at v4.9 109 kB view raw
1/* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24#include <linux/fs.h> 25#include <linux/init.h> 26#include <linux/vfs.h> 27#include <linux/mount.h> 28#include <linux/ramfs.h> 29#include <linux/pagemap.h> 30#include <linux/file.h> 31#include <linux/mm.h> 32#include <linux/export.h> 33#include <linux/swap.h> 34#include <linux/uio.h> 35#include <linux/khugepaged.h> 36 37static struct vfsmount *shm_mnt; 38 39#ifdef CONFIG_SHMEM 40/* 41 * This virtual memory filesystem is heavily based on the ramfs. It 42 * extends ramfs by the ability to use swap and honor resource limits 43 * which makes it a completely usable filesystem. 44 */ 45 46#include <linux/xattr.h> 47#include <linux/exportfs.h> 48#include <linux/posix_acl.h> 49#include <linux/posix_acl_xattr.h> 50#include <linux/mman.h> 51#include <linux/string.h> 52#include <linux/slab.h> 53#include <linux/backing-dev.h> 54#include <linux/shmem_fs.h> 55#include <linux/writeback.h> 56#include <linux/blkdev.h> 57#include <linux/pagevec.h> 58#include <linux/percpu_counter.h> 59#include <linux/falloc.h> 60#include <linux/splice.h> 61#include <linux/security.h> 62#include <linux/swapops.h> 63#include <linux/mempolicy.h> 64#include <linux/namei.h> 65#include <linux/ctype.h> 66#include <linux/migrate.h> 67#include <linux/highmem.h> 68#include <linux/seq_file.h> 69#include <linux/magic.h> 70#include <linux/syscalls.h> 71#include <linux/fcntl.h> 72#include <uapi/linux/memfd.h> 73 74#include <asm/uaccess.h> 75#include <asm/pgtable.h> 76 77#include "internal.h" 78 79#define BLOCKS_PER_PAGE (PAGE_SIZE/512) 80#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 81 82/* Pretend that each entry is of this size in directory's i_size */ 83#define BOGO_DIRENT_SIZE 20 84 85/* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 86#define SHORT_SYMLINK_LEN 128 87 88/* 89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 90 * inode->i_private (with i_mutex making sure that it has only one user at 91 * a time): we would prefer not to enlarge the shmem inode just for that. 92 */ 93struct shmem_falloc { 94 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 95 pgoff_t start; /* start of range currently being fallocated */ 96 pgoff_t next; /* the next page offset to be fallocated */ 97 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 98 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 99}; 100 101#ifdef CONFIG_TMPFS 102static unsigned long shmem_default_max_blocks(void) 103{ 104 return totalram_pages / 2; 105} 106 107static unsigned long shmem_default_max_inodes(void) 108{ 109 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 110} 111#endif 112 113static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 114static int shmem_replace_page(struct page **pagep, gfp_t gfp, 115 struct shmem_inode_info *info, pgoff_t index); 116static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 117 struct page **pagep, enum sgp_type sgp, 118 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type); 119 120int shmem_getpage(struct inode *inode, pgoff_t index, 121 struct page **pagep, enum sgp_type sgp) 122{ 123 return shmem_getpage_gfp(inode, index, pagep, sgp, 124 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 125} 126 127static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 128{ 129 return sb->s_fs_info; 130} 131 132/* 133 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 134 * for shared memory and for shared anonymous (/dev/zero) mappings 135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 136 * consistent with the pre-accounting of private mappings ... 137 */ 138static inline int shmem_acct_size(unsigned long flags, loff_t size) 139{ 140 return (flags & VM_NORESERVE) ? 141 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 142} 143 144static inline void shmem_unacct_size(unsigned long flags, loff_t size) 145{ 146 if (!(flags & VM_NORESERVE)) 147 vm_unacct_memory(VM_ACCT(size)); 148} 149 150static inline int shmem_reacct_size(unsigned long flags, 151 loff_t oldsize, loff_t newsize) 152{ 153 if (!(flags & VM_NORESERVE)) { 154 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 155 return security_vm_enough_memory_mm(current->mm, 156 VM_ACCT(newsize) - VM_ACCT(oldsize)); 157 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 158 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 159 } 160 return 0; 161} 162 163/* 164 * ... whereas tmpfs objects are accounted incrementally as 165 * pages are allocated, in order to allow large sparse files. 166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 168 */ 169static inline int shmem_acct_block(unsigned long flags, long pages) 170{ 171 if (!(flags & VM_NORESERVE)) 172 return 0; 173 174 return security_vm_enough_memory_mm(current->mm, 175 pages * VM_ACCT(PAGE_SIZE)); 176} 177 178static inline void shmem_unacct_blocks(unsigned long flags, long pages) 179{ 180 if (flags & VM_NORESERVE) 181 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 182} 183 184static const struct super_operations shmem_ops; 185static const struct address_space_operations shmem_aops; 186static const struct file_operations shmem_file_operations; 187static const struct inode_operations shmem_inode_operations; 188static const struct inode_operations shmem_dir_inode_operations; 189static const struct inode_operations shmem_special_inode_operations; 190static const struct vm_operations_struct shmem_vm_ops; 191static struct file_system_type shmem_fs_type; 192 193static LIST_HEAD(shmem_swaplist); 194static DEFINE_MUTEX(shmem_swaplist_mutex); 195 196static int shmem_reserve_inode(struct super_block *sb) 197{ 198 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 199 if (sbinfo->max_inodes) { 200 spin_lock(&sbinfo->stat_lock); 201 if (!sbinfo->free_inodes) { 202 spin_unlock(&sbinfo->stat_lock); 203 return -ENOSPC; 204 } 205 sbinfo->free_inodes--; 206 spin_unlock(&sbinfo->stat_lock); 207 } 208 return 0; 209} 210 211static void shmem_free_inode(struct super_block *sb) 212{ 213 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 214 if (sbinfo->max_inodes) { 215 spin_lock(&sbinfo->stat_lock); 216 sbinfo->free_inodes++; 217 spin_unlock(&sbinfo->stat_lock); 218 } 219} 220 221/** 222 * shmem_recalc_inode - recalculate the block usage of an inode 223 * @inode: inode to recalc 224 * 225 * We have to calculate the free blocks since the mm can drop 226 * undirtied hole pages behind our back. 227 * 228 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 229 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 230 * 231 * It has to be called with the spinlock held. 232 */ 233static void shmem_recalc_inode(struct inode *inode) 234{ 235 struct shmem_inode_info *info = SHMEM_I(inode); 236 long freed; 237 238 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 239 if (freed > 0) { 240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 241 if (sbinfo->max_blocks) 242 percpu_counter_add(&sbinfo->used_blocks, -freed); 243 info->alloced -= freed; 244 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 245 shmem_unacct_blocks(info->flags, freed); 246 } 247} 248 249bool shmem_charge(struct inode *inode, long pages) 250{ 251 struct shmem_inode_info *info = SHMEM_I(inode); 252 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 253 unsigned long flags; 254 255 if (shmem_acct_block(info->flags, pages)) 256 return false; 257 spin_lock_irqsave(&info->lock, flags); 258 info->alloced += pages; 259 inode->i_blocks += pages * BLOCKS_PER_PAGE; 260 shmem_recalc_inode(inode); 261 spin_unlock_irqrestore(&info->lock, flags); 262 inode->i_mapping->nrpages += pages; 263 264 if (!sbinfo->max_blocks) 265 return true; 266 if (percpu_counter_compare(&sbinfo->used_blocks, 267 sbinfo->max_blocks - pages) > 0) { 268 inode->i_mapping->nrpages -= pages; 269 spin_lock_irqsave(&info->lock, flags); 270 info->alloced -= pages; 271 shmem_recalc_inode(inode); 272 spin_unlock_irqrestore(&info->lock, flags); 273 shmem_unacct_blocks(info->flags, pages); 274 return false; 275 } 276 percpu_counter_add(&sbinfo->used_blocks, pages); 277 return true; 278} 279 280void shmem_uncharge(struct inode *inode, long pages) 281{ 282 struct shmem_inode_info *info = SHMEM_I(inode); 283 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 284 unsigned long flags; 285 286 spin_lock_irqsave(&info->lock, flags); 287 info->alloced -= pages; 288 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 289 shmem_recalc_inode(inode); 290 spin_unlock_irqrestore(&info->lock, flags); 291 292 if (sbinfo->max_blocks) 293 percpu_counter_sub(&sbinfo->used_blocks, pages); 294 shmem_unacct_blocks(info->flags, pages); 295} 296 297/* 298 * Replace item expected in radix tree by a new item, while holding tree lock. 299 */ 300static int shmem_radix_tree_replace(struct address_space *mapping, 301 pgoff_t index, void *expected, void *replacement) 302{ 303 void **pslot; 304 void *item; 305 306 VM_BUG_ON(!expected); 307 VM_BUG_ON(!replacement); 308 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 309 if (!pslot) 310 return -ENOENT; 311 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock); 312 if (item != expected) 313 return -ENOENT; 314 radix_tree_replace_slot(pslot, replacement); 315 return 0; 316} 317 318/* 319 * Sometimes, before we decide whether to proceed or to fail, we must check 320 * that an entry was not already brought back from swap by a racing thread. 321 * 322 * Checking page is not enough: by the time a SwapCache page is locked, it 323 * might be reused, and again be SwapCache, using the same swap as before. 324 */ 325static bool shmem_confirm_swap(struct address_space *mapping, 326 pgoff_t index, swp_entry_t swap) 327{ 328 void *item; 329 330 rcu_read_lock(); 331 item = radix_tree_lookup(&mapping->page_tree, index); 332 rcu_read_unlock(); 333 return item == swp_to_radix_entry(swap); 334} 335 336/* 337 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 338 * 339 * SHMEM_HUGE_NEVER: 340 * disables huge pages for the mount; 341 * SHMEM_HUGE_ALWAYS: 342 * enables huge pages for the mount; 343 * SHMEM_HUGE_WITHIN_SIZE: 344 * only allocate huge pages if the page will be fully within i_size, 345 * also respect fadvise()/madvise() hints; 346 * SHMEM_HUGE_ADVISE: 347 * only allocate huge pages if requested with fadvise()/madvise(); 348 */ 349 350#define SHMEM_HUGE_NEVER 0 351#define SHMEM_HUGE_ALWAYS 1 352#define SHMEM_HUGE_WITHIN_SIZE 2 353#define SHMEM_HUGE_ADVISE 3 354 355/* 356 * Special values. 357 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 358 * 359 * SHMEM_HUGE_DENY: 360 * disables huge on shm_mnt and all mounts, for emergency use; 361 * SHMEM_HUGE_FORCE: 362 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 363 * 364 */ 365#define SHMEM_HUGE_DENY (-1) 366#define SHMEM_HUGE_FORCE (-2) 367 368#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 369/* ifdef here to avoid bloating shmem.o when not necessary */ 370 371int shmem_huge __read_mostly; 372 373static int shmem_parse_huge(const char *str) 374{ 375 if (!strcmp(str, "never")) 376 return SHMEM_HUGE_NEVER; 377 if (!strcmp(str, "always")) 378 return SHMEM_HUGE_ALWAYS; 379 if (!strcmp(str, "within_size")) 380 return SHMEM_HUGE_WITHIN_SIZE; 381 if (!strcmp(str, "advise")) 382 return SHMEM_HUGE_ADVISE; 383 if (!strcmp(str, "deny")) 384 return SHMEM_HUGE_DENY; 385 if (!strcmp(str, "force")) 386 return SHMEM_HUGE_FORCE; 387 return -EINVAL; 388} 389 390static const char *shmem_format_huge(int huge) 391{ 392 switch (huge) { 393 case SHMEM_HUGE_NEVER: 394 return "never"; 395 case SHMEM_HUGE_ALWAYS: 396 return "always"; 397 case SHMEM_HUGE_WITHIN_SIZE: 398 return "within_size"; 399 case SHMEM_HUGE_ADVISE: 400 return "advise"; 401 case SHMEM_HUGE_DENY: 402 return "deny"; 403 case SHMEM_HUGE_FORCE: 404 return "force"; 405 default: 406 VM_BUG_ON(1); 407 return "bad_val"; 408 } 409} 410 411static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 412 struct shrink_control *sc, unsigned long nr_to_split) 413{ 414 LIST_HEAD(list), *pos, *next; 415 struct inode *inode; 416 struct shmem_inode_info *info; 417 struct page *page; 418 unsigned long batch = sc ? sc->nr_to_scan : 128; 419 int removed = 0, split = 0; 420 421 if (list_empty(&sbinfo->shrinklist)) 422 return SHRINK_STOP; 423 424 spin_lock(&sbinfo->shrinklist_lock); 425 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 426 info = list_entry(pos, struct shmem_inode_info, shrinklist); 427 428 /* pin the inode */ 429 inode = igrab(&info->vfs_inode); 430 431 /* inode is about to be evicted */ 432 if (!inode) { 433 list_del_init(&info->shrinklist); 434 removed++; 435 goto next; 436 } 437 438 /* Check if there's anything to gain */ 439 if (round_up(inode->i_size, PAGE_SIZE) == 440 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 441 list_del_init(&info->shrinklist); 442 removed++; 443 iput(inode); 444 goto next; 445 } 446 447 list_move(&info->shrinklist, &list); 448next: 449 if (!