Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4#include <uapi/linux/sched.h>
5
6#include <linux/sched/prio.h>
7
8
9struct sched_param {
10 int sched_priority;
11};
12
13#include <asm/param.h> /* for HZ */
14
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
21#include <linux/plist.h>
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
27#include <linux/mm_types.h>
28#include <linux/preempt.h>
29
30#include <asm/page.h>
31#include <asm/ptrace.h>
32#include <linux/cputime.h>
33
34#include <linux/smp.h>
35#include <linux/sem.h>
36#include <linux/shm.h>
37#include <linux/signal.h>
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
43#include <linux/seccomp.h>
44#include <linux/rcupdate.h>
45#include <linux/rculist.h>
46#include <linux/rtmutex.h>
47
48#include <linux/time.h>
49#include <linux/param.h>
50#include <linux/resource.h>
51#include <linux/timer.h>
52#include <linux/hrtimer.h>
53#include <linux/kcov.h>
54#include <linux/task_io_accounting.h>
55#include <linux/latencytop.h>
56#include <linux/cred.h>
57#include <linux/llist.h>
58#include <linux/uidgid.h>
59#include <linux/gfp.h>
60#include <linux/magic.h>
61#include <linux/cgroup-defs.h>
62
63#include <asm/processor.h>
64
65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67/*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
110 */
111struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127};
128
129struct futex_pi_state;
130struct robust_list_head;
131struct bio_list;
132struct fs_struct;
133struct perf_event_context;
134struct blk_plug;
135struct filename;
136struct nameidata;
137
138#define VMACACHE_BITS 2
139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
142/*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152extern unsigned long avenrun[]; /* Load averages */
153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
154
155#define FSHIFT 11 /* nr of bits of precision */
156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159#define EXP_5 2014 /* 1/exp(5sec/5min) */
160#define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162#define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167extern unsigned long total_forks;
168extern int nr_threads;
169DECLARE_PER_CPU(unsigned long, process_counts);
170extern int nr_processes(void);
171extern unsigned long nr_running(void);
172extern bool single_task_running(void);
173extern unsigned long nr_iowait(void);
174extern unsigned long nr_iowait_cpu(int cpu);
175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
176
177extern void calc_global_load(unsigned long ticks);
178
179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
180extern void cpu_load_update_nohz_start(void);
181extern void cpu_load_update_nohz_stop(void);
182#else
183static inline void cpu_load_update_nohz_start(void) { }
184static inline void cpu_load_update_nohz_stop(void) { }
185#endif
186
187extern void dump_cpu_task(int cpu);
188
189struct seq_file;
190struct cfs_rq;
191struct task_group;
192#ifdef CONFIG_SCHED_DEBUG
193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194extern void proc_sched_set_task(struct task_struct *p);
195#endif
196
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
212/* in tsk->exit_state */
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
216/* in tsk->state again */
217#define TASK_DEAD 64
218#define TASK_WAKEKILL 128
219#define TASK_WAKING 256
220#define TASK_PARKED 512
221#define TASK_NOLOAD 1024
222#define TASK_NEW 2048
223#define TASK_STATE_MAX 4096
224
225#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
226
227extern char ___assert_task_state[1 - 2*!!(
228 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
229
230/* Convenience macros for the sake of set_task_state */
231#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
232#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
233#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
234
235#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
236
237/* Convenience macros for the sake of wake_up */
238#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
239#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
240
241/* get_task_state() */
242#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
243 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
244 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
245
246#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
247#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
248#define task_is_stopped_or_traced(task) \
249 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
250#define task_contributes_to_load(task) \
251 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
252 (task->flags & PF_FROZEN) == 0 && \
253 (task->state & TASK_NOLOAD) == 0)
254
255#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
256
257#define __set_task_state(tsk, state_value) \
258 do { \
259 (tsk)->task_state_change = _THIS_IP_; \
260 (tsk)->state = (state_value); \
261 } while (0)
262#define set_task_state(tsk, state_value) \
263 do { \
264 (tsk)->task_state_change = _THIS_IP_; \
265 smp_store_mb((tsk)->state, (state_value)); \
266 } while (0)
267
268/*
269 * set_current_state() includes a barrier so that the write of current->state
270 * is correctly serialised wrt the caller's subsequent test of whether to
271 * actually sleep:
272 *
273 * set_current_state(TASK_UNINTERRUPTIBLE);
274 * if (do_i_need_to_sleep())
275 * schedule();
276 *
277 * If the caller does not need such serialisation then use __set_current_state()
278 */
279#define __set_current_state(state_value) \
280 do { \
281 current->task_state_change = _THIS_IP_; \
282 current->state = (state_value); \
283 } while (0)
284#define set_current_state(state_value) \
285 do { \
286 current->task_state_change = _THIS_IP_; \
287 smp_store_mb(current->state, (state_value)); \
288 } while (0)
289
290#else
291
292#define __set_task_state(tsk, state_value) \
293 do { (tsk)->state = (state_value); } while (0)
294#define set_task_state(tsk, state_value) \
295 smp_store_mb((tsk)->state, (state_value))
296
297/*
298 * set_current_state() includes a barrier so that the write of current->state
299 * is correctly serialised wrt the caller's subsequent test of whether to
300 * actually sleep:
301 *
302 * set_current_state(TASK_UNINTERRUPTIBLE);
303 * if (do_i_need_to_sleep())
304 * schedule();
305 *
306 * If the caller does not need such serialisation then use __set_current_state()
307 */
308#define __set_current_state(state_value) \
309 do { current->state = (state_value); } while (0)
310#define set_current_state(state_value) \
311 smp_store_mb(current->state, (state_value))
312
313#endif
314
315/* Task command name length */
316#define TASK_COMM_LEN 16
317
318#include <linux/spinlock.h>
319
320/*
321 * This serializes "schedule()" and also protects
322 * the run-queue from deletions/modifications (but
323 * _adding_ to the beginning of the run-queue has
324 * a separate lock).
325 */
326extern rwlock_t tasklist_lock;
327extern spinlock_t mmlist_lock;
328
329struct task_struct;
330
331#ifdef CONFIG_PROVE_RCU
332extern int lockdep_tasklist_lock_is_held(void);
333#endif /* #ifdef CONFIG_PROVE_RCU */
334
335extern void sched_init(void);
336extern void sched_init_smp(void);
337extern asmlinkage void schedule_tail(struct task_struct *prev);
338extern void init_idle(struct task_struct *idle, int cpu);
339extern void init_idle_bootup_task(struct task_struct *idle);
340
341extern cpumask_var_t cpu_isolated_map;
342
343extern int runqueue_is_locked(int cpu);
344
345#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
346extern void nohz_balance_enter_idle(int cpu);
347extern void set_cpu_sd_state_idle(void);
348extern int get_nohz_timer_target(void);
349#else
350static inline void nohz_balance_enter_idle(int cpu) { }
351static inline void set_cpu_sd_state_idle(void) { }
352#endif
353
354/*
355 * Only dump TASK_* tasks. (0 for all tasks)
356 */
357extern void show_state_filter(unsigned long state_filter);
358
359static inline void show_state(void)
360{
361 show_state_filter(0);
362}
363
364extern void show_regs(struct pt_regs *);
365
366/*
367 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
368 * task), SP is the stack pointer of the first frame that should be shown in the back
369 * trace (or NULL if the entire call-chain of the task should be shown).
370 */
371extern void show_stack(struct task_struct *task, unsigned long *sp);
372
373extern void cpu_init (void);
374extern void trap_init(void);
375extern void update_process_times(int user);
376extern void scheduler_tick(void);
377extern int sched_cpu_starting(unsigned int cpu);
378extern int sched_cpu_activate(unsigned int cpu);
379extern int sched_cpu_deactivate(unsigned int cpu);
380
381#ifdef CONFIG_HOTPLUG_CPU
382extern int sched_cpu_dying(unsigned int cpu);
383#else
384# define sched_cpu_dying NULL
385#endif
386
387extern void sched_show_task(struct task_struct *p);
388
389#ifdef CONFIG_LOCKUP_DETECTOR
390extern void touch_softlockup_watchdog_sched(void);
391extern void touch_softlockup_watchdog(void);
392extern void touch_softlockup_watchdog_sync(void);
393extern void touch_all_softlockup_watchdogs(void);
394extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
395 void __user *buffer,
396 size_t *lenp, loff_t *ppos);
397extern unsigned int softlockup_panic;
398extern unsigned int hardlockup_panic;
399void lockup_detector_init(void);
400#else
401static inline void touch_softlockup_watchdog_sched(void)
402{
403}
404static inline void touch_softlockup_watchdog(void)
405{
406}
407static inline void touch_softlockup_watchdog_sync(void)
408{
409}
410static inline void touch_all_softlockup_watchdogs(void)
411{
412}
413static inline void lockup_detector_init(void)
414{
415}
416#endif
417
418#ifdef CONFIG_DETECT_HUNG_TASK
419void reset_hung_task_detector(void);
420#else
421static inline void reset_hung_task_detector(void)
422{
423}
424#endif
425
426/* Attach to any functions which should be ignored in wchan output. */
427#define __sched __attribute__((__section__(".sched.text")))
428
429/* Linker adds these: start and end of __sched functions */
430extern char __sched_text_start[], __sched_text_end[];
431
432/* Is this address in the __sched functions? */
433extern int in_sched_functions(unsigned long addr);
434
435#define MAX_SCHEDULE_TIMEOUT LONG_MAX
436extern signed long schedule_timeout(signed long timeout);
437extern signed long schedule_timeout_interruptible(signed long timeout);
438extern signed long schedule_timeout_killable(signed long timeout);
439extern signed long schedule_timeout_uninterruptible(signed long timeout);
440extern signed long schedule_timeout_idle(signed long timeout);
441asmlinkage void schedule(void);
442extern void schedule_preempt_disabled(void);
443
444extern long io_schedule_timeout(long timeout);
445
446static inline void io_schedule(void)
447{
448 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
449}
450
451void __noreturn do_task_dead(void);
452
453struct nsproxy;
454struct user_namespace;
455
456#ifdef CONFIG_MMU
457extern void arch_pick_mmap_layout(struct mm_struct *mm);
458extern unsigned long
459arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
460 unsigned long, unsigned long);
461extern unsigned long
462arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
463 unsigned long len, unsigned long pgoff,
464 unsigned long flags);
465#else
466static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
467#endif
468
469#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
470#define SUID_DUMP_USER 1 /* Dump as user of process */
471#define SUID_DUMP_ROOT 2 /* Dump as root */
472
473/* mm flags */
474
475/* for SUID_DUMP_* above */
476#define MMF_DUMPABLE_BITS 2
477#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
478
479extern void set_dumpable(struct mm_struct *mm, int value);
480/*
481 * This returns the actual value of the suid_dumpable flag. For things
482 * that are using this for checking for privilege transitions, it must
483 * test against SUID_DUMP_USER rather than treating it as a boolean
484 * value.
485 */
486static inline int __get_dumpable(unsigned long mm_flags)
487{
488 return mm_flags & MMF_DUMPABLE_MASK;
489}
490
491static inline int get_dumpable(struct mm_struct *mm)
492{
493 return __get_dumpable(mm->flags);
494}
495
496/* coredump filter bits */
497#define MMF_DUMP_ANON_PRIVATE 2
498#define MMF_DUMP_ANON_SHARED 3
499#define MMF_DUMP_MAPPED_PRIVATE 4
500#define MMF_DUMP_MAPPED_SHARED 5
501#define MMF_DUMP_ELF_HEADERS 6
502#define MMF_DUMP_HUGETLB_PRIVATE 7
503#define MMF_DUMP_HUGETLB_SHARED 8
504#define MMF_DUMP_DAX_PRIVATE 9
505#define MMF_DUMP_DAX_SHARED 10
506
507#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
508#define MMF_DUMP_FILTER_BITS 9
509#define MMF_DUMP_FILTER_MASK \
510 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
511#define MMF_DUMP_FILTER_DEFAULT \
512 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
513 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
514
515#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
516# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
517#else
518# define MMF_DUMP_MASK_DEFAULT_ELF 0
519#endif
520 /* leave room for more dump flags */
521#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
522#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
523#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
524
525#define MMF_HAS_UPROBES 19 /* has uprobes */
526#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
527#define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */
528#define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */
529#define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */
530
531#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
532
533struct sighand_struct {
534 atomic_t count;
535 struct k_sigaction action[_NSIG];
536 spinlock_t siglock;
537 wait_queue_head_t signalfd_wqh;
538};
539
540struct pacct_struct {
541 int ac_flag;
542 long ac_exitcode;
543 unsigned long ac_mem;
544 cputime_t ac_utime, ac_stime;
545 unsigned long ac_minflt, ac_majflt;
546};
547
548struct cpu_itimer {
549 cputime_t expires;
550 cputime_t incr;
551 u32 error;
552 u32 incr_error;
553};
554
555/**
556 * struct prev_cputime - snaphsot of system and user cputime
557 * @utime: time spent in user mode
558 * @stime: time spent in system mode
559 * @lock: protects the above two fields
560 *
561 * Stores previous user/system time values such that we can guarantee
562 * monotonicity.
