at v4.9 140 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25#ifndef _LINUX_NETDEVICE_H 26#define _LINUX_NETDEVICE_H 27 28#include <linux/timer.h> 29#include <linux/bug.h> 30#include <linux/delay.h> 31#include <linux/atomic.h> 32#include <linux/prefetch.h> 33#include <asm/cache.h> 34#include <asm/byteorder.h> 35 36#include <linux/percpu.h> 37#include <linux/rculist.h> 38#include <linux/dmaengine.h> 39#include <linux/workqueue.h> 40#include <linux/dynamic_queue_limits.h> 41 42#include <linux/ethtool.h> 43#include <net/net_namespace.h> 44#include <net/dsa.h> 45#ifdef CONFIG_DCB 46#include <net/dcbnl.h> 47#endif 48#include <net/netprio_cgroup.h> 49 50#include <linux/netdev_features.h> 51#include <linux/neighbour.h> 52#include <uapi/linux/netdevice.h> 53#include <uapi/linux/if_bonding.h> 54#include <uapi/linux/pkt_cls.h> 55#include <linux/hashtable.h> 56 57struct netpoll_info; 58struct device; 59struct phy_device; 60/* 802.11 specific */ 61struct wireless_dev; 62/* 802.15.4 specific */ 63struct wpan_dev; 64struct mpls_dev; 65/* UDP Tunnel offloads */ 66struct udp_tunnel_info; 67struct bpf_prog; 68 69void netdev_set_default_ethtool_ops(struct net_device *dev, 70 const struct ethtool_ops *ops); 71 72/* Backlog congestion levels */ 73#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 74#define NET_RX_DROP 1 /* packet dropped */ 75 76/* 77 * Transmit return codes: transmit return codes originate from three different 78 * namespaces: 79 * 80 * - qdisc return codes 81 * - driver transmit return codes 82 * - errno values 83 * 84 * Drivers are allowed to return any one of those in their hard_start_xmit() 85 * function. Real network devices commonly used with qdiscs should only return 86 * the driver transmit return codes though - when qdiscs are used, the actual 87 * transmission happens asynchronously, so the value is not propagated to 88 * higher layers. Virtual network devices transmit synchronously; in this case 89 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 90 * others are propagated to higher layers. 91 */ 92 93/* qdisc ->enqueue() return codes. */ 94#define NET_XMIT_SUCCESS 0x00 95#define NET_XMIT_DROP 0x01 /* skb dropped */ 96#define NET_XMIT_CN 0x02 /* congestion notification */ 97#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 98 99/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 100 * indicates that the device will soon be dropping packets, or already drops 101 * some packets of the same priority; prompting us to send less aggressively. */ 102#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 103#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 104 105/* Driver transmit return codes */ 106#define NETDEV_TX_MASK 0xf0 107 108enum netdev_tx { 109 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 110 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 111 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 112}; 113typedef enum netdev_tx netdev_tx_t; 114 115/* 116 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 117 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 118 */ 119static inline bool dev_xmit_complete(int rc) 120{ 121 /* 122 * Positive cases with an skb consumed by a driver: 123 * - successful transmission (rc == NETDEV_TX_OK) 124 * - error while transmitting (rc < 0) 125 * - error while queueing to a different device (rc & NET_XMIT_MASK) 126 */ 127 if (likely(rc < NET_XMIT_MASK)) 128 return true; 129 130 return false; 131} 132 133/* 134 * Compute the worst-case header length according to the protocols 135 * used. 136 */ 137 138#if defined(CONFIG_HYPERV_NET) 139# define LL_MAX_HEADER 128 140#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 141# if defined(CONFIG_MAC80211_MESH) 142# define LL_MAX_HEADER 128 143# else 144# define LL_MAX_HEADER 96 145# endif 146#else 147# define LL_MAX_HEADER 32 148#endif 149 150#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 151 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 152#define MAX_HEADER LL_MAX_HEADER 153#else 154#define MAX_HEADER (LL_MAX_HEADER + 48) 155#endif 156 157/* 158 * Old network device statistics. Fields are native words 159 * (unsigned long) so they can be read and written atomically. 160 */ 161 162struct net_device_stats { 163 unsigned long rx_packets; 164 unsigned long tx_packets; 165 unsigned long rx_bytes; 166 unsigned long tx_bytes; 167 unsigned long rx_errors; 168 unsigned long tx_errors; 169 unsigned long rx_dropped; 170 unsigned long tx_dropped; 171 unsigned long multicast; 172 unsigned long collisions; 173 unsigned long rx_length_errors; 174 unsigned long rx_over_errors; 175 unsigned long rx_crc_errors; 176 unsigned long rx_frame_errors; 177 unsigned long rx_fifo_errors; 178 unsigned long rx_missed_errors; 179 unsigned long tx_aborted_errors; 180 unsigned long tx_carrier_errors; 181 unsigned long tx_fifo_errors; 182 unsigned long tx_heartbeat_errors; 183 unsigned long tx_window_errors; 184 unsigned long rx_compressed; 185 unsigned long tx_compressed; 186}; 187 188 189#include <linux/cache.h> 190#include <linux/skbuff.h> 191 192#ifdef CONFIG_RPS 193#include <linux/static_key.h> 194extern struct static_key rps_needed; 195#endif 196 197struct neighbour; 198struct neigh_parms; 199struct sk_buff; 200 201struct netdev_hw_addr { 202 struct list_head list; 203 unsigned char addr[MAX_ADDR_LEN]; 204 unsigned char type; 205#define NETDEV_HW_ADDR_T_LAN 1 206#define NETDEV_HW_ADDR_T_SAN 2 207#define NETDEV_HW_ADDR_T_SLAVE 3 208#define NETDEV_HW_ADDR_T_UNICAST 4 209#define NETDEV_HW_ADDR_T_MULTICAST 5 210 bool global_use; 211 int sync_cnt; 212 int refcount; 213 int synced; 214 struct rcu_head rcu_head; 215}; 216 217struct netdev_hw_addr_list { 218 struct list_head list; 219 int count; 220}; 221 222#define netdev_hw_addr_list_count(l) ((l)->count) 223#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 224#define netdev_hw_addr_list_for_each(ha, l) \ 225 list_for_each_entry(ha, &(l)->list, list) 226 227#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 228#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 229#define netdev_for_each_uc_addr(ha, dev) \ 230 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 231 232#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 233#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 234#define netdev_for_each_mc_addr(ha, dev) \ 235 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 236 237struct hh_cache { 238 u16 hh_len; 239 u16 __pad; 240 seqlock_t hh_lock; 241 242 /* cached hardware header; allow for machine alignment needs. */ 243#define HH_DATA_MOD 16 244#define HH_DATA_OFF(__len) \ 245 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 246#define HH_DATA_ALIGN(__len) \ 247 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 248 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 249}; 250 251/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 252 * Alternative is: 253 * dev->hard_header_len ? (dev->hard_header_len + 254 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 255 * 256 * We could use other alignment values, but we must maintain the 257 * relationship HH alignment <= LL alignment. 258 */ 259#define LL_RESERVED_SPACE(dev) \ 260 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 261#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 262 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 263 264struct header_ops { 265 int (*create) (struct sk_buff *skb, struct net_device *dev, 266 unsigned short type, const void *daddr, 267 const void *saddr, unsigned int len); 268 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 269 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 270 void (*cache_update)(struct hh_cache *hh, 271 const struct net_device *dev, 272 const unsigned char *haddr); 273 bool (*validate)(const char *ll_header, unsigned int len); 274}; 275 276/* These flag bits are private to the generic network queueing 277 * layer; they may not be explicitly referenced by any other 278 * code. 279 */ 280 281enum netdev_state_t { 282 __LINK_STATE_START, 283 __LINK_STATE_PRESENT, 284 __LINK_STATE_NOCARRIER, 285 __LINK_STATE_LINKWATCH_PENDING, 286 __LINK_STATE_DORMANT, 287}; 288 289 290/* 291 * This structure holds boot-time configured netdevice settings. They 292 * are then used in the device probing. 293 */ 294struct netdev_boot_setup { 295 char name[IFNAMSIZ]; 296 struct ifmap map; 297}; 298#define NETDEV_BOOT_SETUP_MAX 8 299 300int __init netdev_boot_setup(char *str); 301 302/* 303 * Structure for NAPI scheduling similar to tasklet but with weighting 304 */ 305struct napi_struct { 306 /* The poll_list must only be managed by the entity which 307 * changes the state of the NAPI_STATE_SCHED bit. This means 308 * whoever atomically sets that bit can add this napi_struct 309 * to the per-CPU poll_list, and whoever clears that bit 310 * can remove from the list right before clearing the bit. 311 */ 312 struct list_head poll_list; 313 314 unsigned long state; 315 int weight; 316 unsigned int gro_count; 317 int (*poll)(struct napi_struct *, int); 318#ifdef CONFIG_NETPOLL 319 spinlock_t poll_lock; 320 int poll_owner; 321#endif 322 struct net_device *dev; 323 struct sk_buff *gro_list; 324 struct sk_buff *skb; 325 struct hrtimer timer; 326 struct list_head dev_list; 327 struct hlist_node napi_hash_node; 328 unsigned int napi_id; 329}; 330 331enum { 332 NAPI_STATE_SCHED, /* Poll is scheduled */ 333 NAPI_STATE_DISABLE, /* Disable pending */ 334 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 335 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 336 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 337}; 338 339enum gro_result { 340 GRO_MERGED, 341 GRO_MERGED_FREE, 342 GRO_HELD, 343 GRO_NORMAL, 344 GRO_DROP, 345}; 346typedef enum gro_result gro_result_t; 347 348/* 349 * enum rx_handler_result - Possible return values for rx_handlers. 