--batch) 450 break; 451 } 452 spin_unlock(&sbinfo->shrinklist_lock); 453 454 list_for_each_safe(pos, next, &list) { 455 int ret; 456 457 info = list_entry(pos, struct shmem_inode_info, shrinklist); 458 inode = &info->vfs_inode; 459 460 if (nr_to_split && split >= nr_to_split) { 461 iput(inode); 462 continue; 463 } 464 465 page = find_lock_page(inode->i_mapping, 466 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 467 if (!page) 468 goto drop; 469 470 if (!PageTransHuge(page)) { 471 unlock_page(page); 472 put_page(page); 473 goto drop; 474 } 475 476 ret = split_huge_page(page); 477 unlock_page(page); 478 put_page(page); 479 480 if (ret) { 481 /* split failed: leave it on the list */ 482 iput(inode); 483 continue; 484 } 485 486 split++; 487drop: 488 list_del_init(&info->shrinklist); 489 removed++; 490 iput(inode); 491 } 492 493 spin_lock(&sbinfo->shrinklist_lock); 494 list_splice_tail(&list, &sbinfo->shrinklist); 495 sbinfo->shrinklist_len -= removed; 496 spin_unlock(&sbinfo->shrinklist_lock); 497 498 return split; 499} 500 501static long shmem_unused_huge_scan(struct super_block *sb, 502 struct shrink_control *sc) 503{ 504 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 505 506 if (!READ_ONCE(sbinfo->shrinklist_len)) 507 return SHRINK_STOP; 508 509 return shmem_unused_huge_shrink(sbinfo, sc, 0); 510} 511 512static long shmem_unused_huge_count(struct super_block *sb, 513 struct shrink_control *sc) 514{ 515 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 516 return READ_ONCE(sbinfo->shrinklist_len); 517} 518#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 519 520#define shmem_huge SHMEM_HUGE_DENY 521 522static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 523 struct shrink_control *sc, unsigned long nr_to_split) 524{ 525 return 0; 526} 527#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 528 529/* 530 * Like add_to_page_cache_locked, but error if expected item has gone. 531 */ 532static int shmem_add_to_page_cache(struct page *page, 533 struct address_space *mapping, 534 pgoff_t index, void *expected) 535{ 536 int error, nr = hpage_nr_pages(page); 537 538 VM_BUG_ON_PAGE(PageTail(page), page); 539 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 540 VM_BUG_ON_PAGE(!PageLocked(page), page); 541 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 542 VM_BUG_ON(expected && PageTransHuge(page)); 543 544 page_ref_add(page, nr); 545 page->mapping = mapping; 546 page->index = index; 547 548 spin_lock_irq(&mapping->tree_lock); 549 if (PageTransHuge(page)) { 550 void __rcu **results; 551 pgoff_t idx; 552 int i; 553 554 error = 0; 555 if (radix_tree_gang_lookup_slot(&mapping->page_tree, 556 &results, &idx, index, 1) && 557 idx < index + HPAGE_PMD_NR) { 558 error = -EEXIST; 559 } 560 561 if (!error) { 562 for (i = 0; i < HPAGE_PMD_NR; i++) { 563 error = radix_tree_insert(&mapping->page_tree, 564 index + i, page + i); 565 VM_BUG_ON(error); 566 } 567 count_vm_event(THP_FILE_ALLOC); 568 } 569 } else if (!expected) { 570 error = radix_tree_insert(&mapping->page_tree, index, page); 571 } else { 572 error = shmem_radix_tree_replace(mapping, index, expected, 573 page); 574 } 575 576 if (!error) { 577 mapping->nrpages += nr; 578 if (PageTransHuge(page)) 579 __inc_node_page_state(page, NR_SHMEM_THPS); 580 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 581 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); 582 spin_unlock_irq(&mapping->tree_lock); 583 } else { 584 page->mapping = NULL; 585 spin_unlock_irq(&mapping->tree_lock); 586 page_ref_sub(page, nr); 587 } 588 return error; 589} 590 591/* 592 * Like delete_from_page_cache, but substitutes swap for page. 593 */ 594static void shmem_delete_from_page_cache(struct page *page, void *radswap) 595{ 596 struct address_space *mapping = page->mapping; 597 int error; 598 599 VM_BUG_ON_PAGE(PageCompound(page), page); 600 601 spin_lock_irq(&mapping->tree_lock); 602 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 603 page->mapping = NULL; 604 mapping->nrpages--; 605 __dec_node_page_state(page, NR_FILE_PAGES); 606 __dec_node_page_state(page, NR_SHMEM); 607 spin_unlock_irq(&mapping->tree_lock); 608 put_page(page); 609 BUG_ON(error); 610} 611 612/* 613 * Remove swap entry from radix tree, free the swap and its page cache. 614 */ 615static int shmem_free_swap(struct address_space *mapping, 616 pgoff_t index, void *radswap) 617{ 618 void *old; 619 620 spin_lock_irq(&mapping->tree_lock); 621 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 622 spin_unlock_irq(&mapping->tree_lock); 623 if (old != radswap) 624 return -ENOENT; 625 free_swap_and_cache(radix_to_swp_entry(radswap)); 626 return 0; 627} 628 629/* 630 * Determine (in bytes) how many of the shmem object's pages mapped by the 631 * given offsets are swapped out. 632 * 633 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 634 * as long as the inode doesn't go away and racy results are not a problem. 635 */ 636unsigned long shmem_partial_swap_usage(struct address_space *mapping, 637 pgoff_t start, pgoff_t end) 638{ 639 struct radix_tree_iter iter; 640 void **slot; 641 struct page *page; 642 unsigned long swapped = 0; 643 644 rcu_read_lock(); 645 646 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 647 if (iter.index >= end) 648 break; 649 650 page = radix_tree_deref_slot(slot); 651 652 if (radix_tree_deref_retry(page)) { 653 slot = radix_tree_iter_retry(&iter); 654 continue; 655 } 656 657 if (radix_tree_exceptional_entry(page)) 658 swapped++; 659 660 if (need_resched()) { 661 cond_resched_rcu(); 662 slot = radix_tree_iter_next(&iter); 663 } 664 } 665 666 rcu_read_unlock(); 667 668 return swapped << PAGE_SHIFT; 669} 670 671/* 672 * Determine (in bytes) how many of the shmem object's pages mapped by the 673 * given vma is swapped out. 674 * 675 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 676 * as long as the inode doesn't go away and racy results are not a problem. 677 */ 678unsigned long shmem_swap_usage(struct vm_area_struct *vma) 679{ 680 struct inode *inode = file_inode(vma->vm_file); 681 struct shmem_inode_info *info = SHMEM_I(inode); 682 struct address_space *mapping = inode->i_mapping; 683 unsigned long swapped; 684 685 /* Be careful as we don't hold info->lock */ 686 swapped = READ_ONCE(info->swapped); 687 688 /* 689 * The easier cases are when the shmem object has nothing in swap, or 690 * the vma maps it whole. Then we can simply use the stats that we 691 * already track. 692 */ 693 if (!swapped) 694 return 0; 695 696 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 697 return swapped << PAGE_SHIFT; 698 699 /* Here comes the more involved part */ 700 return shmem_partial_swap_usage(mapping, 701 linear_page_index(vma, vma->vm_start), 702 linear_page_index(vma, vma->vm_end)); 703} 704 705/* 706 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 707 */ 708void shmem_unlock_mapping(struct address_space *mapping) 709{ 710 struct pagevec pvec; 711 pgoff_t indices[PAGEVEC_SIZE]; 712 pgoff_t index = 0; 713 714 pagevec_init(&pvec, 0); 715 /* 716 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 717 */ 718 while (!mapping_unevictable(mapping)) { 719 /* 720 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 721 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 722 */ 723 pvec.nr = find_get_entries(mapping, index, 724 PAGEVEC_SIZE, pvec.pages, indices); 725 if (!pvec.nr) 726 break; 727 index = indices[pvec.nr - 1] + 1; 728 pagevec_remove_exceptionals(&pvec); 729 check_move_unevictable_pages(pvec.pages, pvec.nr); 730 pagevec_release(&pvec); 731 cond_resched(); 732 } 733} 734 735/* 736 * Remove range of pages and swap entries from radix tree, and free them. 737 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 738 */ 739static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 740 bool unfalloc) 741{ 742 struct address_space *mapping = inode->i_mapping; 743 struct shmem_inode_info *info = SHMEM_I(inode); 744 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 745 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 746 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 747 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 748 struct pagevec pvec; 749 pgoff_t indices[PAGEVEC_SIZE]; 750 long nr_swaps_freed = 0; 751 pgoff_t index; 752 int i; 753 754 if (lend == -1) 755 end = -1; /* unsigned, so actually very big */ 756 757 pagevec_init(&pvec, 0); 758 index = start; 759 while (index < end) { 760 pvec.nr = find_get_entries(mapping, index, 761 min(end - index, (pgoff_t)PAGEVEC_SIZE), 762 pvec.pages, indices); 763 if (!pvec.nr) 764 break; 765 for (i = 0; i < pagevec_count(&pvec); i++) { 766 struct page *page = pvec.pages[i]; 767 768 index = indices[i]; 769 if (index >= end) 770 break; 771 772 if (radix_tree_exceptional_entry(page)) { 773 if (unfalloc) 774 continue; 775 nr_swaps_freed += !shmem_free_swap(mapping, 776 index, page); 777 continue; 778 } 779 780 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 781 782 if (!trylock_page(page)) 783 continue; 784 785 if (PageTransTail(page)) { 786 /* Middle of THP: zero out the page */ 787 clear_highpage(page); 788 unlock_page(page); 789 continue; 790 } else if (PageTransHuge(page)) { 791 if (index == round_down(end, HPAGE_PMD_NR)) { 792 /* 793 * Range ends in the middle of THP: 794 * zero out the page 795 */ 796 clear_highpage(page); 797 unlock_page(page); 798 continue; 799 } 800 index += HPAGE_PMD_NR - 1; 801 i += HPAGE_PMD_NR - 1; 802 } 803 804 if (!unfalloc || !PageUptodate(page)) { 805 VM_BUG_ON_PAGE(PageTail(page), page); 806 if (page_mapping(page) == mapping) { 807 VM_BUG_ON_PAGE(PageWriteback(page), page); 808 truncate_inode_page(mapping, page); 809 } 810 } 811 unlock_page(page); 812 } 813 pagevec_remove_exceptionals(&pvec); 814 pagevec_release(&pvec); 815 cond_resched(); 816 index++; 817 } 818 819 if (partial_start) { 820 struct page *page = NULL; 821 shmem_getpage(inode, start - 1, &page, SGP_READ); 822 if (page) { 823 unsigned int top = PAGE_SIZE; 824 if (start > end) { 825 top = partial_end; 826 partial_end = 0; 827 } 828 zero_user_segment(page, partial_start, top); 829 set_page_dirty(page); 830 unlock_page(page); 831 put_page(page); 832 } 833 } 834 if (partial_end) { 835 struct page *page = NULL; 836 shmem_getpage(inode, end, &page, SGP_READ); 837 if (page) { 838 zero_user_segment(page, 0, partial_end); 839 set_page_dirty(page); 840 unlock_page(page); 841 put_page(page); 842 } 843 } 844 if (start >= end) 845 return; 846 847 index = start; 848 while (index < end) { 849 cond_resched(); 850 851 pvec.nr = find_get_entries(mapping, index, 852 min(end - index, (pgoff_t)PAGEVEC_SIZE), 853 pvec.pages, indices); 854 if (!pvec.nr) { 855 /* If all gone or hole-punch or unfalloc, we're done */ 856 if (index == start || end != -1) 857 break; 858 /* But if truncating, restart to make sure all gone */ 859 index = start; 860 continue; 861 } 862 for (i = 0; i < pagevec_count(&pvec); i++) { 863 struct page *page = pvec.pages[i]; 864 865 index = indices[i]; 866 if (index >= end) 867 break; 868 869 if (radix_tree_exceptional_entry(page)) { 870 if (unfalloc) 871 continue; 872 if (shmem_free_swap(mapping, index, page)) { 873 /* Swap was replaced by page: retry */ 874 index--; 875 break; 876 } 877 nr_swaps_freed++; 878 continue; 879 } 880 881 lock_page(page); 882 883 if (PageTransTail(page)) { 884 /* Middle of THP: zero out the page */ 885 clear_highpage(page); 886 unlock_page(page); 887 /* 888 * Partial thp truncate due 'start' in middle 889 * of THP: don't need to look on these pages 890 * again on !pvec.nr restart. 891 */ 892 if (index != round_down(end, HPAGE_PMD_NR)) 893 start++; 894 continue; 895 } else if (PageTransHuge(page)) { 896 if (index == round_down(end, HPAGE_PMD_NR)) { 897 /* 898 * Range ends in the middle of THP: 899 * zero out the page 900 */ 901 clear_highpage(page); 902 unlock_page(page); 903 continue; 904 } 905 index += HPAGE_PMD_NR - 1; 906 i += HPAGE_PMD_NR - 1; 907 } 908 909 if (!unfalloc || !PageUptodate(page)) { 910 VM_BUG_ON_PAGE(PageTail(page), page); 911 if (page_mapping(page) == mapping) { 912 VM_BUG_ON_PAGE(PageWriteback(page), page); 913 truncate_inode_page(mapping, page); 914 } else { 915 /* Page was replaced by swap: retry */ 916 unlock_page(page); 917 index--; 918 break; 919 } 920 } 921 unlock_page(page); 922 } 923 pagevec_remove_exceptionals(&pvec); 924 pagevec_release(&pvec); 925 index++; 926 } 927 928 spin_lock_irq(&info->lock); 929 info->swapped -= nr_swaps_freed; 930 shmem_recalc_inode(inode); 931 spin_unlock_irq(&info->lock); 932} 933 934void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 935{ 936 shmem_undo_range(inode, lstart, lend, false); 937 inode->i_ctime = inode->i_mtime = current_time(inode); 938} 939EXPORT_SYMBOL_GPL(shmem_truncate_range); 940 941static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry, 942 struct kstat *stat) 943{ 944 struct inode *inode = dentry->d_inode; 945 struct shmem_inode_info *info = SHMEM_I(inode); 946 947 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 948 spin_lock_irq(&info->lock); 949 shmem_recalc_inode(inode); 950 spin_unlock_irq(&info->lock); 951 } 952 generic_fillattr(inode, stat); 953 return 0; 954} 955 956static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 957{ 958 struct inode *inode = d_inode(dentry); 959 struct shmem_inode_info *info = SHMEM_I(inode); 960 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 961 int error; 962 963 error = setattr_prepare(dentry, attr); 964 if (error) 965 return error; 966 967 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 968 loff_t oldsize = inode->i_size; 969 loff_t newsize = attr->ia_size; 970 971 /* protected by i_mutex */ 972 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 973 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 974 return -EPERM; 975 976 if (newsize != oldsize) { 977 error = shmem_reacct_size(SHMEM_I(inode)->flags, 978 oldsize, newsize); 979 if (error) 980 return error; 981 i_size_write(inode, newsize); 982 inode->i_ctime = inode->i_mtime = current_time(inode); 983 } 984 if (newsize <= oldsize) { 985 loff_t holebegin = round_up(newsize, PAGE_SIZE); 986 if (oldsize > holebegin) 987 unmap_mapping_range(inode->i_mapping, 988 holebegin, 0, 1); 989 if (info->alloced) 990 shmem_truncate_range(inode, 991 newsize, (loff_t)-1); 992 /* unmap again to remove racily COWed private pages */ 993 if (oldsize > holebegin) 994 unmap_mapping_range(inode->i_mapping, 995 holebegin, 0, 1); 996 997 /* 998 * Part of the huge page can be beyond i_size: subject 999 * to shrink under memory pressure. 1000 */ 1001 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 1002 spin_lock(&sbinfo->shrinklist_lock); 1003 if (list_empty(&info->shrinklist)) { 1004 list_add_tail(&info->shrinklist, 1005 &sbinfo->shrinklist); 1006 sbinfo->shrinklist_len++; 1007 } 1008 spin_unlock(&sbinfo->shrinklist_lock); 1009 } 1010 } 1011 } 1012 1013 setattr_copy(inode, attr); 1014 if (attr->ia_valid & ATTR_MODE) 1015 error = posix_acl_chmod(inode, inode->i_mode); 1016 return error; 1017} 1018 1019static void shmem_evict_inode(struct inode *inode) 1020{ 1021 struct shmem_inode_info *info = SHMEM_I(inode); 1022 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1023 1024 if (inode->i_mapping->a_ops == &shmem_aops) { 1025 shmem_unacct_size(info->flags, inode->i_size); 1026 inode->i_size = 0; 1027 shmem_truncate_range(inode, 0, (loff_t)-1); 1028 if (!list_empty(&info->shrinklist)) { 1029 spin_lock(&sbinfo->shrinklist_lock); 1030 if (!list_empty(&info->shrinklist)) { 1031 list_del_init(&info->shrinklist); 1032 sbinfo->shrinklist_len--; 1033 } 1034 spin_unlock(&sbinfo->shrinklist_lock); 1035 } 1036 if (!list_empty(&info->swaplist)) { 1037 mutex_lock(&shmem_swaplist_mutex); 1038 list_del_init(&info->swaplist); 1039 mutex_unlock(&shmem_swaplist_mutex); 1040 } 1041 } 1042 1043 simple_xattrs_free(&info->xattrs); 1044 WARN_ON(inode->i_blocks); 1045 shmem_free_inode(inode->i_sb); 1046 clear_inode(inode); 1047} 1048 1049/* 1050 * If swap found in inode, free it and move page from swapcache to filecache. 1051 */ 1052static int shmem_unuse_inode(struct shmem_inode_info *info, 1053 swp_entry_t swap, struct page **pagep) 1054{ 1055 struct address_space *mapping = info->vfs_inode.i_mapping; 1056 void *radswap; 1057 pgoff_t index; 1058 gfp_t gfp; 1059 int error = 0; 1060 1061 radswap = swp_to_radix_entry(swap); 1062 index = radix_tree_locate_item(&mapping->page_tree, radswap); 1063 if (index == -1) 1064 return -EAGAIN; /* tell shmem_unuse we found nothing */ 1065 1066 /* 1067 * Move _head_ to start search for next from here. 1068 * But be careful: shmem_evict_inode checks list_empty without taking 1069 * mutex, and there's an instant in list_move_tail when info->swaplist 1070 * would appear empty, if it were the only one on shmem_swaplist. 