563 */
564struct prev_cputime {
565#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
566 cputime_t utime;
567 cputime_t stime;
568 raw_spinlock_t lock;
569#endif
570};
571
572static inline void prev_cputime_init(struct prev_cputime *prev)
573{
574#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
575 prev->utime = prev->stime = 0;
576 raw_spin_lock_init(&prev->lock);
577#endif
578}
579
580/**
581 * struct task_cputime - collected CPU time counts
582 * @utime: time spent in user mode, in &cputime_t units
583 * @stime: time spent in kernel mode, in &cputime_t units
584 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
585 *
586 * This structure groups together three kinds of CPU time that are tracked for
587 * threads and thread groups. Most things considering CPU time want to group
588 * these counts together and treat all three of them in parallel.
589 */
590struct task_cputime {
591 cputime_t utime;
592 cputime_t stime;
593 unsigned long long sum_exec_runtime;
594};
595
596/* Alternate field names when used to cache expirations. */
597#define virt_exp utime
598#define prof_exp stime
599#define sched_exp sum_exec_runtime
600
601#define INIT_CPUTIME \
602 (struct task_cputime) { \
603 .utime = 0, \
604 .stime = 0, \
605 .sum_exec_runtime = 0, \
606 }
607
608/*
609 * This is the atomic variant of task_cputime, which can be used for
610 * storing and updating task_cputime statistics without locking.
611 */
612struct task_cputime_atomic {
613 atomic64_t utime;
614 atomic64_t stime;
615 atomic64_t sum_exec_runtime;
616};
617
618#define INIT_CPUTIME_ATOMIC \
619 (struct task_cputime_atomic) { \
620 .utime = ATOMIC64_INIT(0), \
621 .stime = ATOMIC64_INIT(0), \
622 .sum_exec_runtime = ATOMIC64_INIT(0), \
623 }
624
625#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
626
627/*
628 * Disable preemption until the scheduler is running -- use an unconditional
629 * value so that it also works on !PREEMPT_COUNT kernels.
630 *
631 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
632 */
633#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
634
635/*
636 * Initial preempt_count value; reflects the preempt_count schedule invariant
637 * which states that during context switches:
638 *
639 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
640 *
641 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
642 * Note: See finish_task_switch().
643 */
644#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
645
646/**
647 * struct thread_group_cputimer - thread group interval timer counts
648 * @cputime_atomic: atomic thread group interval timers.
649 * @running: true when there are timers running and
650 * @cputime_atomic receives updates.
651 * @checking_timer: true when a thread in the group is in the
652 * process of checking for thread group timers.
653 *
654 * This structure contains the version of task_cputime, above, that is
655 * used for thread group CPU timer calculations.
656 */
657struct thread_group_cputimer {
658 struct task_cputime_atomic cputime_atomic;
659 bool running;
660 bool checking_timer;
661};
662
663#include <linux/rwsem.h>
664struct autogroup;
665
666/*
667 * NOTE! "signal_struct" does not have its own
668 * locking, because a shared signal_struct always
669 * implies a shared sighand_struct, so locking
670 * sighand_struct is always a proper superset of
671 * the locking of signal_struct.
672 */
673struct signal_struct {
674 atomic_t sigcnt;
675 atomic_t live;
676 int nr_threads;
677 struct list_head thread_head;
678
679 wait_queue_head_t wait_chldexit; /* for wait4() */
680
681 /* current thread group signal load-balancing target: */
682 struct task_struct *curr_target;
683
684 /* shared signal handling: */
685 struct sigpending shared_pending;
686
687 /* thread group exit support */
688 int group_exit_code;
689 /* overloaded:
690 * - notify group_exit_task when ->count is equal to notify_count
691 * - everyone except group_exit_task is stopped during signal delivery
692 * of fatal signals, group_exit_task processes the signal.
693 */
694 int notify_count;
695 struct task_struct *group_exit_task;
696
697 /* thread group stop support, overloads group_exit_code too */
698 int group_stop_count;
699 unsigned int flags; /* see SIGNAL_* flags below */
700
701 /*
702 * PR_SET_CHILD_SUBREAPER marks a process, like a service
703 * manager, to re-parent orphan (double-forking) child processes
704 * to this process instead of 'init'. The service manager is
705 * able to receive SIGCHLD signals and is able to investigate
706 * the process until it calls wait(). All children of this
707 * process will inherit a flag if they should look for a
708 * child_subreaper process at exit.
709 */
710 unsigned int is_child_subreaper:1;
711 unsigned int has_child_subreaper:1;
712
713 /* POSIX.1b Interval Timers */
714 int posix_timer_id;
715 struct list_head posix_timers;
716
717 /* ITIMER_REAL timer for the process */
718 struct hrtimer real_timer;
719 struct pid *leader_pid;
720 ktime_t it_real_incr;
721
722 /*
723 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
724 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
725 * values are defined to 0 and 1 respectively
726 */
727 struct cpu_itimer it[2];
728
729 /*
730 * Thread group totals for process CPU timers.
731 * See thread_group_cputimer(), et al, for details.
732 */
733 struct thread_group_cputimer cputimer;
734
735 /* Earliest-expiration cache. */
736 struct task_cputime cputime_expires;
737
738#ifdef CONFIG_NO_HZ_FULL
739 atomic_t tick_dep_mask;
740#endif
741
742 struct list_head cpu_timers[3];
743
744 struct pid *tty_old_pgrp;
745
746 /* boolean value for session group leader */
747 int leader;
748
749 struct tty_struct *tty; /* NULL if no tty */
750
751#ifdef CONFIG_SCHED_AUTOGROUP
752 struct autogroup *autogroup;
753#endif
754 /*
755 * Cumulative resource counters for dead threads in the group,
756 * and for reaped dead child processes forked by this group.
757 * Live threads maintain their own counters and add to these
758 * in __exit_signal, except for the group leader.
759 */
760 seqlock_t stats_lock;
761 cputime_t utime, stime, cutime, cstime;
762 cputime_t gtime;
763 cputime_t cgtime;
764 struct prev_cputime prev_cputime;
765 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
766 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
767 unsigned long inblock, oublock, cinblock, coublock;
768 unsigned long maxrss, cmaxrss;
769 struct task_io_accounting ioac;
770
771 /*
772 * Cumulative ns of schedule CPU time fo dead threads in the
773 * group, not including a zombie group leader, (This only differs
774 * from jiffies_to_ns(utime + stime) if sched_clock uses something
775 * other than jiffies.)
776 */
777 unsigned long long sum_sched_runtime;
778
779 /*
780 * We don't bother to synchronize most readers of this at all,
781 * because there is no reader checking a limit that actually needs
782 * to get both rlim_cur and rlim_max atomically, and either one
783 * alone is a single word that can safely be read normally.
784 * getrlimit/setrlimit use task_lock(current->group_leader) to
785 * protect this instead of the siglock, because they really
786 * have no need to disable irqs.
787 */
788 struct rlimit rlim[RLIM_NLIMITS];
789
790#ifdef CONFIG_BSD_PROCESS_ACCT
791 struct pacct_struct pacct; /* per-process accounting information */
792#endif
793#ifdef CONFIG_TASKSTATS
794 struct taskstats *stats;
795#endif
796#ifdef CONFIG_AUDIT
797 unsigned audit_tty;
798 struct tty_audit_buf *tty_audit_buf;
799#endif
800
801 /*
802 * Thread is the potential origin of an oom condition; kill first on
803 * oom
804 */
805 bool oom_flag_origin;
806 short oom_score_adj; /* OOM kill score adjustment */
807 short oom_score_adj_min; /* OOM kill score adjustment min value.
808 * Only settable by CAP_SYS_RESOURCE. */
809 struct mm_struct *oom_mm; /* recorded mm when the thread group got
810 * killed by the oom killer */
811
812 struct mutex cred_guard_mutex; /* guard against foreign influences on
813 * credential calculations
814 * (notably. ptrace) */
815};
816
817/*
818 * Bits in flags field of signal_struct.
819 */
820#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
821#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
822#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
823#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
824/*
825 * Pending notifications to parent.
826 */
827#define SIGNAL_CLD_STOPPED 0x00000010
828#define SIGNAL_CLD_CONTINUED 0x00000020
829#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
830
831#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
832
833/* If true, all threads except ->group_exit_task have pending SIGKILL */
834static inline int signal_group_exit(const struct signal_struct *sig)
835{
836 return (sig->flags & SIGNAL_GROUP_EXIT) ||
837 (sig->group_exit_task != NULL);
838}
839
840/*
841 * Some day this will be a full-fledged user tracking system..
842 */
843struct user_struct {
844 atomic_t __count; /* reference count */
845 atomic_t processes; /* How many processes does this user have? */
846 atomic_t sigpending; /* How many pending signals does this user have? */
847#ifdef CONFIG_INOTIFY_USER
848 atomic_t inotify_watches; /* How many inotify watches does this user have? */
849 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
850#endif
851#ifdef CONFIG_FANOTIFY
852 atomic_t fanotify_listeners;
853#endif
854#ifdef CONFIG_EPOLL
855 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
856#endif
857#ifdef CONFIG_POSIX_MQUEUE
858 /* protected by mq_lock */
859 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
860#endif
861 unsigned long locked_shm; /* How many pages of mlocked shm ? */
862 unsigned long unix_inflight; /* How many files in flight in unix sockets */
863 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
864
865#ifdef CONFIG_KEYS
866 struct key *uid_keyring; /* UID specific keyring */
867 struct key *session_keyring; /* UID's default session keyring */
868#endif
869
870 /* Hash table maintenance information */
871 struct hlist_node uidhash_node;
872 kuid_t uid;
873
874#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
875 atomic_long_t locked_vm;
876#endif
877};
878
879extern int uids_sysfs_init(void);
880
881extern struct user_struct *find_user(kuid_t);
882
883extern struct user_struct root_user;
884#define INIT_USER (&root_user)
885
886
887struct backing_dev_info;
888struct reclaim_state;
889
890#ifdef CONFIG_SCHED_INFO
891struct sched_info {
892 /* cumulative counters */
893 unsigned long pcount; /* # of times run on this cpu */
894 unsigned long long run_delay; /* time spent waiting on a runqueue */
895
896 /* timestamps */
897 unsigned long long last_arrival,/* when we last ran on a cpu */
898 last_queued; /* when we were last queued to run */
899};
900#endif /* CONFIG_SCHED_INFO */
901
902#ifdef CONFIG_TASK_DELAY_ACCT
903struct task_delay_info {
904 spinlock_t lock;
905 unsigned int flags; /* Private per-task flags */
906
907 /* For each stat XXX, add following, aligned appropriately
908 *
909 * struct timespec XXX_start, XXX_end;
910 * u64 XXX_delay;
911 * u32 XXX_count;
912 *
913 * Atomicity of updates to XXX_delay, XXX_count protected by
914 * single lock above (split into XXX_lock if contention is an issue).
915 */
916
917 /*
918 * XXX_count is incremented on every XXX operation, the delay
919 * associated with the operation is added to XXX_delay.
920 * XXX_delay contains the accumulated delay time in nanoseconds.
921 */
922 u64 blkio_start; /* Shared by blkio, swapin */
923 u64 blkio_delay; /* wait for sync block io completion */
924 u64 swapin_delay; /* wait for swapin block io completion */
925 u32 blkio_count; /* total count of the number of sync block */
926 /* io operations performed */
927 u32 swapin_count; /* total count of the number of swapin block */
928 /* io operations performed */
929
930 u64 freepages_start;
931 u64 freepages_delay; /* wait for memory reclaim */
932 u32 freepages_count; /* total count of memory reclaim */
933};
934#endif /* CONFIG_TASK_DELAY_ACCT */
935
936static inline int sched_info_on(void)
937{
938#ifdef CONFIG_SCHEDSTATS
939 return 1;
940#elif defined(CONFIG_TASK_DELAY_ACCT)
941 extern int delayacct_on;
942 return delayacct_on;
943#else
944 return 0;
945#endif
946}
947
948#ifdef CONFIG_SCHEDSTATS
949void force_schedstat_enabled(void);
950#endif
951
952enum cpu_idle_type {
953 CPU_IDLE,
954 CPU_NOT_IDLE,
955 CPU_NEWLY_IDLE,
956 CPU_MAX_IDLE_TYPES
957};
958
959/*
960 * Integer metrics need fixed point arithmetic, e.g., sched/fair
961 * has a few: load, load_avg, util_avg, freq, and capacity.
962 *
963 * We define a basic fixed point arithmetic range, and then formalize
964 * all these metrics based on that basic range.
965 */
966# define SCHED_FIXEDPOINT_SHIFT 10
967# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
968
969/*
970 * Increase resolution of cpu_capacity calculations
971 */
972#define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
973#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
974
975/*
976 * Wake-queues are lists of tasks with a pending wakeup, whose
977 * callers have already marked the task as woken internally,
978 * and can thus carry on. A common use case is being able to
979 * do the wakeups once the corresponding user lock as been
980 * released.
981 *
982 * We hold reference to each task in the list across the wakeup,
983 * thus guaranteeing that the memory is still valid by the time
984 * the actual wakeups are performed in wake_up_q().
985 *
986 * One per task suffices, because there's never a need for a task to be
987 * in two wake queues simultaneously; it is forbidden to abandon a task
988 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
989 * already in a wake queue, the wakeup will happen soon and the second
990 * waker can just skip it.
991 *
992 * The WAKE_Q macro declares and initializes the list head.
993 * wake_up_q() does NOT reinitialize the list; it's expected to be
994 * called near the end of a function, where the fact that the queue is
995 * not used again will be easy to see by inspection.