350 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 351 * further. 352 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 353 * case skb->dev was changed by rx_handler. 354 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 355 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 356 * 357 * rx_handlers are functions called from inside __netif_receive_skb(), to do 358 * special processing of the skb, prior to delivery to protocol handlers. 359 * 360 * Currently, a net_device can only have a single rx_handler registered. Trying 361 * to register a second rx_handler will return -EBUSY. 362 * 363 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 364 * To unregister a rx_handler on a net_device, use 365 * netdev_rx_handler_unregister(). 366 * 367 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 368 * do with the skb. 369 * 370 * If the rx_handler consumed the skb in some way, it should return 371 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 372 * the skb to be delivered in some other way. 373 * 374 * If the rx_handler changed skb->dev, to divert the skb to another 375 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 376 * new device will be called if it exists. 377 * 378 * If the rx_handler decides the skb should be ignored, it should return 379 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 380 * are registered on exact device (ptype->dev == skb->dev). 381 * 382 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 383 * delivered, it should return RX_HANDLER_PASS. 384 * 385 * A device without a registered rx_handler will behave as if rx_handler 386 * returned RX_HANDLER_PASS. 387 */ 388 389enum rx_handler_result { 390 RX_HANDLER_CONSUMED, 391 RX_HANDLER_ANOTHER, 392 RX_HANDLER_EXACT, 393 RX_HANDLER_PASS, 394}; 395typedef enum rx_handler_result rx_handler_result_t; 396typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 397 398void __napi_schedule(struct napi_struct *n); 399void __napi_schedule_irqoff(struct napi_struct *n); 400 401static inline bool napi_disable_pending(struct napi_struct *n) 402{ 403 return test_bit(NAPI_STATE_DISABLE, &n->state); 404} 405 406/** 407 * napi_schedule_prep - check if NAPI can be scheduled 408 * @n: NAPI context 409 * 410 * Test if NAPI routine is already running, and if not mark 411 * it as running. This is used as a condition variable to 412 * insure only one NAPI poll instance runs. We also make 413 * sure there is no pending NAPI disable. 414 */ 415static inline bool napi_schedule_prep(struct napi_struct *n) 416{ 417 return !napi_disable_pending(n) && 418 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 419} 420 421/** 422 * napi_schedule - schedule NAPI poll 423 * @n: NAPI context 424 * 425 * Schedule NAPI poll routine to be called if it is not already 426 * running. 427 */ 428static inline void napi_schedule(struct napi_struct *n) 429{ 430 if (napi_schedule_prep(n)) 431 __napi_schedule(n); 432} 433 434/** 435 * napi_schedule_irqoff - schedule NAPI poll 436 * @n: NAPI context 437 * 438 * Variant of napi_schedule(), assuming hard irqs are masked. 439 */ 440static inline void napi_schedule_irqoff(struct napi_struct *n) 441{ 442 if (napi_schedule_prep(n)) 443 __napi_schedule_irqoff(n); 444} 445 446/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 447static inline bool napi_reschedule(struct napi_struct *napi) 448{ 449 if (napi_schedule_prep(napi)) { 450 __napi_schedule(napi); 451 return true; 452 } 453 return false; 454} 455 456void __napi_complete(struct napi_struct *n); 457void napi_complete_done(struct napi_struct *n, int work_done); 458/** 459 * napi_complete - NAPI processing complete 460 * @n: NAPI context 461 * 462 * Mark NAPI processing as complete. 463 * Consider using napi_complete_done() instead. 464 */ 465static inline void napi_complete(struct napi_struct *n) 466{ 467 return napi_complete_done(n, 0); 468} 469 470/** 471 * napi_hash_add - add a NAPI to global hashtable 472 * @napi: NAPI context 473 * 474 * Generate a new napi_id and store a @napi under it in napi_hash. 475 * Used for busy polling (CONFIG_NET_RX_BUSY_POLL). 476 * Note: This is normally automatically done from netif_napi_add(), 477 * so might disappear in a future Linux version. 478 */ 479void napi_hash_add(struct napi_struct *napi); 480 481/** 482 * napi_hash_del - remove a NAPI from global table 483 * @napi: NAPI context 484 * 485 * Warning: caller must observe RCU grace period 486 * before freeing memory containing @napi, if 487 * this function returns true. 488 * Note: core networking stack automatically calls it 489 * from netif_napi_del(). 490 * Drivers might want to call this helper to combine all 491 * the needed RCU grace periods into a single one. 492 */ 493bool napi_hash_del(struct napi_struct *napi); 494 495/** 496 * napi_disable - prevent NAPI from scheduling 497 * @n: NAPI context 498 * 499 * Stop NAPI from being scheduled on this context. 500 * Waits till any outstanding processing completes. 501 */ 502void napi_disable(struct napi_struct *n); 503 504/** 505 * napi_enable - enable NAPI scheduling 506 * @n: NAPI context 507 * 508 * Resume NAPI from being scheduled on this context. 509 * Must be paired with napi_disable. 510 */ 511static inline void napi_enable(struct napi_struct *n) 512{ 513 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 514 smp_mb__before_atomic(); 515 clear_bit(NAPI_STATE_SCHED, &n->state); 516 clear_bit(NAPI_STATE_NPSVC, &n->state); 517} 518 519/** 520 * napi_synchronize - wait until NAPI is not running 521 * @n: NAPI context 522 * 523 * Wait until NAPI is done being scheduled on this context. 524 * Waits till any outstanding processing completes but 525 * does not disable future activations. 526 */ 527static inline void napi_synchronize(const struct napi_struct *n) 528{ 529 if (IS_ENABLED(CONFIG_SMP)) 530 while (test_bit(NAPI_STATE_SCHED, &n->state)) 531 msleep(1); 532 else 533 barrier(); 534} 535 536enum netdev_queue_state_t { 537 __QUEUE_STATE_DRV_XOFF, 538 __QUEUE_STATE_STACK_XOFF, 539 __QUEUE_STATE_FROZEN, 540}; 541 542#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 543#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 544#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 545 546#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 547#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 548 QUEUE_STATE_FROZEN) 549#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 550 QUEUE_STATE_FROZEN) 551 552/* 553 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 554 * netif_tx_* functions below are used to manipulate this flag. The 555 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 556 * queue independently. The netif_xmit_*stopped functions below are called 557 * to check if the queue has been stopped by the driver or stack (either 558 * of the XOFF bits are set in the state). Drivers should not need to call 559 * netif_xmit*stopped functions, they should only be using netif_tx_*. 560 */ 561 562struct netdev_queue { 563/* 564 * read-mostly part 565 */ 566 struct net_device *dev; 567 struct Qdisc __rcu *qdisc; 568 struct Qdisc *qdisc_sleeping; 569#ifdef CONFIG_SYSFS 570 struct kobject kobj; 571#endif 572#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 573 int numa_node; 574#endif 575 unsigned long tx_maxrate; 576 /* 577 * Number of TX timeouts for this queue 578 * (/sys/class/net/DEV/Q/trans_timeout) 579 */ 580 unsigned long trans_timeout; 581/* 582 * write-mostly part 583 */ 584 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 585 int xmit_lock_owner; 586 /* 587 * Time (in jiffies) of last Tx 588 */ 589 unsigned long trans_start; 590 591 unsigned long state; 592 593#ifdef CONFIG_BQL 594 struct dql dql; 595#endif 596} ____cacheline_aligned_in_smp; 597 598static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 599{ 600#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 601 return q->numa_node; 602#else 603 return NUMA_NO_NODE; 604#endif 605} 606 607static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 608{ 609#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 610 q->numa_node = node; 611#endif 612} 613 614#ifdef CONFIG_RPS 615/* 616 * This structure holds an RPS map which can be of variable length. The 617 * map is an array of CPUs. 618 */ 619struct rps_map { 620 unsigned int len; 621 struct rcu_head rcu; 622 u16 cpus[0]; 623}; 624#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 625 626/* 627 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 628 * tail pointer for that CPU's input queue at the time of last enqueue, and 629 * a hardware filter index. 630 */ 631struct rps_dev_flow { 632 u16 cpu; 633 u16 filter; 634 unsigned int last_qtail; 635}; 636#define RPS_NO_FILTER 0xffff 637 638/* 639 * The rps_dev_flow_table structure contains a table of flow mappings. 640 */ 641struct rps_dev_flow_table { 642 unsigned int mask; 643 struct rcu_head rcu; 644 struct rps_dev_flow flows[0]; 645}; 646#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 647 ((_num) * sizeof(struct rps_dev_flow))) 648 649/* 650 * The rps_sock_flow_table contains mappings of flows to the last CPU 651 * on which they were processed by the application (set in recvmsg). 