1071 */ 1072 if (shmem_swaplist.next != &info->swaplist) 1073 list_move_tail(&shmem_swaplist, &info->swaplist); 1074 1075 gfp = mapping_gfp_mask(mapping); 1076 if (shmem_should_replace_page(*pagep, gfp)) { 1077 mutex_unlock(&shmem_swaplist_mutex); 1078 error = shmem_replace_page(pagep, gfp, info, index); 1079 mutex_lock(&shmem_swaplist_mutex); 1080 /* 1081 * We needed to drop mutex to make that restrictive page 1082 * allocation, but the inode might have been freed while we 1083 * dropped it: although a racing shmem_evict_inode() cannot 1084 * complete without emptying the radix_tree, our page lock 1085 * on this swapcache page is not enough to prevent that - 1086 * free_swap_and_cache() of our swap entry will only 1087 * trylock_page(), removing swap from radix_tree whatever. 1088 * 1089 * We must not proceed to shmem_add_to_page_cache() if the 1090 * inode has been freed, but of course we cannot rely on 1091 * inode or mapping or info to check that. However, we can 1092 * safely check if our swap entry is still in use (and here 1093 * it can't have got reused for another page): if it's still 1094 * in use, then the inode cannot have been freed yet, and we 1095 * can safely proceed (if it's no longer in use, that tells 1096 * nothing about the inode, but we don't need to unuse swap). 1097 */ 1098 if (!page_swapcount(*pagep)) 1099 error = -ENOENT; 1100 } 1101 1102 /* 1103 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 1104 * but also to hold up shmem_evict_inode(): so inode cannot be freed 1105 * beneath us (pagelock doesn't help until the page is in pagecache). 1106 */ 1107 if (!error) 1108 error = shmem_add_to_page_cache(*pagep, mapping, index, 1109 radswap); 1110 if (error != -ENOMEM) { 1111 /* 1112 * Truncation and eviction use free_swap_and_cache(), which 1113 * only does trylock page: if we raced, best clean up here. 1114 */ 1115 delete_from_swap_cache(*pagep); 1116 set_page_dirty(*pagep); 1117 if (!error) { 1118 spin_lock_irq(&info->lock); 1119 info->swapped--; 1120 spin_unlock_irq(&info->lock); 1121 swap_free(swap); 1122 } 1123 } 1124 return error; 1125} 1126 1127/* 1128 * Search through swapped inodes to find and replace swap by page. 1129 */ 1130int shmem_unuse(swp_entry_t swap, struct page *page) 1131{ 1132 struct list_head *this, *next; 1133 struct shmem_inode_info *info; 1134 struct mem_cgroup *memcg; 1135 int error = 0; 1136 1137 /* 1138 * There's a faint possibility that swap page was replaced before 1139 * caller locked it: caller will come back later with the right page. 1140 */ 1141 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 1142 goto out; 1143 1144 /* 1145 * Charge page using GFP_KERNEL while we can wait, before taking 1146 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 1147 * Charged back to the user (not to caller) when swap account is used. 1148 */ 1149 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg, 1150 false); 1151 if (error) 1152 goto out; 1153 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 1154 error = -EAGAIN; 1155 1156 mutex_lock(&shmem_swaplist_mutex); 1157 list_for_each_safe(this, next, &shmem_swaplist) { 1158 info = list_entry(this, struct shmem_inode_info, swaplist); 1159 if (info->swapped) 1160 error = shmem_unuse_inode(info, swap, &page); 1161 else 1162 list_del_init(&info->swaplist); 1163 cond_resched(); 1164 if (error != -EAGAIN) 1165 break; 1166 /* found nothing in this: move on to search the next */ 1167 } 1168 mutex_unlock(&shmem_swaplist_mutex); 1169 1170 if (error) { 1171 if (error != -ENOMEM) 1172 error = 0; 1173 mem_cgroup_cancel_charge(page, memcg, false); 1174 } else 1175 mem_cgroup_commit_charge(page, memcg, true, false); 1176out: 1177 unlock_page(page); 1178 put_page(page); 1179 return error; 1180} 1181 1182/* 1183 * Move the page from the page cache to the swap cache. 1184 */ 1185static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1186{ 1187 struct shmem_inode_info *info; 1188 struct address_space *mapping; 1189 struct inode *inode; 1190 swp_entry_t swap; 1191 pgoff_t index; 1192 1193 VM_BUG_ON_PAGE(PageCompound(page), page); 1194 BUG_ON(!PageLocked(page)); 1195 mapping = page->mapping; 1196 index = page->index; 1197 inode = mapping->host; 1198 info = SHMEM_I(inode); 1199 if (info->flags & VM_LOCKED) 1200 goto redirty; 1201 if (!total_swap_pages) 1202 goto redirty; 1203 1204 /* 1205 * Our capabilities prevent regular writeback or sync from ever calling 1206 * shmem_writepage; but a stacking filesystem might use ->writepage of 1207 * its underlying filesystem, in which case tmpfs should write out to 1208 * swap only in response to memory pressure, and not for the writeback 1209 * threads or sync. 1210 */ 1211 if (!wbc->for_reclaim) { 1212 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1213 goto redirty; 1214 } 1215 1216 /* 1217 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1218 * value into swapfile.c, the only way we can correctly account for a 1219 * fallocated page arriving here is now to initialize it and write it. 1220 * 1221 * That's okay for a page already fallocated earlier, but if we have 1222 * not yet completed the fallocation, then (a) we want to keep track 1223 * of this page in case we have to undo it, and (b) it may not be a 1224 * good idea to continue anyway, once we're pushing into swap. So 1225 * reactivate the page, and let shmem_fallocate() quit when too many. 1226 */ 1227 if (!PageUptodate(page)) { 1228 if (inode->i_private) { 1229 struct shmem_falloc *shmem_falloc; 1230 spin_lock(&inode->i_lock); 1231 shmem_falloc = inode->i_private; 1232 if (shmem_falloc && 1233 !shmem_falloc->waitq && 1234 index >= shmem_falloc->start && 1235 index < shmem_falloc->next) 1236 shmem_falloc->nr_unswapped++; 1237 else 1238 shmem_falloc = NULL; 1239 spin_unlock(&inode->i_lock); 1240 if (shmem_falloc) 1241 goto redirty; 1242 } 1243 clear_highpage(page); 1244 flush_dcache_page(page); 1245 SetPageUptodate(page); 1246 } 1247 1248 swap = get_swap_page(); 1249 if (!swap.val) 1250 goto redirty; 1251 1252 if (mem_cgroup_try_charge_swap(page, swap)) 1253 goto free_swap; 1254 1255 /* 1256 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1257 * if it's not already there. Do it now before the page is 1258 * moved to swap cache, when its pagelock no longer protects 1259 * the inode from eviction. But don't unlock the mutex until 1260 * we've incremented swapped, because shmem_unuse_inode() will 1261 * prune a !swapped inode from the swaplist under this mutex. 1262 */ 1263 mutex_lock(&shmem_swaplist_mutex); 1264 if (list_empty(&info->swaplist)) 1265 list_add_tail(&info->swaplist, &shmem_swaplist); 1266 1267 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1268 spin_lock_irq(&info->lock); 1269 shmem_recalc_inode(inode); 1270 info->swapped++; 1271 spin_unlock_irq(&info->lock); 1272 1273 swap_shmem_alloc(swap); 1274 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1275 1276 mutex_unlock(&shmem_swaplist_mutex); 1277 BUG_ON(page_mapped(page)); 1278 swap_writepage(page, wbc); 1279 return 0; 1280 } 1281 1282 mutex_unlock(&shmem_swaplist_mutex); 1283free_swap: 1284 swapcache_free(swap); 1285redirty: 1286 set_page_dirty(page); 1287 if (wbc->for_reclaim) 1288 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1289 unlock_page(page); 1290 return 0; 1291} 1292 1293#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1294static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1295{ 1296 char buffer[64]; 1297 1298 if (!mpol || mpol->mode == MPOL_DEFAULT) 1299 return; /* show nothing */ 1300 1301 mpol_to_str(buffer, sizeof(buffer), mpol); 1302 1303 seq_printf(seq, ",mpol=%s", buffer); 1304} 1305 1306static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1307{ 1308 struct mempolicy *mpol = NULL; 1309 if (sbinfo->mpol) { 1310 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1311 mpol = sbinfo->mpol; 1312 mpol_get(mpol); 1313 spin_unlock(&sbinfo->stat_lock); 1314 } 1315 return mpol; 1316} 1317#else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1318static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1319{ 1320} 1321static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1322{ 1323 return NULL; 1324} 1325#endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1326#ifndef CONFIG_NUMA 1327#define vm_policy vm_private_data 1328#endif 1329 1330static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1331 struct shmem_inode_info *info, pgoff_t index) 1332{ 1333 /* Create a pseudo vma that just contains the policy */ 1334 vma->vm_start = 0; 1335 /* Bias interleave by inode number to distribute better across nodes */ 1336 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1337 vma->vm_ops = NULL; 1338 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1339} 1340 1341static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1342{ 1343 /* Drop reference taken by mpol_shared_policy_lookup() */ 1344 mpol_cond_put(vma->vm_policy); 1345} 1346 1347static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1348 struct shmem_inode_info *info, pgoff_t index) 1349{ 1350 struct vm_area_struct pvma; 1351 struct page *page; 1352 1353 shmem_pseudo_vma_init(&pvma, info, index); 1354 page = swapin_readahead(swap, gfp, &pvma, 0); 1355 shmem_pseudo_vma_destroy(&pvma); 1356 1357 return page; 1358} 1359 1360static struct page *shmem_alloc_hugepage(gfp_t gfp, 1361 struct shmem_inode_info *info, pgoff_t index) 1362{ 1363 struct vm_area_struct pvma; 1364 struct inode *inode = &info->vfs_inode; 1365 struct address_space *mapping = inode->i_mapping; 1366 pgoff_t idx, hindex; 1367 void __rcu **results; 1368 struct page *page; 1369 1370 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1371 return NULL; 1372 1373 hindex = round_down(index, HPAGE_PMD_NR); 1374 rcu_read_lock(); 1375 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx, 1376 hindex, 1) && idx < hindex + HPAGE_PMD_NR) { 1377 rcu_read_unlock(); 1378 return NULL; 1379 } 1380 rcu_read_unlock(); 1381 1382 shmem_pseudo_vma_init(&pvma, info, hindex); 1383 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1384 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1385 shmem_pseudo_vma_destroy(&pvma); 1386 if (page) 1387 prep_transhuge_page(page); 1388 return page; 1389} 1390 1391static struct page *shmem_alloc_page(gfp_t gfp, 1392 struct shmem_inode_info *info, pgoff_t index) 1393{ 1394 struct vm_area_struct pvma; 1395 struct page *page; 1396 1397 shmem_pseudo_vma_init(&pvma, info, index); 1398 page = alloc_page_vma(gfp, &pvma, 0); 1399 shmem_pseudo_vma_destroy(&pvma); 1400 1401 return page; 1402} 1403 1404static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1405 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo, 1406 pgoff_t index, bool huge) 1407{ 1408 struct page *page; 1409 int nr; 1410 int err = -ENOSPC; 1411 1412 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1413 huge = false; 1414 nr = huge ? HPAGE_PMD_NR : 1; 1415 1416 if (shmem_acct_block(info->flags, nr)) 1417 goto failed; 1418 if (sbinfo->max_blocks) { 1419 if (percpu_counter_compare(&sbinfo->used_blocks, 1420 sbinfo->max_blocks - nr) > 0) 1421 goto unacct; 1422 percpu_counter_add(&sbinfo->used_blocks, nr); 1423 } 1424 1425 if (huge) 1426 page = shmem_alloc_hugepage(gfp, info, index); 1427 else 1428 page = shmem_alloc_page(gfp, info, index); 1429 if (page) { 1430 __SetPageLocked(page); 1431 __SetPageSwapBacked(page); 1432 return page; 1433 } 1434 1435 err = -ENOMEM; 1436 if (sbinfo->max_blocks) 1437 percpu_counter_add(&sbinfo->used_blocks, -nr); 1438unacct: 1439 shmem_unacct_blocks(info->flags, nr); 1440failed: 1441 return ERR_PTR(err); 1442} 1443 1444/* 1445 * When a page is moved from swapcache to shmem filecache (either by the 1446 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1447 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1448 * ignorance of the mapping it belongs to. If that mapping has special 1449 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1450 * we may need to copy to a suitable page before moving to filecache. 1451 * 1452 * In a future release, this may well be extended to respect cpuset and 1453 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1454 * but for now it is a simple matter of zone. 1455 */ 1456static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1457{ 1458 return page_zonenum(page) > gfp_zone(gfp); 1459} 1460 1461static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1462 struct shmem_inode_info *info, pgoff_t index) 1463{ 1464 struct page *oldpage, *newpage; 1465 struct address_space *swap_mapping; 1466 pgoff_t swap_index; 1467 int error; 1468 1469 oldpage = *pagep; 1470 swap_index = page_private(oldpage); 1471 swap_mapping = page_mapping(oldpage); 1472 1473 /* 1474 * We have arrived here because our zones are constrained, so don't 1475 * limit chance of success by further cpuset and node constraints. 1476 */ 1477 gfp &= ~GFP_CONSTRAINT_MASK; 1478 newpage = shmem_alloc_page(gfp, info, index); 1479 if (!newpage) 1480 return -ENOMEM; 1481 1482 get_page(newpage); 1483 copy_highpage(newpage, oldpage); 1484 flush_dcache_page(newpage); 1485 1486 __SetPageLocked(newpage); 1487 __SetPageSwapBacked(newpage); 1488 SetPageUptodate(newpage); 1489 set_page_private(newpage, swap_index); 1490 SetPageSwapCache(newpage); 1491 1492 /* 1493 * Our caller will very soon move newpage out of swapcache, but it's 1494 * a nice clean interface for us to replace oldpage by newpage there. 1495 */ 1496 spin_lock_irq(&swap_mapping->tree_lock); 1497 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1498 newpage); 1499 if (!error) { 1500 __inc_node_page_state(newpage, NR_FILE_PAGES); 1501 __dec_node_page_state(oldpage, NR_FILE_PAGES); 1502 } 1503 spin_unlock_irq(&swap_mapping->tree_lock); 1504 1505 if (unlikely(error)) { 1506 /* 1507 * Is this possible? I think not, now that our callers check 1508 * both PageSwapCache and page_private after getting page lock; 1509 * but be defensive. Reverse old to newpage for clear and free. 1510 */ 1511 oldpage = newpage; 1512 } else { 1513 mem_cgroup_migrate(oldpage, newpage); 1514 lru_cache_add_anon(newpage); 1515 *pagep = newpage; 1516 } 1517 1518 ClearPageSwapCache(oldpage); 1519 set_page_private(oldpage, 0); 1520 1521 unlock_page(oldpage); 1522 put_page(oldpage); 1523 put_page(oldpage); 1524 return error; 1525} 1526 1527/* 1528 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1529 * 1530 * If we allocate a new one we do not mark it dirty. That's up to the 1531 * vm. If we swap it in we mark it dirty since we also free the swap 1532 * entry since a page cannot live in both the swap and page cache. 