at v4.9 626 lines 18 kB view raw
1#ifndef _LINUX_PAGEMAP_H 2#define _LINUX_PAGEMAP_H 3 4/* 5 * Copyright 1995 Linus Torvalds 6 */ 7#include <linux/mm.h> 8#include <linux/fs.h> 9#include <linux/list.h> 10#include <linux/highmem.h> 11#include <linux/compiler.h> 12#include <asm/uaccess.h> 13#include <linux/gfp.h> 14#include <linux/bitops.h> 15#include <linux/hardirq.h> /* for in_interrupt() */ 16#include <linux/hugetlb_inline.h> 17 18/* 19 * Bits in mapping->flags. 20 */ 21enum mapping_flags { 22 AS_EIO = 0, /* IO error on async write */ 23 AS_ENOSPC = 1, /* ENOSPC on async write */ 24 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 25 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 26 AS_EXITING = 4, /* final truncate in progress */ 27 /* writeback related tags are not used */ 28 AS_NO_WRITEBACK_TAGS = 5, 29}; 30 31static inline void mapping_set_error(struct address_space *mapping, int error) 32{ 33 if (unlikely(error)) { 34 if (error == -ENOSPC) 35 set_bit(AS_ENOSPC, &mapping->flags); 36 else 37 set_bit(AS_EIO, &mapping->flags); 38 } 39} 40 41static inline void mapping_set_unevictable(struct address_space *mapping) 42{ 43 set_bit(AS_UNEVICTABLE, &mapping->flags); 44} 45 46static inline void mapping_clear_unevictable(struct address_space *mapping) 47{ 48 clear_bit(AS_UNEVICTABLE, &mapping->flags); 49} 50 51static inline int mapping_unevictable(struct address_space *mapping) 52{ 53 if (mapping) 54 return test_bit(AS_UNEVICTABLE, &mapping->flags); 55 return !!mapping; 56} 57 58static inline void mapping_set_exiting(struct address_space *mapping) 59{ 60 set_bit(AS_EXITING, &mapping->flags); 61} 62 63static inline int mapping_exiting(struct address_space *mapping) 64{ 65 return test_bit(AS_EXITING, &mapping->flags); 66} 67 68static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 69{ 70 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 71} 72 73static inline int mapping_use_writeback_tags(struct address_space *mapping) 74{ 75 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 76} 77 78static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 79{ 80 return mapping->gfp_mask; 81} 82 83/* Restricts the given gfp_mask to what the mapping allows. */ 84static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 85 gfp_t gfp_mask) 86{ 87 return mapping_gfp_mask(mapping) & gfp_mask; 88} 89 90/* 91 * This is non-atomic. Only to be used before the mapping is activated. 92 * Probably needs a barrier... 93 */ 94static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 95{ 96 m->gfp_mask = mask; 97} 98 99void release_pages(struct page **pages, int nr, bool cold); 100 101/* 102 * speculatively take a reference to a page. 103 * If the page is free (_refcount == 0), then _refcount is untouched, and 0 104 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned. 105 * 106 * This function must be called inside the same rcu_read_lock() section as has 107 * been used to lookup the page in the pagecache radix-tree (or page table): 108 * this allows allocators to use a synchronize_rcu() to stabilize _refcount. 109 * 110 * Unless an RCU grace period has passed, the count of all pages coming out 111 * of the allocator must be considered unstable. page_count may return higher 112 * than expected, and put_page must be able to do the right thing when the 113 * page has been finished with, no matter what it is subsequently allocated 114 * for (because put_page is what is used here to drop an invalid speculative 115 * reference). 