at v4.9 40 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18 19/* 20 * Kernel-internal data types and definitions: 21 */ 22 23#ifdef CONFIG_PERF_EVENTS 24# include <asm/perf_event.h> 25# include <asm/local64.h> 26#endif 27 28struct perf_guest_info_callbacks { 29 int (*is_in_guest)(void); 30 int (*is_user_mode)(void); 31 unsigned long (*get_guest_ip)(void); 32}; 33 34#ifdef CONFIG_HAVE_HW_BREAKPOINT 35#include <asm/hw_breakpoint.h> 36#endif 37 38#include <linux/list.h> 39#include <linux/mutex.h> 40#include <linux/rculist.h> 41#include <linux/rcupdate.h> 42#include <linux/spinlock.h> 43#include <linux/hrtimer.h> 44#include <linux/fs.h> 45#include <linux/pid_namespace.h> 46#include <linux/workqueue.h> 47#include <linux/ftrace.h> 48#include <linux/cpu.h> 49#include <linux/irq_work.h> 50#include <linux/static_key.h> 51#include <linux/jump_label_ratelimit.h> 52#include <linux/atomic.h> 53#include <linux/sysfs.h> 54#include <linux/perf_regs.h> 55#include <linux/workqueue.h> 56#include <linux/cgroup.h> 57#include <asm/local.h> 58 59struct perf_callchain_entry { 60 __u64 nr; 61 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */ 62}; 63 64struct perf_callchain_entry_ctx { 65 struct perf_callchain_entry *entry; 66 u32 max_stack; 67 u32 nr; 68 short contexts; 69 bool contexts_maxed; 70}; 71 72typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 73 unsigned long off, unsigned long len); 74 75struct perf_raw_frag { 76 union { 77 struct perf_raw_frag *next; 78 unsigned long pad; 79 }; 80 perf_copy_f copy; 81 void *data; 82 u32 size; 83} __packed; 84 85struct perf_raw_record { 86 struct perf_raw_frag frag; 87 u32 size; 88}; 89 90/* 91 * branch stack layout: 92 * nr: number of taken branches stored in entries[] 93 * 94 * Note that nr can vary from sample to sample 95 * branches (to, from) are stored from most recent 96 * to least recent, i.e., entries[0] contains the most 97 * recent branch. 98 */ 99struct perf_branch_stack { 100 __u64 nr; 101 struct perf_branch_entry entries[0]; 102}; 103 104struct task_struct; 105 106/* 107 * extra PMU register associated with an event 108 */ 109struct hw_perf_event_extra { 110 u64 config; /* register value */ 111 unsigned int reg; /* register address or index */ 112 int alloc; /* extra register already allocated */ 113 int idx; /* index in shared_regs->regs[] */ 114}; 115 116/** 117 * struct hw_perf_event - performance event hardware details: 118 */ 119struct hw_perf_event { 120#ifdef CONFIG_PERF_EVENTS 121 union { 122 struct { /* hardware */ 123 u64 config; 124 u64 last_tag; 125 unsigned long config_base; 126 unsigned long event_base; 127 int event_base_rdpmc; 128 int idx; 129 int last_cpu; 130 int flags; 131 132 struct hw_perf_event_extra extra_reg; 133 struct hw_perf_event_extra branch_reg; 134 }; 135 struct { /* software */ 136 struct hrtimer hrtimer; 137 }; 138 struct { /* tracepoint */ 139 /* for tp_event->class */ 140 struct list_head tp_list; 141 }; 142 struct { /* intel_cqm */ 143 int cqm_state; 144 u32 cqm_rmid; 145 int is_group_event; 146 struct list_head cqm_events_entry; 147 struct list_head cqm_groups_entry; 148 struct list_head cqm_group_entry; 149 }; 150 struct { /* itrace */ 151 int itrace_started; 152 }; 153 struct { /* amd_power */ 154 u64 pwr_acc; 155 u64 ptsc; 156 }; 157#ifdef CONFIG_HAVE_HW_BREAKPOINT 158 struct { /* breakpoint */ 159 /* 160 * Crufty hack to avoid the chicken and egg 161 * problem hw_breakpoint has with context 162 * creation and event initalization. 163 */ 164 struct arch_hw_breakpoint info; 165 struct list_head bp_list; 166 }; 167#endif 168 }; 169 /* 170 * If the event is a per task event, this will point to the task in 171 * question. See the comment in perf_event_alloc(). 172 */ 173 struct task_struct *target; 174 175 /* 176 * PMU would store hardware filter configuration 177 * here. 178 */ 179 void *addr_filters; 180 181 /* Last sync'ed generation of filters */ 182 unsigned long addr_filters_gen; 183 184/* 185 * hw_perf_event::state flags; used to track the PERF_EF_* state. 186 */ 187#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 188#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 189#define PERF_HES_ARCH 0x04 190 191 int state; 192 193 /* 194 * The last observed hardware counter value, updated with a 195 * local64_cmpxchg() such that pmu::read() can be called nested. 196 */ 197 local64_t prev_count; 198 199 /* 200 * The period to start the next sample with. 201 */ 202 u64 sample_period; 203 204 /* 205 * The period we started this sample with. 206 */ 207 u64 last_period; 208 209 /* 210 * However much is left of the current period; note that this is 211 * a full 64bit value and allows for generation of periods longer 212 * than hardware might allow. 213 */ 214 local64_t period_left; 215 216 /* 217 * State for throttling the event, see __perf_event_overflow() and 218 * perf_adjust_freq_unthr_context(). 219 */ 220 u64 interrupts_seq; 221 u64 interrupts; 222 223 /* 224 * State for freq target events, see __perf_event_overflow() and 225 * perf_adjust_freq_unthr_context(). 