 blk_mq_complete_request(rq);
498}
499
500static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
501{
502 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
503
504 if (cmd->css)
505 css_put(cmd->css);
506 cmd->ret = ret;
507 lo_rw_aio_do_completion(cmd);
508}
509
510static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
511 loff_t pos, bool rw)
512{
513 struct iov_iter iter;
514 struct bio_vec *bvec;
515 struct request *rq = blk_mq_rq_from_pdu(cmd);
516 struct bio *bio = rq->bio;
517 struct file *file = lo->lo_backing_file;
518 unsigned int offset;
519 int segments = 0;
520 int ret;
521
522 if (rq->bio != rq->biotail) {
523 struct req_iterator iter;
524 struct bio_vec tmp;
525
526 __rq_for_each_bio(bio, rq)
527 segments += bio_segments(bio);
528 bvec = kmalloc_array(segments, sizeof(struct bio_vec),
529 GFP_NOIO);
530 if (!bvec)
531 return -EIO;
532 cmd->bvec = bvec;
533
534 /*
535 * The bios of the request may be started from the middle of
536 * the 'bvec' because of bio splitting, so we can't directly
537 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
538 * API will take care of all details for us.
539 */
540 rq_for_each_segment(tmp, rq, iter) {
541 *bvec = tmp;
542 bvec++;
543 }
544 bvec = cmd->bvec;
545 offset = 0;
546 } else {
547 /*
548 * Same here, this bio may be started from the middle of the
549 * 'bvec' because of bio splitting, so offset from the bvec
550 * must be passed to iov iterator
551 */
552 offset = bio->bi_iter.bi_bvec_done;
553 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
554 segments = bio_segments(bio);
555 }
556 atomic_set(&cmd->ref, 2);
557
558 iov_iter_bvec(&iter, rw, bvec, segments, blk_rq_bytes(rq));
559 iter.iov_offset = offset;
560
561 cmd->iocb.ki_pos = pos;
562 cmd->iocb.ki_filp = file;
563 cmd->iocb.ki_complete = lo_rw_aio_complete;
564 cmd->iocb.ki_flags = IOCB_DIRECT;
565 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
566 if (cmd->css)
567 kthread_associate_blkcg(cmd->css);
568
569 if (rw == WRITE)
570 ret = call_write_iter(file, &cmd->iocb, &iter);
571 else
572 ret = call_read_iter(file, &cmd->iocb, &iter);
573
574 lo_rw_aio_do_completion(cmd);
575 kthread_associate_blkcg(NULL);
576
577 if (ret != -EIOCBQUEUED)
578 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
579 return 0;
580}
581
582static int do_req_filebacked(struct loop_device *lo, struct request *rq)
583{
584 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
585 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
586
587 /*
588 * lo_write_simple and lo_read_simple should have been covered
589 * by io submit style function like lo_rw_aio(), one blocker
590 * is that lo_read_simple() need to call flush_dcache_page after
591 * the page is written from kernel, and it isn't easy to handle
592 * this in io submit style function which submits all segments
593 * of the req at one time. And direct read IO doesn't need to
594 * run flush_dcache_page().
595 */
596 switch (req_op(rq)) {
597 case REQ_OP_FLUSH:
598 return lo_req_flush(lo, rq);
599 case REQ_OP_DISCARD:
600 case REQ_OP_WRITE_ZEROES:
601 return lo_discard(lo, rq, pos);
602 case REQ_OP_WRITE:
603 if (lo->transfer)
604 return lo_write_transfer(lo, rq, pos);
605 else if (cmd->use_aio)
606 return lo_rw_aio(lo, cmd, pos, WRITE);
607 else
608 return lo_write_simple(lo, rq, pos);
609 case REQ_OP_READ:
610 if (lo->transfer)
611 return lo_read_transfer(lo, rq, pos);
612 else if (cmd->use_aio)
613 return lo_rw_aio(lo, cmd, pos, READ);
614 else
615 return lo_read_simple(lo, rq, pos);
616 default:
617 WARN_ON_ONCE(1);
618 return -EIO;
619 }
620}
621
622static inline void loop_update_dio(struct loop_device *lo)
623{
624 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
625 lo->use_dio);
626}
627
628static void loop_reread_partitions(struct loop_device *lo,
629 struct block_device *bdev)
630{
631 int rc;
632
633 rc = blkdev_reread_part(bdev);
634 if (rc)
635 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
636 __func__, lo->lo_number, lo->lo_file_name, rc);
637}
638
639static inline int is_loop_device(struct file *file)
640{
641 struct inode *i = file->f_mapping->host;
642
643 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
644}
645
646static int loop_validate_file(struct file *file, struct block_device *bdev)
647{
648 struct inode *inode = file->f_mapping->host;
649 struct file *f = file;
650
651 /* Avoid recursion */
652 while (is_loop_device(f)) {
653 struct loop_device *l;
654
655 if (f->f_mapping->host->i_bdev == bdev)
656 return -EBADF;
657
658 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
659 if (l->lo_state == Lo_unbound) {
660 return -EINVAL;
661 }
662 f = l->lo_backing_file;
663 }
664 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
665 return -EINVAL;
666 return 0;
667}
668
669/*
670 * loop_change_fd switched the backing store of a loopback device to
671 * a new file. This is useful for operating system installers to free up
672 * the original file and in High Availability environments to switch to
673 * an alternative location for the content in case of server meltdown.
674 * This can only work if the loop device is used read-only, and if the
675 * new backing store is the same size and type as the old backing store.
676 */
677static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
678 unsigned int arg)
679{
680 struct file *file = NULL, *old_file;
681 int error;
682 bool partscan;
683
684 error = mutex_lock_killable(&loop_ctl_mutex);
685 if (error)
686 return error;
687 error = -ENXIO;
688 if (lo->lo_state != Lo_bound)
689 goto out_err;
690
691 /* the loop device has to be read-only */
692 error = -EINVAL;
693 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
694 goto out_err;
695
696 error = -EBADF;
697 file = fget(arg);
698 if (!file)
699 goto out_err;
700
701 error = loop_validate_file(file, bdev);
702 if (error)
703 goto out_err;
704
705 old_file = lo->lo_backing_file;
706
707 error = -EINVAL;
708
709 /* size of the new backing store needs to be the same */
710 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
711 goto out_err;
712
713 /* and ... switch */
714 blk_mq_freeze_queue(lo->lo_queue);
715 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
716 lo->lo_backing_file = file;
717 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
718 mapping_set_gfp_mask(file->f_mapping,
719 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
720 loop_update_dio(lo);
721 blk_mq_unfreeze_queue(lo->lo_queue);
722 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
723 mutex_unlock(&loop_ctl_mutex);
724 /*
725 * We must drop file reference outside of loop_ctl_mutex as dropping
726 * the file ref can take bd_mutex which creates circular locking
727 * dependency.