1533 * 1534 * fault_mm and fault_type are only supplied by shmem_fault: 1535 * otherwise they are NULL. 1536 */ 1537static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1538 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1539 struct mm_struct *fault_mm, int *fault_type) 1540{ 1541 struct address_space *mapping = inode->i_mapping; 1542 struct shmem_inode_info *info; 1543 struct shmem_sb_info *sbinfo; 1544 struct mm_struct *charge_mm; 1545 struct mem_cgroup *memcg; 1546 struct page *page; 1547 swp_entry_t swap; 1548 enum sgp_type sgp_huge = sgp; 1549 pgoff_t hindex = index; 1550 int error; 1551 int once = 0; 1552 int alloced = 0; 1553 1554 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1555 return -EFBIG; 1556 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1557 sgp = SGP_CACHE; 1558repeat: 1559 swap.val = 0; 1560 page = find_lock_entry(mapping, index); 1561 if (radix_tree_exceptional_entry(page)) { 1562 swap = radix_to_swp_entry(page); 1563 page = NULL; 1564 } 1565 1566 if (sgp <= SGP_CACHE && 1567 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1568 error = -EINVAL; 1569 goto unlock; 1570 } 1571 1572 if (page && sgp == SGP_WRITE) 1573 mark_page_accessed(page); 1574 1575 /* fallocated page? */ 1576 if (page && !PageUptodate(page)) { 1577 if (sgp != SGP_READ) 1578 goto clear; 1579 unlock_page(page); 1580 put_page(page); 1581 page = NULL; 1582 } 1583 if (page || (sgp == SGP_READ && !swap.val)) { 1584 *pagep = page; 1585 return 0; 1586 } 1587 1588 /* 1589 * Fast cache lookup did not find it: 1590 * bring it back from swap or allocate. 1591 */ 1592 info = SHMEM_I(inode); 1593 sbinfo = SHMEM_SB(inode->i_sb); 1594 charge_mm = fault_mm ? : current->mm; 1595 1596 if (swap.val) { 1597 /* Look it up and read it in.. */ 1598 page = lookup_swap_cache(swap); 1599 if (!page) { 1600 /* Or update major stats only when swapin succeeds?? */ 1601 if (fault_type) { 1602 *fault_type |= VM_FAULT_MAJOR; 1603 count_vm_event(PGMAJFAULT); 1604 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT); 1605 } 1606 /* Here we actually start the io */ 1607 page = shmem_swapin(swap, gfp, info, index); 1608 if (!page) { 1609 error = -ENOMEM; 1610 goto failed; 1611 } 1612 } 1613 1614 /* We have to do this with page locked to prevent races */ 1615 lock_page(page); 1616 if (!PageSwapCache(page) || page_private(page) != swap.val || 1617 !shmem_confirm_swap(mapping, index, swap)) { 1618 error = -EEXIST; /* try again */ 1619 goto unlock; 1620 } 1621 if (!PageUptodate(page)) { 1622 error = -EIO; 1623 goto failed; 1624 } 1625 wait_on_page_writeback(page); 1626 1627 if (shmem_should_replace_page(page, gfp)) { 1628 error = shmem_replace_page(&page, gfp, info, index); 1629 if (error) 1630 goto failed; 1631 } 1632 1633 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1634 false); 1635 if (!error) { 1636 error = shmem_add_to_page_cache(page, mapping, index, 1637 swp_to_radix_entry(swap)); 1638 /* 1639 * We already confirmed swap under page lock, and make 1640 * no memory allocation here, so usually no possibility 1641 * of error; but free_swap_and_cache() only trylocks a 1642 * page, so it is just possible that the entry has been 1643 * truncated or holepunched since swap was confirmed. 1644 * shmem_undo_range() will have done some of the 1645 * unaccounting, now delete_from_swap_cache() will do 1646 * the rest. 1647 * Reset swap.val? No, leave it so "failed" goes back to 1648 * "repeat": reading a hole and writing should succeed. 1649 */ 1650 if (error) { 1651 mem_cgroup_cancel_charge(page, memcg, false); 1652 delete_from_swap_cache(page); 1653 } 1654 } 1655 if (error) 1656 goto failed; 1657 1658 mem_cgroup_commit_charge(page, memcg, true, false); 1659 1660 spin_lock_irq(&info->lock); 1661 info->swapped--; 1662 shmem_recalc_inode(inode); 1663 spin_unlock_irq(&info->lock); 1664 1665 if (sgp == SGP_WRITE) 1666 mark_page_accessed(page); 1667 1668 delete_from_swap_cache(page); 1669 set_page_dirty(page); 1670 swap_free(swap); 1671 1672 } else { 1673 /* shmem_symlink() */ 1674 if (mapping->a_ops != &shmem_aops) 1675 goto alloc_nohuge; 1676 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1677 goto alloc_nohuge; 1678 if (shmem_huge == SHMEM_HUGE_FORCE) 1679 goto alloc_huge; 1680 switch (sbinfo->huge) { 1681 loff_t i_size; 1682 pgoff_t off; 1683 case SHMEM_HUGE_NEVER: 1684 goto alloc_nohuge; 1685 case SHMEM_HUGE_WITHIN_SIZE: 1686 off = round_up(index, HPAGE_PMD_NR); 1687 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1688 if (i_size >= HPAGE_PMD_SIZE && 1689 i_size >> PAGE_SHIFT >= off) 1690 goto alloc_huge; 1691 /* fallthrough */ 1692 case SHMEM_HUGE_ADVISE: 1693 if (sgp_huge == SGP_HUGE) 1694 goto alloc_huge; 1695 /* TODO: implement fadvise() hints */ 1696 goto alloc_nohuge; 1697 } 1698 1699alloc_huge: 1700 page = shmem_alloc_and_acct_page(gfp, info, sbinfo, 1701 index, true); 1702 if (IS_ERR(page)) { 1703alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo, 1704 index, false); 1705 } 1706 if (IS_ERR(page)) { 1707 int retry = 5; 1708 error = PTR_ERR(page); 1709 page = NULL; 1710 if (error != -ENOSPC) 1711 goto failed; 1712 /* 1713 * Try to reclaim some spece by splitting a huge page 1714 * beyond i_size on the filesystem. 1715 */ 1716 while (retry--) { 1717 int ret; 1718 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1719 if (ret == SHRINK_STOP) 1720 break; 1721 if (ret) 1722 goto alloc_nohuge; 1723 } 1724 goto failed; 1725 } 1726 1727 if (PageTransHuge(page)) 1728 hindex = round_down(index, HPAGE_PMD_NR); 1729 else 1730 hindex = index; 1731 1732 if (sgp == SGP_WRITE) 1733 __SetPageReferenced(page); 1734 1735 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg, 1736 PageTransHuge(page)); 1737 if (error) 1738 goto unacct; 1739 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK, 1740 compound_order(page)); 1741 if (!error) { 1742 error = shmem_add_to_page_cache(page, mapping, hindex, 1743 NULL); 1744 radix_tree_preload_end(); 1745 } 1746 if (error) { 1747 mem_cgroup_cancel_charge(page, memcg, 1748 PageTransHuge(page)); 1749 goto unacct; 1750 } 1751 mem_cgroup_commit_charge(page, memcg, false, 1752 PageTransHuge(page)); 1753 lru_cache_add_anon(page); 1754 1755 spin_lock_irq(&info->lock); 1756 info->alloced += 1 << compound_order(page); 1757 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1758 shmem_recalc_inode(inode); 1759 spin_unlock_irq(&info->lock); 1760 alloced = true; 1761 1762 if (PageTransHuge(page) && 1763 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1764 hindex + HPAGE_PMD_NR - 1) { 1765 /* 1766 * Part of the huge page is beyond i_size: subject 1767 * to shrink under memory pressure. 1768 */ 1769 spin_lock(&sbinfo->shrinklist_lock); 1770 if (list_empty(&info->shrinklist)) { 1771 list_add_tail(&info->shrinklist, 1772 &sbinfo->shrinklist); 1773 sbinfo->shrinklist_len++; 1774 } 1775 spin_unlock(&sbinfo->shrinklist_lock); 1776 } 1777 1778 /* 1779 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1780 */ 1781 if (sgp == SGP_FALLOC) 1782 sgp = SGP_WRITE; 1783clear: 1784 /* 1785 * Let SGP_WRITE caller clear ends if write does not fill page; 1786 * but SGP_FALLOC on a page fallocated earlier must initialize 1787 * it now, lest undo on failure cancel our earlier guarantee. 1788 */ 1789 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1790 struct page *head = compound_head(page); 1791 int i; 1792 1793 for (i = 0; i < (1 << compound_order(head)); i++) { 1794 clear_highpage(head + i); 1795 flush_dcache_page(head + i); 1796 } 1797 SetPageUptodate(head); 1798 } 1799 } 1800 1801 /* Perhaps the file has been truncated since we checked */ 1802 if (sgp <= SGP_CACHE && 1803 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1804 if (alloced) { 1805 ClearPageDirty(page); 1806 delete_from_page_cache(page); 1807 spin_lock_irq(&info->lock); 1808 shmem_recalc_inode(inode); 1809 spin_unlock_irq(&info->lock); 1810 } 1811 error = -EINVAL; 1812 goto unlock; 1813 } 1814 *pagep = page + index - hindex; 1815 return 0; 1816 1817 /* 1818 * Error recovery. 1819 */ 1820unacct: 1821 if (sbinfo->max_blocks) 1822 percpu_counter_sub(&sbinfo->used_blocks, 1823 1 << compound_order(page)); 1824 shmem_unacct_blocks(info->flags, 1 << compound_order(page)); 1825 1826 if (PageTransHuge(page)) { 1827 unlock_page(page); 1828 put_page(page); 1829 goto alloc_nohuge; 1830 } 1831failed: 1832 if (swap.val && !shmem_confirm_swap(mapping, index, swap)) 1833 error = -EEXIST; 1834unlock: 1835 if (page) { 1836 unlock_page(page); 1837 put_page(page); 1838 } 1839 if (error == -ENOSPC && !once++) { 1840 info = SHMEM_I(inode); 1841 spin_lock_irq(&info->lock); 1842 shmem_recalc_inode(inode); 1843 spin_unlock_irq(&info->lock); 1844 goto repeat; 1845 } 1846 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1847 goto repeat; 1848 return error; 1849} 1850 1851/* 1852 * This is like autoremove_wake_function, but it removes the wait queue 1853 * entry unconditionally - even if something else had already woken the 1854 * target. 1855 */ 1856static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) 1857{ 1858 int ret = default_wake_function(wait, mode, sync, key); 1859 list_del_init(&wait->task_list); 1860 return ret; 1861} 1862 1863static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1864{ 1865 struct inode *inode = file_inode(vma->vm_file); 1866 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1867 enum sgp_type sgp; 1868 int error; 1869 int ret = VM_FAULT_LOCKED; 1870 1871 /* 1872 * Trinity finds that probing a hole which tmpfs is punching can 1873 * prevent the hole-punch from ever completing: which in turn 1874 * locks writers out with its hold on i_mutex. So refrain from 1875 * faulting pages into the hole while it's being punched. Although 1876 * shmem_undo_range() does remove the additions, it may be unable to 1877 * keep up, as each new page needs its own unmap_mapping_range() call, 1878 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1879 * 1880 * It does not matter if we sometimes reach this check just before the 1881 * hole-punch begins, so that one fault then races with the punch: 1882 * we just need to make racing faults a rare case. 1883 * 1884 * The implementation below would be much simpler if we just used a 1885 * standard mutex or completion: but we cannot take i_mutex in fault, 1886 * and bloating every shmem inode for this unlikely case would be sad. 1887 */ 1888 if (unlikely(inode->i_private)) { 1889 struct shmem_falloc *shmem_falloc; 1890 1891 spin_lock(&inode->i_lock); 1892 shmem_falloc = inode->i_private; 1893 if (shmem_falloc && 1894 shmem_falloc->waitq && 1895 vmf->pgoff >= shmem_falloc->start && 1896 vmf->pgoff < shmem_falloc->next) { 1897 wait_queue_head_t *shmem_falloc_waitq; 1898 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 1899 1900 ret = VM_FAULT_NOPAGE; 1901 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1902 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1903 /* It's polite to up mmap_sem if we can */ 1904 up_read(&vma->vm_mm->mmap_sem); 1905 ret = VM_FAULT_RETRY; 1906 } 1907 1908 shmem_falloc_waitq = shmem_falloc->waitq; 1909 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1910 TASK_UNINTERRUPTIBLE); 1911 spin_unlock(&inode->i_lock); 1912 schedule(); 1913 1914 /* 1915 * shmem_falloc_waitq points into the shmem_fallocate() 1916 * stack of the hole-punching task: shmem_falloc_waitq 1917 * is usually invalid by the time we reach here, but 1918 * finish_wait() does not dereference it in that case; 1919 * though i_lock needed lest racing with wake_up_all(). 1920 */ 1921 spin_lock(&inode->i_lock); 1922 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1923 spin_unlock(&inode->i_lock); 1924 return ret; 1925 } 1926 spin_unlock(&inode->i_lock); 1927 } 1928 1929 sgp = SGP_CACHE; 1930 if (vma->vm_flags & VM_HUGEPAGE) 1931 sgp = SGP_HUGE; 1932 else if (vma->vm_flags & VM_NOHUGEPAGE) 1933 sgp = SGP_NOHUGE; 1934 1935 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 1936 gfp, vma->vm_mm, &ret); 1937 if (error) 1938 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1939 return ret; 1940} 1941 1942unsigned long shmem_get_unmapped_area(struct file *file, 1943 unsigned long uaddr, unsigned long len, 1944 unsigned long pgoff, unsigned long flags) 1945{ 1946 unsigned long (*get_area)(struct file *, 1947 unsigned long, unsigned long, unsigned long, unsigned long); 1948 unsigned long addr; 1949 unsigned long offset; 1950 unsigned long inflated_len; 1951 unsigned long inflated_addr; 1952 unsigned long inflated_offset; 1953 1954 if (len > TASK_SIZE) 1955 return -ENOMEM; 1956 1957 get_area = current->mm->get_unmapped_area; 1958 addr = get_area(file, uaddr, len, pgoff, flags); 1959 1960 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1961 return addr; 1962 if (IS_ERR_VALUE(addr)) 1963 return addr; 1964 if (addr & ~PAGE_MASK) 1965 return addr; 1966 if (addr > TASK_SIZE - len) 1967 return addr; 1968 1969 if (shmem_huge == SHMEM_HUGE_DENY) 1970 return addr; 1971 if (len < HPAGE_PMD_SIZE) 1972 return addr; 1973 if (flags & MAP_FIXED) 1974 return addr; 1975 /* 1976 * Our priority is to support MAP_SHARED mapped hugely; 1977 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 1978 * But if caller specified an address hint, respect that as before. 1979 */ 1980 if (uaddr) 1981 return addr; 1982 1983 if (shmem_huge != SHMEM_HUGE_FORCE) { 1984 struct super_block *sb; 1985 1986 if (file) { 1987 VM_BUG_ON(file->f_op != &shmem_file_operations); 1988 sb = file_inode(file)->i_sb; 1989 } else { 1990 /* 1991 * Called directly from mm/mmap.c, or drivers/char/mem.c 1992 * for "/dev/zero", to create a shared anonymous object. 1993 */ 1994 if (IS_ERR(shm_mnt)) 1995 return addr; 1996 sb = shm_mnt->mnt_sb; 1997 } 1998 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 1999 return addr; 2000 } 2001 2002 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2003 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2004 return addr; 2005 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2006 return addr; 2007 2008 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2009 if (inflated_len > TASK_SIZE) 2010 return addr; 2011 if (inflated_len < len) 2012 return addr; 2013 2014 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags); 2015 if (IS_ERR_VALUE(inflated_addr)) 2016 return addr; 2017 if (inflated_addr & ~PAGE_MASK) 2018 return addr; 2019 2020 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2021 inflated_addr += offset - inflated_offset; 2022 if (inflated_offset > offset) 2023 inflated_addr += HPAGE_PMD_SIZE; 2024 2025 if (inflated_addr > TASK_SIZE - len) 2026 return addr; 2027 return inflated_addr; 2028} 2029 2030#ifdef CONFIG_NUMA 2031static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2032{ 2033 struct inode *inode = file_inode(vma->vm_file); 2034 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2035} 2036 2037static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2038 unsigned long addr) 2039{ 2040 struct inode *inode = file_inode(vma->vm_file); 2041 pgoff_t index; 2042 2043 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2044 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2045} 2046#endif 2047 2048int shmem_lock(struct file *file, int lock, struct user_struct *user) 2049{ 2050 struct inode *inode = file_inode(file); 2051 struct shmem_inode_info *info = SHMEM_I(inode); 2052 int retval = -ENOMEM; 2053 2054 spin_lock_irq(&info->lock); 2055 if (lock && !