226 */ 227 u64 freq_time_stamp; 228 u64 freq_count_stamp; 229#endif 230}; 231 232struct perf_event; 233 234/* 235 * Common implementation detail of pmu::{start,commit,cancel}_txn 236 */ 237#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 238#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 239 240/** 241 * pmu::capabilities flags 242 */ 243#define PERF_PMU_CAP_NO_INTERRUPT 0x01 244#define PERF_PMU_CAP_NO_NMI 0x02 245#define PERF_PMU_CAP_AUX_NO_SG 0x04 246#define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08 247#define PERF_PMU_CAP_EXCLUSIVE 0x10 248#define PERF_PMU_CAP_ITRACE 0x20 249#define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 250 251/** 252 * struct pmu - generic performance monitoring unit 253 */ 254struct pmu { 255 struct list_head entry; 256 257 struct module *module; 258 struct device *dev; 259 const struct attribute_group **attr_groups; 260 const char *name; 261 int type; 262 263 /* 264 * various common per-pmu feature flags 265 */ 266 int capabilities; 267 268 int * __percpu pmu_disable_count; 269 struct perf_cpu_context * __percpu pmu_cpu_context; 270 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 271 int task_ctx_nr; 272 int hrtimer_interval_ms; 273 274 /* number of address filters this PMU can do */ 275 unsigned int nr_addr_filters; 276 277 /* 278 * Fully disable/enable this PMU, can be used to protect from the PMI 279 * as well as for lazy/batch writing of the MSRs. 280 */ 281 void (*pmu_enable) (struct pmu *pmu); /* optional */ 282 void (*pmu_disable) (struct pmu *pmu); /* optional */ 283 284 /* 285 * Try and initialize the event for this PMU. 286 * 287 * Returns: 288 * -ENOENT -- @event is not for this PMU 289 * 290 * -ENODEV -- @event is for this PMU but PMU not present 291 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 292 * -EINVAL -- @event is for this PMU but @event is not valid 293 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 294 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges 295 * 296 * 0 -- @event is for this PMU and valid 297 * 298 * Other error return values are allowed. 299 */ 300 int (*event_init) (struct perf_event *event); 301 302 /* 303 * Notification that the event was mapped or unmapped. Called 304 * in the context of the mapping task. 305 */ 306 void (*event_mapped) (struct perf_event *event); /*optional*/ 307 void (*event_unmapped) (struct perf_event *event); /*optional*/ 308 309 /* 310 * Flags for ->add()/->del()/ ->start()/->stop(). There are 311 * matching hw_perf_event::state flags. 312 */ 313#define PERF_EF_START 0x01 /* start the counter when adding */ 314#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 315#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 316 317 /* 318 * Adds/Removes a counter to/from the PMU, can be done inside a 319 * transaction, see the ->*_txn() methods. 320 * 321 * The add/del callbacks will reserve all hardware resources required 322 * to service the event, this includes any counter constraint 323 * scheduling etc. 324 * 325 * Called with IRQs disabled and the PMU disabled on the CPU the event 326 * is on. 327 * 328 * ->add() called without PERF_EF_START should result in the same state 329 * as ->add() followed by ->stop(). 330 * 331 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 332 * ->stop() that must deal with already being stopped without 333 * PERF_EF_UPDATE. 334 */ 335 int (*add) (struct perf_event *event, int flags); 336 void (*del) (struct perf_event *event, int flags); 337 338 /* 339 * Starts/Stops a counter present on the PMU. 340 * 341 * The PMI handler should stop the counter when perf_event_overflow() 342 * returns !0. ->start() will be used to continue. 343 * 344 * Also used to change the sample period. 345 * 346 * Called with IRQs disabled and the PMU disabled on the CPU the event 347 * is on -- will be called from NMI context with the PMU generates 348 * NMIs. 349 * 350 * ->stop() with PERF_EF_UPDATE will read the counter and update 351 * period/count values like ->read() would. 352 * 353 * ->start() with PERF_EF_RELOAD will reprogram the the counter 354 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 355 */ 356 void (*start) (struct perf_event *event, int flags); 357 void (*stop) (struct perf_event *event, int flags); 358 359 /* 360 * Updates the counter value of the event. 361 * 362 * For sampling capable PMUs this will also update the software period 363 * hw_perf_event::period_left field. 364 */ 365 void (*read) (struct perf_event *event); 366 367 /* 368 * Group events scheduling is treated as a transaction, add 369 * group events as a whole and perform one schedulability test. 370 * If the test fails, roll back the whole group 371 * 372 * Start the transaction, after this ->add() doesn't need to 373 * do schedulability tests. 374 * 375 * Optional. 376 */ 377 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 378 /* 379 * If ->start_txn() disabled the ->add() schedulability test 380 * then ->commit_txn() is required to perform one. On success 381 * the transaction is closed. On error the transaction is kept 382 * open until ->cancel_txn() is called. 383 * 384 * Optional. 385 */ 386 int (*commit_txn) (struct pmu *pmu); 387 /* 388 * Will cancel the transaction, assumes ->del() is called 389 * for each successful ->add() during the transaction. 