116 * 117 * This is the interesting part of the lockless pagecache (and lockless 118 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) 119 * has the following pattern: 120 * 1. find page in radix tree 121 * 2. conditionally increment refcount 122 * 3. check the page is still in pagecache (if no, goto 1) 123 * 124 * Remove-side that cares about stability of _refcount (eg. reclaim) has the 125 * following (with tree_lock held for write): 126 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) 127 * B. remove page from pagecache 128 * C. free the page 129 * 130 * There are 2 critical interleavings that matter: 131 * - 2 runs before A: in this case, A sees elevated refcount and bails out 132 * - A runs before 2: in this case, 2 sees zero refcount and retries; 133 * subsequently, B will complete and 1 will find no page, causing the 134 * lookup to return NULL. 135 * 136 * It is possible that between 1 and 2, the page is removed then the exact same 137 * page is inserted into the same position in pagecache. That's OK: the 138 * old find_get_page using tree_lock could equally have run before or after 139 * such a re-insertion, depending on order that locks are granted. 140 * 141 * Lookups racing against pagecache insertion isn't a big problem: either 1 142 * will find the page or it will not. Likewise, the old find_get_page could run 143 * either before the insertion or afterwards, depending on timing. 144 */ 145static inline int page_cache_get_speculative(struct page *page) 146{ 147 VM_BUG_ON(in_interrupt()); 148 149#ifdef CONFIG_TINY_RCU 150# ifdef CONFIG_PREEMPT_COUNT 151 VM_BUG_ON(!in_atomic()); 152# endif 153 /* 154 * Preempt must be disabled here - we rely on rcu_read_lock doing 155 * this for us. 156 * 157 * Pagecache won't be truncated from interrupt context, so if we have 158 * found a page in the radix tree here, we have pinned its refcount by 159 * disabling preempt, and hence no need for the "speculative get" that 160 * SMP requires. 161 */ 162 VM_BUG_ON_PAGE(page_count(page) == 0, page); 163 page_ref_inc(page); 164 165#else 166 if (unlikely(!get_page_unless_zero(page))) { 167 /* 168 * Either the page has been freed, or will be freed. 169 * In either case, retry here and the caller should 170 * do the right thing (see comments above). 171 */ 172 return 0; 173 } 174#endif 175 VM_BUG_ON_PAGE(PageTail(page), page); 176 177 return 1; 178} 179 180/* 181 * Same as above, but add instead of inc (could just be merged) 182 */ 183static inline int page_cache_add_speculative(struct page *page, int count) 184{ 185 VM_BUG_ON(in_interrupt()); 186 187#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU) 188# ifdef CONFIG_PREEMPT_COUNT 189 VM_BUG_ON(!in_atomic()); 190# endif 191 VM_BUG_ON_PAGE(page_count(page) == 0, page); 192 page_ref_add(page, count); 193 194#else 195 if (unlikely(!page_ref_add_unless(page, count, 0))) 196 return 0; 197#endif 198 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page); 199 200 return 1; 201} 202 203#ifdef CONFIG_NUMA 204extern struct page *__page_cache_alloc(gfp_t gfp); 205#else 206static inline struct page *__page_cache_alloc(gfp_t gfp) 207{ 208 return alloc_pages(gfp, 0); 209} 210#endif 211 212static inline struct page *page_cache_alloc(struct address_space *x) 213{ 214 return __page_cache_alloc(mapping_gfp_mask(x)); 215} 216 217static inline struct page *page_cache_alloc_cold(struct address_space *x) 218{ 219 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD); 220} 221 222static inline gfp_t readahead_gfp_mask(struct address_space *x) 223{ 224 return mapping_gfp_mask(x) | 225 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN; 226} 227 228typedef int filler_t(void *, struct page *); 229 230pgoff_t page_cache_next_hole(struct address_space *mapping, 231 pgoff_t index, unsigned long max_scan); 232pgoff_t page_cache_prev_hole(struct address_space *mapping, 233 pgoff_t index, unsigned long max_scan); 234 235#define FGP_ACCESSED 0x00000001 236#define FGP_LOCK 0x00000002 237#define FGP_CREAT 0x00000004 238#define FGP_WRITE 0x00000008 239#define FGP_NOFS 0x00000010 240#define FGP_NOWAIT 0x00000020 241 242struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 243 int fgp_flags, gfp_t cache_gfp_mask); 244 245/** 246 * find_get_page - find and get a page reference 247 * @mapping: the address_space to search 248 * @offset: the page index 249 * 250 * Looks up the page cache slot at @mapping & @offset. If there is a 251 * page cache page, it is returned with an increased refcount. 