652 * Each entry is a 32bit value. Upper part is the high-order bits 653 * of flow hash, lower part is CPU number. 654 * rps_cpu_mask is used to partition the space, depending on number of 655 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 656 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 657 * meaning we use 32-6=26 bits for the hash. 658 */ 659struct rps_sock_flow_table { 660 u32 mask; 661 662 u32 ents[0] ____cacheline_aligned_in_smp; 663}; 664#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 665 666#define RPS_NO_CPU 0xffff 667 668extern u32 rps_cpu_mask; 669extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 670 671static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 672 u32 hash) 673{ 674 if (table && hash) { 675 unsigned int index = hash & table->mask; 676 u32 val = hash & ~rps_cpu_mask; 677 678 /* We only give a hint, preemption can change CPU under us */ 679 val |= raw_smp_processor_id(); 680 681 if (table->ents[index] != val) 682 table->ents[index] = val; 683 } 684} 685 686#ifdef CONFIG_RFS_ACCEL 687bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 688 u16 filter_id); 689#endif 690#endif /* CONFIG_RPS */ 691 692/* This structure contains an instance of an RX queue. */ 693struct netdev_rx_queue { 694#ifdef CONFIG_RPS 695 struct rps_map __rcu *rps_map; 696 struct rps_dev_flow_table __rcu *rps_flow_table; 697#endif 698 struct kobject kobj; 699 struct net_device *dev; 700} ____cacheline_aligned_in_smp; 701 702/* 703 * RX queue sysfs structures and functions. 704 */ 705struct rx_queue_attribute { 706 struct attribute attr; 707 ssize_t (*show)(struct netdev_rx_queue *queue, 708 struct rx_queue_attribute *attr, char *buf); 709 ssize_t (*store)(struct netdev_rx_queue *queue, 710 struct rx_queue_attribute *attr, const char *buf, size_t len); 711}; 712 713#ifdef CONFIG_XPS 714/* 715 * This structure holds an XPS map which can be of variable length. The 716 * map is an array of queues. 717 */ 718struct xps_map { 719 unsigned int len; 720 unsigned int alloc_len; 721 struct rcu_head rcu; 722 u16 queues[0]; 723}; 724#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 725#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 726 - sizeof(struct xps_map)) / sizeof(u16)) 727 728/* 729 * This structure holds all XPS maps for device. Maps are indexed by CPU. 730 */ 731struct xps_dev_maps { 732 struct rcu_head rcu; 733 struct xps_map __rcu *cpu_map[0]; 734}; 735#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 736 (nr_cpu_ids * sizeof(struct xps_map *))) 737#endif /* CONFIG_XPS */ 738 739#define TC_MAX_QUEUE 16 740#define TC_BITMASK 15 741/* HW offloaded queuing disciplines txq count and offset maps */ 742struct netdev_tc_txq { 743 u16 count; 744 u16 offset; 745}; 746 747#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 748/* 749 * This structure is to hold information about the device 750 * configured to run FCoE protocol stack. 751 */ 752struct netdev_fcoe_hbainfo { 753 char manufacturer[64]; 754 char serial_number[64]; 755 char hardware_version[64]; 756 char driver_version[64]; 757 char optionrom_version[64]; 758 char firmware_version[64]; 759 char model[256]; 760 char model_description[256]; 761}; 762#endif 763 764#define MAX_PHYS_ITEM_ID_LEN 32 765 766/* This structure holds a unique identifier to identify some 767 * physical item (port for example) used by a netdevice. 768 */ 769struct netdev_phys_item_id { 770 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 771 unsigned char id_len; 772}; 773 774static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 775 struct netdev_phys_item_id *b) 776{ 777 return a->id_len == b->id_len && 778 memcmp(a->id, b->id, a->id_len) == 0; 779} 780 781typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 782 struct sk_buff *skb); 783 784/* These structures hold the attributes of qdisc and classifiers 785 * that are being passed to the netdevice through the setup_tc op. 786 */ 787enum { 788 TC_SETUP_MQPRIO, 789 TC_SETUP_CLSU32, 790 TC_SETUP_CLSFLOWER, 791 TC_SETUP_MATCHALL, 792 TC_SETUP_CLSBPF, 793}; 794 795struct tc_cls_u32_offload; 796 797struct tc_to_netdev { 798 unsigned int type; 799 union { 800 u8 tc; 801 struct tc_cls_u32_offload *cls_u32; 802 struct tc_cls_flower_offload *cls_flower; 803 struct tc_cls_matchall_offload *cls_mall; 804 struct tc_cls_bpf_offload *cls_bpf; 805 }; 806}; 807 808/* These structures hold the attributes of xdp state that are being passed 809 * to the netdevice through the xdp op. 810 */ 811enum xdp_netdev_command { 812 /* Set or clear a bpf program used in the earliest stages of packet 813 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 814 * is responsible for calling bpf_prog_put on any old progs that are 815 * stored. In case of error, the callee need not release the new prog 816 * reference, but on success it takes ownership and must bpf_prog_put 817 * when it is no longer used. 818 */ 819 XDP_SETUP_PROG, 820 /* Check if a bpf program is set on the device. The callee should 821 * return true if a program is currently attached and running. 822 */ 823 XDP_QUERY_PROG, 824}; 825 826struct netdev_xdp { 827 enum xdp_netdev_command command; 828 union { 829 /* XDP_SETUP_PROG */ 830 struct bpf_prog *prog; 831 /* XDP_QUERY_PROG */ 832 bool prog_attached; 833 }; 834}; 835 836/* 837 * This structure defines the management hooks for network devices. 838 * The following hooks can be defined; unless noted otherwise, they are 839 * optional and can be filled with a null pointer. 840 * 841 * int (*ndo_init)(struct net_device *dev); 842 * This function is called once when a network device is registered. 843 * The network device can use this for any late stage initialization 844 * or semantic validation. It can fail with an error code which will 845 * be propagated back to register_netdev. 846 * 847 * void (*ndo_uninit)(struct net_device *dev); 848 * This function is called when device is unregistered or when registration 849 * fails. It is not called if init fails. 850 * 851 * int (*ndo_open)(struct net_device *dev); 852 * This function is called when a network device transitions to the up 853 * state. 854 * 855 * int (*ndo_stop)(struct net_device *dev); 856 * This function is called when a network device transitions to the down 857 * state. 858 * 859 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 860 * struct net_device *dev); 861 * Called when a packet needs to be transmitted. 862 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 863 * the queue before that can happen; it's for obsolete devices and weird 864 * corner cases, but the stack really does a non-trivial amount 865 * of useless work if you return NETDEV_TX_BUSY. 866 * Required; cannot be NULL. 867 * 868 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 869 * netdev_features_t features); 870 * Adjusts the requested feature flags according to device-specific 871 * constraints, and returns the resulting flags. Must not modify 872 * the device state. 873 * 874 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 875 * void *accel_priv, select_queue_fallback_t fallback); 876 * Called to decide which queue to use when device supports multiple 877 * transmit queues. 878 * 879 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 880 * This function is called to allow device receiver to make 881 * changes to configuration when multicast or promiscuous is enabled. 882 * 883 * void (*ndo_set_rx_mode)(struct net_device *dev); 884 * This function is called device changes address list filtering. 885 * If driver handles unicast address filtering, it should set 886 * IFF_UNICAST_FLT in its priv_flags. 887 * 888 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 889 * This function is called when the Media Access Control address 890 * needs to be changed. If this interface is not defined, the 891 * MAC address can not be changed. 892 * 893 * int (*ndo_validate_addr)(struct net_device *dev); 894 * Test if Media Access Control address is valid for the device. 895 * 896 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 897 * Called when a user requests an ioctl which can't be handled by 898 * the generic interface code. If not defined ioctls return 899 * not supported error code. 900 * 901 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 902 * Used to set network devices bus interface parameters. This interface 903 * is retained for legacy reasons; new devices should use the bus 904 * interface (PCI) for low level management. 905 * 906 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 907 * Called when a user wants to change the Maximum Transfer Unit 908 * of a device. If not defined, any request to change MTU will 909 * will return an error. 910 * 911 * void (*ndo_tx_timeout)(struct net_device *dev); 912 * Callback used when the transmitter has not made any progress 913 * for dev->watchdog ticks. 914 * 915 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 916 * struct rtnl_link_stats64 *storage); 917 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 918 * Called when a user wants to get the network device usage 919 * statistics. Drivers must do one of the following: 920 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 921 * rtnl_link_stats64 structure passed by the caller. 922 * 2. Define @ndo_get_stats to update a net_device_stats structure 923 * (which should normally be dev->stats) and return a pointer to 924 * it. The structure may be changed asynchronously only if each 925 * field is written atomically. 926 * 3. Update dev->stats asynchronously and atomically, and define 927 * neither operation. 