390 * 391 * Optional. 392 */ 393 void (*cancel_txn) (struct pmu *pmu); 394 395 /* 396 * Will return the value for perf_event_mmap_page::index for this event, 397 * if no implementation is provided it will default to: event->hw.idx + 1. 398 */ 399 int (*event_idx) (struct perf_event *event); /*optional */ 400 401 /* 402 * context-switches callback 403 */ 404 void (*sched_task) (struct perf_event_context *ctx, 405 bool sched_in); 406 /* 407 * PMU specific data size 408 */ 409 size_t task_ctx_size; 410 411 412 /* 413 * Return the count value for a counter. 414 */ 415 u64 (*count) (struct perf_event *event); /*optional*/ 416 417 /* 418 * Set up pmu-private data structures for an AUX area 419 */ 420 void *(*setup_aux) (int cpu, void **pages, 421 int nr_pages, bool overwrite); 422 /* optional */ 423 424 /* 425 * Free pmu-private AUX data structures 426 */ 427 void (*free_aux) (void *aux); /* optional */ 428 429 /* 430 * Validate address range filters: make sure the HW supports the 431 * requested configuration and number of filters; return 0 if the 432 * supplied filters are valid, -errno otherwise. 433 * 434 * Runs in the context of the ioctl()ing process and is not serialized 435 * with the rest of the PMU callbacks. 436 */ 437 int (*addr_filters_validate) (struct list_head *filters); 438 /* optional */ 439 440 /* 441 * Synchronize address range filter configuration: 442 * translate hw-agnostic filters into hardware configuration in 443 * event::hw::addr_filters. 444 * 445 * Runs as a part of filter sync sequence that is done in ->start() 446 * callback by calling perf_event_addr_filters_sync(). 447 * 448 * May (and should) traverse event::addr_filters::list, for which its 449 * caller provides necessary serialization. 450 */ 451 void (*addr_filters_sync) (struct perf_event *event); 452 /* optional */ 453 454 /* 455 * Filter events for PMU-specific reasons. 456 */ 457 int (*filter_match) (struct perf_event *event); /* optional */ 458}; 459 460/** 461 * struct perf_addr_filter - address range filter definition 462 * @entry: event's filter list linkage 463 * @inode: object file's inode for file-based filters 464 * @offset: filter range offset 465 * @size: filter range size 466 * @range: 1: range, 0: address 467 * @filter: 1: filter/start, 0: stop 468 * 469 * This is a hardware-agnostic filter configuration as specified by the user. 470 */ 471struct perf_addr_filter { 472 struct list_head entry; 473 struct inode *inode; 474 unsigned long offset; 475 unsigned long size; 476 unsigned int range : 1, 477 filter : 1; 478}; 479 480/** 481 * struct perf_addr_filters_head - container for address range filters 482 * @list: list of filters for this event 483 * @lock: spinlock that serializes accesses to the @list and event's 484 * (and its children's) filter generations. 485 * 486 * A child event will use parent's @list (and therefore @lock), so they are 487 * bundled together; see perf_event_addr_filters(). 488 */ 489struct perf_addr_filters_head { 490 struct list_head list; 491 raw_spinlock_t lock; 492}; 493 494/** 495 * enum perf_event_active_state - the states of a event 496 */ 497enum perf_event_active_state { 498 PERF_EVENT_STATE_DEAD = -4, 499 PERF_EVENT_STATE_EXIT = -3, 500 PERF_EVENT_STATE_ERROR = -2, 501 PERF_EVENT_STATE_OFF = -1, 502 PERF_EVENT_STATE_INACTIVE = 0, 503 PERF_EVENT_STATE_ACTIVE = 1, 504}; 505 506struct file; 507struct perf_sample_data; 508 509typedef void (*perf_overflow_handler_t)(struct perf_event *, 510 struct perf_sample_data *, 511 struct pt_regs *regs); 512 513/* 514 * Event capabilities. For event_caps and groups caps. 515 * 516 * PERF_EV_CAP_SOFTWARE: Is a software event. 517 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 518 * from any CPU in the package where it is active. 519 */ 520#define PERF_EV_CAP_SOFTWARE BIT(0) 521#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 522 523#define SWEVENT_HLIST_BITS 8 524#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 525 526struct swevent_hlist { 527 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 528 struct rcu_head rcu_head; 529}; 530 531#define PERF_ATTACH_CONTEXT 0x01 532#define PERF_ATTACH_GROUP 0x02 533#define PERF_ATTACH_TASK 0x04 534#define PERF_ATTACH_TASK_DATA 0x08 535 536struct perf_cgroup; 537struct ring_buffer; 538 539struct pmu_event_list { 540 raw_spinlock_t lock; 541 struct list_head list; 542}; 543 544/** 545 * struct perf_event - performance event kernel representation: 546 */ 547struct perf_event { 548#ifdef CONFIG_PERF_EVENTS 549 /* 550 * entry onto perf_event_context::event_list; 551 * modifications require ctx->lock 552 * RCU safe iterations. 553 */ 554 struct list_head event_entry; 555 556 /* 557 * XXX: group_entry and sibling_list should be mutually exclusive; 558 * either you're a sibling on a group, or you're the group leader. 559 * Rework the code to always use the same list element. 560 * 561 * Locked for modification by both ctx->mutex and ctx->lock; holding 562 * either sufficies for read. 563 */ 564 struct list_head group_entry; 565 struct list_head sibling_list; 566 567 /* 568 * We need storage to track the entries in perf_pmu_migrate_context; we 569 * cannot use the event_entry because of RCU and we want to keep the 570 * group in tact which avoids us using the other two entries. 