728 */
729 fput(old_file);
730 if (partscan)
731 loop_reread_partitions(lo, bdev);
732 return 0;
733
734out_err:
735 mutex_unlock(&loop_ctl_mutex);
736 if (file)
737 fput(file);
738 return error;
739}
740
741/* loop sysfs attributes */
742
743static ssize_t loop_attr_show(struct device *dev, char *page,
744 ssize_t (*callback)(struct loop_device *, char *))
745{
746 struct gendisk *disk = dev_to_disk(dev);
747 struct loop_device *lo = disk->private_data;
748
749 return callback(lo, page);
750}
751
752#define LOOP_ATTR_RO(_name) \
753static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
754static ssize_t loop_attr_do_show_##_name(struct device *d, \
755 struct device_attribute *attr, char *b) \
756{ \
757 return loop_attr_show(d, b, loop_attr_##_name##_show); \
758} \
759static struct device_attribute loop_attr_##_name = \
760 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
761
762static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
763{
764 ssize_t ret;
765 char *p = NULL;
766
767 spin_lock_irq(&lo->lo_lock);
768 if (lo->lo_backing_file)
769 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
770 spin_unlock_irq(&lo->lo_lock);
771
772 if (IS_ERR_OR_NULL(p))
773 ret = PTR_ERR(p);
774 else {
775 ret = strlen(p);
776 memmove(buf, p, ret);
777 buf[ret++] = '\n';
778 buf[ret] = 0;
779 }
780
781 return ret;
782}
783
784static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
785{
786 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
787}
788
789static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
790{
791 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
792}
793
794static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
795{
796 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
797
798 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
799}
800
801static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
802{
803 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
804
805 return sprintf(buf, "%s\n", partscan ? "1" : "0");
806}
807
808static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
809{
810 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
811
812 return sprintf(buf, "%s\n", dio ? "1" : "0");
813}
814
815LOOP_ATTR_RO(backing_file);
816LOOP_ATTR_RO(offset);
817LOOP_ATTR_RO(sizelimit);
818LOOP_ATTR_RO(autoclear);
819LOOP_ATTR_RO(partscan);
820LOOP_ATTR_RO(dio);
821
822static struct attribute *loop_attrs[] = {
823 &loop_attr_backing_file.attr,
824 &loop_attr_offset.attr,
825 &loop_attr_sizelimit.attr,
826 &loop_attr_autoclear.attr,
827 &loop_attr_partscan.attr,
828 &loop_attr_dio.attr,
829 NULL,
830};
831
832static struct attribute_group loop_attribute_group = {
833 .name = "loop",
834 .attrs= loop_attrs,
835};
836
837static void loop_sysfs_init(struct loop_device *lo)
838{
839 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
840 &loop_attribute_group);
841}
842
843static void loop_sysfs_exit(struct loop_device *lo)
844{
845 if (lo->sysfs_inited)
846 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
847 &loop_attribute_group);
848}
849
850static void loop_config_discard(struct loop_device *lo)
851{
852 struct file *file = lo->lo_backing_file;
853 struct inode *inode = file->f_mapping->host;
854 struct request_queue *q = lo->lo_queue;
855
856 /*
857 * We use punch hole to reclaim the free space used by the
858 * image a.k.a. discard. However we do not support discard if
859 * encryption is enabled, because it may give an attacker
860 * useful information.
861 */
862 if ((!file->f_op->fallocate) ||
863 lo->lo_encrypt_key_size) {
864 q->limits.discard_granularity = 0;
865 q->limits.discard_alignment = 0;
866 blk_queue_max_discard_sectors(q, 0);
867 blk_queue_max_write_zeroes_sectors(q, 0);
868 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
869 return;
870 }
871
872 q->limits.discard_granularity = inode->i_sb->s_blocksize;
873 q->limits.discard_alignment = 0;
874
875 blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
876 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
877 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
878}
879
880static void loop_unprepare_queue(struct loop_device *lo)
881{
882 kthread_flush_worker(&lo->worker);
883 kthread_stop(lo->worker_task);
884}
885
886static int loop_kthread_worker_fn(void *worker_ptr)
887{
888 current->flags |= PF_LESS_THROTTLE;
889 return kthread_worker_fn(worker_ptr);
890}
891
892static int loop_prepare_queue(struct loop_device *lo)
893{
894 kthread_init_worker(&lo->worker);
895 lo->worker_task = kthread_run(loop_kthread_worker_fn,
896 &lo->worker, "loop%d", lo->lo_number);
897 if (IS_ERR(lo->worker_task))
898 return -ENOMEM;
899 set_user_nice(lo->worker_task, MIN_NICE);
900 return 0;
901}
902
903static int loop_set_fd(struct loop_device *lo, fmode_t mode,
904 struct block_device *bdev, unsigned int arg)
905{
906 struct file *file;
907 struct inode *inode;
908 struct address_space *mapping;
909 int lo_flags = 0;
910 int error;
911 loff_t size;
912 bool partscan;
913
914 /* This is safe, since we have a reference from open(). */
915 __module_get(THIS_MODULE);
916
917 error = -EBADF;
918 file = fget(arg);
919 if (!file)
920 goto out;
921
922 error = mutex_lock_killable(&loop_ctl_mutex);
923 if (error)
924 goto out_putf;
925
926 error = -EBUSY;
927 if (lo->lo_state != Lo_unbound)
928 goto out_unlock;
929
930 error = loop_validate_file(file, bdev);
931 if (error)
932 goto out_unlock;
933
934 mapping = file->f_mapping;
935 inode = mapping->host;
936
937 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
938 !file->f_op->write_iter)
939 lo_flags |= LO_FLAGS_READ_ONLY;
940
941 error = -EFBIG;
942 size = get_loop_size(lo, file);
943 if ((loff_t)(sector_t)size != size)
944 goto out_unlock;
945 error = loop_prepare_queue(lo);
946 if (error)
947 goto out_unlock;
948
949 error = 0;
950
951 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
952
953 lo->use_dio = false;