928 * 929 * bool (*ndo_has_offload_stats)(int attr_id) 930 * Return true if this device supports offload stats of this attr_id. 931 * 932 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 933 * void *attr_data) 934 * Get statistics for offload operations by attr_id. Write it into the 935 * attr_data pointer. 936 * 937 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 938 * If device supports VLAN filtering this function is called when a 939 * VLAN id is registered. 940 * 941 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 942 * If device supports VLAN filtering this function is called when a 943 * VLAN id is unregistered. 944 * 945 * void (*ndo_poll_controller)(struct net_device *dev); 946 * 947 * SR-IOV management functions. 948 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 949 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 950 * u8 qos, __be16 proto); 951 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 952 * int max_tx_rate); 953 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 954 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 955 * int (*ndo_get_vf_config)(struct net_device *dev, 956 * int vf, struct ifla_vf_info *ivf); 957 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 958 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 959 * struct nlattr *port[]); 960 * 961 * Enable or disable the VF ability to query its RSS Redirection Table and 962 * Hash Key. This is needed since on some devices VF share this information 963 * with PF and querying it may introduce a theoretical security risk. 964 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 965 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 966 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 967 * Called to setup 'tc' number of traffic classes in the net device. This 968 * is always called from the stack with the rtnl lock held and netif tx 969 * queues stopped. This allows the netdevice to perform queue management 970 * safely. 971 * 972 * Fiber Channel over Ethernet (FCoE) offload functions. 973 * int (*ndo_fcoe_enable)(struct net_device *dev); 974 * Called when the FCoE protocol stack wants to start using LLD for FCoE 975 * so the underlying device can perform whatever needed configuration or 976 * initialization to support acceleration of FCoE traffic. 977 * 978 * int (*ndo_fcoe_disable)(struct net_device *dev); 979 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 980 * so the underlying device can perform whatever needed clean-ups to 981 * stop supporting acceleration of FCoE traffic. 982 * 983 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 984 * struct scatterlist *sgl, unsigned int sgc); 985 * Called when the FCoE Initiator wants to initialize an I/O that 986 * is a possible candidate for Direct Data Placement (DDP). The LLD can 987 * perform necessary setup and returns 1 to indicate the device is set up 988 * successfully to perform DDP on this I/O, otherwise this returns 0. 989 * 990 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 991 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 992 * indicated by the FC exchange id 'xid', so the underlying device can 993 * clean up and reuse resources for later DDP requests. 994 * 995 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 996 * struct scatterlist *sgl, unsigned int sgc); 997 * Called when the FCoE Target wants to initialize an I/O that 998 * is a possible candidate for Direct Data Placement (DDP). The LLD can 999 * perform necessary setup and returns 1 to indicate the device is set up 1000 * successfully to perform DDP on this I/O, otherwise this returns 0. 1001 * 1002 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1003 * struct netdev_fcoe_hbainfo *hbainfo); 1004 * Called when the FCoE Protocol stack wants information on the underlying 1005 * device. This information is utilized by the FCoE protocol stack to 1006 * register attributes with Fiber Channel management service as per the 1007 * FC-GS Fabric Device Management Information(FDMI) specification. 1008 * 1009 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1010 * Called when the underlying device wants to override default World Wide 1011 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1012 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1013 * protocol stack to use. 1014 * 1015 * RFS acceleration. 1016 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1017 * u16 rxq_index, u32 flow_id); 1018 * Set hardware filter for RFS. rxq_index is the target queue index; 1019 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1020 * Return the filter ID on success, or a negative error code. 1021 * 1022 * Slave management functions (for bridge, bonding, etc). 1023 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1024 * Called to make another netdev an underling. 1025 * 1026 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1027 * Called to release previously enslaved netdev. 1028 * 1029 * Feature/offload setting functions. 1030 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1031 * Called to update device configuration to new features. Passed 1032 * feature set might be less than what was returned by ndo_fix_features()). 1033 * Must return >0 or -errno if it changed dev->features itself. 1034 * 1035 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1036 * struct net_device *dev, 1037 * const unsigned char *addr, u16 vid, u16 flags) 1038 * Adds an FDB entry to dev for addr. 1039 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1040 * struct net_device *dev, 1041 * const unsigned char *addr, u16 vid) 1042 * Deletes the FDB entry from dev coresponding to addr. 1043 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1044 * struct net_device *dev, struct net_device *filter_dev, 1045 * int *idx) 1046 * Used to add FDB entries to dump requests. Implementers should add 1047 * entries to skb and update idx with the number of entries. 1048 * 1049 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1050 * u16 flags) 1051 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1052 * struct net_device *dev, u32 filter_mask, 1053 * int nlflags) 1054 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1055 * u16 flags); 1056 * 1057 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1058 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1059 * which do not represent real hardware may define this to allow their 1060 * userspace components to manage their virtual carrier state. Devices 1061 * that determine carrier state from physical hardware properties (eg 1062 * network cables) or protocol-dependent mechanisms (eg 1063 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1064 * 1065 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1066 * struct netdev_phys_item_id *ppid); 1067 * Called to get ID of physical port of this device. If driver does 1068 * not implement this, it is assumed that the hw is not able to have 1069 * multiple net devices on single physical port. 1070 * 1071 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1072 * struct udp_tunnel_info *ti); 1073 * Called by UDP tunnel to notify a driver about the UDP port and socket 1074 * address family that a UDP tunnel is listnening to. It is called only 1075 * when a new port starts listening. The operation is protected by the 1076 * RTNL. 1077 * 1078 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1079 * struct udp_tunnel_info *ti); 1080 * Called by UDP tunnel to notify the driver about a UDP port and socket 1081 * address family that the UDP tunnel is not listening to anymore. The 1082 * operation is protected by the RTNL. 1083 * 1084 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1085 * struct net_device *dev) 1086 * Called by upper layer devices to accelerate switching or other 1087 * station functionality into hardware. 'pdev is the lowerdev 1088 * to use for the offload and 'dev' is the net device that will 1089 * back the offload. Returns a pointer to the private structure 1090 * the upper layer will maintain. 1091 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1092 * Called by upper layer device to delete the station created 1093 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1094 * the station and priv is the structure returned by the add 1095 * operation. 1096 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 1097 * struct net_device *dev, 1098 * void *priv); 1099 * Callback to use for xmit over the accelerated station. This 1100 * is used in place of ndo_start_xmit on accelerated net 1101 * devices. 1102 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1103 * struct net_device *dev 1104 * netdev_features_t features); 1105 * Called by core transmit path to determine if device is capable of 1106 * performing offload operations on a given packet. This is to give 1107 * the device an opportunity to implement any restrictions that cannot 1108 * be otherwise expressed by feature flags. The check is called with 1109 * the set of features that the stack has calculated and it returns 1110 * those the driver believes to be appropriate. 1111 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1112 * int queue_index, u32 maxrate); 1113 * Called when a user wants to set a max-rate limitation of specific 1114 * TX queue. 1115 * int (*ndo_get_iflink)(const struct net_device *dev); 1116 * Called to get the iflink value of this device. 