571 */ 572 struct list_head migrate_entry; 573 574 struct hlist_node hlist_entry; 575 struct list_head active_entry; 576 int nr_siblings; 577 578 /* Not serialized. Only written during event initialization. */ 579 int event_caps; 580 /* The cumulative AND of all event_caps for events in this group. */ 581 int group_caps; 582 583 struct perf_event *group_leader; 584 struct pmu *pmu; 585 void *pmu_private; 586 587 enum perf_event_active_state state; 588 unsigned int attach_state; 589 local64_t count; 590 atomic64_t child_count; 591 592 /* 593 * These are the total time in nanoseconds that the event 594 * has been enabled (i.e. eligible to run, and the task has 595 * been scheduled in, if this is a per-task event) 596 * and running (scheduled onto the CPU), respectively. 597 * 598 * They are computed from tstamp_enabled, tstamp_running and 599 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 600 */ 601 u64 total_time_enabled; 602 u64 total_time_running; 603 604 /* 605 * These are timestamps used for computing total_time_enabled 606 * and total_time_running when the event is in INACTIVE or 607 * ACTIVE state, measured in nanoseconds from an arbitrary point 608 * in time. 609 * tstamp_enabled: the notional time when the event was enabled 610 * tstamp_running: the notional time when the event was scheduled on 611 * tstamp_stopped: in INACTIVE state, the notional time when the 612 * event was scheduled off. 613 */ 614 u64 tstamp_enabled; 615 u64 tstamp_running; 616 u64 tstamp_stopped; 617 618 /* 619 * timestamp shadows the actual context timing but it can 620 * be safely used in NMI interrupt context. It reflects the 621 * context time as it was when the event was last scheduled in. 622 * 623 * ctx_time already accounts for ctx->timestamp. Therefore to 624 * compute ctx_time for a sample, simply add perf_clock(). 625 */ 626 u64 shadow_ctx_time; 627 628 struct perf_event_attr attr; 629 u16 header_size; 630 u16 id_header_size; 631 u16 read_size; 632 struct hw_perf_event hw; 633 634 struct perf_event_context *ctx; 635 atomic_long_t refcount; 636 637 /* 638 * These accumulate total time (in nanoseconds) that children 639 * events have been enabled and running, respectively. 640 */ 641 atomic64_t child_total_time_enabled; 642 atomic64_t child_total_time_running; 643 644 /* 645 * Protect attach/detach and child_list: 646 */ 647 struct mutex child_mutex; 648 struct list_head child_list; 649 struct perf_event *parent; 650 651 int oncpu; 652 int cpu; 653 654 struct list_head owner_entry; 655 struct task_struct *owner; 656 657 /* mmap bits */ 658 struct mutex mmap_mutex; 659 atomic_t mmap_count; 660 661 struct ring_buffer *rb; 662 struct list_head rb_entry; 663 unsigned long rcu_batches; 664 int rcu_pending; 665 666 /* poll related */ 667 wait_queue_head_t waitq; 668 struct fasync_struct *fasync; 669 670 /* delayed work for NMIs and such */ 671 int pending_wakeup; 672 int pending_kill; 673 int pending_disable; 674 struct irq_work pending; 675 676 atomic_t event_limit; 677 678 /* address range filters */ 679 struct perf_addr_filters_head addr_filters; 680 /* vma address array for file-based filders */ 681 unsigned long *addr_filters_offs; 682 unsigned long addr_filters_gen; 683 684 void (*destroy)(struct perf_event *); 685 struct rcu_head rcu_head; 686 687 struct pid_namespace *ns; 688 u64 id; 689 690 u64 (*clock)(void); 691 perf_overflow_handler_t overflow_handler; 692 void *overflow_handler_context; 693#ifdef CONFIG_BPF_SYSCALL 694 perf_overflow_handler_t orig_overflow_handler; 695 struct bpf_prog *prog; 696#endif 697 698#ifdef CONFIG_EVENT_TRACING 699 struct trace_event_call *tp_event; 700 struct event_filter *filter; 701#ifdef CONFIG_FUNCTION_TRACER 702 struct ftrace_ops ftrace_ops; 703#endif 704#endif 705 706#ifdef CONFIG_CGROUP_PERF 707 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 708 int cgrp_defer_enabled; 709#endif 710 711 struct list_head sb_list; 712#endif /* CONFIG_PERF_EVENTS */ 713}; 714 715/** 716 * struct perf_event_context - event context structure 717 * 718 * Used as a container for task events and CPU events as well: 719 */ 720struct perf_event_context { 721 struct pmu *pmu; 722 /* 723 * Protect the states of the events in the list, 724 * nr_active, and the list: 725 */ 726 raw_spinlock_t lock; 727 /* 728 * Protect the list of events. Locking either mutex or lock 729 * is sufficient to ensure the list doesn't change; to change 730 * the list you need to lock both the mutex and the spinlock. 731 */ 732 struct mutex mutex; 733 734 struct list_head active_ctx_list; 735 struct list_head pinned_groups; 736 struct list_head flexible_groups; 737 struct list_head event_list; 738 int nr_events; 739 int nr_active; 740 int is_active; 741 int nr_stat; 742 int nr_freq; 743 int rotate_disable; 744 atomic_t refcount; 745 struct task_struct *task; 746 747 /* 748 * Context clock, runs when context enabled. 749 */ 750 u64 time; 751 u64 timestamp; 752 753 /* 754 * These fields let us detect when two contexts have both 755 * been cloned (inherited) from a common ancestor. 