954 lo->lo_device = bdev;
955 lo->lo_flags = lo_flags;
956 lo->lo_backing_file = file;
957 lo->transfer = NULL;
958 lo->ioctl = NULL;
959 lo->lo_sizelimit = 0;
960 lo->old_gfp_mask = mapping_gfp_mask(mapping);
961 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
962
963 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
964 blk_queue_write_cache(lo->lo_queue, true, false);
965
966 loop_update_dio(lo);
967 set_capacity(lo->lo_disk, size);
968 bd_set_size(bdev, size << 9);
969 loop_sysfs_init(lo);
970 /* let user-space know about the new size */
971 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
972
973 set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
974 block_size(inode->i_bdev) : PAGE_SIZE);
975
976 lo->lo_state = Lo_bound;
977 if (part_shift)
978 lo->lo_flags |= LO_FLAGS_PARTSCAN;
979 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
980
981 /* Grab the block_device to prevent its destruction after we
982 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
983 */
984 bdgrab(bdev);
985 mutex_unlock(&loop_ctl_mutex);
986 if (partscan)
987 loop_reread_partitions(lo, bdev);
988 return 0;
989
990out_unlock:
991 mutex_unlock(&loop_ctl_mutex);
992out_putf:
993 fput(file);
994out:
995 /* This is safe: open() is still holding a reference. */
996 module_put(THIS_MODULE);
997 return error;
998}
999
1000static int
1001loop_release_xfer(struct loop_device *lo)
1002{
1003 int err = 0;
1004 struct loop_func_table *xfer = lo->lo_encryption;
1005
1006 if (xfer) {
1007 if (xfer->release)
1008 err = xfer->release(lo);
1009 lo->transfer = NULL;
1010 lo->lo_encryption = NULL;
1011 module_put(xfer->owner);
1012 }
1013 return err;
1014}
1015
1016static int
1017loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1018 const struct loop_info64 *i)
1019{
1020 int err = 0;
1021
1022 if (xfer) {
1023 struct module *owner = xfer->owner;
1024
1025 if (!try_module_get(owner))
1026 return -EINVAL;
1027 if (xfer->init)
1028 err = xfer->init(lo, i);
1029 if (err)
1030 module_put(owner);
1031 else
1032 lo->lo_encryption = xfer;
1033 }
1034 return err;
1035}
1036
1037static int __loop_clr_fd(struct loop_device *lo, bool release)
1038{
1039 struct file *filp = NULL;
1040 gfp_t gfp = lo->old_gfp_mask;
1041 struct block_device *bdev = lo->lo_device;
1042 int err = 0;
1043 bool partscan = false;
1044 int lo_number;
1045
1046 mutex_lock(&loop_ctl_mutex);
1047 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1048 err = -ENXIO;
1049 goto out_unlock;
1050 }
1051
1052 filp = lo->lo_backing_file;
1053 if (filp == NULL) {
1054 err = -EINVAL;
1055 goto out_unlock;
1056 }
1057
1058 /* freeze request queue during the transition */
1059 blk_mq_freeze_queue(lo->lo_queue);
1060
1061 spin_lock_irq(&lo->lo_lock);
1062 lo->lo_backing_file = NULL;
1063 spin_unlock_irq(&lo->lo_lock);
1064
1065 loop_release_xfer(lo);
1066 lo->transfer = NULL;
1067 lo->ioctl = NULL;
1068 lo->lo_device = NULL;
1069 lo->lo_encryption = NULL;
1070 lo->lo_offset = 0;
1071 lo->lo_sizelimit = 0;
1072 lo->lo_encrypt_key_size = 0;
1073 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1074 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1075 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1076 blk_queue_logical_block_size(lo->lo_queue, 512);
1077 blk_queue_physical_block_size(lo->lo_queue, 512);
1078 blk_queue_io_min(lo->lo_queue, 512);
1079 if (bdev) {
1080 bdput(bdev);
1081 invalidate_bdev(bdev);
1082 bdev->bd_inode->i_mapping->wb_err = 0;
1083 }
1084 set_capacity(lo->lo_disk, 0);
1085 loop_sysfs_exit(lo);
1086 if (bdev) {
1087 bd_set_size(bdev, 0);
1088 /* let user-space know about this change */
1089 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1090 }
1091 mapping_set_gfp_mask(filp->f_mapping, gfp);
1092 lo->lo_state = Lo_unbound;
1093 /* This is safe: open() is still holding a reference. */
1094 module_put(THIS_MODULE);
1095 blk_mq_unfreeze_queue(lo->lo_queue);
1096
1097 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1098 lo_number = lo->lo_number;
1099 lo->lo_flags = 0;
1100 if (!part_shift)
1101 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1102 loop_unprepare_queue(lo);
1103out_unlock:
1104 mutex_unlock(&loop_ctl_mutex);
1105 if (partscan) {
1106 /*
1107 * bd_mutex has been held already in release path, so don't
1108 * acquire it if this function is called in such case.
1109 *
1110 * If the reread partition isn't from release path, lo_refcnt
1111 * must be at least one and it can only become zero when the
1112 * current holder is released.
1113 */
1114 if (release)
1115 err = __blkdev_reread_part(bdev);
1116 else
1117 err = blkdev_reread_part(bdev);
1118 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1119 __func__, lo_number, err);
1120 /* Device is gone, no point in returning error */
1121 err = 0;
1122 }
1123 /*
1124 * Need not hold loop_ctl_mutex to fput backing file.
1125 * Calling fput holding loop_ctl_mutex triggers a circular
1126 * lock dependency possibility warning as fput can take
1127 * bd_mutex which is usually taken before loop_ctl_mutex.
1128 */
1129 if (filp)
1130 fput(filp);
1131 return err;
1132}
1133
1134static int loop_clr_fd(struct loop_device *lo)
1135{
1136 int err;
1137
1138 err = mutex_lock_killable(&loop_ctl_mutex);
1139 if (err)
1140 return err;
1141 if (lo->lo_state != Lo_bound) {
1142 mutex_unlock(&loop_ctl_mutex);
1143 return -ENXIO;
1144 }
1145 /*
1146 * If we've explicitly asked to tear down the loop device,
1147 * and it has an elevated reference count, set it for auto-teardown when
1148 * the last reference goes away. This stops $!~#$@ udev from
1149 * preventing teardown because it decided that it needs to run blkid on
1150 * the loopback device whenever they appear. xfstests is notorious for
1151 * failing tests because blkid via udev races with a losetup
1152 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1153 * command to fail with EBUSY.