1117 * void (*ndo_change_proto_down)(struct net_device *dev, 1118 * bool proto_down); 1119 * This function is used to pass protocol port error state information 1120 * to the switch driver. The switch driver can react to the proto_down 1121 * by doing a phys down on the associated switch port. 1122 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1123 * This function is used to get egress tunnel information for given skb. 1124 * This is useful for retrieving outer tunnel header parameters while 1125 * sampling packet. 1126 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1127 * This function is used to specify the headroom that the skb must 1128 * consider when allocation skb during packet reception. Setting 1129 * appropriate rx headroom value allows avoiding skb head copy on 1130 * forward. Setting a negative value resets the rx headroom to the 1131 * default value. 1132 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp); 1133 * This function is used to set or query state related to XDP on the 1134 * netdevice. See definition of enum xdp_netdev_command for details. 1135 * 1136 */ 1137struct net_device_ops { 1138 int (*ndo_init)(struct net_device *dev); 1139 void (*ndo_uninit)(struct net_device *dev); 1140 int (*ndo_open)(struct net_device *dev); 1141 int (*ndo_stop)(struct net_device *dev); 1142 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1143 struct net_device *dev); 1144 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1145 struct net_device *dev, 1146 netdev_features_t features); 1147 u16 (*ndo_select_queue)(struct net_device *dev, 1148 struct sk_buff *skb, 1149 void *accel_priv, 1150 select_queue_fallback_t fallback); 1151 void (*ndo_change_rx_flags)(struct net_device *dev, 1152 int flags); 1153 void (*ndo_set_rx_mode)(struct net_device *dev); 1154 int (*ndo_set_mac_address)(struct net_device *dev, 1155 void *addr); 1156 int (*ndo_validate_addr)(struct net_device *dev); 1157 int (*ndo_do_ioctl)(struct net_device *dev, 1158 struct ifreq *ifr, int cmd); 1159 int (*ndo_set_config)(struct net_device *dev, 1160 struct ifmap *map); 1161 int (*ndo_change_mtu)(struct net_device *dev, 1162 int new_mtu); 1163 int (*ndo_neigh_setup)(struct net_device *dev, 1164 struct neigh_parms *); 1165 void (*ndo_tx_timeout) (struct net_device *dev); 1166 1167 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 1168 struct rtnl_link_stats64 *storage); 1169 bool (*ndo_has_offload_stats)(int attr_id); 1170 int (*ndo_get_offload_stats)(int attr_id, 1171 const struct net_device *dev, 1172 void *attr_data); 1173 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1174 1175 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1176 __be16 proto, u16 vid); 1177 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1178 __be16 proto, u16 vid); 1179#ifdef CONFIG_NET_POLL_CONTROLLER 1180 void (*ndo_poll_controller)(struct net_device *dev); 1181 int (*ndo_netpoll_setup)(struct net_device *dev, 1182 struct netpoll_info *info); 1183 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1184#endif 1185#ifdef CONFIG_NET_RX_BUSY_POLL 1186 int (*ndo_busy_poll)(struct napi_struct *dev); 1187#endif 1188 int (*ndo_set_vf_mac)(struct net_device *dev, 1189 int queue, u8 *mac); 1190 int (*ndo_set_vf_vlan)(struct net_device *dev, 1191 int queue, u16 vlan, 1192 u8 qos, __be16 proto); 1193 int (*ndo_set_vf_rate)(struct net_device *dev, 1194 int vf, int min_tx_rate, 1195 int max_tx_rate); 1196 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1197 int vf, bool setting); 1198 int (*ndo_set_vf_trust)(struct net_device *dev, 1199 int vf, bool setting); 1200 int (*ndo_get_vf_config)(struct net_device *dev, 1201 int vf, 1202 struct ifla_vf_info *ivf); 1203 int (*ndo_set_vf_link_state)(struct net_device *dev, 1204 int vf, int link_state); 1205 int (*ndo_get_vf_stats)(struct net_device *dev, 1206 int vf, 1207 struct ifla_vf_stats 1208 *vf_stats); 1209 int (*ndo_set_vf_port)(struct net_device *dev, 1210 int vf, 1211 struct nlattr *port[]); 1212 int (*ndo_get_vf_port)(struct net_device *dev, 1213 int vf, struct sk_buff *skb); 1214 int (*ndo_set_vf_guid)(struct net_device *dev, 1215 int vf, u64 guid, 1216 int guid_type); 1217 int (*ndo_set_vf_rss_query_en)( 1218 struct net_device *dev, 1219 int vf, bool setting); 1220 int (*ndo_setup_tc)(struct net_device *dev, 1221 u32 handle, 1222 __be16 protocol, 1223 struct tc_to_netdev *tc); 1224#if IS_ENABLED(CONFIG_FCOE) 1225 int (*ndo_fcoe_enable)(struct net_device *dev); 1226 int (*ndo_fcoe_disable)(struct net_device *dev); 1227 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1228 u16 xid, 1229 struct scatterlist *sgl, 1230 unsigned int sgc); 1231 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1232 u16 xid); 1233 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1234 u16 xid, 1235 struct scatterlist *sgl, 1236 unsigned int sgc); 1237 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1238 struct netdev_fcoe_hbainfo *hbainfo); 1239#endif 1240 1241#if IS_ENABLED(CONFIG_LIBFCOE) 1242#define NETDEV_FCOE_WWNN 0 1243#define NETDEV_FCOE_WWPN 1 1244 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1245 u64 *wwn, int type); 1246#endif 1247 1248#ifdef CONFIG_RFS_ACCEL 1249 int (*ndo_rx_flow_steer)(struct net_device *dev, 1250 const struct sk_buff *skb, 1251 u16 rxq_index, 1252 u32 flow_id); 1253#endif 1254 int (*ndo_add_slave)(struct net_device *dev, 1255 struct net_device *slave_dev); 1256 int (*ndo_del_slave)(struct net_device *dev, 1257 struct net_device *slave_dev); 1258 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1259 netdev_features_t features); 1260 int (*ndo_set_features)(struct net_device *dev, 1261 netdev_features_t features); 1262 int (*ndo_neigh_construct)(struct net_device *dev, 1263 struct neighbour *n); 1264 void (*ndo_neigh_destroy)(struct net_device *dev, 1265 struct neighbour *n); 1266 1267 int (*ndo_fdb_add)(struct ndmsg *ndm, 1268 struct nlattr *tb[], 1269 struct net_device *dev, 1270 const unsigned char *addr, 1271 u16 vid, 1272 u16 flags); 1273 int (*ndo_fdb_del)(struct ndmsg *ndm, 1274 struct nlattr *tb[], 1275 struct net_device *dev, 1276 const unsigned char *addr, 1277 u16 vid); 1278 int (*ndo_fdb_dump)(struct sk_buff *skb, 1279 struct netlink_callback *cb, 1280 struct net_device *dev, 1281 struct net_device *filter_dev, 1282 int *idx); 1283 1284 int (*ndo_bridge_setlink)(struct net_device *dev, 1285 struct nlmsghdr *nlh, 1286 u16 flags); 1287 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1288 u32 pid, u32 seq, 1289 struct net_device *dev, 1290 u32 filter_mask, 1291 int nlflags); 1292 int (*ndo_bridge_dellink)(struct net_device *dev, 1293 struct nlmsghdr *nlh, 1294 u16 flags); 1295 int (*ndo_change_carrier)(struct net_device *dev, 1296 bool new_carrier); 1297 int (*ndo_get_phys_port_id)(struct net_device *dev, 1298 struct netdev_phys_item_id *ppid); 1299 int (*ndo_get_phys_port_name)(struct net_device *dev, 1300 char *name, size_t len); 1301 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1302 struct udp_tunnel_info *ti); 1303 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1304 struct udp_tunnel_info *ti); 1305 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1306 struct net_device *dev); 1307 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1308 void *priv); 1309 1310 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1311 struct net_device *dev, 1312 void *priv); 1313 int (*ndo_get_lock_subclass)(struct net_device *dev); 1314 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1315 int queue_index, 1316 u32 maxrate); 1317 int (*ndo_get_iflink)(const struct net_device *dev); 1318 int (*ndo_change_proto_down)(struct net_device *dev, 1319 bool proto_down); 1320 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1321 struct sk_buff *skb); 1322 void (*ndo_set_rx_headroom)(struct net_device *dev, 1323 int needed_headroom); 1324 int (*ndo_xdp)(struct net_device *dev, 1325 struct netdev_xdp *xdp); 1326}; 1327 1328/** 1329 * enum net_device_priv_flags - &struct net_device priv_flags 1330 * 1331 * These are the &struct net_device, they are only set internally 1332 * by drivers and used in the kernel. These flags are invisible to 1333 * userspace; this means that the order of these flags can change 1334 * during any kernel release. 1335 * 1336 * You should have a pretty good reason to be extending these flags. 