756 */ 757 struct perf_event_context *parent_ctx; 758 u64 parent_gen; 759 u64 generation; 760 int pin_count; 761#ifdef CONFIG_CGROUP_PERF 762 int nr_cgroups; /* cgroup evts */ 763#endif 764 void *task_ctx_data; /* pmu specific data */ 765 struct rcu_head rcu_head; 766}; 767 768/* 769 * Number of contexts where an event can trigger: 770 * task, softirq, hardirq, nmi. 771 */ 772#define PERF_NR_CONTEXTS 4 773 774/** 775 * struct perf_event_cpu_context - per cpu event context structure 776 */ 777struct perf_cpu_context { 778 struct perf_event_context ctx; 779 struct perf_event_context *task_ctx; 780 int active_oncpu; 781 int exclusive; 782 783 raw_spinlock_t hrtimer_lock; 784 struct hrtimer hrtimer; 785 ktime_t hrtimer_interval; 786 unsigned int hrtimer_active; 787 788 struct pmu *unique_pmu; 789#ifdef CONFIG_CGROUP_PERF 790 struct perf_cgroup *cgrp; 791#endif 792 793 struct list_head sched_cb_entry; 794 int sched_cb_usage; 795}; 796 797struct perf_output_handle { 798 struct perf_event *event; 799 struct ring_buffer *rb; 800 unsigned long wakeup; 801 unsigned long size; 802 union { 803 void *addr; 804 unsigned long head; 805 }; 806 int page; 807}; 808 809struct bpf_perf_event_data_kern { 810 struct pt_regs *regs; 811 struct perf_sample_data *data; 812}; 813 814#ifdef CONFIG_CGROUP_PERF 815 816/* 817 * perf_cgroup_info keeps track of time_enabled for a cgroup. 818 * This is a per-cpu dynamically allocated data structure. 819 */ 820struct perf_cgroup_info { 821 u64 time; 822 u64 timestamp; 823}; 824 825struct perf_cgroup { 826 struct cgroup_subsys_state css; 827 struct perf_cgroup_info __percpu *info; 828}; 829 830/* 831 * Must ensure cgroup is pinned (css_get) before calling 832 * this function. In other words, we cannot call this function 833 * if there is no cgroup event for the current CPU context. 834 */ 835static inline struct perf_cgroup * 836perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 837{ 838 return container_of(task_css_check(task, perf_event_cgrp_id, 839 ctx ? lockdep_is_held(&ctx->lock) 840 : true), 841 struct perf_cgroup, css); 842} 843#endif /* CONFIG_CGROUP_PERF */ 844 845#ifdef CONFIG_PERF_EVENTS 846 847extern void *perf_aux_output_begin(struct perf_output_handle *handle, 848 struct perf_event *event); 849extern void perf_aux_output_end(struct perf_output_handle *handle, 850 unsigned long size, bool truncated); 851extern int perf_aux_output_skip(struct perf_output_handle *handle, 852 unsigned long size); 853extern void *perf_get_aux(struct perf_output_handle *handle); 854 855extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 856extern void perf_pmu_unregister(struct pmu *pmu); 857 858extern int perf_num_counters(void); 859extern const char *perf_pmu_name(void); 860extern void __perf_event_task_sched_in(struct task_struct *prev, 861 struct task_struct *task); 862extern void __perf_event_task_sched_out(struct task_struct *prev, 863 struct task_struct *next); 864extern int perf_event_init_task(struct task_struct *child); 865extern void perf_event_exit_task(struct task_struct *child); 866extern void perf_event_free_task(struct task_struct *task); 867extern void perf_event_delayed_put(struct task_struct *task); 868extern struct file *perf_event_get(unsigned int fd); 869extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 870extern void perf_event_print_debug(void); 871extern void perf_pmu_disable(struct pmu *pmu); 872extern void perf_pmu_enable(struct pmu *pmu); 873extern void perf_sched_cb_dec(struct pmu *pmu); 874extern void perf_sched_cb_inc(struct pmu *pmu); 875extern int perf_event_task_disable(void); 876extern int perf_event_task_enable(void); 877extern int perf_event_refresh(struct perf_event *event, int refresh); 878extern void perf_event_update_userpage(struct perf_event *event); 879extern int perf_event_release_kernel(struct perf_event *event); 880extern struct perf_event * 881perf_event_create_kernel_counter(struct perf_event_attr *attr, 882 int cpu, 883 struct task_struct *task, 884 perf_overflow_handler_t callback, 885 void *context); 886extern void perf_pmu_migrate_context(struct pmu *pmu, 887 int src_cpu, int dst_cpu); 888extern u64 perf_event_read_local(struct perf_event *event); 889extern u64 perf_event_read_value(struct perf_event *event, 890 u64 *enabled, u64 *running); 891 892 893struct perf_sample_data { 894 /* 895 * Fields set by perf_sample_data_init(), group so as to 896 * minimize the cachelines touched. 897 */ 898 u64 addr; 899 struct perf_raw_record *raw; 900 struct perf_branch_stack *br_stack; 901 u64 period; 902 u64 weight; 903 u64 txn; 904 union perf_mem_data_src data_src; 905 906 /* 907 * The other fields, optionally {set,used} by 908 * perf_{prepare,output}_sample(). 909 */ 910 u64 type; 911 u64 ip; 912 struct { 913 u32 pid; 914 u32 tid; 915 } tid_entry; 916 u64 time; 917 u64 id; 918 u64 stream_id; 919 struct { 920 u32 cpu; 921 u32 reserved; 922 } cpu_entry; 923 struct perf_callchain_entry *callchain; 924 925 /* 926 * regs_user may point to task_pt_regs or to regs_user_copy, depending 927 * on arch details. 