1154 */
1155 if (atomic_read(&lo->lo_refcnt) > 1) {
1156 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1157 mutex_unlock(&loop_ctl_mutex);
1158 return 0;
1159 }
1160 lo->lo_state = Lo_rundown;
1161 mutex_unlock(&loop_ctl_mutex);
1162
1163 return __loop_clr_fd(lo, false);
1164}
1165
1166static int
1167loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1168{
1169 int err;
1170 struct loop_func_table *xfer;
1171 kuid_t uid = current_uid();
1172 struct block_device *bdev;
1173 bool partscan = false;
1174
1175 err = mutex_lock_killable(&loop_ctl_mutex);
1176 if (err)
1177 return err;
1178 if (lo->lo_encrypt_key_size &&
1179 !uid_eq(lo->lo_key_owner, uid) &&
1180 !capable(CAP_SYS_ADMIN)) {
1181 err = -EPERM;
1182 goto out_unlock;
1183 }
1184 if (lo->lo_state != Lo_bound) {
1185 err = -ENXIO;
1186 goto out_unlock;
1187 }
1188 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) {
1189 err = -EINVAL;
1190 goto out_unlock;
1191 }
1192
1193 /* I/O need to be drained during transfer transition */
1194 blk_mq_freeze_queue(lo->lo_queue);
1195
1196 err = loop_release_xfer(lo);
1197 if (err)
1198 goto out_unfreeze;
1199
1200 if (info->lo_encrypt_type) {
1201 unsigned int type = info->lo_encrypt_type;
1202
1203 if (type >= MAX_LO_CRYPT) {
1204 err = -EINVAL;
1205 goto out_unfreeze;
1206 }
1207 xfer = xfer_funcs[type];
1208 if (xfer == NULL) {
1209 err = -EINVAL;
1210 goto out_unfreeze;
1211 }
1212 } else
1213 xfer = NULL;
1214
1215 err = loop_init_xfer(lo, xfer, info);
1216 if (err)
1217 goto out_unfreeze;
1218
1219 if (lo->lo_offset != info->lo_offset ||
1220 lo->lo_sizelimit != info->lo_sizelimit) {
1221 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1222 err = -EFBIG;
1223 goto out_unfreeze;
1224 }
1225 }
1226
1227 loop_config_discard(lo);
1228
1229 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1230 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1231 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1232 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1233
1234 if (!xfer)
1235 xfer = &none_funcs;
1236 lo->transfer = xfer->transfer;
1237 lo->ioctl = xfer->ioctl;
1238
1239 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1240 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1241 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1242
1243 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1244 lo->lo_init[0] = info->lo_init[0];
1245 lo->lo_init[1] = info->lo_init[1];
1246 if (info->lo_encrypt_key_size) {
1247 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1248 info->lo_encrypt_key_size);
1249 lo->lo_key_owner = uid;
1250 }
1251
1252 /* update dio if lo_offset or transfer is changed */
1253 __loop_update_dio(lo, lo->use_dio);
1254
1255out_unfreeze:
1256 blk_mq_unfreeze_queue(lo->lo_queue);
1257
1258 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1259 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1260 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1261 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1262 bdev = lo->lo_device;
1263 partscan = true;
1264 }
1265out_unlock:
1266 mutex_unlock(&loop_ctl_mutex);
1267 if (partscan)
1268 loop_reread_partitions(lo, bdev);
1269
1270 return err;
1271}
1272
1273static int
1274loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1275{
1276 struct path path;
1277 struct kstat stat;
1278 int ret;
1279
1280 ret = mutex_lock_killable(&loop_ctl_mutex);
1281 if (ret)
1282 return ret;
1283 if (lo->lo_state != Lo_bound) {
1284 mutex_unlock(&loop_ctl_mutex);
1285 return -ENXIO;
1286 }
1287
1288 memset(info, 0, sizeof(*info));
1289 info->lo_number = lo->lo_number;
1290 info->lo_offset = lo->lo_offset;
1291 info->lo_sizelimit = lo->lo_sizelimit;
1292 info->lo_flags = lo->lo_flags;
1293 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1294 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1295 info->lo_encrypt_type =
1296 lo->lo_encryption ? lo->lo_encryption->number : 0;
1297 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1298 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1299 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1300 lo->lo_encrypt_key_size);
1301 }
1302
1303 /* Drop loop_ctl_mutex while we call into the filesystem. */
1304 path = lo->lo_backing_file->f_path;
1305 path_get(&path);
1306 mutex_unlock(&loop_ctl_mutex);
1307 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1308 if (!ret) {
1309 info->lo_device = huge_encode_dev(stat.dev);
1310 info->lo_inode = stat.ino;
1311 info->lo_rdevice = huge_encode_dev(stat.rdev);
1312 }
1313 path_put(&path);
1314 return ret;
1315}
1316
1317static void
1318loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1319{
1320 memset(info64, 0, sizeof(*info64));
1321 info64->lo_number = info->lo_number;
1322 info64->lo_device = info->lo_device;
1323 info64->lo_inode = info->lo_inode;
1324 info64->lo_rdevice = info->lo_rdevice;
1325 info64->lo_offset = info->lo_offset;
1326 info64->lo_sizelimit = 0;
1327 info64->lo_encrypt_type = info->lo_encrypt_type;
1328 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1329 info64->lo_flags = info->lo_flags;
1330 info64->lo_init[0] = info->lo_init[0];
1331 info64->lo_init[1] = info->lo_init[1];
1332 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1333 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1334 else
1335 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1336 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1337}
1338
1339static int
1340loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1341{
1342 memset(info, 0, sizeof(*info));
1343 info->lo_number = info64->lo_number;
1344 info->lo_device = info64->lo_device;
1345 info->lo_inode = info64->lo_inode;