(info->flags & VM_LOCKED)) { 2056 if (!user_shm_lock(inode->i_size, user)) 2057 goto out_nomem; 2058 info->flags |= VM_LOCKED; 2059 mapping_set_unevictable(file->f_mapping); 2060 } 2061 if (!lock && (info->flags & VM_LOCKED) && user) { 2062 user_shm_unlock(inode->i_size, user); 2063 info->flags &= ~VM_LOCKED; 2064 mapping_clear_unevictable(file->f_mapping); 2065 } 2066 retval = 0; 2067 2068out_nomem: 2069 spin_unlock_irq(&info->lock); 2070 return retval; 2071} 2072 2073static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2074{ 2075 file_accessed(file); 2076 vma->vm_ops = &shmem_vm_ops; 2077 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 2078 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2079 (vma->vm_end & HPAGE_PMD_MASK)) { 2080 khugepaged_enter(vma, vma->vm_flags); 2081 } 2082 return 0; 2083} 2084 2085static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2086 umode_t mode, dev_t dev, unsigned long flags) 2087{ 2088 struct inode *inode; 2089 struct shmem_inode_info *info; 2090 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2091 2092 if (shmem_reserve_inode(sb)) 2093 return NULL; 2094 2095 inode = new_inode(sb); 2096 if (inode) { 2097 inode->i_ino = get_next_ino(); 2098 inode_init_owner(inode, dir, mode); 2099 inode->i_blocks = 0; 2100 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2101 inode->i_generation = get_seconds(); 2102 info = SHMEM_I(inode); 2103 memset(info, 0, (char *)inode - (char *)info); 2104 spin_lock_init(&info->lock); 2105 info->seals = F_SEAL_SEAL; 2106 info->flags = flags & VM_NORESERVE; 2107 INIT_LIST_HEAD(&info->shrinklist); 2108 INIT_LIST_HEAD(&info->swaplist); 2109 simple_xattrs_init(&info->xattrs); 2110 cache_no_acl(inode); 2111 2112 switch (mode & S_IFMT) { 2113 default: 2114 inode->i_op = &shmem_special_inode_operations; 2115 init_special_inode(inode, mode, dev); 2116 break; 2117 case S_IFREG: 2118 inode->i_mapping->a_ops = &shmem_aops; 2119 inode->i_op = &shmem_inode_operations; 2120 inode->i_fop = &shmem_file_operations; 2121 mpol_shared_policy_init(&info->policy, 2122 shmem_get_sbmpol(sbinfo)); 2123 break; 2124 case S_IFDIR: 2125 inc_nlink(inode); 2126 /* Some things misbehave if size == 0 on a directory */ 2127 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2128 inode->i_op = &shmem_dir_inode_operations; 2129 inode->i_fop = &simple_dir_operations; 2130 break; 2131 case S_IFLNK: 2132 /* 2133 * Must not load anything in the rbtree, 2134 * mpol_free_shared_policy will not be called. 2135 */ 2136 mpol_shared_policy_init(&info->policy, NULL); 2137 break; 2138 } 2139 } else 2140 shmem_free_inode(sb); 2141 return inode; 2142} 2143 2144bool shmem_mapping(struct address_space *mapping) 2145{ 2146 if (!mapping->host) 2147 return false; 2148 2149 return mapping->host->i_sb->s_op == &shmem_ops; 2150} 2151 2152#ifdef CONFIG_TMPFS 2153static const struct inode_operations shmem_symlink_inode_operations; 2154static const struct inode_operations shmem_short_symlink_operations; 2155 2156#ifdef CONFIG_TMPFS_XATTR 2157static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2158#else 2159#define shmem_initxattrs NULL 2160#endif 2161 2162static int 2163shmem_write_begin(struct file *file, struct address_space *mapping, 2164 loff_t pos, unsigned len, unsigned flags, 2165 struct page **pagep, void **fsdata) 2166{ 2167 struct inode *inode = mapping->host; 2168 struct shmem_inode_info *info = SHMEM_I(inode); 2169 pgoff_t index = pos >> PAGE_SHIFT; 2170 2171 /* i_mutex is held by caller */ 2172 if (unlikely(info->seals)) { 2173 if (info->seals & F_SEAL_WRITE) 2174 return -EPERM; 2175 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2176 return -EPERM; 2177 } 2178 2179 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2180} 2181 2182static int 2183shmem_write_end(struct file *file, struct address_space *mapping, 2184 loff_t pos, unsigned len, unsigned copied, 2185 struct page *page, void *fsdata) 2186{ 2187 struct inode *inode = mapping->host; 2188 2189 if (pos + copied > inode->i_size) 2190 i_size_write(inode, pos + copied); 2191 2192 if (!PageUptodate(page)) { 2193 struct page *head = compound_head(page); 2194 if (PageTransCompound(page)) { 2195 int i; 2196 2197 for (i = 0; i < HPAGE_PMD_NR; i++) { 2198 if (head + i == page) 2199 continue; 2200 clear_highpage(head + i); 2201 flush_dcache_page(head + i); 2202 } 2203 } 2204 if (copied < PAGE_SIZE) { 2205 unsigned from = pos & (PAGE_SIZE - 1); 2206 zero_user_segments(page, 0, from, 2207 from + copied, PAGE_SIZE); 2208 } 2209 SetPageUptodate(head); 2210 } 2211 set_page_dirty(page); 2212 unlock_page(page); 2213 put_page(page); 2214 2215 return copied; 2216} 2217 2218static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2219{ 2220 struct file *file = iocb->ki_filp; 2221 struct inode *inode = file_inode(file); 2222 struct address_space *mapping = inode->i_mapping; 2223 pgoff_t index; 2224 unsigned long offset; 2225 enum sgp_type sgp = SGP_READ; 2226 int error = 0; 2227 ssize_t retval = 0; 2228 loff_t *ppos = &iocb->ki_pos; 2229 2230 /* 2231 * Might this read be for a stacking filesystem? Then when reading 2232 * holes of a sparse file, we actually need to allocate those pages, 2233 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2234 */ 2235 if (!iter_is_iovec(to)) 2236 sgp = SGP_CACHE; 2237 2238 index = *ppos >> PAGE_SHIFT; 2239 offset = *ppos & ~PAGE_MASK; 2240 2241 for (;;) { 2242 struct page *page = NULL; 2243 pgoff_t end_index; 2244 unsigned long nr, ret; 2245 loff_t i_size = i_size_read(inode); 2246 2247 end_index = i_size >> PAGE_SHIFT; 2248 if (index > end_index) 2249 break; 2250 if (index == end_index) { 2251 nr = i_size & ~PAGE_MASK; 2252 if (nr <= offset) 2253 break; 2254 } 2255 2256 error = shmem_getpage(inode, index, &page, sgp); 2257 if (error) { 2258 if (error == -EINVAL) 2259 error = 0; 2260 break; 2261 } 2262 if (page) { 2263 if (sgp == SGP_CACHE) 2264 set_page_dirty(page); 2265 unlock_page(page); 2266 } 2267 2268 /* 2269 * We must evaluate after, since reads (unlike writes) 2270 * are called without i_mutex protection against truncate 2271 */ 2272 nr = PAGE_SIZE; 2273 i_size = i_size_read(inode); 2274 end_index = i_size >> PAGE_SHIFT; 2275 if (index == end_index) { 2276 nr = i_size & ~PAGE_MASK; 2277 if (nr <= offset) { 2278 if (page) 2279 put_page(page); 2280 break; 2281 } 2282 } 2283 nr -= offset; 2284 2285 if (page) { 2286 /* 2287 * If users can be writing to this page using arbitrary 2288 * virtual addresses, take care about potential aliasing 2289 * before reading the page on the kernel side. 2290 */ 2291 if (mapping_writably_mapped(mapping)) 2292 flush_dcache_page(page); 2293 /* 2294 * Mark the page accessed if we read the beginning. 2295 */ 2296 if (!offset) 2297 mark_page_accessed(page); 2298 } else { 2299 page = ZERO_PAGE(0); 2300 get_page(page); 2301 } 2302 2303 /* 2304 * Ok, we have the page, and it's up-to-date, so 2305 * now we can copy it to user space... 2306 */ 2307 ret = copy_page_to_iter(page, offset, nr, to); 2308 retval += ret; 2309 offset += ret; 2310 index += offset >> PAGE_SHIFT; 2311 offset &= ~PAGE_MASK; 2312 2313 put_page(page); 2314 if (!iov_iter_count(to)) 2315 break; 2316 if (ret < nr) { 2317 error = -EFAULT; 2318 break; 2319 } 2320 cond_resched(); 2321 } 2322 2323 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2324 file_accessed(file); 2325 return retval ? retval : error; 2326} 2327 2328/* 2329 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 2330 */ 2331static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2332 pgoff_t index, pgoff_t end, int whence) 2333{ 2334 struct page *page; 2335 struct pagevec pvec; 2336 pgoff_t indices[PAGEVEC_SIZE]; 2337 bool done = false; 2338 int i; 2339 2340 pagevec_init(&pvec, 0); 2341 pvec.nr = 1; /* start small: we may be there already */ 2342 while (!done) { 2343 pvec.nr = find_get_entries(mapping, index, 2344 pvec.nr, pvec.pages, indices); 2345 if (!pvec.nr) { 2346 if (whence == SEEK_DATA) 2347 index = end; 2348 break; 2349 } 2350 for (i = 0; i < pvec.nr; i++, index++) { 2351 if (index < indices[i]) { 2352 if (whence == SEEK_HOLE) { 2353 done = true; 2354 break; 2355 } 2356 index = indices[i]; 2357 } 2358 page = pvec.pages[i]; 2359 if (page && !radix_tree_exceptional_entry(page)) { 2360 if (!PageUptodate(page)) 2361 page = NULL; 2362 } 2363 if (index >= end || 2364 (page && whence == SEEK_DATA) || 2365 (!page && whence == SEEK_HOLE)) { 2366 done = true; 2367 break; 2368 } 2369 } 2370 pagevec_remove_exceptionals(&pvec); 2371 pagevec_release(&pvec); 2372 pvec.nr = PAGEVEC_SIZE; 2373 cond_resched(); 2374 } 2375 return index; 2376} 2377 2378static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2379{ 2380 struct address_space *mapping = file->f_mapping; 2381 struct inode *inode = mapping->host; 2382 pgoff_t start, end; 2383 loff_t new_offset; 2384 2385 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2386 return generic_file_llseek_size(file, offset, whence, 2387 MAX_LFS_FILESIZE, i_size_read(inode)); 2388 inode_lock(inode); 2389 /* We're holding i_mutex so we can access i_size directly */ 2390 2391 if (offset < 0) 2392 offset = -EINVAL; 2393 else if (offset >= inode->i_size) 2394 offset = -ENXIO; 2395 else { 2396 start = offset >> PAGE_SHIFT; 2397 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2398 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2399 new_offset <<= PAGE_SHIFT; 2400 if (new_offset > offset) { 2401 if (new_offset < inode->i_size) 2402 offset = new_offset; 2403 else if (whence == SEEK_DATA) 2404 offset = -ENXIO; 2405 else 2406 offset = inode->i_size; 2407 } 2408 } 2409 2410 if (offset >= 0) 2411 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2412 inode_unlock(inode); 2413 return offset; 2414} 2415 2416/* 2417 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, 2418 * so reuse a tag which we firmly believe is never set or cleared on shmem. 2419 */ 2420#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE 2421#define LAST_SCAN 4 /* about 150ms max */ 2422 2423static void shmem_tag_pins(struct address_space *mapping) 2424{ 2425 struct radix_tree_iter iter; 2426 void **slot; 2427 pgoff_t start; 2428 struct page *page; 2429 2430 lru_add_drain(); 2431 start = 0; 2432 rcu_read_lock(); 2433 2434 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 2435 page = radix_tree_deref_slot(slot); 2436 if (!page || radix_tree_exception(page)) { 2437 if (radix_tree_deref_retry(page)) { 2438 slot = radix_tree_iter_retry(&iter); 2439 continue; 2440 } 2441 } else if (page_count(page) - page_mapcount(page) > 1) { 2442 spin_lock_irq(&mapping->tree_lock); 2443 radix_tree_tag_set(&mapping->page_tree, iter.index, 2444 SHMEM_TAG_PINNED); 2445 spin_unlock_irq(&mapping->tree_lock); 2446 } 2447 2448 if (need_resched()) { 2449 cond_resched_rcu(); 2450 slot = radix_tree_iter_next(&iter); 2451 } 2452 } 2453 rcu_read_unlock(); 2454} 2455 2456/* 2457 * Setting SEAL_WRITE requires us to verify there's no pending writer. However, 2458 * via get_user_pages(), drivers might have some pending I/O without any active 2459 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages 2460 * and see whether it has an elevated ref-count. If so, we tag them and wait for 2461 * them to be dropped. 2462 * The caller must guarantee that no new user will acquire writable references 2463 * to those pages to avoid races. 2464 */ 2465static int shmem_wait_for_pins(struct address_space *mapping) 2466{ 2467 struct radix_tree_iter iter; 2468 void **slot; 2469 pgoff_t start; 2470 struct page *page; 2471 int error, scan; 2472 2473 shmem_tag_pins(mapping); 2474 2475 error = 0; 2476 for (scan = 0; scan <= LAST_SCAN; scan++) { 2477 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) 2478 break; 2479 2480 if (!scan) 2481 lru_add_drain_all(); 2482 else if (schedule_timeout_killable((HZ << scan) / 200)) 2483 scan = LAST_SCAN; 2484 2485 start = 0; 2486 rcu_read_lock(); 2487 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 2488 start, SHMEM_TAG_PINNED) { 2489 2490 page = radix_tree_deref_slot(slot); 2491 if (radix_tree_exception(page)) { 2492 if (radix_tree_deref_retry(page)) { 2493 slot = radix_tree_iter_retry(&iter); 2494 continue; 2495 } 2496 2497 page = NULL; 2498 } 2499 2500 if (page && 2501 page_count(page) - page_mapcount(page) != 1) { 2502 if (scan < LAST_SCAN) 2503 goto continue_resched; 2504 2505 /* 2506 * On the last scan, we clean up all those tags 2507 * we inserted; but make a note that we still 2508 * found pages pinned. 2509 */ 2510 error = -EBUSY; 2511 } 2512 2513 spin_lock_irq(&mapping->tree_lock); 2514 radix_tree_tag_clear(&mapping->page_tree, 2515 iter.index, SHMEM_TAG_PINNED); 2516 spin_unlock_irq(&mapping->tree_lock); 2517continue_resched: 2518 if (need_resched()) { 2519 cond_resched_rcu(); 2520 slot = radix_tree_iter_next(&iter); 2521 } 2522 } 2523 rcu_read_unlock(); 2524 } 2525 2526 return error; 2527} 2528 2529#define F_ALL_SEALS (F_SEAL_SEAL | \ 2530 F_SEAL_SHRINK | \ 2531 F_SEAL_GROW | \ 2532 F_SEAL_WRITE) 2533 2534int shmem_add_seals(struct file *file, unsigned int seals) 2535{ 2536 struct inode *inode = file_inode(file); 2537 struct shmem_inode_info *info = SHMEM_I(inode); 2538 int error; 2539 2540 /* 2541 * SEALING 2542 * Sealing allows multiple parties to share a shmem-file but restrict 2543 * access to a specific subset of file operations. Seals can only be 2544 * added, but never removed. This way, mutually untrusted parties can 2545 * share common memory regions with a well-defined policy. A malicious 2546 * peer can thus never perform unwanted operations on a shared object. 2547 * 2548 * Seals are only supported on special shmem-files and always affect 2549 * the whole underlying inode. Once a seal is set, it may prevent some 2550 * kinds of access to the file. Currently, the following seals are 2551 * defined: 2552 * SEAL_SEAL: Prevent further seals from being set on this file 2553 * SEAL_SHRINK: Prevent the file from shrinking 2554 * SEAL_GROW: Prevent the file from growing 2555 * SEAL_WRITE: Prevent write access to the file 2556 * 2557 * As we don't require any trust relationship between two parties, we 2558 * must prevent seals from being removed. Therefore, sealing a file 2559 * only adds a given set of seals to the file, it never touches 2560 * existing seals. Furthermore, the "setting seals"-operation can be 2561 * sealed itself, which basically prevents any further seal from being 2562 * added. 