252 * 253 * Otherwise, %NULL is returned. 254 */ 255static inline struct page *find_get_page(struct address_space *mapping, 256 pgoff_t offset) 257{ 258 return pagecache_get_page(mapping, offset, 0, 0); 259} 260 261static inline struct page *find_get_page_flags(struct address_space *mapping, 262 pgoff_t offset, int fgp_flags) 263{ 264 return pagecache_get_page(mapping, offset, fgp_flags, 0); 265} 266 267/** 268 * find_lock_page - locate, pin and lock a pagecache page 269 * pagecache_get_page - find and get a page reference 270 * @mapping: the address_space to search 271 * @offset: the page index 272 * 273 * Looks up the page cache slot at @mapping & @offset. If there is a 274 * page cache page, it is returned locked and with an increased 275 * refcount. 276 * 277 * Otherwise, %NULL is returned. 278 * 279 * find_lock_page() may sleep. 280 */ 281static inline struct page *find_lock_page(struct address_space *mapping, 282 pgoff_t offset) 283{ 284 return pagecache_get_page(mapping, offset, FGP_LOCK, 0); 285} 286 287/** 288 * find_or_create_page - locate or add a pagecache page 289 * @mapping: the page's address_space 290 * @index: the page's index into the mapping 291 * @gfp_mask: page allocation mode 292 * 293 * Looks up the page cache slot at @mapping & @offset. If there is a 294 * page cache page, it is returned locked and with an increased 295 * refcount. 296 * 297 * If the page is not present, a new page is allocated using @gfp_mask 298 * and added to the page cache and the VM's LRU list. The page is 299 * returned locked and with an increased refcount. 300 * 301 * On memory exhaustion, %NULL is returned. 302 * 303 * find_or_create_page() may sleep, even if @gfp_flags specifies an 304 * atomic allocation! 305 */ 306static inline struct page *find_or_create_page(struct address_space *mapping, 307 pgoff_t offset, gfp_t gfp_mask) 308{ 309 return pagecache_get_page(mapping, offset, 310 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 311 gfp_mask); 312} 313 314/** 315 * grab_cache_page_nowait - returns locked page at given index in given cache 316 * @mapping: target address_space 317 * @index: the page index 318 * 319 * Same as grab_cache_page(), but do not wait if the page is unavailable. 320 * This is intended for speculative data generators, where the data can 321 * be regenerated if the page couldn't be grabbed. This routine should 322 * be safe to call while holding the lock for another page. 323 * 324 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 325 * and deadlock against the caller's locked page. 326 */ 327static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 328 pgoff_t index) 329{ 330 return pagecache_get_page(mapping, index, 331 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 332 mapping_gfp_mask(mapping)); 333} 334 335struct page *find_get_entry(struct address_space *mapping, pgoff_t offset); 336struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset); 337unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 338 unsigned int nr_entries, struct page **entries, 339 pgoff_t *indices); 340unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 341 unsigned int nr_pages, struct page **pages); 342unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 343 unsigned int nr_pages, struct page **pages); 344unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 345 int tag, unsigned int nr_pages, struct page **pages); 346unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 347 int tag, unsigned int nr_entries, 348 struct page **entries, pgoff_t *indices); 349 350struct page *grab_cache_page_write_begin(struct address_space *mapping, 351 pgoff_t index, unsigned flags); 352 353/* 354 * Returns locked page at given index in given cache, creating it if needed. 