928 */ 929 struct perf_regs regs_user; 930 struct pt_regs regs_user_copy; 931 932 struct perf_regs regs_intr; 933 u64 stack_user_size; 934} ____cacheline_aligned; 935 936/* default value for data source */ 937#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 938 PERF_MEM_S(LVL, NA) |\ 939 PERF_MEM_S(SNOOP, NA) |\ 940 PERF_MEM_S(LOCK, NA) |\ 941 PERF_MEM_S(TLB, NA)) 942 943static inline void perf_sample_data_init(struct perf_sample_data *data, 944 u64 addr, u64 period) 945{ 946 /* remaining struct members initialized in perf_prepare_sample() */ 947 data->addr = addr; 948 data->raw = NULL; 949 data->br_stack = NULL; 950 data->period = period; 951 data->weight = 0; 952 data->data_src.val = PERF_MEM_NA; 953 data->txn = 0; 954} 955 956extern void perf_output_sample(struct perf_output_handle *handle, 957 struct perf_event_header *header, 958 struct perf_sample_data *data, 959 struct perf_event *event); 960extern void perf_prepare_sample(struct perf_event_header *header, 961 struct perf_sample_data *data, 962 struct perf_event *event, 963 struct pt_regs *regs); 964 965extern int perf_event_overflow(struct perf_event *event, 966 struct perf_sample_data *data, 967 struct pt_regs *regs); 968 969extern void perf_event_output_forward(struct perf_event *event, 970 struct perf_sample_data *data, 971 struct pt_regs *regs); 972extern void perf_event_output_backward(struct perf_event *event, 973 struct perf_sample_data *data, 974 struct pt_regs *regs); 975extern void perf_event_output(struct perf_event *event, 976 struct perf_sample_data *data, 977 struct pt_regs *regs); 978 979static inline bool 980is_default_overflow_handler(struct perf_event *event) 981{ 982 if (likely(event->overflow_handler == perf_event_output_forward)) 983 return true; 984 if (unlikely(event->overflow_handler == perf_event_output_backward)) 985 return true; 986 return false; 987} 988 989extern void 990perf_event_header__init_id(struct perf_event_header *header, 991 struct perf_sample_data *data, 992 struct perf_event *event); 993extern void 994perf_event__output_id_sample(struct perf_event *event, 995 struct perf_output_handle *handle, 996 struct perf_sample_data *sample); 997 998extern void 999perf_log_lost_samples(struct perf_event *event, u64 lost); 1000 1001static inline bool is_sampling_event(struct perf_event *event) 1002{ 1003 return event->attr.sample_period != 0; 1004} 1005 1006/* 1007 * Return 1 for a software event, 0 for a hardware event 1008 */ 1009static inline int is_software_event(struct perf_event *event) 1010{ 1011 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1012} 1013 1014extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1015 1016extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1017extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1018 1019#ifndef perf_arch_fetch_caller_regs 1020static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1021#endif 1022 1023/* 1024 * Take a snapshot of the regs. Skip ip and frame pointer to 1025 * the nth caller. We only need a few of the regs: 1026 * - ip for PERF_SAMPLE_IP 1027 * - cs for user_mode() tests 1028 * - bp for callchains 1029 * - eflags, for future purposes, just in case 1030 */ 1031static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1032{ 1033 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1034} 1035 1036static __always_inline void 1037perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1038{ 1039 if (static_key_false(&perf_swevent_enabled[event_id])) 1040 __perf_sw_event(event_id, nr, regs, addr); 1041} 1042 1043DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1044 1045/* 1046 * 'Special' version for the scheduler, it hard assumes no recursion, 1047 * which is guaranteed by us not actually scheduling inside other swevents 1048 * because those disable preemption. 1049 */ 1050static __always_inline void 1051perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1052{ 1053 if (static_key_false(&perf_swevent_enabled[event_id])) { 1054 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1055 1056 perf_fetch_caller_regs(regs); 1057 ___perf_sw_event(event_id, nr, regs, addr); 1058 } 1059} 1060 1061extern struct static_key_false perf_sched_events; 1062 1063static __always_inline bool 1064perf_sw_migrate_enabled(void) 1065{ 1066 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1067 return true; 1068 return false; 1069} 1070 1071static inline void perf_event_task_migrate(struct task_struct *task) 1072{ 1073 if (perf_sw_migrate_enabled()) 1074 task->sched_migrated = 1; 1075} 1076 1077static inline void perf_event_task_sched_in(struct task_struct *prev, 1078 struct task_struct *task) 1079{ 1080 if (static_branch_unlikely(&perf_sched_events)) 1081 __perf_event_task_sched_in(prev, task); 1082 1083 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1084 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1085 1086 perf_fetch_caller_regs(regs); 1087 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1088 task->sched_migrated = 0; 1089 } 1090} 1091 1092static inline void perf_event_task_sched_out(struct task_struct *prev, 1093 struct task_struct *next) 1094{ 1095 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1096 1097 if (static_branch_unlikely(&perf_sched_events)) 1098 __perf_event_task_sched_out(prev, next); 1099} 1100 