2563 * 2564 * Semantics of sealing are only defined on volatile files. Only 2565 * anonymous shmem files support sealing. More importantly, seals are 2566 * never written to disk. Therefore, there's no plan to support it on 2567 * other file types. 2568 */ 2569 2570 if (file->f_op != &shmem_file_operations) 2571 return -EINVAL; 2572 if (!(file->f_mode & FMODE_WRITE)) 2573 return -EPERM; 2574 if (seals & ~(unsigned int)F_ALL_SEALS) 2575 return -EINVAL; 2576 2577 inode_lock(inode); 2578 2579 if (info->seals & F_SEAL_SEAL) { 2580 error = -EPERM; 2581 goto unlock; 2582 } 2583 2584 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) { 2585 error = mapping_deny_writable(file->f_mapping); 2586 if (error) 2587 goto unlock; 2588 2589 error = shmem_wait_for_pins(file->f_mapping); 2590 if (error) { 2591 mapping_allow_writable(file->f_mapping); 2592 goto unlock; 2593 } 2594 } 2595 2596 info->seals |= seals; 2597 error = 0; 2598 2599unlock: 2600 inode_unlock(inode); 2601 return error; 2602} 2603EXPORT_SYMBOL_GPL(shmem_add_seals); 2604 2605int shmem_get_seals(struct file *file) 2606{ 2607 if (file->f_op != &shmem_file_operations) 2608 return -EINVAL; 2609 2610 return SHMEM_I(file_inode(file))->seals; 2611} 2612EXPORT_SYMBOL_GPL(shmem_get_seals); 2613 2614long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2615{ 2616 long error; 2617 2618 switch (cmd) { 2619 case F_ADD_SEALS: 2620 /* disallow upper 32bit */ 2621 if (arg > UINT_MAX) 2622 return -EINVAL; 2623 2624 error = shmem_add_seals(file, arg); 2625 break; 2626 case F_GET_SEALS: 2627 error = shmem_get_seals(file); 2628 break; 2629 default: 2630 error = -EINVAL; 2631 break; 2632 } 2633 2634 return error; 2635} 2636 2637static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2638 loff_t len) 2639{ 2640 struct inode *inode = file_inode(file); 2641 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2642 struct shmem_inode_info *info = SHMEM_I(inode); 2643 struct shmem_falloc shmem_falloc; 2644 pgoff_t start, index, end; 2645 int error; 2646 2647 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2648 return -EOPNOTSUPP; 2649 2650 inode_lock(inode); 2651 2652 if (mode & FALLOC_FL_PUNCH_HOLE) { 2653 struct address_space *mapping = file->f_mapping; 2654 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2655 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2656 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2657 2658 /* protected by i_mutex */ 2659 if (info->seals & F_SEAL_WRITE) { 2660 error = -EPERM; 2661 goto out; 2662 } 2663 2664 shmem_falloc.waitq = &shmem_falloc_waitq; 2665 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2666 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2667 spin_lock(&inode->i_lock); 2668 inode->i_private = &shmem_falloc; 2669 spin_unlock(&inode->i_lock); 2670 2671 if ((u64)unmap_end > (u64)unmap_start) 2672 unmap_mapping_range(mapping, unmap_start, 2673 1 + unmap_end - unmap_start, 0); 2674 shmem_truncate_range(inode, offset, offset + len - 1); 2675 /* No need to unmap again: hole-punching leaves COWed pages */ 2676 2677 spin_lock(&inode->i_lock); 2678 inode->i_private = NULL; 2679 wake_up_all(&shmem_falloc_waitq); 2680 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list)); 2681 spin_unlock(&inode->i_lock); 2682 error = 0; 2683 goto out; 2684 } 2685 2686 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2687 error = inode_newsize_ok(inode, offset + len); 2688 if (error) 2689 goto out; 2690 2691 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2692 error = -EPERM; 2693 goto out; 2694 } 2695 2696 start = offset >> PAGE_SHIFT; 2697 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2698 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2699 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2700 error = -ENOSPC; 2701 goto out; 2702 } 2703 2704 shmem_falloc.waitq = NULL; 2705 shmem_falloc.start = start; 2706 shmem_falloc.next = start; 2707 shmem_falloc.nr_falloced = 0; 2708 shmem_falloc.nr_unswapped = 0; 2709 spin_lock(&inode->i_lock); 2710 inode->i_private = &shmem_falloc; 2711 spin_unlock(&inode->i_lock); 2712 2713 for (index = start; index < end; index++) { 2714 struct page *page; 2715 2716 /* 2717 * Good, the fallocate(2) manpage permits EINTR: we may have 2718 * been interrupted because we are using up too much memory. 2719 */ 2720 if (signal_pending(current)) 2721 error = -EINTR; 2722 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2723 error = -ENOMEM; 2724 else 2725 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2726 if (error) { 2727 /* Remove the !PageUptodate pages we added */ 2728 if (index > start) { 2729 shmem_undo_range(inode, 2730 (loff_t)start << PAGE_SHIFT, 2731 ((loff_t)index << PAGE_SHIFT) - 1, true); 2732 } 2733 goto undone; 2734 } 2735 2736 /* 2737 * Inform shmem_writepage() how far we have reached. 2738 * No need for lock or barrier: we have the page lock. 2739 */ 2740 shmem_falloc.next++; 2741 if (!PageUptodate(page)) 2742 shmem_falloc.nr_falloced++; 2743 2744 /* 2745 * If !PageUptodate, leave it that way so that freeable pages 2746 * can be recognized if we need to rollback on error later. 2747 * But set_page_dirty so that memory pressure will swap rather 2748 * than free the pages we are allocating (and SGP_CACHE pages 2749 * might still be clean: we now need to mark those dirty too). 2750 */ 2751 set_page_dirty(page); 2752 unlock_page(page); 2753 put_page(page); 2754 cond_resched(); 2755 } 2756 2757 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2758 i_size_write(inode, offset + len); 2759 inode->i_ctime = current_time(inode); 2760undone: 2761 spin_lock(&inode->i_lock); 2762 inode->i_private = NULL; 2763 spin_unlock(&inode->i_lock); 2764out: 2765 inode_unlock(inode); 2766 return error; 2767} 2768 2769static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2770{ 2771 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2772 2773 buf->f_type = TMPFS_MAGIC; 2774 buf->f_bsize = PAGE_SIZE; 2775 buf->f_namelen = NAME_MAX; 2776 if (sbinfo->max_blocks) { 2777 buf->f_blocks = sbinfo->max_blocks; 2778 buf->f_bavail = 2779 buf->f_bfree = sbinfo->max_blocks - 2780 percpu_counter_sum(&sbinfo->used_blocks); 2781 } 2782 if (sbinfo->max_inodes) { 2783 buf->f_files = sbinfo->max_inodes; 2784 buf->f_ffree = sbinfo->free_inodes; 2785 } 2786 /* else leave those fields 0 like simple_statfs */ 2787 return 0; 2788} 2789 2790/* 2791 * File creation. Allocate an inode, and we're done.. 2792 */ 2793static int 2794shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2795{ 2796 struct inode *inode; 2797 int error = -ENOSPC; 2798 2799 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2800 if (inode) { 2801 error = simple_acl_create(dir, inode); 2802 if (error) 2803 goto out_iput; 2804 error = security_inode_init_security(inode, dir, 2805 &dentry->d_name, 2806 shmem_initxattrs, NULL); 2807 if (error && error != -EOPNOTSUPP) 2808 goto out_iput; 2809 2810 error = 0; 2811 dir->i_size += BOGO_DIRENT_SIZE; 2812 dir->i_ctime = dir->i_mtime = current_time(dir); 2813 d_instantiate(dentry, inode); 2814 dget(dentry); /* Extra count - pin the dentry in core */ 2815 } 2816 return error; 2817out_iput: 2818 iput(inode); 2819 return error; 2820} 2821 2822static int 2823shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2824{ 2825 struct inode *inode; 2826 int error = -ENOSPC; 2827 2828 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2829 if (inode) { 2830 error = security_inode_init_security(inode, dir, 2831 NULL, 2832 shmem_initxattrs, NULL); 2833 if (error && error != -EOPNOTSUPP) 2834 goto out_iput; 2835 error = simple_acl_create(dir, inode); 2836 if (error) 2837 goto out_iput; 2838 d_tmpfile(dentry, inode); 2839 } 2840 return error; 2841out_iput: 2842 iput(inode); 2843 return error; 2844} 2845 2846static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2847{ 2848 int error; 2849 2850 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2851 return error; 2852 inc_nlink(dir); 2853 return 0; 2854} 2855 2856static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2857 bool excl) 2858{ 2859 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2860} 2861 2862/* 2863 * Link a file.. 2864 */ 2865static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2866{ 2867 struct inode *inode = d_inode(old_dentry); 2868 int ret; 2869 2870 /* 2871 * No ordinary (disk based) filesystem counts links as inodes; 2872 * but each new link needs a new dentry, pinning lowmem, and 2873 * tmpfs dentries cannot be pruned until they are unlinked. 2874 */ 2875 ret = shmem_reserve_inode(inode->i_sb); 2876 if (ret) 2877 goto out; 2878 2879 dir->i_size += BOGO_DIRENT_SIZE; 2880 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2881 inc_nlink(inode); 2882 ihold(inode); /* New dentry reference */ 2883 dget(dentry); /* Extra pinning count for the created dentry */ 2884 d_instantiate(dentry, inode); 2885out: 2886 return ret; 2887} 2888 2889static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2890{ 2891 struct inode *inode = d_inode(dentry); 2892 2893 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2894 shmem_free_inode(inode->i_sb); 2895 2896 dir->i_size -= BOGO_DIRENT_SIZE; 2897 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2898 drop_nlink(inode); 2899 dput(dentry); /* Undo the count from "create" - this does all the work */ 2900 return 0; 2901} 2902 2903static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2904{ 2905 if (!simple_empty(dentry)) 2906 return -ENOTEMPTY; 2907 2908 drop_nlink(d_inode(dentry)); 2909 drop_nlink(dir); 2910 return shmem_unlink(dir, dentry); 2911} 2912 2913static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2914{ 2915 bool old_is_dir = d_is_dir(old_dentry); 2916 bool new_is_dir = d_is_dir(new_dentry); 2917 2918 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2919 if (old_is_dir) { 2920 drop_nlink(old_dir); 2921 inc_nlink(new_dir); 2922 } else { 2923 drop_nlink(new_dir); 2924 inc_nlink(old_dir); 2925 } 2926 } 2927 old_dir->i_ctime = old_dir->i_mtime = 2928 new_dir->i_ctime = new_dir->i_mtime = 2929 d_inode(old_dentry)->i_ctime = 2930 d_inode(new_dentry)->i_ctime = current_time(old_dir); 2931 2932 return 0; 2933} 2934 2935static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 2936{ 2937 struct dentry *whiteout; 2938 int error; 2939 2940 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2941 if (!whiteout) 2942 return -ENOMEM; 2943 2944 error = shmem_mknod(old_dir, whiteout, 2945 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2946 dput(whiteout); 2947 if (error) 2948 return error; 2949 2950 /* 2951 * Cheat and hash the whiteout while the old dentry is still in 2952 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2953 * 2954 * d_lookup() will consistently find one of them at this point, 2955 * not sure which one, but that isn't even important. 2956 */ 2957 d_rehash(whiteout); 2958 return 0; 2959} 2960 2961/* 2962 * The VFS layer already does all the dentry stuff for rename, 2963 * we just have to decrement the usage count for the target if 2964 * it exists so that the VFS layer correctly free's it when it 2965 * gets overwritten. 2966 */ 2967static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 2968{ 2969 struct inode *inode = d_inode(old_dentry); 2970 int they_are_dirs = S_ISDIR(inode->i_mode); 2971 2972 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 2973 return -EINVAL; 2974 2975 if (flags & RENAME_EXCHANGE) 2976 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 2977 2978 if (!simple_empty(new_dentry)) 2979 return -ENOTEMPTY; 2980 2981 if (flags & RENAME_WHITEOUT) { 2982 int error; 2983 2984 error = shmem_whiteout(old_dir, old_dentry); 2985 if (error) 2986 return error; 2987 } 2988 2989 if (d_really_is_positive(new_dentry)) { 2990 (void) shmem_unlink(new_dir, new_dentry); 2991 if (they_are_dirs) { 2992 drop_nlink(d_inode(new_dentry)); 2993 drop_nlink(old_dir); 2994 } 2995 } else if (they_are_dirs) { 2996 drop_nlink(old_dir); 2997 inc_nlink(new_dir); 2998 } 2999 3000 old_dir->i_size -= BOGO_DIRENT_SIZE; 3001 new_dir->i_size += BOGO_DIRENT_SIZE; 3002 old_dir->i_ctime = old_dir->i_mtime = 3003 new_dir->i_ctime = new_dir->i_mtime = 3004 inode->i_ctime = current_time(old_dir); 3005 return 0; 3006} 3007 3008static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3009{ 3010 int error; 3011 int len; 3012 struct inode *inode; 3013 struct page *page; 3014 struct shmem_inode_info *info; 3015 3016 len = strlen(symname) + 1; 3017 if (len > PAGE_SIZE) 3018 return -ENAMETOOLONG; 3019 3020 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 3021 if (!inode) 3022 return -ENOSPC; 3023 3024 error = security_inode_init_security(inode, dir, &dentry->d_name, 3025 shmem_initxattrs, NULL); 3026 if (error) { 3027 if (error != -EOPNOTSUPP) { 3028 iput(inode); 3029 return error; 3030 } 3031 error = 0; 3032 } 3033 3034 info = SHMEM_I(inode); 3035 inode->i_size = len-1; 3036 if (len <= SHORT_SYMLINK_LEN) { 3037 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3038 if (!inode->i_link) { 3039 iput(inode); 3040 return -ENOMEM; 3041 } 3042 inode->i_op = &shmem_short_symlink_operations; 3043 } else { 3044 inode_nohighmem(inode); 3045 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3046 if (error) { 3047 iput(inode); 3048 return error; 3049 } 3050 inode->i_mapping->a_ops = &shmem_aops; 3051 inode->i_op = &shmem_symlink_inode_operations; 3052 memcpy(page_address(page), symname, len); 3053 SetPageUptodate(page); 3054 set_page_dirty(page); 3055 unlock_page(page); 3056 put_page(page); 3057 } 3058 dir->i_size += BOGO_DIRENT_SIZE; 3059 dir->i_ctime = dir->i_mtime = current_time(dir); 3060 d_instantiate(dentry, inode); 3061 dget(dentry); 3062 return 0; 3063} 3064 3065static void shmem_put_link(void *arg) 3066{ 3067 mark_page_accessed(arg); 3068 put_page(arg); 3069} 3070 3071static const char *shmem_get_link(struct dentry *dentry, 3072 struct inode *inode, 3073 struct delayed_call *done) 3074{ 3075 struct page *page = NULL; 3076 int error; 3077 if (!dentry) { 3078 page = find_get_page(inode->i_mapping, 0); 3079 if (!page) 3080 return ERR_PTR(-ECHILD); 3081 if (!PageUptodate(page)) { 3082 put_page(page); 3083 return ERR_PTR(-ECHILD); 3084 } 3085 } else { 3086 error = shmem_getpage(inode, 0, &page, SGP_READ); 3087 if (error) 3088 return ERR_PTR(error); 3089 unlock_page(page); 3090 } 3091 set_delayed_call(done, shmem_put_link, page); 3092 return page_address(page); 3093} 3094 3095#ifdef CONFIG_TMPFS_XATTR 3096/* 3097 * Superblocks without xattr inode operations may get some security.