355 */ 356static inline struct page *grab_cache_page(struct address_space *mapping, 357 pgoff_t index) 358{ 359 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 360} 361 362extern struct page * read_cache_page(struct address_space *mapping, 363 pgoff_t index, filler_t *filler, void *data); 364extern struct page * read_cache_page_gfp(struct address_space *mapping, 365 pgoff_t index, gfp_t gfp_mask); 366extern int read_cache_pages(struct address_space *mapping, 367 struct list_head *pages, filler_t *filler, void *data); 368 369static inline struct page *read_mapping_page(struct address_space *mapping, 370 pgoff_t index, void *data) 371{ 372 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 373 return read_cache_page(mapping, index, filler, data); 374} 375 376/* 377 * Get index of the page with in radix-tree 378 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE) 379 */ 380static inline pgoff_t page_to_index(struct page *page) 381{ 382 pgoff_t pgoff; 383 384 if (likely(!PageTransTail(page))) 385 return page->index; 386 387 /* 388 * We don't initialize ->index for tail pages: calculate based on 389 * head page 390 */ 391 pgoff = compound_head(page)->index; 392 pgoff += page - compound_head(page); 393 return pgoff; 394} 395 396/* 397 * Get the offset in PAGE_SIZE. 398 * (TODO: hugepage should have ->index in PAGE_SIZE) 399 */ 400static inline pgoff_t page_to_pgoff(struct page *page) 401{ 402 if (unlikely(PageHeadHuge(page))) 403 return page->index << compound_order(page); 404 405 return page_to_index(page); 406} 407 408/* 409 * Return byte-offset into filesystem object for page. 410 */ 411static inline loff_t page_offset(struct page *page) 412{ 413 return ((loff_t)page->index) << PAGE_SHIFT; 414} 415 416static inline loff_t page_file_offset(struct page *page) 417{ 418 return ((loff_t)page_index(page)) << PAGE_SHIFT; 419} 420 421extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 422 unsigned long address); 423 424static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 425 unsigned long address) 426{ 427 pgoff_t pgoff; 428 if (unlikely(is_vm_hugetlb_page(vma))) 429 return linear_hugepage_index(vma, address); 430 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 431 pgoff += vma->vm_pgoff; 432 return pgoff; 433} 434 435extern void __lock_page(struct page *page); 436extern int __lock_page_killable(struct page *page); 437extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 438 unsigned int flags); 439extern void unlock_page(struct page *page); 440 441static inline int trylock_page(struct page *page) 442{ 443 page = compound_head(page); 444 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); 445} 446 447/* 448 * lock_page may only be called if we have the page's inode pinned. 449 */ 450static inline void lock_page(struct page *page) 451{ 452 might_sleep(); 453 if (!trylock_page(page)) 454 __lock_page(page); 455} 456 457/* 458 * lock_page_killable is like lock_page but can be interrupted by fatal 459 * signals. It returns 0 if it locked the page and -EINTR if it was 460 * killed while waiting. 461 */ 462static inline int lock_page_killable(struct page *page) 463{ 464 might_sleep(); 465 if (!trylock_page(page)) 466 return __lock_page_killable(page); 467 return 0; 468} 469 470/* 471 * lock_page_or_retry - Lock the page, unless this would block and the 472 * caller indicated that it can handle a retry. 473 * 474 * Return value and mmap_sem implications depend on flags; see 475 * __lock_page_or_retry(). 476 */ 477static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, 478 unsigned int flags) 479{ 480 might_sleep(); 481 return trylock_page(page) || __lock_page_or_retry(page, mm, flags); 482} 483 484/* 485 * This is exported only for wait_on_page_locked/wait_on_page_writeback, 486 * and for filesystems which need to wait on PG_private. 