at v4.9 20 kB view raw
1/* 2 * Copyright (C) 2001 Momchil Velikov 3 * Portions Copyright (C) 2001 Christoph Hellwig 4 * Copyright (C) 2006 Nick Piggin 5 * Copyright (C) 2012 Konstantin Khlebnikov 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as 9 * published by the Free Software Foundation; either version 2, or (at 10 * your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, but 13 * WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21#ifndef _LINUX_RADIX_TREE_H 22#define _LINUX_RADIX_TREE_H 23 24#include <linux/bitops.h> 25#include <linux/preempt.h> 26#include <linux/types.h> 27#include <linux/bug.h> 28#include <linux/kernel.h> 29#include <linux/rcupdate.h> 30 31/* 32 * The bottom two bits of the slot determine how the remaining bits in the 33 * slot are interpreted: 34 * 35 * 00 - data pointer 36 * 01 - internal entry 37 * 10 - exceptional entry 38 * 11 - this bit combination is currently unused/reserved 39 * 40 * The internal entry may be a pointer to the next level in the tree, a 41 * sibling entry, or an indicator that the entry in this slot has been moved 42 * to another location in the tree and the lookup should be restarted. While 43 * NULL fits the 'data pointer' pattern, it means that there is no entry in 44 * the tree for this index (no matter what level of the tree it is found at). 45 * This means that you cannot store NULL in the tree as a value for the index. 46 */ 47#define RADIX_TREE_ENTRY_MASK 3UL 48#define RADIX_TREE_INTERNAL_NODE 1UL 49 50/* 51 * Most users of the radix tree store pointers but shmem/tmpfs stores swap 52 * entries in the same tree. They are marked as exceptional entries to 53 * distinguish them from pointers to struct page. 54 * EXCEPTIONAL_ENTRY tests the bit, EXCEPTIONAL_SHIFT shifts content past it. 55 */ 56#define RADIX_TREE_EXCEPTIONAL_ENTRY 2 57#define RADIX_TREE_EXCEPTIONAL_SHIFT 2 58 59static inline bool radix_tree_is_internal_node(void *ptr) 60{ 61 return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) == 62 RADIX_TREE_INTERNAL_NODE; 63} 64 65/*** radix-tree API starts here ***/ 66 67#define RADIX_TREE_MAX_TAGS 3 68 69#ifndef RADIX_TREE_MAP_SHIFT 70#define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6) 71#endif 72 73#define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT) 74#define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1) 75 76#define RADIX_TREE_TAG_LONGS \ 77 ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG) 78 79#define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long)) 80#define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \ 81 RADIX_TREE_MAP_SHIFT)) 82 83/* Internally used bits of node->count */ 84#define RADIX_TREE_COUNT_SHIFT (RADIX_TREE_MAP_SHIFT + 1) 85#define RADIX_TREE_COUNT_MASK ((1UL << RADIX_TREE_COUNT_SHIFT) - 1) 86 87struct radix_tree_node { 88 unsigned char shift; /* Bits remaining in each slot */ 89 unsigned char offset; /* Slot offset in parent */ 90 unsigned int count; 91 union { 92 struct { 93 /* Used when ascending tree */ 94 struct radix_tree_node *parent; 95 /* For tree user */ 96 void *private_data; 97 }; 98 /* Used when freeing node */ 99 struct rcu_head rcu_head; 100 }; 101 /* For tree user */ 102 struct list_head private_list; 103 void __rcu *slots[RADIX_TREE_MAP_SIZE]; 104 unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS]; 105}; 106 107/* root tags are stored in gfp_mask, shifted by __GFP_BITS_SHIFT */ 108struct radix_tree_root { 109 gfp_t gfp_mask; 110 struct radix_tree_node __rcu *rnode; 111}; 112 113#define RADIX_TREE_INIT(mask) { \ 114 .gfp_mask = (mask), \ 115 .rnode = NULL, \ 116} 117 118#define RADIX_TREE(name, mask) \ 119 struct radix_tree_root name = RADIX_TREE_INIT(mask) 120 121#define INIT_RADIX_TREE(root, mask) \ 122do { \ 123 (root)->gfp_mask = (mask); \ 124 (root)->rnode = NULL; \ 125} while (0) 126 127static inline bool radix_tree_empty(struct radix_tree_root *root) 128{ 129 return root->rnode == NULL; 130} 131 132/** 133 * Radix-tree synchronization 134 * 135 * The radix-tree API requires that users provide all synchronisation (with 136 * specific exceptions, noted below). 