1337 * 1338 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1339 * @IFF_EBRIDGE: Ethernet bridging device 1340 * @IFF_BONDING: bonding master or slave 1341 * @IFF_ISATAP: ISATAP interface (RFC4214) 1342 * @IFF_WAN_HDLC: WAN HDLC device 1343 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1344 * release skb->dst 1345 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1346 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1347 * @IFF_MACVLAN_PORT: device used as macvlan port 1348 * @IFF_BRIDGE_PORT: device used as bridge port 1349 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1350 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1351 * @IFF_UNICAST_FLT: Supports unicast filtering 1352 * @IFF_TEAM_PORT: device used as team port 1353 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1354 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1355 * change when it's running 1356 * @IFF_MACVLAN: Macvlan device 1357 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1358 * underlying stacked devices 1359 * @IFF_IPVLAN_MASTER: IPvlan master device 1360 * @IFF_IPVLAN_SLAVE: IPvlan slave device 1361 * @IFF_L3MDEV_MASTER: device is an L3 master device 1362 * @IFF_NO_QUEUE: device can run without qdisc attached 1363 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1364 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1365 * @IFF_TEAM: device is a team device 1366 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1367 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1368 * entity (i.e. the master device for bridged veth) 1369 * @IFF_MACSEC: device is a MACsec device 1370 */ 1371enum netdev_priv_flags { 1372 IFF_802_1Q_VLAN = 1<<0, 1373 IFF_EBRIDGE = 1<<1, 1374 IFF_BONDING = 1<<2, 1375 IFF_ISATAP = 1<<3, 1376 IFF_WAN_HDLC = 1<<4, 1377 IFF_XMIT_DST_RELEASE = 1<<5, 1378 IFF_DONT_BRIDGE = 1<<6, 1379 IFF_DISABLE_NETPOLL = 1<<7, 1380 IFF_MACVLAN_PORT = 1<<8, 1381 IFF_BRIDGE_PORT = 1<<9, 1382 IFF_OVS_DATAPATH = 1<<10, 1383 IFF_TX_SKB_SHARING = 1<<11, 1384 IFF_UNICAST_FLT = 1<<12, 1385 IFF_TEAM_PORT = 1<<13, 1386 IFF_SUPP_NOFCS = 1<<14, 1387 IFF_LIVE_ADDR_CHANGE = 1<<15, 1388 IFF_MACVLAN = 1<<16, 1389 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1390 IFF_IPVLAN_MASTER = 1<<18, 1391 IFF_IPVLAN_SLAVE = 1<<19, 1392 IFF_L3MDEV_MASTER = 1<<20, 1393 IFF_NO_QUEUE = 1<<21, 1394 IFF_OPENVSWITCH = 1<<22, 1395 IFF_L3MDEV_SLAVE = 1<<23, 1396 IFF_TEAM = 1<<24, 1397 IFF_RXFH_CONFIGURED = 1<<25, 1398 IFF_PHONY_HEADROOM = 1<<26, 1399 IFF_MACSEC = 1<<27, 1400}; 1401 1402#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1403#define IFF_EBRIDGE IFF_EBRIDGE 1404#define IFF_BONDING IFF_BONDING 1405#define IFF_ISATAP IFF_ISATAP 1406#define IFF_WAN_HDLC IFF_WAN_HDLC 1407#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1408#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1409#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1410#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1411#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1412#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1413#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1414#define IFF_UNICAST_FLT IFF_UNICAST_FLT 1415#define IFF_TEAM_PORT IFF_TEAM_PORT 1416#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1417#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1418#define IFF_MACVLAN IFF_MACVLAN 1419#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1420#define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1421#define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1422#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1423#define IFF_NO_QUEUE IFF_NO_QUEUE 1424#define IFF_OPENVSWITCH IFF_OPENVSWITCH 1425#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1426#define IFF_TEAM IFF_TEAM 1427#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1428#define IFF_MACSEC IFF_MACSEC 1429 1430/** 1431 * struct net_device - The DEVICE structure. 1432 * Actually, this whole structure is a big mistake. It mixes I/O 1433 * data with strictly "high-level" data, and it has to know about 1434 * almost every data structure used in the INET module. 1435 * 1436 * @name: This is the first field of the "visible" part of this structure 1437 * (i.e. as seen by users in the "Space.c" file). It is the name 1438 * of the interface. 1439 * 1440 * @name_hlist: Device name hash chain, please keep it close to name[] 1441 * @ifalias: SNMP alias 1442 * @mem_end: Shared memory end 1443 * @mem_start: Shared memory start 1444 * @base_addr: Device I/O address 1445 * @irq: Device IRQ number 1446 * 1447 * @carrier_changes: Stats to monitor carrier on<->off transitions 1448 * 1449 * @state: Generic network queuing layer state, see netdev_state_t 1450 * @dev_list: The global list of network devices 1451 * @napi_list: List entry used for polling NAPI devices 1452 * @unreg_list: List entry when we are unregistering the 1453 * device; see the function unregister_netdev 1454 * @close_list: List entry used when we are closing the device 1455 * @ptype_all: Device-specific packet handlers for all protocols 1456 * @ptype_specific: Device-specific, protocol-specific packet handlers 1457 * 1458 * @adj_list: Directly linked devices, like slaves for bonding 1459 * @all_adj_list: All linked devices, *including* neighbours 1460 * @features: Currently active device features 1461 * @hw_features: User-changeable features 1462 * 1463 * @wanted_features: User-requested features 1464 * @vlan_features: Mask of features inheritable by VLAN devices 1465 * 1466 * @hw_enc_features: Mask of features inherited by encapsulating devices 1467 * This field indicates what encapsulation 1468 * offloads the hardware is capable of doing, 1469 * and drivers will need to set them appropriately. 1470 * 1471 * @mpls_features: Mask of features inheritable by MPLS 1472 * 1473 * @ifindex: interface index 1474 * @group: The group the device belongs to 1475 * 1476 * @stats: Statistics struct, which was left as a legacy, use 1477 * rtnl_link_stats64 instead 1478 * 1479 * @rx_dropped: Dropped packets by core network, 1480 * do not use this in drivers 1481 * @tx_dropped: Dropped packets by core network, 1482 * do not use this in drivers 1483 * @rx_nohandler: nohandler dropped packets by core network on 1484 * inactive devices, do not use this in drivers 1485 * 1486 * @wireless_handlers: List of functions to handle Wireless Extensions, 1487 * instead of ioctl, 1488 * see <net/iw_handler.h> for details. 1489 * @wireless_data: Instance data managed by the core of wireless extensions 1490 * 1491 * @netdev_ops: Includes several pointers to callbacks, 1492 * if one wants to override the ndo_*() functions 1493 * @ethtool_ops: Management operations 1494 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1495 * discovery handling. Necessary for e.g. 6LoWPAN. 1496 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1497 * of Layer 2 headers. 1498 * 1499 * @flags: Interface flags (a la BSD) 1500 * @priv_flags: Like 'flags' but invisible to userspace, 1501 * see if.h for the definitions 1502 * @gflags: Global flags ( kept as legacy ) 1503 * @padded: How much padding added by alloc_netdev() 1504 * @operstate: RFC2863 operstate 1505 * @link_mode: Mapping policy to operstate 1506 * @if_port: Selectable AUI, TP, ... 1507 * @dma: DMA channel 1508 * @mtu: Interface MTU value 1509 * @type: Interface hardware type 1510 * @hard_header_len: Maximum hardware header length. 1511 * 1512 * @needed_headroom: Extra headroom the hardware may need, but not in all 1513 * cases can this be guaranteed 1514 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1515 * cases can this be guaranteed. Some cases also use 1516 * LL_MAX_HEADER instead to allocate the skb 1517 * 1518 * interface address info: 1519 * 1520 * @perm_addr: Permanent hw address 1521 * @addr_assign_type: Hw address assignment type 1522 * @addr_len: Hardware address length 1523 * @neigh_priv_len: Used in neigh_alloc() 1524 * @dev_id: Used to differentiate devices that share 1525 * the same link layer address 1526 * @dev_port: Used to differentiate devices that share 1527 * the same function 1528 * @addr_list_lock: XXX: need comments on this one 1529 * @uc_promisc: Counter that indicates promiscuous mode 1530 * has been enabled due to the need to listen to 1531 * additional unicast addresses in a device that 1532 * does not implement ndo_set_rx_mode() 1533 * @uc: unicast mac addresses 1534 * @mc: multicast mac addresses 1535 * @dev_addrs: list of device hw addresses 1536 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1537 * @promiscuity: Number of times the NIC is told to work in 1538 * promiscuous mode; if it becomes 0 the NIC will 1539 * exit promiscuous mode 1540 * @allmulti: Counter, enables or disables allmulticast mode 1541 * 1542 * @vlan_info: VLAN info 1543 * @dsa_ptr: dsa specific data 1544 * @tipc_ptr: TIPC specific data 1545 * @atalk_ptr: AppleTalk link 1546 * @ip_ptr: IPv4 specific data 1547 * @dn_ptr: DECnet specific data 1548 * @ip6_ptr: IPv6 specific data 1549 * @ax25_ptr: AX.25 specific data 1550 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1551 * 1552 * @last_rx: Time of last Rx 1553 * @dev_addr: Hw address (before bcast, 1554 * because most packets are unicast) 1555 * 1556 * @_rx: Array of RX queues 1557 * @num_rx_queues: Number of RX queues 1558 * allocated at register_netdev() time 1559 * @real_num_rx_queues: Number of RX queues currently active in device 1560 * 1561 * @rx_handler: handler for received packets 1562 * @rx_handler_data: XXX: need comments on this one 1563 * @ingress_queue: XXX: need comments on this one 1564 * @broadcast: hw bcast address 1565 * 1566 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1567 * indexed by RX queue number. Assigned by driver. 