1346 info->lo_rdevice = info64->lo_rdevice;
1347 info->lo_offset = info64->lo_offset;
1348 info->lo_encrypt_type = info64->lo_encrypt_type;
1349 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1350 info->lo_flags = info64->lo_flags;
1351 info->lo_init[0] = info64->lo_init[0];
1352 info->lo_init[1] = info64->lo_init[1];
1353 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1354 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1355 else
1356 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1357 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1358
1359 /* error in case values were truncated */
1360 if (info->lo_device != info64->lo_device ||
1361 info->lo_rdevice != info64->lo_rdevice ||
1362 info->lo_inode != info64->lo_inode ||
1363 info->lo_offset != info64->lo_offset)
1364 return -EOVERFLOW;
1365
1366 return 0;
1367}
1368
1369static int
1370loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1371{
1372 struct loop_info info;
1373 struct loop_info64 info64;
1374
1375 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1376 return -EFAULT;
1377 loop_info64_from_old(&info, &info64);
1378 return loop_set_status(lo, &info64);
1379}
1380
1381static int
1382loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1383{
1384 struct loop_info64 info64;
1385
1386 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1387 return -EFAULT;
1388 return loop_set_status(lo, &info64);
1389}
1390
1391static int
1392loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1393 struct loop_info info;
1394 struct loop_info64 info64;
1395 int err;
1396
1397 if (!arg)
1398 return -EINVAL;
1399 err = loop_get_status(lo, &info64);
1400 if (!err)
1401 err = loop_info64_to_old(&info64, &info);
1402 if (!err && copy_to_user(arg, &info, sizeof(info)))
1403 err = -EFAULT;
1404
1405 return err;
1406}
1407
1408static int
1409loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1410 struct loop_info64 info64;
1411 int err;
1412
1413 if (!arg)
1414 return -EINVAL;
1415 err = loop_get_status(lo, &info64);
1416 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1417 err = -EFAULT;
1418
1419 return err;
1420}
1421
1422static int loop_set_capacity(struct loop_device *lo)
1423{
1424 if (unlikely(lo->lo_state != Lo_bound))
1425 return -ENXIO;
1426
1427 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1428}
1429
1430static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1431{
1432 int error = -ENXIO;
1433 if (lo->lo_state != Lo_bound)
1434 goto out;
1435
1436 __loop_update_dio(lo, !!arg);
1437 if (lo->use_dio == !!arg)
1438 return 0;
1439 error = -EINVAL;
1440 out:
1441 return error;
1442}
1443
1444static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1445{
1446 if (lo->lo_state != Lo_bound)
1447 return -ENXIO;
1448
1449 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1450 return -EINVAL;
1451
1452 blk_mq_freeze_queue(lo->lo_queue);
1453
1454 blk_queue_logical_block_size(lo->lo_queue, arg);
1455 blk_queue_physical_block_size(lo->lo_queue, arg);
1456 blk_queue_io_min(lo->lo_queue, arg);
1457 loop_update_dio(lo);
1458
1459 blk_mq_unfreeze_queue(lo->lo_queue);
1460
1461 return 0;
1462}
1463
1464static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1465 unsigned long arg)
1466{
1467 int err;
1468
1469 err = mutex_lock_killable(&loop_ctl_mutex);
1470 if (err)
1471 return err;
1472 switch (cmd) {
1473 case LOOP_SET_CAPACITY:
1474 err = loop_set_capacity(lo);
1475 break;
1476 case LOOP_SET_DIRECT_IO:
1477 err = loop_set_dio(lo, arg);
1478 break;
1479 case LOOP_SET_BLOCK_SIZE:
1480 err = loop_set_block_size(lo, arg);
1481 break;
1482 default:
1483 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1484 }
1485 mutex_unlock(&loop_ctl_mutex);
1486 return err;
1487}
1488
1489static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1490 unsigned int cmd, unsigned long arg)
1491{
1492 struct loop_device *lo = bdev->bd_disk->private_data;
1493 int err;
1494
1495 switch (cmd) {
1496 case LOOP_SET_FD:
1497 return loop_set_fd(lo, mode, bdev, arg);
1498 case LOOP_CHANGE_FD:
1499 return loop_change_fd(lo, bdev, arg);
1500 case LOOP_CLR_FD:
1501 return loop_clr_fd(lo);
1502 case LOOP_SET_STATUS:
1503 err = -EPERM;
1504 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1505 err = loop_set_status_old(lo,
1506 (struct loop_info __user *)arg);
1507 }
1508 break;
1509 case LOOP_GET_STATUS:
1510 return loop_get_status_old(lo, (struct loop_info __user *) arg);
1511 case LOOP_SET_STATUS64:
1512 err = -EPERM;
1513 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1514 err = loop_set_status64(lo,
1515 (struct loop_info64 __user *) arg);
1516 }
1517 break;
1518 case LOOP_GET_STATUS64:
1519 return loop_get_status64(lo, (struct loop_info64 __user *) arg);
1520 case LOOP_SET_CAPACITY:
1521 case LOOP_SET_DIRECT_IO:
1522 case LOOP_SET_BLOCK_SIZE:
1523 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1524 return -EPERM;
1525 /* Fall through */
1526 default:
1527 err = lo_simple_ioctl(lo, cmd, arg);
1528 break;
1529 }
1530
1531 return err;
1532}
1533
1534#ifdef CONFIG_COMPAT
1535struct compat_loop_info {
1536 compat_int_t lo_number; /* ioctl r/o */
1537 compat_dev_t lo_device; /* ioctl r/o */
1538 compat_ulong_t lo_inode; /* ioctl r/o */
1539 compat_dev_t lo_rdevice; /* ioctl r/o */
1540 compat_int_t lo_offset;
1541 compat_int_t lo_encrypt_type;
1542 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1543 compat_int_t lo_flags; /* ioctl r/o */
1544 char lo_name[LO_NAME_SIZE];
1545 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1546 compat_ulong_t lo_init[2];
1547 char reserved[4];
1548};
1549
1550/*
1551 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1552 * - noinlined to reduce stack space usage in main part of driver