996 *
997 * Note that this can cause spurious wakeups. schedule() callers
998 * must ensure the call is done inside a loop, confirming that the
999 * wakeup condition has in fact occurred.
1000 */
1001struct wake_q_node {
1002 struct wake_q_node *next;
1003};
1004
1005struct wake_q_head {
1006 struct wake_q_node *first;
1007 struct wake_q_node **lastp;
1008};
1009
1010#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1011
1012#define WAKE_Q(name) \
1013 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1014
1015extern void wake_q_add(struct wake_q_head *head,
1016 struct task_struct *task);
1017extern void wake_up_q(struct wake_q_head *head);
1018
1019/*
1020 * sched-domains (multiprocessor balancing) declarations:
1021 */
1022#ifdef CONFIG_SMP
1023#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
1024#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
1025#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
1026#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
1027#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
1028#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
1029#define SD_ASYM_CPUCAPACITY 0x0040 /* Groups have different max cpu capacities */
1030#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu capacity */
1031#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
1032#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1033#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
1034#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
1035#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
1036#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
1037#define SD_NUMA 0x4000 /* cross-node balancing */
1038
1039#ifdef CONFIG_SCHED_SMT
1040static inline int cpu_smt_flags(void)
1041{
1042 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1043}
1044#endif
1045
1046#ifdef CONFIG_SCHED_MC
1047static inline int cpu_core_flags(void)
1048{
1049 return SD_SHARE_PKG_RESOURCES;
1050}
1051#endif
1052
1053#ifdef CONFIG_NUMA
1054static inline int cpu_numa_flags(void)
1055{
1056 return SD_NUMA;
1057}
1058#endif
1059
1060struct sched_domain_attr {
1061 int relax_domain_level;
1062};
1063
1064#define SD_ATTR_INIT (struct sched_domain_attr) { \
1065 .relax_domain_level = -1, \
1066}
1067
1068extern int sched_domain_level_max;
1069
1070struct sched_group;
1071
1072struct sched_domain_shared {
1073 atomic_t ref;
1074 atomic_t nr_busy_cpus;
1075 int has_idle_cores;
1076};
1077
1078struct sched_domain {
1079 /* These fields must be setup */
1080 struct sched_domain *parent; /* top domain must be null terminated */
1081 struct sched_domain *child; /* bottom domain must be null terminated */
1082 struct sched_group *groups; /* the balancing groups of the domain */
1083 unsigned long min_interval; /* Minimum balance interval ms */
1084 unsigned long max_interval; /* Maximum balance interval ms */
1085 unsigned int busy_factor; /* less balancing by factor if busy */
1086 unsigned int imbalance_pct; /* No balance until over watermark */
1087 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
1088 unsigned int busy_idx;
1089 unsigned int idle_idx;
1090 unsigned int newidle_idx;
1091 unsigned int wake_idx;
1092 unsigned int forkexec_idx;
1093 unsigned int smt_gain;
1094
1095 int nohz_idle; /* NOHZ IDLE status */
1096 int flags; /* See SD_* */
1097 int level;
1098
1099 /* Runtime fields. */
1100 unsigned long last_balance; /* init to jiffies. units in jiffies */
1101 unsigned int balance_interval; /* initialise to 1. units in ms. */
1102 unsigned int nr_balance_failed; /* initialise to 0 */
1103
1104 /* idle_balance() stats */
1105 u64 max_newidle_lb_cost;
1106 unsigned long next_decay_max_lb_cost;
1107
1108 u64 avg_scan_cost; /* select_idle_sibling */
1109
1110#ifdef CONFIG_SCHEDSTATS
1111 /* load_balance() stats */
1112 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1113 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1114 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1115 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1116 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1117 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1118 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1119 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1120
1121 /* Active load balancing */
1122 unsigned int alb_count;
1123 unsigned int alb_failed;
1124 unsigned int alb_pushed;
1125
1126 /* SD_BALANCE_EXEC stats */
1127 unsigned int sbe_count;
1128 unsigned int sbe_balanced;
1129 unsigned int sbe_pushed;
1130
1131 /* SD_BALANCE_FORK stats */
1132 unsigned int sbf_count;
1133 unsigned int sbf_balanced;
1134 unsigned int sbf_pushed;
1135
1136 /* try_to_wake_up() stats */
1137 unsigned int ttwu_wake_remote;
1138 unsigned int ttwu_move_affine;
1139 unsigned int ttwu_move_balance;
1140#endif
1141#ifdef CONFIG_SCHED_DEBUG
1142 char *name;
1143#endif
1144 union {
1145 void *private; /* used during construction */
1146 struct rcu_head rcu; /* used during destruction */
1147 };
1148 struct sched_domain_shared *shared;
1149
1150 unsigned int span_weight;
1151 /*
1152 * Span of all CPUs in this domain.
1153 *
1154 * NOTE: this field is variable length. (Allocated dynamically
1155 * by attaching extra space to the end of the structure,
1156 * depending on how many CPUs the kernel has booted up with)
1157 */
1158 unsigned long span[0];
1159};
1160
1161static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1162{
1163 return to_cpumask(sd->span);
1164}
1165
1166extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1167 struct sched_domain_attr *dattr_new);
1168
1169/* Allocate an array of sched domains, for partition_sched_domains(). */
1170cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1171void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1172
1173bool cpus_share_cache(int this_cpu, int that_cpu);
1174
1175typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1176typedef int (*sched_domain_flags_f)(void);
1177
1178#define SDTL_OVERLAP 0x01
1179
1180struct sd_data {
1181 struct sched_domain **__percpu sd;
1182 struct sched_domain_shared **__percpu sds;
1183 struct sched_group **__percpu sg;
1184 struct sched_group_capacity **__percpu sgc;
1185};
1186
1187struct sched_domain_topology_level {
1188 sched_domain_mask_f mask;
1189 sched_domain_flags_f sd_flags;
1190 int flags;
1191 int numa_level;
1192 struct sd_data data;
1193#ifdef CONFIG_SCHED_DEBUG
1194 char *name;
1195#endif
1196};
1197
1198extern void set_sched_topology(struct sched_domain_topology_level *tl);
1199extern void wake_up_if_idle(int cpu);
1200
1201#ifdef CONFIG_SCHED_DEBUG
1202# define SD_INIT_NAME(type) .name = #type
1203#else
1204# define SD_INIT_NAME(type)
1205#endif
1206
1207#else /* CONFIG_SMP */
1208
1209struct sched_domain_attr;
1210
1211static inline void
1212partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1213 struct sched_domain_attr *dattr_new)
1214{
1215}
1216
1217static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1218{
1219 return true;
1220}
1221
1222#endif /* !CONFIG_SMP */
1223
1224
1225struct io_context; /* See blkdev.h */
1226
1227
1228#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1229extern void prefetch_stack(struct task_struct *t);
1230#else
1231static inline void prefetch_stack(struct task_struct *t) { }
1232#endif
1233
1234struct audit_context; /* See audit.c */
1235struct mempolicy;
1236struct pipe_inode_info;
1237struct uts_namespace;
1238
1239struct load_weight {
1240 unsigned long weight;
1241 u32 inv_weight;
1242};
1243
1244/*
1245 * The load_avg/util_avg accumulates an infinite geometric series
1246 * (see __update_load_avg() in kernel/sched/fair.c).
1247 *
1248 * [load_avg definition]
1249 *
1250 * load_avg = runnable% * scale_load_down(load)
1251 *
1252 * where runnable% is the time ratio that a sched_entity is runnable.
1253 * For cfs_rq, it is the aggregated load_avg of all runnable and
1254 * blocked sched_entities.
1255 *
1256 * load_avg may also take frequency scaling into account:
1257 *
1258 * load_avg = runnable% * scale_load_down(load) * freq%
1259 *
1260 * where freq% is the CPU frequency normalized to the highest frequency.
1261 *
1262 * [util_avg definition]
1263 *
1264 * util_avg = running% * SCHED_CAPACITY_SCALE
1265 *
1266 * where running% is the time ratio that a sched_entity is running on
1267 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1268 * and blocked sched_entities.
1269 *
1270 * util_avg may also factor frequency scaling and CPU capacity scaling:
1271 *
1272 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1273 *
1274 * where freq% is the same as above, and capacity% is the CPU capacity
1275 * normalized to the greatest capacity (due to uarch differences, etc).
1276 *
1277 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1278 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1279 * we therefore scale them to as large a range as necessary. This is for
1280 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1281 *
1282 * [Overflow issue]
1283 *
1284 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1285 * with the highest load (=88761), always runnable on a single cfs_rq,
1286 * and should not overflow as the number already hits PID_MAX_LIMIT.
1287 *
1288 * For all other cases (including 32-bit kernels), struct load_weight's
1289 * weight will overflow first before we do, because:
1290 *
1291 * Max(load_avg) <= Max(load.weight)
1292 *
1293 * Then it is the load_weight's responsibility to consider overflow
1294 * issues.
1295 */
1296struct sched_avg {
1297 u64 last_update_time, load_sum;
1298 u32 util_sum, period_contrib;
1299 unsigned long load_avg, util_avg;
1300};
1301
1302#ifdef CONFIG_SCHEDSTATS
1303struct sched_statistics {
1304 u64 wait_start;
1305 u64 wait_max;
1306 u64 wait_count;
1307 u64 wait_sum;
1308 u64 iowait_count;
1309 u64 iowait_sum;
1310
1311 u64 sleep_start;
1312 u64 sleep_max;
1313 s64 sum_sleep_runtime;
1314
1315 u64 block_start;
1316 u64 block_max;
1317 u64 exec_max;
1318 u64 slice_max;
1319
1320 u64 nr_migrations_cold;
1321 u64 nr_failed_migrations_affine;
1322 u64 nr_failed_migrations_running;
1323 u64 nr_failed_migrations_hot;
1324 u64 nr_forced_migrations;
1325
1326 u64 nr_wakeups;
1327 u64 nr_wakeups_sync;
1328 u64 nr_wakeups_migrate;
1329 u64 nr_wakeups_local;
1330 u64 nr_wakeups_remote;
1331 u64 nr_wakeups_affine;
1332 u64 nr_wakeups_affine_attempts;
1333 u64 nr_wakeups_passive;
1334 u64 nr_wakeups_idle;
1335};
1336#endif
1337
1338struct sched_entity {
1339 struct load_weight load; /* for load-balancing */
1340 struct rb_node run_node;
1341 struct list_head group_node;
1342 unsigned int on_rq;
1343
1344 u64 exec_start;
1345 u64 sum_exec_runtime;
1346 u64 vruntime;
1347 u64 prev_sum_exec_runtime;
1348
1349 u64 nr_migrations;
1350
1351#ifdef CONFIG_SCHEDSTATS
1352 struct sched_statistics statistics;
1353#endif
1354
1355#ifdef CONFIG_FAIR_GROUP_SCHED
1356 int depth;
1357 struct sched_entity *parent;
1358 /* rq on which this entity is (to be) queued: */
1359 struct cfs_rq *cfs_rq;
1360 /* rq "owned" by this entity/group: */
1361 struct cfs_rq *my_q;
1362#endif
1363
1364#ifdef CONFIG_SMP
1365 /*
1366 * Per entity load average tracking.
1367 *
1368 * Put into separate cache line so it does not
1369 * collide with read-mostly values above.
1370 */
1371 struct sched_avg avg ____cacheline_aligned_in_smp;
1372#endif
1373};
1374
1375struct sched_rt_entity {
1376 struct list_head run_list;
1377 unsigned long timeout;
1378 unsigned long watchdog_stamp;
1379 unsigned int time_slice;
1380 unsigned short on_rq;
1381 unsigned short on_list;
1382
1383 struct sched_rt_entity *back;
1384#ifdef CONFIG_RT_GROUP_SCHED
1385 struct sched_rt_entity *parent;
1386 /* rq on which this entity is (to be) queued: */
1387 struct rt_rq *rt_rq;
1388 /* rq "owned" by this entity/group: */
1389 struct rt_rq *my_q;
1390#endif
1391};
1392
1393struct sched_dl_entity {
1394 struct rb_node rb_node;
1395
1396 /*
1397 * Original scheduling parameters. Copied here from sched_attr
1398 * during sched_setattr(), they will remain the same until
1399 * the next sched_setattr().
1400 */
1401 u64 dl_runtime; /* maximum runtime for each instance */
1402 u64 dl_deadline; /* relative deadline of each instance */
1403 u64 dl_period; /* separation of two instances (period) */
1404 u64 dl_bw; /* dl_runtime / dl_deadline */
1405
1406 /*
1407 * Actual scheduling parameters. Initialized with the values above,
1408 * they are continously updated during task execution. Note that
1409 * the remaining runtime could be < 0 in case we are in overrun.
1410 */
1411 s64 runtime; /* remaining runtime for this instance */
1412 u64 deadline; /* absolute deadline for this instance */
1413 unsigned int flags; /* specifying the scheduler behaviour */
1414
1415 /*
1416 * Some bool flags:
1417 *
1418 * @dl_throttled tells if we exhausted the runtime. If so, the
1419 * task has to wait for a replenishment to be performed at the
1420 * next firing of dl_timer.
1421 *
1422 * @dl_boosted tells if we are boosted due to DI. If so we are
1423 * outside bandwidth enforcement mechanism (but only until we
1424 * exit the critical section);
1425 *
1426 * @dl_yielded tells if task gave up the cpu before consuming
1427 * all its available runtime during the last job.