1568 * This must only be set if the ndo_rx_flow_steer 1569 * operation is defined 1570 * @index_hlist: Device index hash chain 1571 * 1572 * @_tx: Array of TX queues 1573 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1574 * @real_num_tx_queues: Number of TX queues currently active in device 1575 * @qdisc: Root qdisc from userspace point of view 1576 * @tx_queue_len: Max frames per queue allowed 1577 * @tx_global_lock: XXX: need comments on this one 1578 * 1579 * @xps_maps: XXX: need comments on this one 1580 * 1581 * @watchdog_timeo: Represents the timeout that is used by 1582 * the watchdog (see dev_watchdog()) 1583 * @watchdog_timer: List of timers 1584 * 1585 * @pcpu_refcnt: Number of references to this device 1586 * @todo_list: Delayed register/unregister 1587 * @link_watch_list: XXX: need comments on this one 1588 * 1589 * @reg_state: Register/unregister state machine 1590 * @dismantle: Device is going to be freed 1591 * @rtnl_link_state: This enum represents the phases of creating 1592 * a new link 1593 * 1594 * @destructor: Called from unregister, 1595 * can be used to call free_netdev 1596 * @npinfo: XXX: need comments on this one 1597 * @nd_net: Network namespace this network device is inside 1598 * 1599 * @ml_priv: Mid-layer private 1600 * @lstats: Loopback statistics 1601 * @tstats: Tunnel statistics 1602 * @dstats: Dummy statistics 1603 * @vstats: Virtual ethernet statistics 1604 * 1605 * @garp_port: GARP 1606 * @mrp_port: MRP 1607 * 1608 * @dev: Class/net/name entry 1609 * @sysfs_groups: Space for optional device, statistics and wireless 1610 * sysfs groups 1611 * 1612 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1613 * @rtnl_link_ops: Rtnl_link_ops 1614 * 1615 * @gso_max_size: Maximum size of generic segmentation offload 1616 * @gso_max_segs: Maximum number of segments that can be passed to the 1617 * NIC for GSO 1618 * 1619 * @dcbnl_ops: Data Center Bridging netlink ops 1620 * @num_tc: Number of traffic classes in the net device 1621 * @tc_to_txq: XXX: need comments on this one 1622 * @prio_tc_map: XXX: need comments on this one 1623 * 1624 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1625 * 1626 * @priomap: XXX: need comments on this one 1627 * @phydev: Physical device may attach itself 1628 * for hardware timestamping 1629 * 1630 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1631 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1632 * 1633 * @proto_down: protocol port state information can be sent to the 1634 * switch driver and used to set the phys state of the 1635 * switch port. 1636 * 1637 * FIXME: cleanup struct net_device such that network protocol info 1638 * moves out. 1639 */ 1640 1641struct net_device { 1642 char name[IFNAMSIZ]; 1643 struct hlist_node name_hlist; 1644 char *ifalias; 1645 /* 1646 * I/O specific fields 1647 * FIXME: Merge these and struct ifmap into one 1648 */ 1649 unsigned long mem_end; 1650 unsigned long mem_start; 1651 unsigned long base_addr; 1652 int irq; 1653 1654 atomic_t carrier_changes; 1655 1656 /* 1657 * Some hardware also needs these fields (state,dev_list, 1658 * napi_list,unreg_list,close_list) but they are not 1659 * part of the usual set specified in Space.c. 1660 */ 1661 1662 unsigned long state; 1663 1664 struct list_head dev_list; 1665 struct list_head napi_list; 1666 struct list_head unreg_list; 1667 struct list_head close_list; 1668 struct list_head ptype_all; 1669 struct list_head ptype_specific; 1670 1671 struct { 1672 struct list_head upper; 1673 struct list_head lower; 1674 } adj_list; 1675 1676 struct { 1677 struct list_head upper; 1678 struct list_head lower; 1679 } all_adj_list; 1680 1681 netdev_features_t features; 1682 netdev_features_t hw_features; 1683 netdev_features_t wanted_features; 1684 netdev_features_t vlan_features; 1685 netdev_features_t hw_enc_features; 1686 netdev_features_t mpls_features; 1687 netdev_features_t gso_partial_features; 1688 1689 int ifindex; 1690 int group; 1691 1692 struct net_device_stats stats; 1693 1694 atomic_long_t rx_dropped; 1695 atomic_long_t tx_dropped; 1696 atomic_long_t rx_nohandler; 1697 1698#ifdef CONFIG_WIRELESS_EXT 1699 const struct iw_handler_def *wireless_handlers; 1700 struct iw_public_data *wireless_data; 1701#endif 1702 const struct net_device_ops *netdev_ops; 1703 const struct ethtool_ops *ethtool_ops; 1704#ifdef CONFIG_NET_SWITCHDEV 1705 const struct switchdev_ops *switchdev_ops; 1706#endif 1707#ifdef CONFIG_NET_L3_MASTER_DEV 1708 const struct l3mdev_ops *l3mdev_ops; 1709#endif 1710#if IS_ENABLED(CONFIG_IPV6) 1711 const struct ndisc_ops *ndisc_ops; 1712#endif 1713 1714 const struct header_ops *header_ops; 1715 1716 unsigned int flags; 1717 unsigned int priv_flags; 1718 1719 unsigned short gflags; 1720 unsigned short padded; 1721 1722 unsigned char operstate; 1723 unsigned char link_mode; 1724 1725 unsigned char if_port; 1726 unsigned char dma; 1727 1728 unsigned int mtu; 1729 unsigned short type; 1730 unsigned short hard_header_len; 1731 1732 unsigned short needed_headroom; 1733 unsigned short needed_tailroom; 1734 1735 /* Interface address info. */ 1736 unsigned char perm_addr[MAX_ADDR_LEN]; 1737 unsigned char addr_assign_type; 1738 unsigned char addr_len; 1739 unsigned short neigh_priv_len; 1740 unsigned short dev_id; 1741 unsigned short dev_port; 1742 spinlock_t addr_list_lock; 1743 unsigned char name_assign_type; 1744 bool uc_promisc; 1745 struct netdev_hw_addr_list uc; 1746 struct netdev_hw_addr_list mc; 1747 struct netdev_hw_addr_list dev_addrs; 1748 1749#ifdef CONFIG_SYSFS 1750 struct kset *queues_kset; 1751#endif 1752 unsigned int promiscuity; 1753 unsigned int allmulti; 1754 1755 1756 /* Protocol-specific pointers */ 1757 1758#if IS_ENABLED(CONFIG_VLAN_8021Q) 1759 struct vlan_info __rcu *vlan_info; 1760#endif 1761#if IS_ENABLED(CONFIG_NET_DSA) 1762 struct dsa_switch_tree *dsa_ptr; 1763#endif 1764#if IS_ENABLED(CONFIG_TIPC) 1765 struct tipc_bearer __rcu *tipc_ptr; 1766#endif 1767 void *atalk_ptr; 1768 struct in_device __rcu *ip_ptr; 1769 struct dn_dev __rcu *dn_ptr; 1770 struct inet6_dev __rcu *ip6_ptr; 1771 void *ax25_ptr; 1772 struct wireless_dev *ieee80211_ptr; 1773 struct wpan_dev *ieee802154_ptr; 1774#if IS_ENABLED(CONFIG_MPLS_ROUTING) 1775 struct mpls_dev __rcu *mpls_ptr; 1776#endif 1777 1778/* 1779 * Cache lines mostly used on receive path (including eth_type_trans()) 1780 */ 1781 unsigned long last_rx; 1782 1783 /* Interface address info used in eth_type_trans() */ 1784 unsigned char *dev_addr; 1785 1786#ifdef CONFIG_SYSFS 1787 struct netdev_rx_queue *_rx; 1788 1789 unsigned int num_rx_queues; 1790 unsigned int real_num_rx_queues; 1791#endif 1792 1793 unsigned long gro_flush_timeout; 1794 rx_handler_func_t __rcu *rx_handler; 1795 void __rcu *rx_handler_data; 1796 1797#ifdef CONFIG_NET_CLS_ACT 1798 struct tcf_proto __rcu *ingress_cl_list; 1799#endif 1800 struct netdev_queue __rcu *ingress_queue; 1801#ifdef CONFIG_NETFILTER_INGRESS 1802 struct nf_hook_entry __rcu *nf_hooks_ingress; 1803#endif 1804 1805 unsigned char broadcast[MAX_ADDR_LEN]; 1806#ifdef CONFIG_RFS_ACCEL 1807 struct cpu_rmap *rx_cpu_rmap; 1808#endif 1809 struct hlist_node index_hlist; 1810 1811/* 1812 * Cache lines mostly used on transmit path 1813 */ 1814 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1815 unsigned int num_tx_queues; 1816 unsigned int real_num_tx_queues; 1817 struct Qdisc *qdisc; 1818#ifdef CONFIG_NET_SCHED 1819 DECLARE_HASHTABLE (qdisc_hash, 4); 1820#endif 1821 unsigned long tx_queue_len; 1822 spinlock_t tx_global_lock; 1823 int watchdog_timeo; 1824 1825#ifdef CONFIG_XPS 1826 struct xps_dev_maps __rcu *xps_maps; 1827#endif 1828#ifdef CONFIG_NET_CLS_ACT 1829 struct tcf_proto __rcu *egress_cl_list; 1830#endif 1831 1832 /* These may be needed for future network-power-down code. */ 1833 struct timer_list watchdog_timer; 1834 1835 int __percpu *pcpu_refcnt; 1836 struct list_head todo_list; 1837 1838 struct list_head link_watch_list; 1839 1840 enum { NETREG_UNINITIALIZED=0, 1841 NETREG_REGISTERED, /* completed register_netdevice */ 1842 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1843 NETREG_UNREGISTERED, /* completed unregister todo */ 1844 NETREG_RELEASED, /* called free_netdev */ 1845 NETREG_DUMMY, /* dummy device for NAPI poll */ 1846 } reg_state:8; 1847 1848 bool dismantle; 1849 1850 enum { 1851 RTNL_LINK_INITIALIZED, 1852 RTNL_LINK_INITIALIZING, 1853 } rtnl_link_state:16; 1854 1855 void (*destructor)(struct net_device *dev); 1856 1857#ifdef CONFIG_NETPOLL 1858 struct netpoll_info __rcu *npinfo; 1859#endif 1860 1861 possible_net_t nd_net; 1862 1863 /* mid-layer private */ 1864 union { 1865 void *ml_priv; 1866 struct pcpu_lstats __percpu *lstats; 1867 struct pcpu_sw_netstats __percpu *tstats; 1868 struct pcpu_dstats __percpu *dstats; 1869 struct pcpu_vstats __percpu *vstats; 1870 }; 1871 1872 struct garp_port __rcu *garp_port; 1873 struct mrp_port __rcu *mrp_port; 1874 1875 struct device dev; 1876 const struct attribute_group *sysfs_groups[4]; 1877 const struct attribute_group *sysfs_rx_queue_group; 1878 1879 const struct rtnl_link_ops *rtnl_link_ops; 1880 1881 /* for setting kernel sock attribute on TCP connection setup */ 1882#define GSO_MAX_SIZE 65536 1883 unsigned int gso_max_size; 1884#define GSO_MAX_SEGS 65535 1885 u16 gso_max_segs; 1886 1887#ifdef CONFIG_DCB 1888 const struct dcbnl_rtnl_ops *dcbnl_ops; 1889#endif 1890 u8 num_tc; 1891 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1892 u8 prio_tc_map[TC_BITMASK + 1]; 1893 1894#if IS_ENABLED(CONFIG_FCOE) 1895 unsigned int fcoe_ddp_xid; 1896#endif 1897#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1898 struct netprio_map __rcu *priomap; 1899#endif 1900 struct phy_device *phydev; 1901 struct lock_class_key *qdisc_tx_busylock; 1902 struct lock_class_key *qdisc_running_key; 1903 bool proto_down; 1904}; 1905#define to_net_dev(d) container_of(d, struct net_device, dev) 1906 1907#define NETDEV_ALIGN 32 1908 1909static inline 1910int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1911{ 1912 return dev->prio_tc_map[prio & TC_BITMASK]; 1913} 1914 1915static inline 1916int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1917{ 1918 if (tc >= dev->num_tc) 1919 return -EINVAL; 1920 1921 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1922 return 0; 1923} 1924 1925static inline 1926void netdev_reset_tc(struct net_device *dev) 1927{ 1928 dev->num_tc = 0; 1929 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1930 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1931} 1932 1933static inline 