1553 */
1554static noinline int
1555loop_info64_from_compat(const struct compat_loop_info __user *arg,
1556 struct loop_info64 *info64)
1557{
1558 struct compat_loop_info info;
1559
1560 if (copy_from_user(&info, arg, sizeof(info)))
1561 return -EFAULT;
1562
1563 memset(info64, 0, sizeof(*info64));
1564 info64->lo_number = info.lo_number;
1565 info64->lo_device = info.lo_device;
1566 info64->lo_inode = info.lo_inode;
1567 info64->lo_rdevice = info.lo_rdevice;
1568 info64->lo_offset = info.lo_offset;
1569 info64->lo_sizelimit = 0;
1570 info64->lo_encrypt_type = info.lo_encrypt_type;
1571 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1572 info64->lo_flags = info.lo_flags;
1573 info64->lo_init[0] = info.lo_init[0];
1574 info64->lo_init[1] = info.lo_init[1];
1575 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1576 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1577 else
1578 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1579 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1580 return 0;
1581}
1582
1583/*
1584 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1585 * - noinlined to reduce stack space usage in main part of driver
1586 */
1587static noinline int
1588loop_info64_to_compat(const struct loop_info64 *info64,
1589 struct compat_loop_info __user *arg)
1590{
1591 struct compat_loop_info info;
1592
1593 memset(&info, 0, sizeof(info));
1594 info.lo_number = info64->lo_number;
1595 info.lo_device = info64->lo_device;
1596 info.lo_inode = info64->lo_inode;
1597 info.lo_rdevice = info64->lo_rdevice;
1598 info.lo_offset = info64->lo_offset;
1599 info.lo_encrypt_type = info64->lo_encrypt_type;
1600 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1601 info.lo_flags = info64->lo_flags;
1602 info.lo_init[0] = info64->lo_init[0];
1603 info.lo_init[1] = info64->lo_init[1];
1604 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1605 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1606 else
1607 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1608 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1609
1610 /* error in case values were truncated */
1611 if (info.lo_device != info64->lo_device ||
1612 info.lo_rdevice != info64->lo_rdevice ||
1613 info.lo_inode != info64->lo_inode ||
1614 info.lo_offset != info64->lo_offset ||
1615 info.lo_init[0] != info64->lo_init[0] ||
1616 info.lo_init[1] != info64->lo_init[1])
1617 return -EOVERFLOW;
1618
1619 if (copy_to_user(arg, &info, sizeof(info)))
1620 return -EFAULT;
1621 return 0;
1622}
1623
1624static int
1625loop_set_status_compat(struct loop_device *lo,
1626 const struct compat_loop_info __user *arg)
1627{
1628 struct loop_info64 info64;
1629 int ret;
1630
1631 ret = loop_info64_from_compat(arg, &info64);
1632 if (ret < 0)
1633 return ret;
1634 return loop_set_status(lo, &info64);
1635}
1636
1637static int
1638loop_get_status_compat(struct loop_device *lo,
1639 struct compat_loop_info __user *arg)
1640{
1641 struct loop_info64 info64;
1642 int err;
1643
1644 if (!arg)
1645 return -EINVAL;
1646 err = loop_get_status(lo, &info64);
1647 if (!err)
1648 err = loop_info64_to_compat(&info64, arg);
1649 return err;
1650}
1651
1652static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1653 unsigned int cmd, unsigned long arg)
1654{
1655 struct loop_device *lo = bdev->bd_disk->private_data;
1656 int err;
1657
1658 switch(cmd) {
1659 case LOOP_SET_STATUS:
1660 err = loop_set_status_compat(lo,
1661 (const struct compat_loop_info __user *)arg);
1662 break;
1663 case LOOP_GET_STATUS:
1664 err = loop_get_status_compat(lo,
1665 (struct compat_loop_info __user *)arg);
1666 break;
1667 case LOOP_SET_CAPACITY:
1668 case LOOP_CLR_FD:
1669 case LOOP_GET_STATUS64:
1670 case LOOP_SET_STATUS64:
1671 arg = (unsigned long) compat_ptr(arg);
1672 /* fall through */
1673 case LOOP_SET_FD:
1674 case LOOP_CHANGE_FD:
1675 case LOOP_SET_BLOCK_SIZE:
1676 err = lo_ioctl(bdev, mode, cmd, arg);
1677 break;
1678 default:
1679 err = -ENOIOCTLCMD;
1680 break;
1681 }
1682 return err;
1683}
1684#endif
1685
1686static int lo_open(struct block_device *bdev, fmode_t mode)
1687{
1688 struct loop_device *lo;
1689 int err;
1690
1691 err = mutex_lock_killable(&loop_ctl_mutex);
1692 if (err)
1693 return err;
1694 lo = bdev->bd_disk->private_data;
1695 if (!lo) {
1696 err = -ENXIO;
1697 goto out;
1698 }
1699
1700 atomic_inc(&lo->lo_refcnt);
1701out:
1702 mutex_unlock(&loop_ctl_mutex);
1703 return err;
1704}
1705
1706static void lo_release(struct gendisk *disk, fmode_t mode)
1707{
1708 struct loop_device *lo;
1709
1710 mutex_lock(&loop_ctl_mutex);
1711 lo = disk->private_data;
1712 if (atomic_dec_return(&lo->lo_refcnt))
1713 goto out_unlock;
1714
1715 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1716 if (lo->lo_state != Lo_bound)
1717 goto out_unlock;
1718 lo->lo_state = Lo_rundown;
1719 mutex_unlock(&loop_ctl_mutex);
1720 /*
1721 * In autoclear mode, stop the loop thread
1722 * and remove configuration after last close.
1723 */
1724 __loop_clr_fd(lo, true);
1725 return;
1726 } else if (lo->lo_state == Lo_bound) {
1727 /*
1728 * Otherwise keep thread (if running) and config,
1729 * but flush possible ongoing bios in thread.
1730 */
1731 blk_mq_freeze_queue(lo->lo_queue);
1732 blk_mq_unfreeze_queue(lo->lo_queue);
1733 }
1734
1735out_unlock:
1736 mutex_unlock(&loop_ctl_mutex);
1737}
1738
1739static const struct block_device_operations lo_fops = {
1740 .owner = THIS_MODULE,
1741 .open = lo_open,
1742 .release = lo_release,
1743 .ioctl = lo_ioctl,
1744#ifdef CONFIG_COMPAT
1745 .compat_ioctl = lo_compat_ioctl,
1746#endif
1747};
1748
1749/*
1750 * And now the modules code and kernel interface.