* xattr 3098 * support from the LSM "for free". As soon as we have any other xattrs 3099 * like ACLs, we also need to implement the security.* handlers at 3100 * filesystem level, though. 3101 */ 3102 3103/* 3104 * Callback for security_inode_init_security() for acquiring xattrs. 3105 */ 3106static int shmem_initxattrs(struct inode *inode, 3107 const struct xattr *xattr_array, 3108 void *fs_info) 3109{ 3110 struct shmem_inode_info *info = SHMEM_I(inode); 3111 const struct xattr *xattr; 3112 struct simple_xattr *new_xattr; 3113 size_t len; 3114 3115 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3116 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3117 if (!new_xattr) 3118 return -ENOMEM; 3119 3120 len = strlen(xattr->name) + 1; 3121 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3122 GFP_KERNEL); 3123 if (!new_xattr->name) { 3124 kfree(new_xattr); 3125 return -ENOMEM; 3126 } 3127 3128 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3129 XATTR_SECURITY_PREFIX_LEN); 3130 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3131 xattr->name, len); 3132 3133 simple_xattr_list_add(&info->xattrs, new_xattr); 3134 } 3135 3136 return 0; 3137} 3138 3139static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3140 struct dentry *unused, struct inode *inode, 3141 const char *name, void *buffer, size_t size) 3142{ 3143 struct shmem_inode_info *info = SHMEM_I(inode); 3144 3145 name = xattr_full_name(handler, name); 3146 return simple_xattr_get(&info->xattrs, name, buffer, size); 3147} 3148 3149static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3150 struct dentry *unused, struct inode *inode, 3151 const char *name, const void *value, 3152 size_t size, int flags) 3153{ 3154 struct shmem_inode_info *info = SHMEM_I(inode); 3155 3156 name = xattr_full_name(handler, name); 3157 return simple_xattr_set(&info->xattrs, name, value, size, flags); 3158} 3159 3160static const struct xattr_handler shmem_security_xattr_handler = { 3161 .prefix = XATTR_SECURITY_PREFIX, 3162 .get = shmem_xattr_handler_get, 3163 .set = shmem_xattr_handler_set, 3164}; 3165 3166static const struct xattr_handler shmem_trusted_xattr_handler = { 3167 .prefix = XATTR_TRUSTED_PREFIX, 3168 .get = shmem_xattr_handler_get, 3169 .set = shmem_xattr_handler_set, 3170}; 3171 3172static const struct xattr_handler *shmem_xattr_handlers[] = { 3173#ifdef CONFIG_TMPFS_POSIX_ACL 3174 &posix_acl_access_xattr_handler, 3175 &posix_acl_default_xattr_handler, 3176#endif 3177 &shmem_security_xattr_handler, 3178 &shmem_trusted_xattr_handler, 3179 NULL 3180}; 3181 3182static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3183{ 3184 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3185 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3186} 3187#endif /* CONFIG_TMPFS_XATTR */ 3188 3189static const struct inode_operations shmem_short_symlink_operations = { 3190 .readlink = generic_readlink, 3191 .get_link = simple_get_link, 3192#ifdef CONFIG_TMPFS_XATTR 3193 .listxattr = shmem_listxattr, 3194#endif 3195}; 3196 3197static const struct inode_operations shmem_symlink_inode_operations = { 3198 .readlink = generic_readlink, 3199 .get_link = shmem_get_link, 3200#ifdef CONFIG_TMPFS_XATTR 3201 .listxattr = shmem_listxattr, 3202#endif 3203}; 3204 3205static struct dentry *shmem_get_parent(struct dentry *child) 3206{ 3207 return ERR_PTR(-ESTALE); 3208} 3209 3210static int shmem_match(struct inode *ino, void *vfh) 3211{ 3212 __u32 *fh = vfh; 3213 __u64 inum = fh[2]; 3214 inum = (inum << 32) | fh[1]; 3215 return ino->i_ino == inum && fh[0] == ino->i_generation; 3216} 3217 3218static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3219 struct fid *fid, int fh_len, int fh_type) 3220{ 3221 struct inode *inode; 3222 struct dentry *dentry = NULL; 3223 u64 inum; 3224 3225 if (fh_len < 3) 3226 return NULL; 3227 3228 inum = fid->raw[2]; 3229 inum = (inum << 32) | fid->raw[1]; 3230 3231 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3232 shmem_match, fid->raw); 3233 if (inode) { 3234 dentry = d_find_alias(inode); 3235 iput(inode); 3236 } 3237 3238 return dentry; 3239} 3240 3241static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3242 struct inode *parent) 3243{ 3244 if (*len < 3) { 3245 *len = 3; 3246 return FILEID_INVALID; 3247 } 3248 3249 if (inode_unhashed(inode)) { 3250 /* Unfortunately insert_inode_hash is not idempotent, 3251 * so as we hash inodes here rather than at creation 3252 * time, we need a lock to ensure we only try 3253 * to do it once 3254 */ 3255 static DEFINE_SPINLOCK(lock); 3256 spin_lock(&lock); 3257 if (inode_unhashed(inode)) 3258 __insert_inode_hash(inode, 3259 inode->i_ino + inode->i_generation); 3260 spin_unlock(&lock); 3261 } 3262 3263 fh[0] = inode->i_generation; 3264 fh[1] = inode->i_ino; 3265 fh[2] = ((__u64)inode->i_ino) >> 32; 3266 3267 *len = 3; 3268 return 1; 3269} 3270 3271static const struct export_operations shmem_export_ops = { 3272 .get_parent = shmem_get_parent, 3273 .encode_fh = shmem_encode_fh, 3274 .fh_to_dentry = shmem_fh_to_dentry, 3275}; 3276 3277static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 3278 bool remount) 3279{ 3280 char *this_char, *value, *rest; 3281 struct mempolicy *mpol = NULL; 3282 uid_t uid; 3283 gid_t gid; 3284 3285 while (options != NULL) { 3286 this_char = options; 3287 for (;;) { 3288 /* 3289 * NUL-terminate this option: unfortunately, 3290 * mount options form a comma-separated list, 3291 * but mpol's nodelist may also contain commas. 3292 */ 3293 options = strchr(options, ','); 3294 if (options == NULL) 3295 break; 3296 options++; 3297 if (!isdigit(*options)) { 3298 options[-1] = '\0'; 3299 break; 3300 } 3301 } 3302 if (!*this_char) 3303 continue; 3304 if ((value = strchr(this_char,'=')) != NULL) { 3305 *value++ = 0; 3306 } else { 3307 pr_err("tmpfs: No value for mount option '%s'\n", 3308 this_char); 3309 goto error; 3310 } 3311 3312 if (!strcmp(this_char,"size")) { 3313 unsigned long long size; 3314 size = memparse(value,&rest); 3315 if (*rest == '%') { 3316 size <<= PAGE_SHIFT; 3317 size *= totalram_pages; 3318 do_div(size, 100); 3319 rest++; 3320 } 3321 if (*rest) 3322 goto bad_val; 3323 sbinfo->max_blocks = 3324 DIV_ROUND_UP(size, PAGE_SIZE); 3325 } else if (!strcmp(this_char,"nr_blocks")) { 3326 sbinfo->max_blocks = memparse(value, &rest); 3327 if (*rest) 3328 goto bad_val; 3329 } else if (!strcmp(this_char,"nr_inodes")) { 3330 sbinfo->max_inodes = memparse(value, &rest); 3331 if (*rest) 3332 goto bad_val; 3333 } else if (!strcmp(this_char,"mode")) { 3334 if (remount) 3335 continue; 3336 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 3337 if (*rest) 3338 goto bad_val; 3339 } else if (!strcmp(this_char,"uid")) { 3340 if (remount) 3341 continue; 3342 uid = simple_strtoul(value, &rest, 0); 3343 if (*rest) 3344 goto bad_val; 3345 sbinfo->uid = make_kuid(current_user_ns(), uid); 3346 if (!uid_valid(sbinfo->uid)) 3347 goto bad_val; 3348 } else if (!strcmp(this_char,"gid")) { 3349 if (remount) 3350 continue; 3351 gid = simple_strtoul(value, &rest, 0); 3352 if (*rest) 3353 goto bad_val; 3354 sbinfo->gid = make_kgid(current_user_ns(), gid); 3355 if (!gid_valid(sbinfo->gid)) 3356 goto bad_val; 3357#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3358 } else if (!strcmp(this_char, "huge")) { 3359 int huge; 3360 huge = shmem_parse_huge(value); 3361 if (huge < 0) 3362 goto bad_val; 3363 if (!has_transparent_hugepage() && 3364 huge != SHMEM_HUGE_NEVER) 3365 goto bad_val; 3366 sbinfo->huge = huge; 3367#endif 3368#ifdef CONFIG_NUMA 3369 } else if (!strcmp(this_char,"mpol")) { 3370 mpol_put(mpol); 3371 mpol = NULL; 3372 if (mpol_parse_str(value, &mpol)) 3373 goto bad_val; 3374#endif 3375 } else { 3376 pr_err("tmpfs: Bad mount option %s\n", this_char); 3377 goto error; 3378 } 3379 } 3380 sbinfo->mpol = mpol; 3381 return 0; 3382 3383bad_val: 3384 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n", 3385 value, this_char); 3386error: 3387 mpol_put(mpol); 3388 return 1; 3389 3390} 3391 3392static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 3393{ 3394 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3395 struct shmem_sb_info config = *sbinfo; 3396 unsigned long inodes; 3397 int error = -EINVAL; 3398 3399 config.mpol = NULL; 3400 if (shmem_parse_options(data, &config, true)) 3401 return error; 3402 3403 spin_lock(&sbinfo->stat_lock); 3404 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3405 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 3406 goto out; 3407 if (config.max_inodes < inodes) 3408 goto out; 3409 /* 3410 * Those tests disallow limited->unlimited while any are in use; 3411 * but we must separately disallow unlimited->limited, because 3412 * in that case we have no record of how much is already in use. 3413 */ 3414 if (config.max_blocks && !sbinfo->max_blocks) 3415 goto out; 3416 if (config.max_inodes && !sbinfo->max_inodes) 3417 goto out; 3418 3419 error = 0; 3420 sbinfo->huge = config.huge; 3421 sbinfo->max_blocks = config.max_blocks; 3422 sbinfo->max_inodes = config.max_inodes; 3423 sbinfo->free_inodes = config.max_inodes - inodes; 3424 3425 /* 3426 * Preserve previous mempolicy unless mpol remount option was specified. 3427 */ 3428 if (config.mpol) { 3429 mpol_put(sbinfo->mpol); 3430 sbinfo->mpol = config.mpol; /* transfers initial ref */ 3431 } 3432out: 3433 spin_unlock(&sbinfo->stat_lock); 3434 return error; 3435} 3436 3437static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3438{ 3439 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3440 3441 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3442 seq_printf(seq, ",size=%luk", 3443 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3444 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3445 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3446 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 3447 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3448 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3449 seq_printf(seq, ",uid=%u", 3450 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3451 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3452 seq_printf(seq, ",gid=%u", 3453 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3454#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3455 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3456 if (sbinfo->huge) 3457 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3458#endif 3459 shmem_show_mpol(seq, sbinfo->mpol); 3460 return 0; 3461} 3462 3463#define MFD_NAME_PREFIX "memfd:" 3464#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) 3465#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) 3466 3467#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING) 3468 3469SYSCALL_DEFINE2(memfd_create, 3470 const char __user *, uname, 3471 unsigned int, flags) 3472{ 3473 struct shmem_inode_info *info; 3474 struct file *file; 3475 int fd, error; 3476 char *name; 3477 long len; 3478 3479 if (flags & ~(unsigned int)MFD_ALL_FLAGS) 3480 return -EINVAL; 3481 3482 /* length includes terminating zero */ 3483 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); 3484 if (len <= 0) 3485 return -EFAULT; 3486 if (len > MFD_NAME_MAX_LEN + 1) 3487 return -EINVAL; 3488 3489 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY); 3490 if (!name) 3491 return -ENOMEM; 3492 3493 strcpy(name, MFD_NAME_PREFIX); 3494 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { 3495 error = -EFAULT; 3496 goto err_name; 3497 } 3498 3499 /* terminating-zero may have changed after strnlen_user() returned */ 3500 if (name[len + MFD_NAME_PREFIX_LEN - 1]) { 3501 error = -EFAULT; 3502 goto err_name; 3503 } 3504 3505 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); 3506 if (fd < 0) { 3507 error = fd; 3508 goto err_name; 3509 } 3510 3511 file = shmem_file_setup(name, 0, VM_NORESERVE); 3512 if (IS_ERR(file)) { 3513 error = PTR_ERR(file); 3514 goto err_fd; 3515 } 3516 info = SHMEM_I(file_inode(file)); 3517 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; 3518 file->f_flags |= O_RDWR | O_LARGEFILE; 3519 if (flags & MFD_ALLOW_SEALING) 3520 info->seals &= ~F_SEAL_SEAL; 3521 3522 fd_install(fd, file); 3523 kfree(name); 3524 return fd; 3525 3526err_fd: 3527 put_unused_fd(fd); 3528err_name: 3529 kfree(name); 3530 return error; 3531} 3532 3533#endif /* CONFIG_TMPFS */ 3534 3535static void shmem_put_super(struct super_block *sb) 3536{ 3537 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3538 3539 percpu_counter_destroy(&sbinfo->used_blocks); 3540 mpol_put(sbinfo->mpol); 3541 kfree(sbinfo); 3542 sb->s_fs_info = NULL; 3543} 3544 3545int shmem_fill_super(struct super_block *sb, void *data, int silent) 3546{ 3547 struct inode *inode; 3548 struct shmem_sb_info *sbinfo; 3549 int err = -ENOMEM; 3550 3551 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3552 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3553 L1_CACHE_BYTES), GFP_KERNEL); 3554 if (!sbinfo) 3555 return -ENOMEM; 3556 3557 sbinfo->mode = S_IRWXUGO | S_ISVTX; 3558 sbinfo->uid = current_fsuid(); 3559 sbinfo->gid = current_fsgid(); 3560 sb->s_fs_info = sbinfo; 3561 3562#ifdef CONFIG_TMPFS 3563 /* 3564 * Per default we only allow half of the physical ram per 3565 * tmpfs instance, limiting inodes to one per page of lowmem; 3566 * but the internal instance is left unlimited. 3567 */ 3568 if (!