487 */ 488extern void wait_on_page_bit(struct page *page, int bit_nr); 489 490extern int wait_on_page_bit_killable(struct page *page, int bit_nr); 491extern int wait_on_page_bit_killable_timeout(struct page *page, 492 int bit_nr, unsigned long timeout); 493 494static inline int wait_on_page_locked_killable(struct page *page) 495{ 496 if (!PageLocked(page)) 497 return 0; 498 return wait_on_page_bit_killable(compound_head(page), PG_locked); 499} 500 501extern wait_queue_head_t *page_waitqueue(struct page *page); 502static inline void wake_up_page(struct page *page, int bit) 503{ 504 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 505} 506 507/* 508 * Wait for a page to be unlocked. 509 * 510 * This must be called with the caller "holding" the page, 511 * ie with increased "page->count" so that the page won't 512 * go away during the wait.. 513 */ 514static inline void wait_on_page_locked(struct page *page) 515{ 516 if (PageLocked(page)) 517 wait_on_page_bit(compound_head(page), PG_locked); 518} 519 520/* 521 * Wait for a page to complete writeback 522 */ 523static inline void wait_on_page_writeback(struct page *page) 524{ 525 if (PageWriteback(page)) 526 wait_on_page_bit(page, PG_writeback); 527} 528 529extern void end_page_writeback(struct page *page); 530void wait_for_stable_page(struct page *page); 531 532void page_endio(struct page *page, bool is_write, int err); 533 534/* 535 * Add an arbitrary waiter to a page's wait queue 536 */ 537extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter); 538 539/* 540 * Fault everything in given userspace address range in. 541 */ 542static inline int fault_in_pages_writeable(char __user *uaddr, int size) 543{ 544 char __user *end = uaddr + size - 1; 545 546 if (unlikely(size == 0)) 547 return 0; 548 549 if (unlikely(uaddr > end)) 550 return -EFAULT; 551 /* 552 * Writing zeroes into userspace here is OK, because we know that if 553 * the zero gets there, we'll be overwriting it. 554 */ 555 do { 556 if (unlikely(__put_user(0, uaddr) != 0)) 557 return -EFAULT; 558 uaddr += PAGE_SIZE; 559 } while (uaddr <= end); 560 561 /* Check whether the range spilled into the next page. */ 562 if (((unsigned long)uaddr & PAGE_MASK) == 563 ((unsigned long)end & PAGE_MASK)) 564 return __put_user(0, end); 565 566 return 0; 567} 568 569static inline int fault_in_pages_readable(const char __user *uaddr, int size) 570{ 571 volatile char c; 572 const char __user *end = uaddr + size - 1; 573 574 if (unlikely(size == 0)) 575 return 0; 576 577 if (unlikely(uaddr > end)) 578 return -EFAULT; 579 580 do { 581 if (unlikely(__get_user(c, uaddr) != 0)) 582 return -EFAULT; 583 uaddr += PAGE_SIZE; 584 } while (uaddr <= end); 585 586 /* Check whether the range spilled into the next page. */ 587 if (((unsigned long)uaddr & PAGE_MASK) == 588 ((unsigned long)end & PAGE_MASK)) { 589 return __get_user(c, end); 590 } 591 592 (void)c; 593 return 0; 594} 595 596int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 597 pgoff_t index, gfp_t gfp_mask); 598int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 599 pgoff_t index, gfp_t gfp_mask); 600extern void delete_from_page_cache(struct page *page); 601extern void __delete_from_page_cache(struct page *page, void *shadow); 602int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); 603 604/* 605 * Like add_to_page_cache_locked, but used to add newly allocated pages: 606 * the page is new, so we can just run __SetPageLocked() against it. 607 */ 608static inline int add_to_page_cache(struct page *page, 609 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 610{ 611 int error; 612 613 __SetPageLocked(page); 614 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 615 if (unlikely(error)) 616 __ClearPageLocked(page); 617 return error; 618} 619 620static inline unsigned long dir_pages(struct inode *inode) 621{ 622 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 623 PAGE_SHIFT; 624} 625 626#endif /* _LINUX_PAGEMAP_H */