137 * 138 * Synchronization of access to the data items being stored in the tree, and 139 * management of their lifetimes must be completely managed by API users. 140 * 141 * For API usage, in general, 142 * - any function _modifying_ the tree or tags (inserting or deleting 143 * items, setting or clearing tags) must exclude other modifications, and 144 * exclude any functions reading the tree. 145 * - any function _reading_ the tree or tags (looking up items or tags, 146 * gang lookups) must exclude modifications to the tree, but may occur 147 * concurrently with other readers. 148 * 149 * The notable exceptions to this rule are the following functions: 150 * __radix_tree_lookup 151 * radix_tree_lookup 152 * radix_tree_lookup_slot 153 * radix_tree_tag_get 154 * radix_tree_gang_lookup 155 * radix_tree_gang_lookup_slot 156 * radix_tree_gang_lookup_tag 157 * radix_tree_gang_lookup_tag_slot 158 * radix_tree_tagged 159 * 160 * The first 8 functions are able to be called locklessly, using RCU. The 161 * caller must ensure calls to these functions are made within rcu_read_lock() 162 * regions. Other readers (lock-free or otherwise) and modifications may be 163 * running concurrently. 164 * 165 * It is still required that the caller manage the synchronization and lifetimes 166 * of the items. So if RCU lock-free lookups are used, typically this would mean 167 * that the items have their own locks, or are amenable to lock-free access; and 168 * that the items are freed by RCU (or only freed after having been deleted from 169 * the radix tree *and* a synchronize_rcu() grace period). 170 * 171 * (Note, rcu_assign_pointer and rcu_dereference are not needed to control 172 * access to data items when inserting into or looking up from the radix tree) 173 * 174 * Note that the value returned by radix_tree_tag_get() may not be relied upon 175 * if only the RCU read lock is held. Functions to set/clear tags and to 176 * delete nodes running concurrently with it may affect its result such that 177 * two consecutive reads in the same locked section may return different 178 * values. If reliability is required, modification functions must also be 179 * excluded from concurrency. 180 * 181 * radix_tree_tagged is able to be called without locking or RCU. 182 */ 183 184/** 185 * radix_tree_deref_slot - dereference a slot 186 * @pslot: pointer to slot, returned by radix_tree_lookup_slot 187 * Returns: item that was stored in that slot with any direct pointer flag 188 * removed. 189 * 190 * For use with radix_tree_lookup_slot(). Caller must hold tree at least read 191 * locked across slot lookup and dereference. Not required if write lock is 192 * held (ie. items cannot be concurrently inserted). 193 * 194 * radix_tree_deref_retry must be used to confirm validity of the pointer if 195 * only the read lock is held. 196 */ 197static inline void *radix_tree_deref_slot(void **pslot) 198{ 199 return rcu_dereference(*pslot); 200} 201 202/** 203 * radix_tree_deref_slot_protected - dereference a slot without RCU lock but with tree lock held 204 * @pslot: pointer to slot, returned by radix_tree_lookup_slot 205 * Returns: item that was stored in that slot with any direct pointer flag 206 * removed. 207 * 208 * Similar to radix_tree_deref_slot but only used during migration when a pages 209 * mapping is being moved. The caller does not hold the RCU read lock but it 210 * must hold the tree lock to prevent parallel updates. 211 */ 212static inline void *radix_tree_deref_slot_protected(void **pslot, 213 spinlock_t *treelock) 214{ 215 return rcu_dereference_protected(*pslot, lockdep_is_held(treelock)); 216} 217 218/** 219 * radix_tree_deref_retry - check radix_tree_deref_slot 220 * @arg: pointer returned by radix_tree_deref_slot 221 * Returns: 0 if retry is not required, otherwise retry is required 222 * 223 * radix_tree_deref_retry must be used with radix_tree_deref_slot. 224 */ 225static inline int radix_tree_deref_retry(void *arg) 226{ 227 return unlikely(radix_tree_is_internal_node(arg)); 228} 229 230/** 231 * radix_tree_exceptional_entry - radix_tree_deref_slot gave exceptional entry? 