1101static inline u64 __perf_event_count(struct perf_event *event) 1102{ 1103 return local64_read(&event->count) + atomic64_read(&event->child_count); 1104} 1105 1106extern void perf_event_mmap(struct vm_area_struct *vma); 1107extern struct perf_guest_info_callbacks *perf_guest_cbs; 1108extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1109extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1110 1111extern void perf_event_exec(void); 1112extern void perf_event_comm(struct task_struct *tsk, bool exec); 1113extern void perf_event_fork(struct task_struct *tsk); 1114 1115/* Callchains */ 1116DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1117 1118extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1119extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1120extern struct perf_callchain_entry * 1121get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1122 u32 max_stack, bool crosstask, bool add_mark); 1123extern int get_callchain_buffers(int max_stack); 1124extern void put_callchain_buffers(void); 1125 1126extern int sysctl_perf_event_max_stack; 1127extern int sysctl_perf_event_max_contexts_per_stack; 1128 1129static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1130{ 1131 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1132 struct perf_callchain_entry *entry = ctx->entry; 1133 entry->ip[entry->nr++] = ip; 1134 ++ctx->contexts; 1135 return 0; 1136 } else { 1137 ctx->contexts_maxed = true; 1138 return -1; /* no more room, stop walking the stack */ 1139 } 1140} 1141 1142static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1143{ 1144 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1145 struct perf_callchain_entry *entry = ctx->entry; 1146 entry->ip[entry->nr++] = ip; 1147 ++ctx->nr; 1148 return 0; 1149 } else { 1150 return -1; /* no more room, stop walking the stack */ 1151 } 1152} 1153 1154extern int sysctl_perf_event_paranoid; 1155extern int sysctl_perf_event_mlock; 1156extern int sysctl_perf_event_sample_rate; 1157extern int sysctl_perf_cpu_time_max_percent; 1158 1159extern void perf_sample_event_took(u64 sample_len_ns); 1160 1161extern int perf_proc_update_handler(struct ctl_table *table, int write, 1162 void __user *buffer, size_t *lenp, 1163 loff_t *ppos); 1164extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1165 void __user *buffer, size_t *lenp, 1166 loff_t *ppos); 1167 1168int perf_event_max_stack_handler(struct ctl_table *table, int write, 1169 void __user *buffer, size_t *lenp, loff_t *ppos); 1170 1171static inline bool perf_paranoid_tracepoint_raw(void) 1172{ 1173 return sysctl_perf_event_paranoid > -1; 1174} 1175 1176static inline bool perf_paranoid_cpu(void) 1177{ 1178 return sysctl_perf_event_paranoid > 0; 1179} 1180 1181static inline bool perf_paranoid_kernel(void) 1182{ 1183 return sysctl_perf_event_paranoid > 1; 1184} 1185 1186extern void perf_event_init(void); 1187extern void perf_tp_event(u16 event_type, u64 count, void *record, 1188 int entry_size, struct pt_regs *regs, 1189 struct hlist_head *head, int rctx, 1190 struct task_struct *task); 1191extern void perf_bp_event(struct perf_event *event, void *data); 1192 1193#ifndef perf_misc_flags 1194# define perf_misc_flags(regs) \ 1195 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1196# define perf_instruction_pointer(regs) instruction_pointer(regs) 1197#endif 1198 1199static inline bool has_branch_stack(struct perf_event *event) 1200{ 1201 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1202} 1203 1204static inline bool needs_branch_stack(struct perf_event *event) 1205{ 1206 return event->attr.branch_sample_type != 0; 1207} 1208 1209static inline bool has_aux(struct perf_event *event) 1210{ 1211 return event->pmu->setup_aux; 1212} 1213 1214static inline bool is_write_backward(struct perf_event *event) 1215{ 1216 return !!event->attr.write_backward; 1217} 1218 1219static inline bool has_addr_filter(struct perf_event *event) 1220{ 1221 return event->pmu->nr_addr_filters; 1222} 1223 1224/* 1225 * An inherited event uses parent's filters 1226 */ 1227static inline struct perf_addr_filters_head * 1228perf_event_addr_filters(struct perf_event *event) 1229{ 1230 struct perf_addr_filters_head *ifh = &event->addr_filters; 1231 1232 if (event->parent) 1233 ifh = &event->parent->addr_filters; 1234 1235 return ifh; 1236} 1237 1238extern void perf_event_addr_filters_sync(struct perf_event *event); 1239 1240extern int perf_output_begin(struct perf_output_handle *handle, 1241 struct perf_event *event, unsigned int size); 1242extern int perf_output_begin_forward(struct perf_output_handle *handle, 1243 struct perf_event *event, 1244 unsigned int size); 1245extern int perf_output_begin_backward(struct perf_output_handle *handle, 1246 struct perf_event *event, 1247 unsigned int size); 1248 1249extern void perf_output_end(struct perf_output_handle *handle); 1250extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1251 const void *buf, unsigned int len); 1252extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1253 unsigned int len); 1254extern int perf_swevent_get_recursion_context(void); 1255extern void perf_swevent_put_recursion_context(int rctx); 1256extern u64 