1751 */
1752static int max_loop;
1753module_param(max_loop, int, 0444);
1754MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1755module_param(max_part, int, 0444);
1756MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1757MODULE_LICENSE("GPL");
1758MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1759
1760int loop_register_transfer(struct loop_func_table *funcs)
1761{
1762 unsigned int n = funcs->number;
1763
1764 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1765 return -EINVAL;
1766 xfer_funcs[n] = funcs;
1767 return 0;
1768}
1769
1770static int unregister_transfer_cb(int id, void *ptr, void *data)
1771{
1772 struct loop_device *lo = ptr;
1773 struct loop_func_table *xfer = data;
1774
1775 mutex_lock(&loop_ctl_mutex);
1776 if (lo->lo_encryption == xfer)
1777 loop_release_xfer(lo);
1778 mutex_unlock(&loop_ctl_mutex);
1779 return 0;
1780}
1781
1782int loop_unregister_transfer(int number)
1783{
1784 unsigned int n = number;
1785 struct loop_func_table *xfer;
1786
1787 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1788 return -EINVAL;
1789
1790 xfer_funcs[n] = NULL;
1791 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1792 return 0;
1793}
1794
1795EXPORT_SYMBOL(loop_register_transfer);
1796EXPORT_SYMBOL(loop_unregister_transfer);
1797
1798static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1799 const struct blk_mq_queue_data *bd)
1800{
1801 struct request *rq = bd->rq;
1802 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1803 struct loop_device *lo = rq->q->queuedata;
1804
1805 blk_mq_start_request(rq);
1806
1807 if (lo->lo_state != Lo_bound)
1808 return BLK_STS_IOERR;
1809
1810 switch (req_op(rq)) {
1811 case REQ_OP_FLUSH:
1812 case REQ_OP_DISCARD:
1813 case REQ_OP_WRITE_ZEROES:
1814 cmd->use_aio = false;
1815 break;
1816 default:
1817 cmd->use_aio = lo->use_dio;
1818 break;
1819 }
1820
1821 /* always use the first bio's css */
1822#ifdef CONFIG_BLK_CGROUP
1823 if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
1824 cmd->css = &bio_blkcg(rq->bio)->css;
1825 css_get(cmd->css);
1826 } else
1827#endif
1828 cmd->css = NULL;
1829 kthread_queue_work(&lo->worker, &cmd->work);
1830
1831 return BLK_STS_OK;
1832}
1833
1834static void loop_handle_cmd(struct loop_cmd *cmd)
1835{
1836 struct request *rq = blk_mq_rq_from_pdu(cmd);
1837 const bool write = op_is_write(req_op(rq));
1838 struct loop_device *lo = rq->q->queuedata;
1839 int ret = 0;
1840
1841 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1842 ret = -EIO;
1843 goto failed;
1844 }
1845
1846 ret = do_req_filebacked(lo, rq);
1847 failed:
1848 /* complete non-aio request */
1849 if (!cmd->use_aio || ret) {
1850 cmd->ret = ret ? -EIO : 0;
1851 blk_mq_complete_request(rq);
1852 }
1853}
1854
1855static void loop_queue_work(struct kthread_work *work)
1856{
1857 struct loop_cmd *cmd =
1858 container_of(work, struct loop_cmd, work);
1859
1860 loop_handle_cmd(cmd);
1861}
1862
1863static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1864 unsigned int hctx_idx, unsigned int numa_node)
1865{
1866 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1867
1868 kthread_init_work(&cmd->work, loop_queue_work);
1869 return 0;
1870}
1871
1872static const struct blk_mq_ops loop_mq_ops = {
1873 .queue_rq = loop_queue_rq,
1874 .init_request = loop_init_request,
1875 .complete = lo_complete_rq,
1876};
1877
1878static int loop_add(struct loop_device **l, int i)
1879{
1880 struct loop_device *lo;
1881 struct gendisk *disk;
1882 int err;
1883
1884 err = -ENOMEM;
1885 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1886 if (!lo)
1887 goto out;
1888
1889 lo->lo_state = Lo_unbound;
1890
1891 /* allocate id, if @id >= 0, we're requesting that specific id */
1892 if (i >= 0) {
1893 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1894 if (err == -ENOSPC)
1895 err = -EEXIST;
1896 } else {
1897 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1898 }
1899 if (err < 0)
1900 goto out_free_dev;
1901 i = err;
1902
1903 err = -ENOMEM;
1904 lo->tag_set.ops = &loop_mq_ops;
1905 lo->tag_set.nr_hw_queues = 1;
1906 lo->tag_set.queue_depth = 128;
1907 lo->tag_set.numa_node = NUMA_NO_NODE;
1908 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1909 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1910 lo->tag_set.driver_data = lo;
1911
1912 err = blk_mq_alloc_tag_set(&lo->tag_set);
1913 if (err)
1914 goto out_free_idr;
1915
1916 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1917 if (IS_ERR(lo->lo_queue)) {
1918 err = PTR_ERR(lo->lo_queue);
1919 goto out_cleanup_tags;
1920 }
1921 lo->lo_queue->queuedata = lo;
1922
1923 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
1924
1925 /*
1926 * By default, we do buffer IO, so it doesn't make sense to enable
1927 * merge because the I/O submitted to backing file is handled page by
1928 * page. For directio mode, merge does help to dispatch bigger request
1929 * to underlayer disk. We will enable merge once directio is enabled.
1930 */
1931 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1932
1933 err = -ENOMEM;
1934 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1935 if (!disk)
1936 goto out_free_queue;
1937
1938 /*
1939 * Disable partition scanning by default. The in-kernel partition
1940 * scanning can be requested individually per-device during its
1941 * setup. Userspace can always add and remove partitions from all
1942 * devices. The needed partition minors are allocated from the
1943 * extended minor space, the main loop device numbers will continue
1944 * to match the loop minors, regardless of the number of partitions
1945 * used.
1946 *
1947 * If max_part is given, partition scanning is globally enabled for
1948 * all loop devices. The minors for the main loop devices will be
1949 * multiples of max_part.
1950 *
1951 * Note: Global-for-all-devices, set-only-at-init, read-only module
1952 * parameteters like 'max_loop' and 'max_part' make things needlessly
1953 * complicated, are too static, inflexible and may surprise
1954 * userspace tools. Parameters like this in general should be avoided.