232 * @arg: value returned by radix_tree_deref_slot 233 * Returns: 0 if well-aligned pointer, non-0 if exceptional entry. 234 */ 235static inline int radix_tree_exceptional_entry(void *arg) 236{ 237 /* Not unlikely because radix_tree_exception often tested first */ 238 return (unsigned long)arg & RADIX_TREE_EXCEPTIONAL_ENTRY; 239} 240 241/** 242 * radix_tree_exception - radix_tree_deref_slot returned either exception? 243 * @arg: value returned by radix_tree_deref_slot 244 * Returns: 0 if well-aligned pointer, non-0 if either kind of exception. 245 */ 246static inline int radix_tree_exception(void *arg) 247{ 248 return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK); 249} 250 251/** 252 * radix_tree_replace_slot - replace item in a slot 253 * @pslot: pointer to slot, returned by radix_tree_lookup_slot 254 * @item: new item to store in the slot. 255 * 256 * For use with radix_tree_lookup_slot(). Caller must hold tree write locked 257 * across slot lookup and replacement. 258 */ 259static inline void radix_tree_replace_slot(void **pslot, void *item) 260{ 261 BUG_ON(radix_tree_is_internal_node(item)); 262 rcu_assign_pointer(*pslot, item); 263} 264 265int __radix_tree_create(struct radix_tree_root *root, unsigned long index, 266 unsigned order, struct radix_tree_node **nodep, 267 void ***slotp); 268int __radix_tree_insert(struct radix_tree_root *, unsigned long index, 269 unsigned order, void *); 270static inline int radix_tree_insert(struct radix_tree_root *root, 271 unsigned long index, void *entry) 272{ 273 return __radix_tree_insert(root, index, 0, entry); 274} 275void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index, 276 struct radix_tree_node **nodep, void ***slotp); 277void *radix_tree_lookup(struct radix_tree_root *, unsigned long); 278void **radix_tree_lookup_slot(struct radix_tree_root *, unsigned long); 279bool __radix_tree_delete_node(struct radix_tree_root *root, 280 struct radix_tree_node *node); 281void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *); 282void *radix_tree_delete(struct radix_tree_root *, unsigned long); 283void radix_tree_clear_tags(struct radix_tree_root *root, 284 struct radix_tree_node *node, 285 void **slot); 286unsigned int radix_tree_gang_lookup(struct radix_tree_root *root, 287 void **results, unsigned long first_index, 288 unsigned int max_items); 289unsigned int radix_tree_gang_lookup_slot(struct radix_tree_root *root, 290 void ***results, unsigned long *indices, 291 unsigned long first_index, unsigned int max_items); 292int radix_tree_preload(gfp_t gfp_mask); 293int radix_tree_maybe_preload(gfp_t gfp_mask); 294int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order); 295void radix_tree_init(void); 296void *radix_tree_tag_set(struct radix_tree_root *root, 297 unsigned long index, unsigned int tag); 298void *radix_tree_tag_clear(struct radix_tree_root *root, 299 unsigned long index, unsigned int tag); 300int radix_tree_tag_get(struct radix_tree_root *root, 301 unsigned long index, unsigned int tag); 302unsigned int 303radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results, 304 unsigned long first_index, unsigned int max_items, 305 unsigned int tag); 306unsigned int 307radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results, 308 unsigned long first_index, unsigned int max_items, 309 unsigned int tag); 310unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root, 311 unsigned long *first_indexp, unsigned long last_index, 312 unsigned long nr_to_tag, 313 unsigned int fromtag, unsigned int totag); 314int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag); 315unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item); 316 317static inline void radix_tree_preload_end(void) 318{ 319 preempt_enable(); 320} 321 322/** 323 * struct radix_tree_iter - radix tree iterator state 324 * 325 * @index: index of current slot 326 * @next_index: one beyond the last index for this chunk 327 * @tags: bit-mask for tag-iterating 328 * @shift: shift for the node that holds our slots 329 * 330 * This radix tree iterator works in terms of "chunks" of slots. A chunk is a 331 * subinterval of slots contained within one radix tree