perf_swevent_set_period(struct perf_event *event); 1257extern void perf_event_enable(struct perf_event *event); 1258extern void perf_event_disable(struct perf_event *event); 1259extern void perf_event_disable_local(struct perf_event *event); 1260extern void perf_event_disable_inatomic(struct perf_event *event); 1261extern void perf_event_task_tick(void); 1262#else /* !CONFIG_PERF_EVENTS: */ 1263static inline void * 1264perf_aux_output_begin(struct perf_output_handle *handle, 1265 struct perf_event *event) { return NULL; } 1266static inline void 1267perf_aux_output_end(struct perf_output_handle *handle, unsigned long size, 1268 bool truncated) { } 1269static inline int 1270perf_aux_output_skip(struct perf_output_handle *handle, 1271 unsigned long size) { return -EINVAL; } 1272static inline void * 1273perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1274static inline void 1275perf_event_task_migrate(struct task_struct *task) { } 1276static inline void 1277perf_event_task_sched_in(struct task_struct *prev, 1278 struct task_struct *task) { } 1279static inline void 1280perf_event_task_sched_out(struct task_struct *prev, 1281 struct task_struct *next) { } 1282static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1283static inline void perf_event_exit_task(struct task_struct *child) { } 1284static inline void perf_event_free_task(struct task_struct *task) { } 1285static inline void perf_event_delayed_put(struct task_struct *task) { } 1286static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1287static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1288{ 1289 return ERR_PTR(-EINVAL); 1290} 1291static inline u64 perf_event_read_local(struct perf_event *event) { return -EINVAL; } 1292static inline void perf_event_print_debug(void) { } 1293static inline int perf_event_task_disable(void) { return -EINVAL; } 1294static inline int perf_event_task_enable(void) { return -EINVAL; } 1295static inline int perf_event_refresh(struct perf_event *event, int refresh) 1296{ 1297 return -EINVAL; 1298} 1299 1300static inline void 1301perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1302static inline void 1303perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1304static inline void 1305perf_bp_event(struct perf_event *event, void *data) { } 1306 1307static inline int perf_register_guest_info_callbacks 1308(struct perf_guest_info_callbacks *callbacks) { return 0; } 1309static inline int perf_unregister_guest_info_callbacks 1310(struct perf_guest_info_callbacks *callbacks) { return 0; } 1311 1312static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1313static inline void perf_event_exec(void) { } 1314static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1315static inline void perf_event_fork(struct task_struct *tsk) { } 1316static inline void perf_event_init(void) { } 1317static inline int perf_swevent_get_recursion_context(void) { return -1; } 1318static inline void perf_swevent_put_recursion_context(int rctx) { } 1319static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1320static inline void perf_event_enable(struct perf_event *event) { } 1321static inline void perf_event_disable(struct perf_event *event) { } 1322static inline int __perf_event_disable(void *info) { return -1; } 1323static inline void perf_event_task_tick(void) { } 1324static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1325#endif 1326 1327#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1328extern void perf_restore_debug_store(void); 1329#else 1330static inline void perf_restore_debug_store(void) { } 1331#endif 1332 1333static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1334{ 1335 return frag->pad < sizeof(u64); 1336} 1337 1338#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1339 1340struct perf_pmu_events_attr { 1341 struct device_attribute attr; 1342 u64 id; 1343 const char *event_str; 1344}; 1345 1346struct perf_pmu_events_ht_attr { 1347 struct device_attribute attr; 1348 u64 id; 1349 const char *event_str_ht; 1350 const char *event_str_noht; 1351}; 1352 1353ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1354 char *page); 1355 1356#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1357static struct perf_pmu_events_attr _var = { \ 1358 .attr = __ATTR(_name, 0444, _show, NULL), \ 1359 .id = _id, \ 1360}; 1361 1362#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1363static struct perf_pmu_events_attr _var = { \ 1364 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1365 .id = 0, \ 1366 .event_str = _str, \ 1367}; 1368 1369#define PMU_FORMAT_ATTR(_name, _format) \ 1370static ssize_t \ 1371_name##_show(struct device *dev, \ 1372 struct device_attribute *attr, \ 1373 char *page) \ 1374{ \ 1375 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1376 return sprintf(page, _format "\n"); \ 1377} \ 1378 \ 1379static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1380 1381/* Performance counter hotplug functions */ 1382#ifdef CONFIG_PERF_EVENTS 1383int perf_event_init_cpu(unsigned int cpu); 1384int perf_event_exit_cpu(unsigned int cpu); 1385#else 1386#define perf_event_init_cpu NULL 1387#define perf_event_exit_cpu NULL 1388#endif 1389 1390#endif /* _LINUX_PERF_EVENT_H */