1428 */
1429 int dl_throttled, dl_boosted, dl_yielded;
1430
1431 /*
1432 * Bandwidth enforcement timer. Each -deadline task has its
1433 * own bandwidth to be enforced, thus we need one timer per task.
1434 */
1435 struct hrtimer dl_timer;
1436};
1437
1438union rcu_special {
1439 struct {
1440 u8 blocked;
1441 u8 need_qs;
1442 u8 exp_need_qs;
1443 u8 pad; /* Otherwise the compiler can store garbage here. */
1444 } b; /* Bits. */
1445 u32 s; /* Set of bits. */
1446};
1447struct rcu_node;
1448
1449enum perf_event_task_context {
1450 perf_invalid_context = -1,
1451 perf_hw_context = 0,
1452 perf_sw_context,
1453 perf_nr_task_contexts,
1454};
1455
1456/* Track pages that require TLB flushes */
1457struct tlbflush_unmap_batch {
1458 /*
1459 * Each bit set is a CPU that potentially has a TLB entry for one of
1460 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1461 */
1462 struct cpumask cpumask;
1463
1464 /* True if any bit in cpumask is set */
1465 bool flush_required;
1466
1467 /*
1468 * If true then the PTE was dirty when unmapped. The entry must be
1469 * flushed before IO is initiated or a stale TLB entry potentially
1470 * allows an update without redirtying the page.
1471 */
1472 bool writable;
1473};
1474
1475struct task_struct {
1476#ifdef CONFIG_THREAD_INFO_IN_TASK
1477 /*
1478 * For reasons of header soup (see current_thread_info()), this
1479 * must be the first element of task_struct.
1480 */
1481 struct thread_info thread_info;
1482#endif
1483 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1484 void *stack;
1485 atomic_t usage;
1486 unsigned int flags; /* per process flags, defined below */
1487 unsigned int ptrace;
1488
1489#ifdef CONFIG_SMP
1490 struct llist_node wake_entry;
1491 int on_cpu;
1492#ifdef CONFIG_THREAD_INFO_IN_TASK
1493 unsigned int cpu; /* current CPU */
1494#endif
1495 unsigned int wakee_flips;
1496 unsigned long wakee_flip_decay_ts;
1497 struct task_struct *last_wakee;
1498
1499 int wake_cpu;
1500#endif
1501 int on_rq;
1502
1503 int prio, static_prio, normal_prio;
1504 unsigned int rt_priority;
1505 const struct sched_class *sched_class;
1506 struct sched_entity se;
1507 struct sched_rt_entity rt;
1508#ifdef CONFIG_CGROUP_SCHED
1509 struct task_group *sched_task_group;
1510#endif
1511 struct sched_dl_entity dl;
1512
1513#ifdef CONFIG_PREEMPT_NOTIFIERS
1514 /* list of struct preempt_notifier: */
1515 struct hlist_head preempt_notifiers;
1516#endif
1517
1518#ifdef CONFIG_BLK_DEV_IO_TRACE
1519 unsigned int btrace_seq;
1520#endif
1521
1522 unsigned int policy;
1523 int nr_cpus_allowed;
1524 cpumask_t cpus_allowed;
1525
1526#ifdef CONFIG_PREEMPT_RCU
1527 int rcu_read_lock_nesting;
1528 union rcu_special rcu_read_unlock_special;
1529 struct list_head rcu_node_entry;
1530 struct rcu_node *rcu_blocked_node;
1531#endif /* #ifdef CONFIG_PREEMPT_RCU */
1532#ifdef CONFIG_TASKS_RCU
1533 unsigned long rcu_tasks_nvcsw;
1534 bool rcu_tasks_holdout;
1535 struct list_head rcu_tasks_holdout_list;
1536 int rcu_tasks_idle_cpu;
1537#endif /* #ifdef CONFIG_TASKS_RCU */
1538
1539#ifdef CONFIG_SCHED_INFO
1540 struct sched_info sched_info;
1541#endif
1542
1543 struct list_head tasks;
1544#ifdef CONFIG_SMP
1545 struct plist_node pushable_tasks;
1546 struct rb_node pushable_dl_tasks;
1547#endif
1548
1549 struct mm_struct *mm, *active_mm;
1550 /* per-thread vma caching */
1551 u32 vmacache_seqnum;
1552 struct vm_area_struct *vmacache[VMACACHE_SIZE];
1553#if defined(SPLIT_RSS_COUNTING)
1554 struct task_rss_stat rss_stat;
1555#endif
1556/* task state */
1557 int exit_state;
1558 int exit_code, exit_signal;
1559 int pdeath_signal; /* The signal sent when the parent dies */
1560 unsigned long jobctl; /* JOBCTL_*, siglock protected */
1561
1562 /* Used for emulating ABI behavior of previous Linux versions */
1563 unsigned int personality;
1564
1565 /* scheduler bits, serialized by scheduler locks */
1566 unsigned sched_reset_on_fork:1;
1567 unsigned sched_contributes_to_load:1;
1568 unsigned sched_migrated:1;
1569 unsigned sched_remote_wakeup:1;
1570 unsigned :0; /* force alignment to the next boundary */
1571
1572 /* unserialized, strictly 'current' */
1573 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1574 unsigned in_iowait:1;
1575#if !defined(TIF_RESTORE_SIGMASK)
1576 unsigned restore_sigmask:1;
1577#endif
1578#ifdef CONFIG_MEMCG
1579 unsigned memcg_may_oom:1;
1580#ifndef CONFIG_SLOB
1581 unsigned memcg_kmem_skip_account:1;
1582#endif
1583#endif
1584#ifdef CONFIG_COMPAT_BRK
1585 unsigned brk_randomized:1;
1586#endif
1587
1588 unsigned long atomic_flags; /* Flags needing atomic access. */
1589
1590 struct restart_block restart_block;
1591
1592 pid_t pid;
1593 pid_t tgid;
1594
1595#ifdef CONFIG_CC_STACKPROTECTOR
1596 /* Canary value for the -fstack-protector gcc feature */
1597 unsigned long stack_canary;
1598#endif
1599 /*
1600 * pointers to (original) parent process, youngest child, younger sibling,
1601 * older sibling, respectively. (p->father can be replaced with
1602 * p->real_parent->pid)
1603 */
1604 struct task_struct __rcu *real_parent; /* real parent process */
1605 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1606 /*
1607 * children/sibling forms the list of my natural children
1608 */
1609 struct list_head children; /* list of my children */
1610 struct list_head sibling; /* linkage in my parent's children list */
1611 struct task_struct *group_leader; /* threadgroup leader */
1612
1613 /*
1614 * ptraced is the list of tasks this task is using ptrace on.
1615 * This includes both natural children and PTRACE_ATTACH targets.
1616 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1617 */
1618 struct list_head ptraced;
1619 struct list_head ptrace_entry;
1620
1621 /* PID/PID hash table linkage. */
1622 struct pid_link pids[PIDTYPE_MAX];
1623 struct list_head thread_group;
1624 struct list_head thread_node;
1625
1626 struct completion *vfork_done; /* for vfork() */
1627 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1628 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1629
1630 cputime_t utime, stime, utimescaled, stimescaled;
1631 cputime_t gtime;
1632 struct prev_cputime prev_cputime;
1633#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1634 seqcount_t vtime_seqcount;
1635 unsigned long long vtime_snap;
1636 enum {
1637 /* Task is sleeping or running in a CPU with VTIME inactive */
1638 VTIME_INACTIVE = 0,
1639 /* Task runs in userspace in a CPU with VTIME active */
1640 VTIME_USER,
1641 /* Task runs in kernelspace in a CPU with VTIME active */
1642 VTIME_SYS,
1643 } vtime_snap_whence;
1644#endif
1645
1646#ifdef CONFIG_NO_HZ_FULL
1647 atomic_t tick_dep_mask;
1648#endif
1649 unsigned long nvcsw, nivcsw; /* context switch counts */
1650 u64 start_time; /* monotonic time in nsec */
1651 u64 real_start_time; /* boot based time in nsec */
1652/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1653 unsigned long min_flt, maj_flt;
1654
1655 struct task_cputime cputime_expires;
1656 struct list_head cpu_timers[3];
1657
1658/* process credentials */
1659 const struct cred __rcu *real_cred; /* objective and real subjective task
1660 * credentials (COW) */
1661 const struct cred __rcu *cred; /* effective (overridable) subjective task
1662 * credentials (COW) */
1663 char comm[TASK_COMM_LEN]; /* executable name excluding path
1664 - access with [gs]et_task_comm (which lock
1665 it with task_lock())
1666 - initialized normally by setup_new_exec */
1667/* file system info */
1668 struct nameidata *nameidata;
1669#ifdef CONFIG_SYSVIPC
1670/* ipc stuff */
1671 struct sysv_sem sysvsem;
1672 struct sysv_shm sysvshm;
1673#endif
1674#ifdef CONFIG_DETECT_HUNG_TASK
1675/* hung task detection */
1676 unsigned long last_switch_count;
1677#endif
1678/* filesystem information */
1679 struct fs_struct *fs;
1680/* open file information */
1681 struct files_struct *files;
1682/* namespaces */
1683 struct nsproxy *nsproxy;
1684/* signal handlers */
1685 struct signal_struct *signal;
1686 struct sighand_struct *sighand;
1687
1688 sigset_t blocked, real_blocked;
1689 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1690 struct sigpending pending;
1691
1692 unsigned long sas_ss_sp;
1693 size_t sas_ss_size;
1694 unsigned sas_ss_flags;
1695
1696 struct callback_head *task_works;
1697
1698 struct audit_context *audit_context;
1699#ifdef CONFIG_AUDITSYSCALL
1700 kuid_t loginuid;
1701 unsigned int sessionid;
1702#endif
1703 struct seccomp seccomp;
1704
1705/* Thread group tracking */
1706 u32 parent_exec_id;
1707 u32 self_exec_id;
1708/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1709 * mempolicy */
1710 spinlock_t alloc_lock;
1711
1712 /* Protection of the PI data structures: */
1713 raw_spinlock_t pi_lock;
1714
1715 struct wake_q_node wake_q;
1716
1717#ifdef CONFIG_RT_MUTEXES
1718 /* PI waiters blocked on a rt_mutex held by this task */
1719 struct rb_root pi_waiters;
1720 struct rb_node *pi_waiters_leftmost;
1721 /* Deadlock detection and priority inheritance handling */
1722 struct rt_mutex_waiter *pi_blocked_on;
1723#endif
1724
1725#ifdef CONFIG_DEBUG_MUTEXES
1726 /* mutex deadlock detection */
1727 struct mutex_waiter *blocked_on;
1728#endif
1729#ifdef CONFIG_TRACE_IRQFLAGS
1730 unsigned int irq_events;
1731 unsigned long hardirq_enable_ip;
1732 unsigned long hardirq_disable_ip;
1733 unsigned int hardirq_enable_event;
1734 unsigned int hardirq_disable_event;
1735 int hardirqs_enabled;
1736 int hardirq_context;
1737 unsigned long softirq_disable_ip;
1738 unsigned long softirq_enable_ip;
1739 unsigned int softirq_disable_event;
1740 unsigned int softirq_enable_event;
1741 int softirqs_enabled;
1742 int softirq_context;
1743#endif
1744#ifdef CONFIG_LOCKDEP
1745# define MAX_LOCK_DEPTH 48UL
1746 u64 curr_chain_key;
1747 int lockdep_depth;
1748 unsigned int lockdep_recursion;
1749 struct held_lock held_locks[MAX_LOCK_DEPTH];
1750 gfp_t lockdep_reclaim_gfp;
1751#endif
1752#ifdef CONFIG_UBSAN
1753 unsigned int in_ubsan;
1754#endif
1755
1756/* journalling filesystem info */
1757 void *journal_info;
1758
1759/* stacked block device info */
1760 struct bio_list *bio_list;
1761
1762#ifdef CONFIG_BLOCK
1763/* stack plugging */
1764 struct blk_plug *plug;
1765#endif
1766
1767/* VM state */
1768 struct reclaim_state *reclaim_state;
1769
1770 struct backing_dev_info *backing_dev_info;
1771
1772 struct io_context *io_context;
1773
1774 unsigned long ptrace_message;
1775 siginfo_t *last_siginfo; /* For ptrace use. */
1776 struct task_io_accounting ioac;
1777#if defined(CONFIG_TASK_XACCT)
1778 u64 acct_rss_mem1; /* accumulated rss usage */
1779 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1780 cputime_t acct_timexpd; /* stime + utime since last update */
1781#endif
1782#ifdef CONFIG_CPUSETS
1783 nodemask_t mems_allowed; /* Protected by alloc_lock */
1784 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1785 int cpuset_mem_spread_rotor;
1786 int cpuset_slab_spread_rotor;
1787#endif
1788#ifdef CONFIG_CGROUPS
1789 /* Control Group info protected by css_set_lock */
1790 struct css_set __rcu *cgroups;
1791 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1792 struct list_head cg_list;
1793#endif
1794#ifdef CONFIG_FUTEX
1795 struct robust_list_head __user *robust_list;
1796#ifdef CONFIG_COMPAT
1797 struct compat_robust_list_head __user *compat_robust_list;
1798#endif
1799 struct list_head pi_state_list;
1800 struct futex_pi_state *pi_state_cache;
1801#endif
1802#ifdef CONFIG_PERF_EVENTS
1803 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1804 struct mutex perf_event_mutex;
1805 struct list_head perf_event_list;
1806#endif
1807#ifdef CONFIG_DEBUG_PREEMPT
1808 unsigned long preempt_disable_ip;
1809#endif
1810#ifdef CONFIG_NUMA
1811 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1812 short il_next;
1813 short pref_node_fork;
1814#endif
1815#ifdef CONFIG_NUMA_BALANCING
1816 int numa_scan_seq;
1817 unsigned int numa_scan_period;
1818 unsigned int numa_scan_period_max;
1819 int numa_preferred_nid;
1820 unsigned long numa_migrate_retry;
1821 u64 node_stamp; /* migration stamp */
1822 u64 last_task_numa_placement;
1823 u64 last_sum_exec_runtime;
1824 struct callback_head numa_work;
1825
1826 struct list_head numa_entry;
1827 struct numa_group *numa_group;
1828
1829 /*
1830 * numa_faults is an array split into four regions:
1831 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1832 * in this precise order.