leaf node. It is 332 * described by a pointer to its first slot and a struct radix_tree_iter 333 * which holds the chunk's position in the tree and its size. For tagged 334 * iteration radix_tree_iter also holds the slots' bit-mask for one chosen 335 * radix tree tag. 336 */ 337struct radix_tree_iter { 338 unsigned long index; 339 unsigned long next_index; 340 unsigned long tags; 341#ifdef CONFIG_RADIX_TREE_MULTIORDER 342 unsigned int shift; 343#endif 344}; 345 346static inline unsigned int iter_shift(struct radix_tree_iter *iter) 347{ 348#ifdef CONFIG_RADIX_TREE_MULTIORDER 349 return iter->shift; 350#else 351 return 0; 352#endif 353} 354 355#define RADIX_TREE_ITER_TAG_MASK 0x00FF /* tag index in lower byte */ 356#define RADIX_TREE_ITER_TAGGED 0x0100 /* lookup tagged slots */ 357#define RADIX_TREE_ITER_CONTIG 0x0200 /* stop at first hole */ 358 359/** 360 * radix_tree_iter_init - initialize radix tree iterator 361 * 362 * @iter: pointer to iterator state 363 * @start: iteration starting index 364 * Returns: NULL 365 */ 366static __always_inline void ** 367radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start) 368{ 369 /* 370 * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it 371 * in the case of a successful tagged chunk lookup. If the lookup was 372 * unsuccessful or non-tagged then nobody cares about ->tags. 373 * 374 * Set index to zero to bypass next_index overflow protection. 375 * See the comment in radix_tree_next_chunk() for details. 376 */ 377 iter->index = 0; 378 iter->next_index = start; 379 return NULL; 380} 381 382/** 383 * radix_tree_next_chunk - find next chunk of slots for iteration 384 * 385 * @root: radix tree root 386 * @iter: iterator state 387 * @flags: RADIX_TREE_ITER_* flags and tag index 388 * Returns: pointer to chunk first slot, or NULL if there no more left 389 * 390 * This function looks up the next chunk in the radix tree starting from 391 * @iter->next_index. It returns a pointer to the chunk's first slot. 392 * Also it fills @iter with data about chunk: position in the tree (index), 393 * its end (next_index), and constructs a bit mask for tagged iterating (tags). 394 */ 395void **radix_tree_next_chunk(struct radix_tree_root *root, 396 struct radix_tree_iter *iter, unsigned flags); 397 398/** 399 * radix_tree_iter_retry - retry this chunk of the iteration 400 * @iter: iterator state 401 * 402 * If we iterate over a tree protected only by the RCU lock, a race 403 * against deletion or creation may result in seeing a slot for which 404 * radix_tree_deref_retry() returns true. If so, call this function 405 * and continue the iteration. 406 */ 407static inline __must_check 408void **radix_tree_iter_retry(struct radix_tree_iter *iter) 409{ 410 iter->next_index = iter->index; 411 iter->tags = 0; 412 return NULL; 413} 414 415static inline unsigned long 416__radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots) 417{ 418 return iter->index + (slots << iter_shift(iter)); 419} 420 421/** 422 * radix_tree_iter_next - resume iterating when the chunk may be invalid 423 * @iter: iterator state 424 * 425 * If the iterator needs to release then reacquire a lock, the chunk may 426 * have been invalidated by an insertion or deletion. Call this function 427 * to continue the iteration from the next index. 428 */ 429static inline __must_check 430void **radix_tree_iter_next(struct radix_tree_iter *iter) 431{ 432 iter->next_index = __radix_tree_iter_add(iter, 1); 433 iter->tags = 0; 434 return NULL; 435} 436 437/** 438 * radix_tree_chunk_size - get current chunk size 439 * 440 * @iter: pointer to radix tree iterator 441 * Returns: current chunk size 442 */ 443static __always_inline long 444radix_tree_chunk_size(struct radix_tree_iter *iter) 445{ 446 return (iter->next_index - iter->index) >> iter_shift(iter); 447} 448 449static inline struct radix_tree_node *entry_to_node(void *ptr) 450{ 451 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE); 452} 453 454/** 455 * radix_tree_next_slot - find next slot in chunk 456 * 457 * @slot: pointer to current slot 458 * @iter: pointer to interator state 459 * @flags: RADIX_TREE_ITER_*, should be constant 460 * Returns: pointer to next slot, or NULL if there no more left 461 * 462 * This function updates @iter->index in the case of a successful lookup. 