1955 */
1956 if (!part_shift)
1957 disk->flags |= GENHD_FL_NO_PART_SCAN;
1958 disk->flags |= GENHD_FL_EXT_DEVT;
1959 atomic_set(&lo->lo_refcnt, 0);
1960 lo->lo_number = i;
1961 spin_lock_init(&lo->lo_lock);
1962 disk->major = LOOP_MAJOR;
1963 disk->first_minor = i << part_shift;
1964 disk->fops = &lo_fops;
1965 disk->private_data = lo;
1966 disk->queue = lo->lo_queue;
1967 sprintf(disk->disk_name, "loop%d", i);
1968 add_disk(disk);
1969 *l = lo;
1970 return lo->lo_number;
1971
1972out_free_queue:
1973 blk_cleanup_queue(lo->lo_queue);
1974out_cleanup_tags:
1975 blk_mq_free_tag_set(&lo->tag_set);
1976out_free_idr:
1977 idr_remove(&loop_index_idr, i);
1978out_free_dev:
1979 kfree(lo);
1980out:
1981 return err;
1982}
1983
1984static void loop_remove(struct loop_device *lo)
1985{
1986 del_gendisk(lo->lo_disk);
1987 blk_cleanup_queue(lo->lo_queue);
1988 blk_mq_free_tag_set(&lo->tag_set);
1989 put_disk(lo->lo_disk);
1990 kfree(lo);
1991}
1992
1993static int find_free_cb(int id, void *ptr, void *data)
1994{
1995 struct loop_device *lo = ptr;
1996 struct loop_device **l = data;
1997
1998 if (lo->lo_state == Lo_unbound) {
1999 *l = lo;
2000 return 1;
2001 }
2002 return 0;
2003}
2004
2005static int loop_lookup(struct loop_device **l, int i)
2006{
2007 struct loop_device *lo;
2008 int ret = -ENODEV;
2009
2010 if (i < 0) {
2011 int err;
2012
2013 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2014 if (err == 1) {
2015 *l = lo;
2016 ret = lo->lo_number;
2017 }
2018 goto out;
2019 }
2020
2021 /* lookup and return a specific i */
2022 lo = idr_find(&loop_index_idr, i);
2023 if (lo) {
2024 *l = lo;
2025 ret = lo->lo_number;
2026 }
2027out:
2028 return ret;
2029}
2030
2031static struct kobject *loop_probe(dev_t dev, int *part, void *data)
2032{
2033 struct loop_device *lo;
2034 struct kobject *kobj;
2035 int err;
2036
2037 mutex_lock(&loop_ctl_mutex);
2038 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
2039 if (err < 0)
2040 err = loop_add(&lo, MINOR(dev) >> part_shift);
2041 if (err < 0)
2042 kobj = NULL;
2043 else
2044 kobj = get_disk_and_module(lo->lo_disk);
2045 mutex_unlock(&loop_ctl_mutex);
2046
2047 *part = 0;
2048 return kobj;
2049}
2050
2051static long loop_control_ioctl(struct file *file, unsigned int cmd,
2052 unsigned long parm)
2053{
2054 struct loop_device *lo;
2055 int ret;
2056
2057 ret = mutex_lock_killable(&loop_ctl_mutex);
2058 if (ret)
2059 return ret;
2060
2061 ret = -ENOSYS;
2062 switch (cmd) {
2063 case LOOP_CTL_ADD:
2064 ret = loop_lookup(&lo, parm);
2065 if (ret >= 0) {
2066 ret = -EEXIST;
2067 break;
2068 }
2069 ret = loop_add(&lo, parm);
2070 break;
2071 case LOOP_CTL_REMOVE:
2072 ret = loop_lookup(&lo, parm);
2073 if (ret < 0)
2074 break;
2075 if (lo->lo_state != Lo_unbound) {
2076 ret = -EBUSY;
2077 break;
2078 }
2079 if (atomic_read(&lo->lo_refcnt) > 0) {
2080 ret = -EBUSY;
2081 break;
2082 }
2083 lo->lo_disk->private_data = NULL;
2084 idr_remove(&loop_index_idr, lo->lo_number);
2085 loop_remove(lo);
2086 break;
2087 case LOOP_CTL_GET_FREE:
2088 ret = loop_lookup(&lo, -1);
2089 if (ret >= 0)
2090 break;
2091 ret = loop_add(&lo, -1);
2092 }
2093 mutex_unlock(&loop_ctl_mutex);
2094
2095 return ret;
2096}
2097
2098static const struct file_operations loop_ctl_fops = {
2099 .open = nonseekable_open,
2100 .unlocked_ioctl = loop_control_ioctl,
2101 .compat_ioctl = loop_control_ioctl,
2102 .owner = THIS_MODULE,
2103 .llseek = noop_llseek,
2104};
2105
2106static struct miscdevice loop_misc = {
2107 .minor = LOOP_CTRL_MINOR,
2108 .name = "loop-control",
2109 .fops = &loop_ctl_fops,
2110};
2111
2112MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2113MODULE_ALIAS("devname:loop-control");
2114
2115static int __init loop_init(void)
2116{
2117 int i, nr;
2118 unsigned long range;
2119 struct loop_device *lo;
2120 int err;
2121
2122 part_shift = 0;
2123 if (max_part > 0) {
2124 part_shift = fls(max_part);
2125
2126 /*
2127 * Adjust max_part according to part_shift as it is exported
2128 * to user space so that user can decide correct minor number
2129 * if [s]he want to create more devices.
2130 *
2131 * Note that -1 is required because partition 0 is reserved
2132 * for the whole disk.
2133 */
2134 max_part = (1UL << part_shift) - 1;
2135 }
2136
2137 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2138 err = -EINVAL;
2139 goto err_out;
2140 }
2141
2142 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2143 err = -EINVAL;
2144 goto err_out;
2145 }
2146
2147 /*
2148 * If max_loop is specified, create that many devices upfront.
2149 * This also becomes a hard limit. If max_loop is not specified,
2150 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2151 * init time. Loop devices can be requested on-demand with the
2152 * /dev/loop-control interface, or be instantiated by accessing
2153 * a 'dead' device node.
2154 */
2155 if (max_loop) {
2156 nr = max_loop;
2157 range = max_loop << part_shift;
2158 } else {
2159 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2160 range = 1UL << MINORBITS;
2161 }
2162
2163 err = misc_register(&loop_misc);
2164 if (err < 0)
2165 goto err_out;
2166
2167
2168 if (register_blkdev(LOOP_MAJOR, "loop")) {
2169 err = -EIO;
2170 goto misc_out;
2171 }
2172
2173 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2174 THIS_MODULE, loop_probe, NULL, NULL);
2175
2176 /* pre-create number of devices given by config or max_loop */
2177 mutex_lock(&loop_ctl_mutex);
2178 for (i = 0; i < nr; i++)
2179 loop_add(&lo, i);
2180 mutex_unlock(&loop_ctl_mutex);
2181
2182 printk(KERN_INFO "loop: module loaded\n");
2183 return 0;
2184
2185misc_out:
2186 misc_deregister(&loop_misc);
2187err_out:
2188 return err;
2189}
2190
2191static int loop_exit_cb(int id, void *ptr, void *data)
2192{
2193 struct loop_device *lo = ptr;
2194
2195 loop_remove(lo);
2196 return 0;
2197}
2198
2199static void __exit loop_exit(void)
2200{
2201 unsigned long range;
2202
2203 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2204
2205 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2206 idr_destroy(&loop_index_idr);
2207
2208 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2209 unregister_blkdev(LOOP_MAJOR, "loop");
2210
2211 misc_deregister(&loop_misc);
2212}
2213
2214module_init(loop_init);
2215module_exit(loop_exit);
2216
2217#ifndef MODULE
2218static int __init max_loop_setup(char *str)
2219{
2220 max_loop = simple_strtol(str, NULL, 0);
2221 return 1;
2222}
2223
2224__setup("max_loop=", max_loop_setup);
2225#endif