1833 *
1834 * faults_memory: Exponential decaying average of faults on a per-node
1835 * basis. Scheduling placement decisions are made based on these
1836 * counts. The values remain static for the duration of a PTE scan.
1837 * faults_cpu: Track the nodes the process was running on when a NUMA
1838 * hinting fault was incurred.
1839 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1840 * during the current scan window. When the scan completes, the counts
1841 * in faults_memory and faults_cpu decay and these values are copied.
1842 */
1843 unsigned long *numa_faults;
1844 unsigned long total_numa_faults;
1845
1846 /*
1847 * numa_faults_locality tracks if faults recorded during the last
1848 * scan window were remote/local or failed to migrate. The task scan
1849 * period is adapted based on the locality of the faults with different
1850 * weights depending on whether they were shared or private faults
1851 */
1852 unsigned long numa_faults_locality[3];
1853
1854 unsigned long numa_pages_migrated;
1855#endif /* CONFIG_NUMA_BALANCING */
1856
1857#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1858 struct tlbflush_unmap_batch tlb_ubc;
1859#endif
1860
1861 struct rcu_head rcu;
1862
1863 /*
1864 * cache last used pipe for splice
1865 */
1866 struct pipe_inode_info *splice_pipe;
1867
1868 struct page_frag task_frag;
1869
1870#ifdef CONFIG_TASK_DELAY_ACCT
1871 struct task_delay_info *delays;
1872#endif
1873#ifdef CONFIG_FAULT_INJECTION
1874 int make_it_fail;
1875#endif
1876 /*
1877 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1878 * balance_dirty_pages() for some dirty throttling pause
1879 */
1880 int nr_dirtied;
1881 int nr_dirtied_pause;
1882 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1883
1884#ifdef CONFIG_LATENCYTOP
1885 int latency_record_count;
1886 struct latency_record latency_record[LT_SAVECOUNT];
1887#endif
1888 /*
1889 * time slack values; these are used to round up poll() and
1890 * select() etc timeout values. These are in nanoseconds.
1891 */
1892 u64 timer_slack_ns;
1893 u64 default_timer_slack_ns;
1894
1895#ifdef CONFIG_KASAN
1896 unsigned int kasan_depth;
1897#endif
1898#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1899 /* Index of current stored address in ret_stack */
1900 int curr_ret_stack;
1901 /* Stack of return addresses for return function tracing */
1902 struct ftrace_ret_stack *ret_stack;
1903 /* time stamp for last schedule */
1904 unsigned long long ftrace_timestamp;
1905 /*
1906 * Number of functions that haven't been traced
1907 * because of depth overrun.
1908 */
1909 atomic_t trace_overrun;
1910 /* Pause for the tracing */
1911 atomic_t tracing_graph_pause;
1912#endif
1913#ifdef CONFIG_TRACING
1914 /* state flags for use by tracers */
1915 unsigned long trace;
1916 /* bitmask and counter of trace recursion */
1917 unsigned long trace_recursion;
1918#endif /* CONFIG_TRACING */
1919#ifdef CONFIG_KCOV
1920 /* Coverage collection mode enabled for this task (0 if disabled). */
1921 enum kcov_mode kcov_mode;
1922 /* Size of the kcov_area. */
1923 unsigned kcov_size;
1924 /* Buffer for coverage collection. */
1925 void *kcov_area;
1926 /* kcov desciptor wired with this task or NULL. */
1927 struct kcov *kcov;
1928#endif
1929#ifdef CONFIG_MEMCG
1930 struct mem_cgroup *memcg_in_oom;
1931 gfp_t memcg_oom_gfp_mask;
1932 int memcg_oom_order;
1933
1934 /* number of pages to reclaim on returning to userland */
1935 unsigned int memcg_nr_pages_over_high;
1936#endif
1937#ifdef CONFIG_UPROBES
1938 struct uprobe_task *utask;
1939#endif
1940#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1941 unsigned int sequential_io;
1942 unsigned int sequential_io_avg;
1943#endif
1944#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1945 unsigned long task_state_change;
1946#endif
1947 int pagefault_disabled;
1948#ifdef CONFIG_MMU
1949 struct task_struct *oom_reaper_list;
1950#endif
1951#ifdef CONFIG_VMAP_STACK
1952 struct vm_struct *stack_vm_area;
1953#endif
1954#ifdef CONFIG_THREAD_INFO_IN_TASK
1955 /* A live task holds one reference. */
1956 atomic_t stack_refcount;
1957#endif
1958/* CPU-specific state of this task */
1959 struct thread_struct thread;
1960/*
1961 * WARNING: on x86, 'thread_struct' contains a variable-sized
1962 * structure. It *MUST* be at the end of 'task_struct'.
1963 *
1964 * Do not put anything below here!
1965 */
1966};
1967
1968#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1969extern int arch_task_struct_size __read_mostly;
1970#else
1971# define arch_task_struct_size (sizeof(struct task_struct))
1972#endif
1973
1974#ifdef CONFIG_VMAP_STACK
1975static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
1976{
1977 return t->stack_vm_area;
1978}
1979#else
1980static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
1981{
1982 return NULL;
1983}
1984#endif
1985
1986/* Future-safe accessor for struct task_struct's cpus_allowed. */
1987#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1988
1989static inline int tsk_nr_cpus_allowed(struct task_struct *p)
1990{
1991 return p->nr_cpus_allowed;
1992}
1993
1994#define TNF_MIGRATED 0x01
1995#define TNF_NO_GROUP 0x02
1996#define TNF_SHARED 0x04
1997#define TNF_FAULT_LOCAL 0x08
1998#define TNF_MIGRATE_FAIL 0x10
1999
2000static inline bool in_vfork(struct task_struct *tsk)
2001{
2002 bool ret;
2003
2004 /*
2005 * need RCU to access ->real_parent if CLONE_VM was used along with
2006 * CLONE_PARENT.
2007 *
2008 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
2009 * imply CLONE_VM
2010 *
2011 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
2012 * ->real_parent is not necessarily the task doing vfork(), so in
2013 * theory we can't rely on task_lock() if we want to dereference it.
2014 *
2015 * And in this case we can't trust the real_parent->mm == tsk->mm
2016 * check, it can be false negative. But we do not care, if init or
2017 * another oom-unkillable task does this it should blame itself.
2018 */
2019 rcu_read_lock();
2020 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
2021 rcu_read_unlock();
2022
2023 return ret;
2024}
2025
2026#ifdef CONFIG_NUMA_BALANCING
2027extern void task_numa_fault(int last_node, int node, int pages, int flags);
2028extern pid_t task_numa_group_id(struct task_struct *p);
2029extern void set_numabalancing_state(bool enabled);
2030extern void task_numa_free(struct task_struct *p);
2031extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
2032 int src_nid, int dst_cpu);
2033#else
2034static inline void task_numa_fault(int last_node, int node, int pages,
2035 int flags)
2036{
2037}
2038static inline pid_t task_numa_group_id(struct task_struct *p)
2039{
2040 return 0;
2041}
2042static inline void set_numabalancing_state(bool enabled)
2043{
2044}
2045static inline void task_numa_free(struct task_struct *p)
2046{
2047}
2048static inline bool should_numa_migrate_memory(struct task_struct *p,
2049 struct page *page, int src_nid, int dst_cpu)
2050{
2051 return true;
2052}
2053#endif
2054
2055static inline struct pid *task_pid(struct task_struct *task)
2056{
2057 return task->pids[PIDTYPE_PID].pid;
2058}
2059
2060static inline struct pid *task_tgid(struct task_struct *task)
2061{
2062 return task->group_leader->pids[PIDTYPE_PID].pid;
2063}
2064
2065/*
2066 * Without tasklist or rcu lock it is not safe to dereference
2067 * the result of task_pgrp/task_session even if task == current,
2068 * we can race with another thread doing sys_setsid/sys_setpgid.
2069 */
2070static inline struct pid *task_pgrp(struct task_struct *task)
2071{
2072 return task->group_leader->pids[PIDTYPE_PGID].pid;
2073}
2074
2075static inline struct pid *task_session(struct task_struct *task)
2076{
2077 return task->group_leader->pids[PIDTYPE_SID].pid;
2078}
2079
2080struct pid_namespace;
2081
2082/*
2083 * the helpers to get the task's different pids as they are seen
2084 * from various namespaces
2085 *
2086 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
2087 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
2088 * current.
2089 * task_xid_nr_ns() : id seen from the ns specified;
2090 *
2091 * set_task_vxid() : assigns a virtual id to a task;
2092 *
2093 * see also pid_nr() etc in include/linux/pid.h
2094 */
2095pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2096 struct pid_namespace *ns);
2097
2098static inline pid_t task_pid_nr(struct task_struct *tsk)
2099{
2100 return tsk->pid;
2101}
2102
2103static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2104 struct pid_namespace *ns)
2105{
2106 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2107}
2108
2109static inline pid_t task_pid_vnr(struct task_struct *tsk)
2110{
2111 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
2112}
2113
2114
2115static inline pid_t task_tgid_nr(struct task_struct *tsk)
2116{
2117 return tsk->tgid;
2118}
2119
2120pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
2121
2122static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2123{
2124 return pid_vnr(task_tgid(tsk));
2125}
2126
2127
2128static inline int pid_alive(const struct task_struct *p);
2129static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2130{
2131 pid_t pid = 0;
2132
2133 rcu_read_lock();
2134 if (pid_alive(tsk))
2135 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2136 rcu_read_unlock();
2137
2138 return pid;
2139}
2140
2141static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2142{
2143 return task_ppid_nr_ns(tsk, &init_pid_ns);
2144}
2145
2146static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2147 struct pid_namespace *ns)
2148{
2149 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
2150}
2151
2152static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2153{
2154 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
2155}
2156
2157
2158static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2159 struct pid_namespace *ns)
2160{
2161 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
2162}
2163
2164static inline pid_t task_session_vnr(struct task_struct *tsk)
2165{
2166 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
2167}
2168
2169/* obsolete, do not use */
2170static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2171{
2172 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2173}
2174
2175/**
2176 * pid_alive - check that a task structure is not stale
2177 * @p: Task structure to be checked.
2178 *
2179 * Test if a process is not yet dead (at most zombie state)
2180 * If pid_alive fails, then pointers within the task structure
2181 * can be stale and must not be dereferenced.
2182 *
2183 * Return: 1 if the process is alive. 0 otherwise.
2184 */
2185static inline int pid_alive(const struct task_struct *p)
2186{
2187 return p->pids[PIDTYPE_PID].pid != NULL;
2188}
2189
2190/**
2191 * is_global_init - check if a task structure is init. Since init
2192 * is free to have sub-threads we need to check tgid.
2193 * @tsk: Task structure to be checked.
2194 *
2195 * Check if a task structure is the first user space task the kernel created.
2196 *
2197 * Return: 1 if the task structure is init. 0 otherwise.
2198 */
2199static inline int is_global_init(struct task_struct *tsk)
2200{
2201 return task_tgid_nr(tsk) == 1;
2202}
2203
2204extern struct pid *cad_pid;
2205
2206extern void free_task(struct task_struct *tsk);
2207#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2208
2209extern void __put_task_struct(struct task_struct *t);
2210
2211static inline void put_task_struct(struct task_struct *t)
2212{
2213 if (atomic_dec_and_test(&t->usage))
2214 __put_task_struct(t);
2215}
2216
2217struct task_struct *task_rcu_dereference(struct task_struct **ptask);
2218struct task_struct *try_get_task_struct(struct task_struct **ptask);
2219
2220#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2221extern void task_cputime(struct task_struct *t,
2222 cputime_t *utime, cputime_t *stime);
2223extern void task_cputime_scaled(struct task_struct *t,
2224 cputime_t *utimescaled, cputime_t *stimescaled);
2225extern cputime_t task_gtime(struct task_struct *t);
2226#else
2227static inline void task_cputime(struct task_struct *t,
2228 cputime_t *utime, cputime_t *stime)
2229{
2230 if (utime)
2231 *utime = t->utime;
2232 if (stime)
2233 *stime = t->stime;
2234}
2235
2236static inline void task_cputime_scaled(struct task_struct *t,
2237 cputime_t *utimescaled,
2238 cputime_t *stimescaled)
2239{
2240 if (utimescaled)
2241 *utimescaled = t->utimescaled;
2242 if (stimescaled)
2243 *stimescaled = t->stimescaled;
2244}
2245
2246static inline cputime_t task_gtime(struct task_struct *t)
2247{
2248 return t->gtime;
2249}
2250#endif
2251extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2252extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2253
2254/*
2255 * Per process flags
2256 */
2257#define PF_EXITING 0x00000004 /* getting shut down */
2258#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
2259#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
2260#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
2261#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
2262#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
2263#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2264#define PF_DUMPCORE 0x00000200 /* dumped core */
2265#define PF_SIGNALED 0x00000400 /* killed by a signal */
2266#define PF_MEMALLOC 0x00000800 /* Allocating memory */
2267#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
2268#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
2269#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
2270#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2271#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2272#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2273#define PF_KSWAPD 0x00040000 /* I am kswapd */
2274#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
2275#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
2276#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
2277#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2278#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
2279#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
2280#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
2281#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
2282#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2283#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
2284
2285/*
2286 * Only the _current_ task can read/write to tsk->flags, but other
2287 * tasks can access tsk->flags in readonly mode for example
2288 * with tsk_used_math (like during threaded core dumping).