463 * For tagged lookup it also eats @iter->tags. 464 * 465 * There are several cases where 'slot' can be passed in as NULL to this 466 * function. These cases result from the use of radix_tree_iter_next() or 467 * radix_tree_iter_retry(). In these cases we don't end up dereferencing 468 * 'slot' because either: 469 * a) we are doing tagged iteration and iter->tags has been set to 0, or 470 * b) we are doing non-tagged iteration, and iter->index and iter->next_index 471 * have been set up so that radix_tree_chunk_size() returns 1 or 0. 472 */ 473static __always_inline void ** 474radix_tree_next_slot(void **slot, struct radix_tree_iter *iter, unsigned flags) 475{ 476 if (flags & RADIX_TREE_ITER_TAGGED) { 477 void *canon = slot; 478 479 iter->tags >>= 1; 480 if (unlikely(!iter->tags)) 481 return NULL; 482 while (IS_ENABLED(CONFIG_RADIX_TREE_MULTIORDER) && 483 radix_tree_is_internal_node(slot[1])) { 484 if (entry_to_node(slot[1]) == canon) { 485 iter->tags >>= 1; 486 iter->index = __radix_tree_iter_add(iter, 1); 487 slot++; 488 continue; 489 } 490 iter->next_index = __radix_tree_iter_add(iter, 1); 491 return NULL; 492 } 493 if (likely(iter->tags & 1ul)) { 494 iter->index = __radix_tree_iter_add(iter, 1); 495 return slot + 1; 496 } 497 if (!(flags & RADIX_TREE_ITER_CONTIG)) { 498 unsigned offset = __ffs(iter->tags); 499 500 iter->tags >>= offset; 501 iter->index = __radix_tree_iter_add(iter, offset + 1); 502 return slot + offset + 1; 503 } 504 } else { 505 long count = radix_tree_chunk_size(iter); 506 void *canon = slot; 507 508 while (--count > 0) { 509 slot++; 510 iter->index = __radix_tree_iter_add(iter, 1); 511 512 if (IS_ENABLED(CONFIG_RADIX_TREE_MULTIORDER) && 513 radix_tree_is_internal_node(*slot)) { 514 if (entry_to_node(*slot) == canon) 515 continue; 516 iter->next_index = iter->index; 517 break; 518 } 519 520 if (likely(*slot)) 521 return slot; 522 if (flags & RADIX_TREE_ITER_CONTIG) { 523 /* forbid switching to the next chunk */ 524 iter->next_index = 0; 525 break; 526 } 527 } 528 } 529 return NULL; 530} 531 532/** 533 * radix_tree_for_each_slot - iterate over non-empty slots 534 * 535 * @slot: the void** variable for pointer to slot 536 * @root: the struct radix_tree_root pointer 537 * @iter: the struct radix_tree_iter pointer 538 * @start: iteration starting index 539 * 540 * @slot points to radix tree slot, @iter->index contains its index. 541 */ 542#define radix_tree_for_each_slot(slot, root, iter, start) \ 543 for (slot = radix_tree_iter_init(iter, start) ; \ 544 slot || (slot = radix_tree_next_chunk(root, iter, 0)) ; \ 545 slot = radix_tree_next_slot(slot, iter, 0)) 546 547/** 548 * radix_tree_for_each_contig - iterate over contiguous slots 549 * 550 * @slot: the void** variable for pointer to slot 551 * @root: the struct radix_tree_root pointer 552 * @iter: the struct radix_tree_iter pointer 553 * @start: iteration starting index 554 * 555 * @slot points to radix tree slot, @iter->index contains its index. 556 */ 557#define radix_tree_for_each_contig(slot, root, iter, start) \ 558 for (slot = radix_tree_iter_init(iter, start) ; \ 559 slot || (slot = radix_tree_next_chunk(root, iter, \ 560 RADIX_TREE_ITER_CONTIG)) ; \ 561 slot = radix_tree_next_slot(slot, iter, \ 562 RADIX_TREE_ITER_CONTIG)) 563 564/** 565 * radix_tree_for_each_tagged - iterate over tagged slots 566 * 567 * @slot: the void** variable for pointer to slot 568 * @root: the struct radix_tree_root pointer 569 * @iter: the struct radix_tree_iter pointer 570 * @start: iteration starting index 571 * @tag: tag index 572 * 573 * @slot points to radix tree slot, @iter->index contains its index. 574 */ 575#define radix_tree_for_each_tagged(slot, root, iter, start, tag) \ 576 for (slot = radix_tree_iter_init(iter, start) ; \ 577 slot || (slot = radix_tree_next_chunk(root, iter, \ 578 RADIX_TREE_ITER_TAGGED | tag)) ; \ 579 slot = radix_tree_next_slot(slot, iter, \ 580 RADIX_TREE_ITER_TAGGED)) 581 582#endif /* _LINUX_RADIX_TREE_H */