(sb->s_flags & MS_KERNMOUNT)) { 3569 sbinfo->max_blocks = shmem_default_max_blocks(); 3570 sbinfo->max_inodes = shmem_default_max_inodes(); 3571 if (shmem_parse_options(data, sbinfo, false)) { 3572 err = -EINVAL; 3573 goto failed; 3574 } 3575 } else { 3576 sb->s_flags |= MS_NOUSER; 3577 } 3578 sb->s_export_op = &shmem_export_ops; 3579 sb->s_flags |= MS_NOSEC; 3580#else 3581 sb->s_flags |= MS_NOUSER; 3582#endif 3583 3584 spin_lock_init(&sbinfo->stat_lock); 3585 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3586 goto failed; 3587 sbinfo->free_inodes = sbinfo->max_inodes; 3588 spin_lock_init(&sbinfo->shrinklist_lock); 3589 INIT_LIST_HEAD(&sbinfo->shrinklist); 3590 3591 sb->s_maxbytes = MAX_LFS_FILESIZE; 3592 sb->s_blocksize = PAGE_SIZE; 3593 sb->s_blocksize_bits = PAGE_SHIFT; 3594 sb->s_magic = TMPFS_MAGIC; 3595 sb->s_op = &shmem_ops; 3596 sb->s_time_gran = 1; 3597#ifdef CONFIG_TMPFS_XATTR 3598 sb->s_xattr = shmem_xattr_handlers; 3599#endif 3600#ifdef CONFIG_TMPFS_POSIX_ACL 3601 sb->s_flags |= MS_POSIXACL; 3602#endif 3603 3604 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3605 if (!inode) 3606 goto failed; 3607 inode->i_uid = sbinfo->uid; 3608 inode->i_gid = sbinfo->gid; 3609 sb->s_root = d_make_root(inode); 3610 if (!sb->s_root) 3611 goto failed; 3612 return 0; 3613 3614failed: 3615 shmem_put_super(sb); 3616 return err; 3617} 3618 3619static struct kmem_cache *shmem_inode_cachep; 3620 3621static struct inode *shmem_alloc_inode(struct super_block *sb) 3622{ 3623 struct shmem_inode_info *info; 3624 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3625 if (!info) 3626 return NULL; 3627 return &info->vfs_inode; 3628} 3629 3630static void shmem_destroy_callback(struct rcu_head *head) 3631{ 3632 struct inode *inode = container_of(head, struct inode, i_rcu); 3633 if (S_ISLNK(inode->i_mode)) 3634 kfree(inode->i_link); 3635 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3636} 3637 3638static void shmem_destroy_inode(struct inode *inode) 3639{ 3640 if (S_ISREG(inode->i_mode)) 3641 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3642 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3643} 3644 3645static void shmem_init_inode(void *foo) 3646{ 3647 struct shmem_inode_info *info = foo; 3648 inode_init_once(&info->vfs_inode); 3649} 3650 3651static int shmem_init_inodecache(void) 3652{ 3653 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3654 sizeof(struct shmem_inode_info), 3655 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3656 return 0; 3657} 3658 3659static void shmem_destroy_inodecache(void) 3660{ 3661 kmem_cache_destroy(shmem_inode_cachep); 3662} 3663 3664static const struct address_space_operations shmem_aops = { 3665 .writepage = shmem_writepage, 3666 .set_page_dirty = __set_page_dirty_no_writeback, 3667#ifdef CONFIG_TMPFS 3668 .write_begin = shmem_write_begin, 3669 .write_end = shmem_write_end, 3670#endif 3671#ifdef CONFIG_MIGRATION 3672 .migratepage = migrate_page, 3673#endif 3674 .error_remove_page = generic_error_remove_page, 3675}; 3676 3677static const struct file_operations shmem_file_operations = { 3678 .mmap = shmem_mmap, 3679 .get_unmapped_area = shmem_get_unmapped_area, 3680#ifdef CONFIG_TMPFS 3681 .llseek = shmem_file_llseek, 3682 .read_iter = shmem_file_read_iter, 3683 .write_iter = generic_file_write_iter, 3684 .fsync = noop_fsync, 3685 .splice_read = generic_file_splice_read, 3686 .splice_write = iter_file_splice_write, 3687 .fallocate = shmem_fallocate, 3688#endif 3689}; 3690 3691static const struct inode_operations shmem_inode_operations = { 3692 .getattr = shmem_getattr, 3693 .setattr = shmem_setattr, 3694#ifdef CONFIG_TMPFS_XATTR 3695 .listxattr = shmem_listxattr, 3696 .set_acl = simple_set_acl, 3697#endif 3698}; 3699 3700static const struct inode_operations shmem_dir_inode_operations = { 3701#ifdef CONFIG_TMPFS 3702 .create = shmem_create, 3703 .lookup = simple_lookup, 3704 .link = shmem_link, 3705 .unlink = shmem_unlink, 3706 .symlink = shmem_symlink, 3707 .mkdir = shmem_mkdir, 3708 .rmdir = shmem_rmdir, 3709 .mknod = shmem_mknod, 3710 .rename = shmem_rename2, 3711 .tmpfile = shmem_tmpfile, 3712#endif 3713#ifdef CONFIG_TMPFS_XATTR 3714 .listxattr = shmem_listxattr, 3715#endif 3716#ifdef CONFIG_TMPFS_POSIX_ACL 3717 .setattr = shmem_setattr, 3718 .set_acl = simple_set_acl, 3719#endif 3720}; 3721 3722static const struct inode_operations shmem_special_inode_operations = { 3723#ifdef CONFIG_TMPFS_XATTR 3724 .listxattr = shmem_listxattr, 3725#endif 3726#ifdef CONFIG_TMPFS_POSIX_ACL 3727 .setattr = shmem_setattr, 3728 .set_acl = simple_set_acl, 3729#endif 3730}; 3731 3732static const struct super_operations shmem_ops = { 3733 .alloc_inode = shmem_alloc_inode, 3734 .destroy_inode = shmem_destroy_inode, 3735#ifdef CONFIG_TMPFS 3736 .statfs = shmem_statfs, 3737 .remount_fs = shmem_remount_fs, 3738 .show_options = shmem_show_options, 3739#endif 3740 .evict_inode = shmem_evict_inode, 3741 .drop_inode = generic_delete_inode, 3742 .put_super = shmem_put_super, 3743#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3744 .nr_cached_objects = shmem_unused_huge_count, 3745 .free_cached_objects = shmem_unused_huge_scan, 3746#endif 3747}; 3748 3749static const struct vm_operations_struct shmem_vm_ops = { 3750 .fault = shmem_fault, 3751 .map_pages = filemap_map_pages, 3752#ifdef CONFIG_NUMA 3753 .set_policy = shmem_set_policy, 3754 .get_policy = shmem_get_policy, 3755#endif 3756}; 3757 3758static struct dentry *shmem_mount(struct file_system_type *fs_type, 3759 int flags, const char *dev_name, void *data) 3760{ 3761 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3762} 3763 3764static struct file_system_type shmem_fs_type = { 3765 .owner = THIS_MODULE, 3766 .name = "tmpfs", 3767 .mount = shmem_mount, 3768 .kill_sb = kill_litter_super, 3769 .fs_flags = FS_USERNS_MOUNT, 3770}; 3771 3772int __init shmem_init(void) 3773{ 3774 int error; 3775 3776 /* If rootfs called this, don't re-init */ 3777 if (shmem_inode_cachep) 3778 return 0; 3779 3780 error = shmem_init_inodecache(); 3781 if (error) 3782 goto out3; 3783 3784 error = register_filesystem(&shmem_fs_type); 3785 if (error) { 3786 pr_err("Could not register tmpfs\n"); 3787 goto out2; 3788 } 3789 3790 shm_mnt = kern_mount(&shmem_fs_type); 3791 if (IS_ERR(shm_mnt)) { 3792 error = PTR_ERR(shm_mnt); 3793 pr_err("Could not kern_mount tmpfs\n"); 3794 goto out1; 3795 } 3796 3797#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3798 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY) 3799 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3800 else 3801 shmem_huge = 0; /* just in case it was patched */ 3802#endif 3803 return 0; 3804 3805out1: 3806 unregister_filesystem(&shmem_fs_type); 3807out2: 3808 shmem_destroy_inodecache(); 3809out3: 3810 shm_mnt = ERR_PTR(error); 3811 return error; 3812} 3813 3814#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS) 3815static ssize_t shmem_enabled_show(struct kobject *kobj, 3816 struct kobj_attribute *attr, char *buf) 3817{ 3818 int values[] = { 3819 SHMEM_HUGE_ALWAYS, 3820 SHMEM_HUGE_WITHIN_SIZE, 3821 SHMEM_HUGE_ADVISE, 3822 SHMEM_HUGE_NEVER, 3823 SHMEM_HUGE_DENY, 3824 SHMEM_HUGE_FORCE, 3825 }; 3826 int i, count; 3827 3828 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 3829 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 3830 3831 count += sprintf(buf + count, fmt, 3832 shmem_format_huge(values[i])); 3833 } 3834 buf[count - 1] = '\n'; 3835 return count; 3836} 3837 3838static ssize_t shmem_enabled_store(struct kobject *kobj, 3839 struct kobj_attribute *attr, const char *buf, size_t count) 3840{ 3841 char tmp[16]; 3842 int huge; 3843 3844 if (count + 1 > sizeof(tmp)) 3845 return -EINVAL; 3846 memcpy(tmp, buf, count); 3847 tmp[count] = '\0'; 3848 if (count && tmp[count - 1] == '\n') 3849 tmp[count - 1] = '\0'; 3850 3851 huge = shmem_parse_huge(tmp); 3852 if (huge == -EINVAL) 3853 return -EINVAL; 3854 if (!has_transparent_hugepage() && 3855 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3856 return -EINVAL; 3857 3858 shmem_huge = huge; 3859 if (shmem_huge < SHMEM_HUGE_DENY) 3860 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3861 return count; 3862} 3863 3864struct kobj_attribute shmem_enabled_attr = 3865 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 3866#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */ 3867 3868#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3869bool shmem_huge_enabled(struct vm_area_struct *vma) 3870{ 3871 struct inode *inode = file_inode(vma->vm_file); 3872 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3873 loff_t i_size; 3874 pgoff_t off; 3875 3876 if (shmem_huge == SHMEM_HUGE_FORCE) 3877 return true; 3878 if (shmem_huge == SHMEM_HUGE_DENY) 3879 return false; 3880 switch (sbinfo->huge) { 3881 case SHMEM_HUGE_NEVER: 3882 return false; 3883 case SHMEM_HUGE_ALWAYS: 3884 return true; 3885 case SHMEM_HUGE_WITHIN_SIZE: 3886 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 3887 i_size = round_up(i_size_read(inode), PAGE_SIZE); 3888 if (i_size >= HPAGE_PMD_SIZE && 3889 i_size >> PAGE_SHIFT >= off) 3890 return true; 3891 case SHMEM_HUGE_ADVISE: 3892 /* TODO: implement fadvise() hints */ 3893 return (vma->vm_flags & VM_HUGEPAGE); 3894 default: 3895 VM_BUG_ON(1); 3896 return false; 3897 } 3898} 3899#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 3900 3901#else /* !CONFIG_SHMEM */ 3902 3903/* 3904 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3905 * 3906 * This is intended for small system where the benefits of the full 3907 * shmem code (swap-backed and resource-limited) are outweighed by 3908 * their complexity. On systems without swap this code should be 3909 * effectively equivalent, but much lighter weight. 3910 */ 3911 3912static struct file_system_type shmem_fs_type = { 3913 .name = "tmpfs", 3914 .mount = ramfs_mount, 3915 .kill_sb = kill_litter_super, 3916 .fs_flags = FS_USERNS_MOUNT, 3917}; 3918 3919int __init shmem_init(void) 3920{ 3921 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3922 3923 shm_mnt = kern_mount(&shmem_fs_type); 3924 BUG_ON(IS_ERR(shm_mnt)); 3925 3926 return 0; 3927} 3928 3929int shmem_unuse(swp_entry_t swap, struct page *page) 3930{ 3931 return 0; 3932} 3933 3934int shmem_lock(struct file *file, int lock, struct user_struct *user) 3935{ 3936 return 0; 3937} 3938 3939void shmem_unlock_mapping(struct address_space *mapping) 3940{ 3941} 3942 3943#ifdef CONFIG_MMU 3944unsigned long shmem_get_unmapped_area(struct file *file, 3945 unsigned long addr, unsigned long len, 3946 unsigned long pgoff, unsigned long flags) 3947{ 3948 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 3949} 3950#endif 3951 3952void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 3953{ 3954 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 3955} 3956EXPORT_SYMBOL_GPL(shmem_truncate_range); 3957 3958#define shmem_vm_ops generic_file_vm_ops 3959#define shmem_file_operations ramfs_file_operations 3960#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 3961#define shmem_acct_size(flags, size) 0 3962#define shmem_unacct_size(flags, size) do {} while (0) 3963 3964#endif /* CONFIG_SHMEM */ 3965 3966/* common code */ 3967 3968static const struct dentry_operations anon_ops = { 3969 .d_dname = simple_dname 3970}; 3971 3972static struct file *__shmem_file_setup(const char *name, loff_t size, 3973 unsigned long flags, unsigned int i_flags) 3974{ 3975 struct file *res; 3976 struct inode *inode; 3977 struct path path; 3978 struct super_block *sb; 3979 struct qstr this; 3980 3981 if (IS_ERR(shm_mnt)) 3982 return ERR_CAST(shm_mnt); 3983 3984 if (size < 0 || size > MAX_LFS_FILESIZE) 3985 return ERR_PTR(-EINVAL); 3986 3987 if (shmem_acct_size(flags, size)) 3988 return ERR_PTR(-ENOMEM); 3989 3990 res = ERR_PTR(-ENOMEM); 3991 this.name = name; 3992 this.len = strlen(name); 3993 this.hash = 0; /* will go */ 3994 sb = shm_mnt->mnt_sb; 3995 path.mnt = mntget(shm_mnt); 3996 path.dentry = d_alloc_pseudo(sb, &this); 3997 if (!path.dentry) 3998 goto put_memory; 3999 d_set_d_op(path.dentry, &anon_ops); 4000 4001 res = ERR_PTR(-ENOSPC); 4002 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 4003 if (!inode) 4004 goto put_memory; 4005 4006 inode->i_flags |= i_flags; 4007 d_instantiate(path.dentry, inode); 4008 inode->i_size = size; 4009 clear_nlink(inode); /* It is unlinked */ 4010 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4011 if (IS_ERR(res)) 4012 goto put_path; 4013 4014 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 4015 &shmem_file_operations); 4016 if (IS_ERR(res)) 4017 goto put_path; 4018 4019 return res; 4020 4021put_memory: 4022 shmem_unacct_size(flags, size); 4023put_path: 4024 path_put(&path); 4025 return res; 4026} 4027 4028/** 4029 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4030 * kernel internal. There will be NO LSM permission checks against the 4031 * underlying inode. So users of this interface must do LSM checks at a 4032 * higher layer. The users are the big_key and shm implementations. LSM 4033 * checks are provided at the key or shm level rather than the inode. 4034 * @name: name for dentry (to be seen in /proc/<pid>/maps 4035 * @size: size to be set for the file 4036 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4037 */ 4038struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4039{ 4040 return __shmem_file_setup(name, size, flags, S_PRIVATE); 4041} 4042 4043/** 4044 * shmem_file_setup - get an unlinked file living in tmpfs 4045 * @name: name for dentry (to be seen in /proc/<pid>/maps 4046 * @size: size to be set for the file 4047 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4048 */ 4049struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4050{ 4051 return __shmem_file_setup(name, size, flags, 0); 4052} 4053EXPORT_SYMBOL_GPL(shmem_file_setup); 4054 4055/** 4056 * shmem_zero_setup - setup a shared anonymous mapping 4057 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 4058 */ 4059int shmem_zero_setup(struct vm_area_struct *vma) 4060{ 4061 struct file *file; 4062 loff_t size = vma->vm_end - vma->vm_start; 4063 4064 /* 4065 * Cloning a new file under mmap_sem leads to a lock ordering conflict 4066 * between XFS directory reading and selinux: since this file is only 4067 * accessible to the user through its mapping, use S_PRIVATE flag to 4068 * bypass file security, in the same way as shmem_kernel_file_setup(). 4069 */ 4070 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE); 4071 if (IS_ERR(file)) 4072 return PTR_ERR(file); 4073 4074 if (vma->vm_file) 4075 fput(vma->vm_file); 4076 vma->vm_file = file; 4077 vma->vm_ops = &shmem_vm_ops; 4078 4079 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 4080 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4081 (vma->vm_end & HPAGE_PMD_MASK)) { 4082 khugepaged_enter(vma, vma->vm_flags); 4083 } 4084 4085 return 0; 4086} 4087 4088/** 4089 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4090 * @mapping: the page's address_space 4091 * @index: the page index 4092 * @gfp: the page allocator flags to use if allocating 4093 * 4094 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4095 * with any new page allocations done using the specified allocation flags. 4096 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4097 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4098 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4099 * 4100 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4101 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4102 */ 4103struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4104 pgoff_t index, gfp_t gfp) 4105{ 4106#ifdef CONFIG_SHMEM 4107 struct inode *inode = mapping->host; 4108 struct page *page; 4109 int error; 4110 4111 BUG_ON(mapping->a_ops != &shmem_aops); 4112 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4113 gfp, NULL, NULL); 4114 if (error) 4115 page = ERR_PTR(error); 4116 else 4117 unlock_page(page); 4118 return page; 4119#else 4120 /* 4121 * The tiny !SHMEM case uses ramfs without swap 4122 */ 4123 return read_cache_page_gfp(mapping, index, gfp); 4124#endif 4125} 4126EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);