2289 * There is however an exception to this rule during ptrace
2290 * or during fork: the ptracer task is allowed to write to the
2291 * child->flags of its traced child (same goes for fork, the parent
2292 * can write to the child->flags), because we're guaranteed the
2293 * child is not running and in turn not changing child->flags
2294 * at the same time the parent does it.
2295 */
2296#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2297#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2298#define clear_used_math() clear_stopped_child_used_math(current)
2299#define set_used_math() set_stopped_child_used_math(current)
2300#define conditional_stopped_child_used_math(condition, child) \
2301 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2302#define conditional_used_math(condition) \
2303 conditional_stopped_child_used_math(condition, current)
2304#define copy_to_stopped_child_used_math(child) \
2305 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2306/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2307#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2308#define used_math() tsk_used_math(current)
2309
2310/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2311 * __GFP_FS is also cleared as it implies __GFP_IO.
2312 */
2313static inline gfp_t memalloc_noio_flags(gfp_t flags)
2314{
2315 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2316 flags &= ~(__GFP_IO | __GFP_FS);
2317 return flags;
2318}
2319
2320static inline unsigned int memalloc_noio_save(void)
2321{
2322 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2323 current->flags |= PF_MEMALLOC_NOIO;
2324 return flags;
2325}
2326
2327static inline void memalloc_noio_restore(unsigned int flags)
2328{
2329 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2330}
2331
2332/* Per-process atomic flags. */
2333#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2334#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2335#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2336#define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */
2337
2338
2339#define TASK_PFA_TEST(name, func) \
2340 static inline bool task_##func(struct task_struct *p) \
2341 { return test_bit(PFA_##name, &p->atomic_flags); }
2342#define TASK_PFA_SET(name, func) \
2343 static inline void task_set_##func(struct task_struct *p) \
2344 { set_bit(PFA_##name, &p->atomic_flags); }
2345#define TASK_PFA_CLEAR(name, func) \
2346 static inline void task_clear_##func(struct task_struct *p) \
2347 { clear_bit(PFA_##name, &p->atomic_flags); }
2348
2349TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2350TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2351
2352TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2353TASK_PFA_SET(SPREAD_PAGE, spread_page)
2354TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2355
2356TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2357TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2358TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2359
2360TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
2361TASK_PFA_SET(LMK_WAITING, lmk_waiting)
2362
2363/*
2364 * task->jobctl flags
2365 */
2366#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2367
2368#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2369#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2370#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2371#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2372#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2373#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2374#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2375
2376#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2377#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2378#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2379#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2380#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2381#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2382#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
2383
2384#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2385#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2386
2387extern bool task_set_jobctl_pending(struct task_struct *task,
2388 unsigned long mask);
2389extern void task_clear_jobctl_trapping(struct task_struct *task);
2390extern void task_clear_jobctl_pending(struct task_struct *task,
2391 unsigned long mask);
2392
2393static inline void rcu_copy_process(struct task_struct *p)
2394{
2395#ifdef CONFIG_PREEMPT_RCU
2396 p->rcu_read_lock_nesting = 0;
2397 p->rcu_read_unlock_special.s = 0;
2398 p->rcu_blocked_node = NULL;
2399 INIT_LIST_HEAD(&p->rcu_node_entry);
2400#endif /* #ifdef CONFIG_PREEMPT_RCU */
2401#ifdef CONFIG_TASKS_RCU
2402 p->rcu_tasks_holdout = false;
2403 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2404 p->rcu_tasks_idle_cpu = -1;
2405#endif /* #ifdef CONFIG_TASKS_RCU */
2406}
2407
2408static inline void tsk_restore_flags(struct task_struct *task,
2409 unsigned long orig_flags, unsigned long flags)
2410{
2411 task->flags &= ~flags;
2412 task->flags |= orig_flags & flags;
2413}
2414
2415extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2416 const struct cpumask *trial);
2417extern int task_can_attach(struct task_struct *p,
2418 const struct cpumask *cs_cpus_allowed);
2419#ifdef CONFIG_SMP
2420extern void do_set_cpus_allowed(struct task_struct *p,
2421 const struct cpumask *new_mask);
2422
2423extern int set_cpus_allowed_ptr(struct task_struct *p,
2424 const struct cpumask *new_mask);
2425#else
2426static inline void do_set_cpus_allowed(struct task_struct *p,
2427 const struct cpumask *new_mask)
2428{
2429}
2430static inline int set_cpus_allowed_ptr(struct task_struct *p,
2431 const struct cpumask *new_mask)
2432{
2433 if (!cpumask_test_cpu(0, new_mask))
2434 return -EINVAL;
2435 return 0;
2436}
2437#endif
2438
2439#ifdef CONFIG_NO_HZ_COMMON
2440void calc_load_enter_idle(void);
2441void calc_load_exit_idle(void);
2442#else
2443static inline void calc_load_enter_idle(void) { }
2444static inline void calc_load_exit_idle(void) { }
2445#endif /* CONFIG_NO_HZ_COMMON */
2446
2447/*
2448 * Do not use outside of architecture code which knows its limitations.
2449 *
2450 * sched_clock() has no promise of monotonicity or bounded drift between
2451 * CPUs, use (which you should not) requires disabling IRQs.
2452 *
2453 * Please use one of the three interfaces below.
2454 */
2455extern unsigned long long notrace sched_clock(void);
2456/*
2457 * See the comment in kernel/sched/clock.c
2458 */
2459extern u64 running_clock(void);
2460extern u64 sched_clock_cpu(int cpu);
2461
2462
2463extern void sched_clock_init(void);
2464
2465#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2466static inline void sched_clock_tick(void)
2467{
2468}
2469
2470static inline void sched_clock_idle_sleep_event(void)
2471{
2472}
2473
2474static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2475{
2476}
2477
2478static inline u64 cpu_clock(int cpu)
2479{
2480 return sched_clock();
2481}
2482
2483static inline u64 local_clock(void)
2484{
2485 return sched_clock();
2486}
2487#else
2488/*
2489 * Architectures can set this to 1 if they have specified
2490 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2491 * but then during bootup it turns out that sched_clock()
2492 * is reliable after all:
2493 */
2494extern int sched_clock_stable(void);
2495extern void set_sched_clock_stable(void);
2496extern void clear_sched_clock_stable(void);
2497
2498extern void sched_clock_tick(void);
2499extern void sched_clock_idle_sleep_event(void);
2500extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2501
2502/*
2503 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2504 * time source that is monotonic per cpu argument and has bounded drift
2505 * between cpus.
2506 *
2507 * ######################### BIG FAT WARNING ##########################
2508 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2509 * # go backwards !! #
2510 * ####################################################################
2511 */
2512static inline u64 cpu_clock(int cpu)
2513{
2514 return sched_clock_cpu(cpu);
2515}
2516
2517static inline u64 local_clock(void)
2518{
2519 return sched_clock_cpu(raw_smp_processor_id());
2520}
2521#endif
2522
2523#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2524/*
2525 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2526 * The reason for this explicit opt-in is not to have perf penalty with
2527 * slow sched_clocks.
2528 */
2529extern void enable_sched_clock_irqtime(void);
2530extern void disable_sched_clock_irqtime(void);
2531#else
2532static inline void enable_sched_clock_irqtime(void) {}
2533static inline void disable_sched_clock_irqtime(void) {}
2534#endif
2535
2536extern unsigned long long
2537task_sched_runtime(struct task_struct *task);
2538
2539/* sched_exec is called by processes performing an exec */
2540#ifdef CONFIG_SMP
2541extern void sched_exec(void);
2542#else
2543#define sched_exec() {}
2544#endif
2545
2546extern void sched_clock_idle_sleep_event(void);
2547extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2548
2549#ifdef CONFIG_HOTPLUG_CPU
2550extern void idle_task_exit(void);
2551#else
2552static inline void idle_task_exit(void) {}
2553#endif
2554
2555#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2556extern void wake_up_nohz_cpu(int cpu);
2557#else
2558static inline void wake_up_nohz_cpu(int cpu) { }
2559#endif
2560
2561#ifdef CONFIG_NO_HZ_FULL
2562extern u64 scheduler_tick_max_deferment(void);
2563#endif
2564
2565#ifdef CONFIG_SCHED_AUTOGROUP
2566extern void sched_autogroup_create_attach(struct task_struct *p);
2567extern void sched_autogroup_detach(struct task_struct *p);
2568extern void sched_autogroup_fork(struct signal_struct *sig);
2569extern void sched_autogroup_exit(struct signal_struct *sig);
2570extern void sched_autogroup_exit_task(struct task_struct *p);
2571#ifdef CONFIG_PROC_FS
2572extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2573extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2574#endif
2575#else
2576static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2577static inline void sched_autogroup_detach(struct task_struct *p) { }
2578static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2579static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2580static inline void sched_autogroup_exit_task(struct task_struct *p) { }
2581#endif
2582
2583extern int yield_to(struct task_struct *p, bool preempt);
2584extern void set_user_nice(struct task_struct *p, long nice);
2585extern int task_prio(const struct task_struct *p);
2586/**
2587 * task_nice - return the nice value of a given task.
2588 * @p: the task in question.
2589 *
2590 * Return: The nice value [ -20 ... 0 ... 19 ].
2591 */
2592static inline int task_nice(const struct task_struct *p)
2593{
2594 return PRIO_TO_NICE((p)->static_prio);
2595}
2596extern int can_nice(const struct task_struct *p, const int nice);
2597extern int task_curr(const struct task_struct *p);
2598extern int idle_cpu(int cpu);
2599extern int sched_setscheduler(struct task_struct *, int,
2600 const struct sched_param *);
2601extern int sched_setscheduler_nocheck(struct task_struct *, int,
2602 const struct sched_param *);
2603extern int sched_setattr(struct task_struct *,
2604 const struct sched_attr *);
2605extern struct task_struct *idle_task(int cpu);
2606/**
2607 * is_idle_task - is the specified task an idle task?
2608 * @p: the task in question.
2609 *
2610 * Return: 1 if @p is an idle task. 0 otherwise.
2611 */
2612static inline bool is_idle_task(const struct task_struct *p)
2613{
2614 return p->pid == 0;
2615}
2616extern struct task_struct *curr_task(int cpu);
2617extern void ia64_set_curr_task(int cpu, struct task_struct *p);
2618
2619void yield(void);
2620
2621union thread_union {
2622#ifndef CONFIG_THREAD_INFO_IN_TASK
2623 struct thread_info thread_info;
2624#endif
2625 unsigned long stack[THREAD_SIZE/sizeof(long)];
2626};
2627
2628#ifndef __HAVE_ARCH_KSTACK_END
2629static inline int kstack_end(void *addr)
2630{
2631 /* Reliable end of stack detection:
2632 * Some APM bios versions misalign the stack
2633 */
2634 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2635}
2636#endif
2637
2638extern union thread_union init_thread_union;
2639extern struct task_struct init_task;
2640
2641extern struct mm_struct init_mm;
2642
2643extern struct pid_namespace init_pid_ns;
2644
2645/*
2646 * find a task by one of its numerical ids
2647 *
2648 * find_task_by_pid_ns():
2649 * finds a task by its pid in the specified namespace
2650 * find_task_by_vpid():
2651 * finds a task by its virtual pid
2652 *
2653 * see also find_vpid() etc in include/linux/pid.h
2654 */
2655
2656extern struct task_struct *find_task_by_vpid(pid_t nr);
2657extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2658 struct pid_namespace *ns);
2659
2660/* per-UID process charging. */
2661extern struct user_struct * alloc_uid(kuid_t);
2662static inline struct user_struct *get_uid(struct user_struct *u)
2663{
2664 atomic_inc(&u->__count);
2665 return u;
2666}
2667extern void free_uid(struct user_struct *);
2668
2669#include <asm/current.h>
2670
2671extern void xtime_update(unsigned long ticks);
2672
2673extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2674extern int wake_up_process(struct task_struct *tsk);
2675extern void wake_up_new_task(struct task_struct *tsk);
2676#ifdef CONFIG_SMP
2677 extern void kick_process(struct task_struct *tsk);
2678#else
2679 static inline void kick_process(struct task_struct *tsk) { }
2680#endif
2681extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2682extern void sched_dead(struct task_struct *p);
2683
2684extern void proc_caches_init(void);
2685extern void flush_signals(struct task_struct *);
2686extern void ignore_signals(struct task_struct *);
2687extern void flush_signal_handlers(struct task_struct *, int force_default);
2688extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2689
2690static inline int kernel_dequeue_signal(siginfo_t *info)
2691{
2692 struct task_struct *tsk = current;
2693 siginfo_t __info;
2694 int ret;
2695
2696 spin_lock_irq(&tsk->sighand->siglock);
2697 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2698 spin_unlock_irq(&tsk->sighand->siglock);
2699
2700 return ret;
2701}
2702
2703static inline void kernel_signal_stop(void)
2704{
2705 spin_lock_irq(¤t->sighand->siglock);
2706 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2707 __set_current_state(TASK_STOPPED);
2708 spin_unlock_irq(¤t->sighand->siglock);
2709
2710 schedule();
2711}
2712
2713extern void release_task(struct task_struct * p);
2714extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2715extern int force_sigsegv(int, struct task_struct *);
2716extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2717extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2718extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2719extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2720 const struct cred *, u32);
2721extern int kill_pgrp(struct pid *pid, int sig, int priv);
2722extern int kill_pid(struct pid *pid, int sig, int priv);
2723extern int kill_proc_info(int, struct siginfo *, pid_t);
2724extern __must_check bool do_notify_parent(struct task_struct *, int);
2725extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2726extern void force_sig(int, struct task_struct *);
2727extern int send_sig(int, struct task_struct *, int);
2728extern int zap_other_threads(struct task_struct *p);
2729extern struct sigqueue *sigqueue_alloc(void);
2730extern void sigqueue_free(struct sigqueue *);
2731extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2732extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2733
2734#ifdef TIF_RESTORE_SIGMASK
2735/*
2736 * Legacy restore_sigmask accessors. These are inefficient on
2737 * SMP architectures because they require atomic operations.
2738 */
2739
2740/**
2741 * set_restore_sigmask() - make sure saved_sigmask processing gets done
2742 *
2743 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
2744 * will run before returning to user mode, to process the flag. For
2745 * all callers, TIF_SIGPENDING is already set or it's no harm to set
2746 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
2747 * arch code will notice on return to user mode, in case those bits
2748 * are scarce. We set TIF_SIGPENDING here to ensure that the arch
2749 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
2750 */
2751static inline void set_restore_sigmask(void)
2752{
2753 set_thread_flag(TIF_RESTORE_SIGMASK);
2754 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2755}
2756static inline void clear_restore_sigmask(void)
2757{
2758 clear_thread_flag(TIF_RESTORE_SIGMASK);
2759}
2760static inline bool test_restore_sigmask(void)
2761{
2762 return test_thread_flag(TIF_RESTORE_SIGMASK);
2763}
2764static inline bool test_and_clear_restore_sigmask(void)
2765{
2766 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
2767}
2768
2769#else /* TIF_RESTORE_SIGMASK */
2770
2771/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
2772static inline void set_restore_sigmask(void)
2773{
2774 current->restore_sigmask = true;
2775 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
2776}
2777static inline void clear_restore_sigmask(void)
2778{
2779 current->restore_sigmask = false;
2780}
2781static inline bool test_restore_sigmask(void)
2782{
2783 return current->restore_sigmask;
2784}
2785static inline bool test_and_clear_restore_sigmask(void)
2786{
2787 if (!current->restore_sigmask)
2788 return false;
2789 current->restore_sigmask = false;
2790 return true;
2791}
2792#endif
2793
2794static inline void restore_saved_sigmask(void)
2795{
2796 if (test_and_clear_restore_sigmask())
2797 __set_current_blocked(¤t->saved_sigmask);
2798}
2799
2800static inline sigset_t *sigmask_to_save(void)
2801{
2802 sigset_t *res = ¤t->blocked;
2803 if (unlikely(test_restore_sigmask()))
2804 res = ¤t->saved_sigmask;
2805 return res;
2806}
2807
2808static inline int kill_cad_pid(int sig, int priv)
2809{
2810 return kill_pid(cad_pid, sig, priv);
2811}
2812
2813/* These can be the second arg to send_sig_info/send_group_sig_info. */
2814#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2815#define SEND_SIG_PRIV ((struct siginfo *) 1)
2816#define SEND_SIG_FORCED ((struct siginfo *) 2)
2817
2818/*
2819 * True if we are on the alternate signal stack.
2820 */
2821static inline int on_sig_stack(unsigned long sp)
2822{
2823 /*
2824 * If the signal stack is SS_AUTODISARM then, by construction, we
2825 * can't be on the signal stack unless user code deliberately set
2826 * SS_AUTODISARM when we were already on it.
2827 *
2828 * This improves reliability: if user state gets corrupted such that
2829 * the stack pointer points very close to the end of the signal stack,
2830 * then this check will enable the signal to be handled anyway.
2831 */
2832 if (current->sas_ss_flags & SS_AUTODISARM)
2833 return 0;
2834
2835#ifdef CONFIG_STACK_GROWSUP
2836 return sp >= current->sas_ss_sp &&
2837 sp - current->sas_ss_sp < current->sas_ss_size;
2838#else
2839 return sp > current->sas_ss_sp &&
2840 sp - current->sas_ss_sp <= current->sas_ss_size;
2841#endif
2842}
2843
2844static inline int sas_ss_flags(unsigned long sp)
2845{
2846 if (!current->sas_ss_size)
2847 return SS_DISABLE;
2848
2849 return on_sig_stack(sp) ? SS_ONSTACK : 0;
2850}
2851
2852static inline void sas_ss_reset(struct task_struct *p)
2853{
2854 p->sas_ss_sp = 0;
2855 p->sas_ss_size = 0;
2856 p->sas_ss_flags = SS_DISABLE;
2857}
2858
2859static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2860{
2861 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2862#ifdef CONFIG_STACK_GROWSUP
2863 return current->sas_ss_sp;
2864#else
2865 return current->sas_ss_sp + current->sas_ss_size;
2866#endif
2867 return sp;
2868}
2869
2870/*
2871 * Routines for handling mm_structs
2872 */
2873extern struct mm_struct * mm_alloc(void);
2874
2875/* mmdrop drops the mm and the page tables */
2876extern void __mmdrop(struct mm_struct *);
2877static inline void mmdrop(struct mm_struct *mm)
2878{
2879 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2880 __mmdrop(mm);
2881}
2882
2883static inline void mmdrop_async_fn(struct work_struct *work)
2884{
2885 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
2886 __mmdrop(mm);
2887}
2888
2889static inline void mmdrop_async(struct mm_struct *mm)
2890{
2891 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
2892 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
2893 schedule_work(&mm->async_put_work);
2894 }
2895}
2896
2897static inline bool mmget_not_zero(struct mm_struct *mm)
2898{
2899 return atomic_inc_not_zero(&mm->mm_users);
2900}
2901
2902/* mmput gets rid of the mappings and all user-space */
2903extern void mmput(struct mm_struct *);
2904#ifdef CONFIG_MMU
2905/* same as above but performs the slow path from the async context. Can
2906 * be called from the atomic context as well
2907 */
2908extern void mmput_async(struct mm_struct *);
2909#endif
2910
2911/* Grab a reference to a task's mm, if it is not already going away */
2912extern struct mm_struct *get_task_mm(struct task_struct *task);
2913/*
2914 * Grab a reference to a task's mm, if it is not already going away
2915 * and ptrace_may_access with the mode parameter passed to it
2916 * succeeds.
2917 */
2918extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2919/* Remove the current tasks stale references to the old mm_struct */
2920extern void mm_release(struct task_struct *, struct mm_struct *);
2921
2922#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2923extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2924 struct task_struct *, unsigned long);
2925#else
2926extern int copy_thread(unsigned long, unsigned long, unsigned long,
2927 struct task_struct *);
2928
2929/* Architectures that haven't opted into copy_thread_tls get the tls argument
2930 * via pt_regs, so ignore the tls argument passed via C. */
2931static inline int copy_thread_tls(
2932 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2933 struct task_struct *p, unsigned long tls)
2934{
2935 return copy_thread(clone_flags, sp, arg, p);
2936}
2937#endif
2938extern void flush_thread(void);
2939
2940#ifdef CONFIG_HAVE_EXIT_THREAD
2941extern void exit_thread(struct task_struct *tsk);
2942#else
2943static inline void exit_thread(struct task_struct *tsk)
2944{
2945}
2946#endif
2947
2948extern void exit_files(struct task_struct *);
2949extern void __cleanup_sighand(struct sighand_struct *);
2950
2951extern void exit_itimers(struct signal_struct *);
2952extern void flush_itimer_signals(void);
2953
2954extern void do_group_exit(int);
2955
2956extern int do_execve(struct filename *,
2957 const char __user * const __user *,
2958 const char __user * const __user *);
2959extern int do_execveat(int, struct filename *,
2960 const char __user * const __user *,
2961 const char __user * const __user *,
2962 int);
2963extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2964extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2965struct task_struct *fork_idle(int);
2966extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2967
2968extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2969static inline void set_task_comm(struct task_struct *tsk, const char *from)
2970{
2971 __set_task_comm(tsk, from, false);
2972}
2973extern char *get_task_comm(char *to, struct task_struct *tsk);
2974
2975#ifdef CONFIG_SMP
2976void scheduler_ipi(void);
2977extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2978#else
2979static inline void scheduler_ipi(void) { }
2980static inline unsigned long wait_task_inactive(struct task_struct *p,
2981 long match_state)
2982{
2983 return 1;
2984}
2985#endif
2986
2987#define tasklist_empty() \
2988 list_empty(&init_task.tasks)
2989
2990#define next_task(p) \
2991 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2992
2993#define for_each_process(p) \
2994 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2995
2996extern bool current_is_single_threaded(void);
2997
2998/*
2999 * Careful: do_each_thread/while_each_thread is a double loop so
3000 * 'break' will not work as expected - use goto instead.
3001 */
3002#define do_each_thread(g, t) \
3003 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
3004
3005#define while_each_thread(g, t) \
3006 while ((t = next_thread(t)) != g)
3007
3008#define __for_each_thread(signal, t) \
3009 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
3010
3011#define for_each_thread(p, t) \
3012 __for_each_thread((p)->signal, t)
3013
3014/* Careful: this is a double loop, 'break' won't work as expected. */
3015#define for_each_process_thread(p, t) \
3016 for_each_process(p) for_each_thread(p, t)
3017
3018static inline int get_nr_threads(struct task_struct *tsk)
3019{
3020 return tsk->signal->nr_threads;
3021}
3022
3023static inline bool thread_group_leader(struct task_struct *p)
3024{
3025 return p->exit_signal >= 0;
3026}
3027
3028/* Do to the insanities of de_thread it is possible for a process
3029 * to have the pid of the thread group leader without actually being
3030 * the thread group leader. For iteration through the pids in proc
3031 * all we care about is that we have a task with the appropriate
3032 * pid, we don't actually care if we have the right task.
3033 */
3034static inline bool has_group_leader_pid(struct task_struct *p)
3035{
3036 return task_pid(p) == p->signal->leader_pid;
3037}
3038
3039static inline
3040bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
3041{
3042 return p1->signal == p2->signal;
3043}
3044
3045static inline struct task_struct *next_thread(const struct task_struct *p)
3046{
3047 return list_entry_rcu(p->thread_group.next,
3048 struct task_struct, thread_group);
3049}
3050
3051static inline int thread_group_empty(struct task_struct *p)
3052{
3053 return list_empty(&p->thread_group);
3054}
3055
3056#define delay_group_leader(p) \
3057 (thread_group_leader(p) && !thread_group_empty(p))
3058
3059/*
3060 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
3061 * subscriptions and synchronises with wait4(). Also used in procfs. Also
3062 * pins the final release of task.io_context. Also protects ->cpuset and
3063 * ->cgroup.subsys[]. And ->vfork_done.
3064 *
3065 * Nests both inside and outside of read_lock(&tasklist_lock).
3066 * It must not be nested with write_lock_irq(&tasklist_lock),
3067 * neither inside nor outside.
3068 */
3069static inline void task_lock(struct task_struct *p)
3070{
3071 spin_lock(&p->alloc_lock);
3072}
3073
3074static inline void task_unlock(struct task_struct *p)
3075{
3076 spin_unlock(&p->alloc_lock);
3077}
3078
3079extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
3080 unsigned long *flags);
3081
3082static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
3083 unsigned long *flags)
3084{
3085 struct sighand_struct *ret;
3086
3087 ret = __lock_task_sighand(tsk, flags);
3088 (void)__cond_lock(&tsk->sighand->siglock, ret);
3089 return ret;
3090}
3091
3092static inline void unlock_task_sighand(struct task_struct *tsk,
3093 unsigned long *flags)
3094{
3095 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
3096}
3097
3098/**
3099 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
3100 * @tsk: task causing the changes
3101 *
3102 * All operations which modify a threadgroup - a new thread joining the
3103 * group, death of a member thread (the assertion of PF_EXITING) and
3104 * exec(2) dethreading the process and replacing the leader - are wrapped
3105 * by threadgroup_change_{begin|end}(). This is to provide a place which
3106 * subsystems needing threadgroup stability can hook into for
3107 * synchronization.
3108 */
3109static inline void threadgroup_change_begin(struct task_struct *tsk)
3110{
3111 might_sleep();
3112 cgroup_threadgroup_change_begin(tsk);
3113}
3114
3115/**
3116 * threadgroup_change_end - mark the end of changes to a threadgroup
3117 * @tsk: task causing the changes
3118 *
3119 * See threadgroup_change_begin().
3120 */
3121static inline void threadgroup_change_end(struct task_struct *tsk)
3122{
3123 cgroup_threadgroup_change_end(tsk);
3124}
3125
3126#ifdef CONFIG_THREAD_INFO_IN_TASK
3127
3128static inline struct thread_info *task_thread_info(struct task_struct *task)
3129{
3130 return &task->thread_info;
3131}
3132
3133/*
3134 * When accessing the stack of a non-current task that might exit, use
3135 * try_get_task_stack() instead. task_stack_page will return a pointer
3136 * that could get freed out from under you.
3137 */
3138static inline void *task_stack_page(const struct task_struct *task)
3139{
3140 return task->stack;
3141}
3142
3143#define setup_thread_stack(new,old) do { } while(0)
3144
3145static inline unsigned long *end_of_stack(const struct task_struct *task)
3146{
3147 return task->stack;
3148}
3149
3150#elif !defined(__HAVE_THREAD_FUNCTIONS)
3151
3152#define task_thread_info(task) ((struct thread_info *)(task)->stack)
3153#define task_stack_page(task) ((void *)(task)->stack)
3154
3155static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
3156{
3157 *task_thread_info(p) = *task_thread_info(org);
3158 task_thread_info(p)->task = p;
3159}
3160
3161/*
3162 * Return the address of the last usable long on the stack.
3163 *
3164 * When the stack grows down, this is just above the thread
3165 * info struct. Going any lower will corrupt the threadinfo.
3166 *
3167 * When the stack grows up, this is the highest address.
3168 * Beyond that position, we corrupt data on the next page.
3169 */
3170static inline unsigned long *end_of_stack(struct task_struct *p)
3171{
3172#ifdef CONFIG_STACK_GROWSUP
3173 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
3174#else
3175 return (unsigned long *)(task_thread_info(p) + 1);
3176#endif
3177}
3178
3179#endif
3180
3181#ifdef CONFIG_THREAD_INFO_IN_TASK
3182static inline void *try_get_task_stack(struct task_struct *tsk)
3183{
3184 return atomic_inc_not_zero(&tsk->stack_refcount) ?
3185 task_stack_page(tsk) : NULL;
3186}
3187
3188extern void put_task_stack(struct task_struct *tsk);
3189#else
3190static inline void *try_get_task_stack(struct task_struct *tsk)
3191{
3192 return task_stack_page(tsk);
3193}
3194
3195static inline void put_task_stack(struct task_struct *tsk) {}
3196#endif
3197
3198#define task_stack_end_corrupted(task) \
3199 (*(end_of_stack(task)) != STACK_END_MAGIC)
3200
3201static inline int object_is_on_stack(void *obj)
3202{
3203 void *stack = task_stack_page(current);
3204
3205 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3206}
3207
3208extern void thread_stack_cache_init(void);
3209
3210#ifdef CONFIG_DEBUG_STACK_USAGE
3211static inline unsigned long stack_not_used(struct task_struct *p)
3212{
3213 unsigned long *n = end_of_stack(p);
3214
3215 do { /* Skip over canary */
3216# ifdef CONFIG_STACK_GROWSUP
3217 n--;
3218# else
3219 n++;
3220# endif
3221 } while (!*n);
3222
3223# ifdef CONFIG_STACK_GROWSUP
3224 return (unsigned long)end_of_stack(p) - (unsigned long)n;
3225# else
3226 return (unsigned long)n - (unsigned long)end_of_stack(p);
3227# endif
3228}
3229#endif
3230extern void set_task_stack_end_magic(struct task_struct *tsk);
3231
3232/* set thread flags in other task's structures
3233 * - see asm/thread_info.h for TIF_xxxx flags available
3234 */
3235static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3236{
3237 set_ti_thread_flag(task_thread_info(tsk), flag);
3238}
3239
3240static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3241{
3242 clear_ti_thread_flag(task_thread_info(tsk), flag);
3243}
3244
3245static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3246{
3247 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
3248}
3249
3250static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3251{
3252 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
3253}
3254
3255static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3256{
3257 return test_ti_thread_flag(task_thread_info(tsk), flag);
3258}
3259
3260static inline void set_tsk_need_resched(struct task_struct *tsk)
3261{
3262 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3263}
3264
3265static inline void clear_tsk_need_resched(struct task_struct *tsk)
3266{
3267 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3268}
3269
3270static inline int test_tsk_need_resched(struct task_struct *tsk)
3271{
3272 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3273}
3274
3275static inline int restart_syscall(void)
3276{
3277 set_tsk_thread_flag(current, TIF_SIGPENDING);
3278 return -ERESTARTNOINTR;
3279}
3280
3281static inline int signal_pending(struct task_struct *p)
3282{
3283 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3284}
3285
3286static inline int __fatal_signal_pending(struct task_struct *p)
3287{
3288 return unlikely(sigismember(&p->pending.signal, SIGKILL));
3289}
3290
3291static inline int fatal_signal_pending(struct task_struct *p)
3292{
3293 return signal_pending(p) && __fatal_signal_pending(p);
3294}
3295
3296static inline int signal_pending_state(long state, struct task_struct *p)
3297{
3298 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3299 return 0;
3300 if (!signal_pending(p))
3301 return 0;
3302
3303 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3304}
3305
3306/*
3307 * cond_resched() and cond_resched_lock(): latency reduction via
3308 * explicit rescheduling in places that are safe. The return
3309 * value indicates whether a reschedule was done in fact.
3310 * cond_resched_lock() will drop the spinlock before scheduling,
3311 * cond_resched_softirq() will enable bhs before scheduling.
3312 */
3313#ifndef CONFIG_PREEMPT
3314extern int _cond_resched(void);
3315#else
3316static inline int _cond_resched(void) { return 0; }
3317#endif
3318
3319#define cond_resched() ({ \
3320 ___might_sleep(__FILE__, __LINE__, 0); \
3321 _cond_resched(); \
3322})
3323
3324extern int __cond_resched_lock(spinlock_t *lock);
3325
3326#define cond_resched_lock(lock) ({ \
3327 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
3328 __cond_resched_lock(lock); \
3329})
3330
3331extern int __cond_resched_softirq(void);
3332
3333#define cond_resched_softirq() ({ \
3334 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
3335 __cond_resched_softirq(); \
3336})
3337
3338static inline void cond_resched_rcu(void)
3339{
3340#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3341 rcu_read_unlock();
3342 cond_resched();
3343 rcu_read_lock();
3344#endif
3345}
3346
3347static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3348{
3349#ifdef CONFIG_DEBUG_PREEMPT
3350 return p->preempt_disable_ip;
3351#else
3352 return 0;
3353#endif
3354}
3355
3356/*
3357 * Does a critical section need to be broken due to another
3358 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3359 * but a general need for low latency)
3360 */
3361static inline int spin_needbreak(spinlock_t *lock)
3362{
3363#ifdef CONFIG_PREEMPT
3364 return spin_is_contended(lock);
3365#else
3366 return 0;
3367#endif
3368}
3369
3370/*
3371 * Idle thread specific functions to determine the need_resched
3372 * polling state.
3373 */
3374#ifdef TIF_POLLING_NRFLAG
3375static inline int tsk_is_polling(struct task_struct *p)
3376{
3377 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3378}
3379
3380static inline void __current_set_polling(void)
3381{
3382 set_thread_flag(TIF_POLLING_NRFLAG);
3383}
3384
3385static inline bool __must_check current_set_polling_and_test(void)
3386{
3387 __current_set_polling();
3388
3389 /*
3390 * Polling state must be visible before we test NEED_RESCHED,
3391 * paired by resched_curr()
3392 */
3393 smp_mb__after_atomic();
3394
3395 return unlikely(tif_need_resched());
3396}
3397
3398static inline void __current_clr_polling(void)
3399{
3400 clear_thread_flag(TIF_POLLING_NRFLAG);
3401}
3402
3403static inline bool __must_check current_clr_polling_and_test(void)
3404{
3405 __current_clr_polling();
3406
3407 /*
3408 * Polling state must be visible before we test NEED_RESCHED,
3409 * paired by resched_curr()
3410 */
3411 smp_mb__after_atomic();
3412
3413 return unlikely(tif_need_resched());
3414}
3415
3416#else
3417static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3418static inline void __current_set_polling(void) { }
3419static inline void __current_clr_polling(void) { }
3420
3421static inline bool __must_check current_set_polling_and_test(void)
3422{
3423 return unlikely(tif_need_resched());
3424}
3425static inline bool __must_check current_clr_polling_and_test(void)
3426{
3427 return unlikely(tif_need_resched());
3428}
3429#endif
3430
3431static inline void current_clr_polling(void)
3432{
3433 __current_clr_polling();
3434
3435 /*
3436 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3437 * Once the bit is cleared, we'll get IPIs with every new
3438 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3439 * fold.
3440 */
3441 smp_mb(); /* paired with resched_curr() */
3442
3443 preempt_fold_need_resched();
3444}
3445
3446static __always_inline bool need_resched(void)
3447{
3448 return unlikely(tif_need_resched());
3449}
3450
3451/*
3452 * Thread group CPU time accounting.
3453 */
3454void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3455void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3456
3457/*
3458 * Reevaluate whether the task has signals pending delivery.
3459 * Wake the task if so.
3460 * This is required every time the blocked sigset_t changes.
3461 * callers must hold sighand->siglock.
3462 */
3463extern void recalc_sigpending_and_wake(struct task_struct *t);
3464extern void recalc_sigpending(void);
3465
3466extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3467
3468static inline void signal_wake_up(struct task_struct *t, bool resume)
3469{
3470 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3471}
3472static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3473{
3474 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3475}
3476
3477/*
3478 * Wrappers for p->thread_info->cpu access. No-op on UP.
3479 */
3480#ifdef CONFIG_SMP
3481
3482static inline unsigned int task_cpu(const struct task_struct *p)
3483{
3484#ifdef CONFIG_THREAD_INFO_IN_TASK
3485 return p->cpu;
3486#else
3487 return task_thread_info(p)->cpu;
3488#endif
3489}
3490
3491static inline int task_node(const struct task_struct *p)
3492{
3493 return cpu_to_node(task_cpu(p));
3494}
3495
3496extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3497
3498#else
3499
3500static inline unsigned int task_cpu(const struct task_struct *p)
3501{
3502 return 0;
3503}
3504
3505static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3506{
3507}
3508
3509#endif /* CONFIG_SMP */
3510
3511extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3512extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3513
3514#ifdef CONFIG_CGROUP_SCHED
3515extern struct task_group root_task_group;
3516#endif /* CONFIG_CGROUP_SCHED */
3517
3518extern int task_can_switch_user(struct user_struct *up,
3519 struct task_struct *tsk);
3520
3521#ifdef CONFIG_TASK_XACCT
3522static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3523{
3524 tsk->ioac.rchar += amt;
3525}
3526
3527static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3528{
3529 tsk->ioac.wchar += amt;
3530}
3531
3532static inline void inc_syscr(struct task_struct *tsk)
3533{
3534 tsk->ioac.syscr++;
3535}
3536
3537static inline void inc_syscw(struct task_struct *tsk)
3538{
3539 tsk->ioac.syscw++;
3540}
3541#else
3542static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3543{
3544}
3545
3546static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3547{
3548}
3549
3550static inline void inc_syscr(struct task_struct *tsk)
3551{
3552}
3553
3554static inline void inc_syscw(struct task_struct *tsk)
3555{
3556}
3557#endif
3558
3559#ifndef TASK_SIZE_OF
3560#define TASK_SIZE_OF(tsk) TASK_SIZE
3561#endif
3562
3563#ifdef CONFIG_MEMCG
3564extern void mm_update_next_owner(struct mm_struct *mm);
3565#else
3566static inline void mm_update_next_owner(struct mm_struct *mm)
3567{
3568}
3569#endif /* CONFIG_MEMCG */
3570
3571static inline unsigned long task_rlimit(const struct task_struct *tsk,
3572 unsigned int limit)
3573{
3574 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3575}
3576
3577static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3578 unsigned int limit)
3579{
3580 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3581}
3582
3583static inline unsigned long rlimit(unsigned int limit)
3584{
3585 return task_rlimit(current, limit);
3586}
3587
3588static inline unsigned long rlimit_max(unsigned int limit)
3589{
3590 return task_rlimit_max(current, limit);
3591}
3592
3593#define SCHED_CPUFREQ_RT (1U << 0)
3594#define SCHED_CPUFREQ_DL (1U << 1)
3595#define SCHED_CPUFREQ_IOWAIT (1U << 2)
3596
3597#define SCHED_CPUFREQ_RT_DL (SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL)
3598
3599#ifdef CONFIG_CPU_FREQ
3600struct update_util_data {
3601 void (*func)(struct update_util_data *data, u64 time, unsigned int flags);
3602};
3603
3604void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
3605 void (*func)(struct update_util_data *data, u64 time,
3606 unsigned int flags));
3607void cpufreq_remove_update_util_hook(int cpu);
3608#endif /* CONFIG_CPU_FREQ */
3609
3610#endif