1934int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1935{ 1936 if (tc >= dev->num_tc) 1937 return -EINVAL; 1938 1939 dev->tc_to_txq[tc].count = count; 1940 dev->tc_to_txq[tc].offset = offset; 1941 return 0; 1942} 1943 1944static inline 1945int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1946{ 1947 if (num_tc > TC_MAX_QUEUE) 1948 return -EINVAL; 1949 1950 dev->num_tc = num_tc; 1951 return 0; 1952} 1953 1954static inline 1955int netdev_get_num_tc(struct net_device *dev) 1956{ 1957 return dev->num_tc; 1958} 1959 1960static inline 1961struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1962 unsigned int index) 1963{ 1964 return &dev->_tx[index]; 1965} 1966 1967static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1968 const struct sk_buff *skb) 1969{ 1970 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1971} 1972 1973static inline void netdev_for_each_tx_queue(struct net_device *dev, 1974 void (*f)(struct net_device *, 1975 struct netdev_queue *, 1976 void *), 1977 void *arg) 1978{ 1979 unsigned int i; 1980 1981 for (i = 0; i < dev->num_tx_queues; i++) 1982 f(dev, &dev->_tx[i], arg); 1983} 1984 1985#define netdev_lockdep_set_classes(dev) \ 1986{ \ 1987 static struct lock_class_key qdisc_tx_busylock_key; \ 1988 static struct lock_class_key qdisc_running_key; \ 1989 static struct lock_class_key qdisc_xmit_lock_key; \ 1990 static struct lock_class_key dev_addr_list_lock_key; \ 1991 unsigned int i; \ 1992 \ 1993 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 1994 (dev)->qdisc_running_key = &qdisc_running_key; \ 1995 lockdep_set_class(&(dev)->addr_list_lock, \ 1996 &dev_addr_list_lock_key); \ 1997 for (i = 0; i < (dev)->num_tx_queues; i++) \ 1998 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 1999 &qdisc_xmit_lock_key); \ 2000} 2001 2002struct netdev_queue *netdev_pick_tx(struct net_device *dev, 2003 struct sk_buff *skb, 2004 void *accel_priv); 2005 2006/* returns the headroom that the master device needs to take in account 2007 * when forwarding to this dev 2008 */ 2009static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2010{ 2011 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2012} 2013 2014static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2015{ 2016 if (dev->netdev_ops->ndo_set_rx_headroom) 2017 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2018} 2019 2020/* set the device rx headroom to the dev's default */ 2021static inline void netdev_reset_rx_headroom(struct net_device *dev) 2022{ 2023 netdev_set_rx_headroom(dev, -1); 2024} 2025 2026/* 2027 * Net namespace inlines 2028 */ 2029static inline 2030struct net *dev_net(const struct net_device *dev) 2031{ 2032 return read_pnet(&dev->nd_net); 2033} 2034 2035static inline 2036void dev_net_set(struct net_device *dev, struct net *net) 2037{ 2038 write_pnet(&dev->nd_net, net); 2039} 2040 2041static inline bool netdev_uses_dsa(struct net_device *dev) 2042{ 2043#if IS_ENABLED(CONFIG_NET_DSA) 2044 if (dev->dsa_ptr != NULL) 2045 return dsa_uses_tagged_protocol(dev->dsa_ptr); 2046#endif 2047 return false; 2048} 2049 2050/** 2051 * netdev_priv - access network device private data 2052 * @dev: network device 2053 * 2054 * Get network device private data 2055 */ 2056static inline void *netdev_priv(const struct net_device *dev) 2057{ 2058 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2059} 2060 2061/* Set the sysfs physical device reference for the network logical device 2062 * if set prior to registration will cause a symlink during initialization. 2063 */ 2064#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2065 2066/* Set the sysfs device type for the network logical device to allow 2067 * fine-grained identification of different network device types. For 2068 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2069 */ 2070#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2071 2072/* Default NAPI poll() weight 2073 * Device drivers are strongly advised to not use bigger value 2074 */ 2075#define NAPI_POLL_WEIGHT 64 2076 2077/** 2078 * netif_napi_add - initialize a NAPI context 2079 * @dev: network device 2080 * @napi: NAPI context 2081 * @poll: polling function 2082 * @weight: default weight 2083 * 2084 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2085 * *any* of the other NAPI-related functions. 2086 */ 2087void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2088 int (*poll)(struct napi_struct *, int), int weight); 2089 2090/** 2091 * netif_tx_napi_add - initialize a NAPI context 2092 * @dev: network device 2093 * @napi: NAPI context 2094 * @poll: polling function 2095 * @weight: default weight 2096 * 2097 * This variant of netif_napi_add() should be used from drivers using NAPI 2098 * to exclusively poll a TX queue. 2099 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2100 */ 2101static inline void netif_tx_napi_add(struct net_device *dev, 2102 struct napi_struct *napi, 2103 int (*poll)(struct napi_struct *, int), 2104 int weight) 2105{ 2106 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2107 netif_napi_add(dev, napi, poll, weight); 2108} 2109 2110/** 2111 * netif_napi_del - remove a NAPI context 2112 * @napi: NAPI context 2113 * 2114 * netif_napi_del() removes a NAPI context from the network device NAPI list 2115 */ 2116void netif_napi_del(struct napi_struct *napi); 2117 2118struct napi_gro_cb { 2119 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2120 void *frag0; 2121 2122 /* Length of frag0. */ 2123 unsigned int frag0_len; 2124 2125 /* This indicates where we are processing relative to skb->data. */ 2126 int data_offset; 2127 2128 /* This is non-zero if the packet cannot be merged with the new skb. */ 2129 u16 flush; 2130 2131 /* Save the IP ID here and check when we get to the transport layer */ 2132 u16 flush_id; 2133 2134 /* Number of segments aggregated. */ 2135 u16 count; 2136 2137 /* Start offset for remote checksum offload */ 2138 u16 gro_remcsum_start; 2139 2140 /* jiffies when first packet was created/queued */ 2141 unsigned long age; 2142 2143 /* Used in ipv6_gro_receive() and foo-over-udp */ 2144 u16 proto; 2145 2146 /* This is non-zero if the packet may be of the same flow. */ 2147 u8 same_flow:1; 2148 2149 /* Used in tunnel GRO receive */ 2150 u8 encap_mark:1; 2151 2152 /* GRO checksum is valid */ 2153 u8 csum_valid:1; 2154 2155 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2156 u8 csum_cnt:3; 2157 2158 /* Free the skb? */ 2159 u8 free:2; 2160#define NAPI_GRO_FREE 1 2161#define NAPI_GRO_FREE_STOLEN_HEAD 2 2162 2163 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2164 u8 is_ipv6:1; 2165 2166 /* Used in GRE, set in fou/gue_gro_receive */ 2167 u8 is_fou:1; 2168 2169 /* Used to determine if flush_id can be ignored */ 2170 u8 is_atomic:1; 2171 2172 /* Number of gro_receive callbacks this packet already went through */ 2173 u8 recursion_counter:4; 2174 2175 /* 1 bit hole */ 2176 2177 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2178 __wsum csum; 2179 2180 /* used in skb_gro_receive() slow path */ 2181 struct sk_buff *last; 2182}; 2183 2184#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2185 2186#define GRO_RECURSION_LIMIT 15 2187static inline int gro_recursion_inc_test(struct sk_buff *skb) 2188{ 2189 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2190} 2191 2192typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *); 2193static inline struct sk_buff **call_gro_receive(gro_receive_t cb, 2194 struct sk_buff **head, 2195 struct sk_buff *skb) 2196{ 2197 if (unlikely(gro_recursion_inc_test(skb))) { 2198 NAPI_GRO_CB(skb)->flush |= 1; 2199 return NULL; 2200 } 2201 2202 return cb(head, skb); 2203} 2204 2205typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **, 2206 struct sk_buff *); 2207static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb, 2208 struct sock *sk, 2209 struct sk_buff **head, 2210 struct sk_buff *skb) 2211{ 2212 if (unlikely(gro_recursion_inc_test(skb))) { 2213 NAPI_GRO_CB(skb)->flush |= 1; 2214 return NULL; 2215 } 2216 2217 return cb(sk, head, skb); 2218} 2219 2220struct packet_type { 2221 __be16 type; /* This is really htons(ether_type). */ 2222 struct net_device *dev; /* NULL is wildcarded here */ 2223 int (*func) (struct sk_buff *, 2224 struct net_device *, 2225 struct packet_type *, 2226 struct net_device *); 2227 bool (*id_match)(struct packet_type *ptype, 2228 struct sock *sk); 2229 void *af_packet_priv; 2230 struct list_head list; 2231}; 2232 2233struct offload_callbacks { 2234 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2235 netdev_features_t features); 2236 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2237 struct sk_buff *skb); 2238 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2239}; 2240 2241struct packet_offload { 2242 __be16 type; /* This is really htons(ether_type). */ 2243 u16 priority; 2244 struct offload_callbacks callbacks; 2245 struct list_head list; 2246}; 2247 2248/* often modified stats are per-CPU, other are shared (netdev->stats) */ 2249struct pcpu_sw_netstats { 2250 u64 rx_packets; 2251 u64 rx_bytes; 2252 u64 tx_packets; 2253 u64 tx_bytes; 2254 struct u64_stats_sync syncp; 2255}; 2256 2257#define __netdev_alloc_pcpu_stats(type, gfp) \ 2258({ \ 2259 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2260 if (pcpu_stats) { \ 2261 int __cpu; \ 2262 for_each_possible_cpu(__cpu) { \ 2263 typeof(type) *stat; \ 2264 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2265 u64_stats_init(&stat->syncp); \ 2266 } \ 2267 } \ 2268 pcpu_stats; \ 2269}) 2270 2271#define netdev_alloc_pcpu_stats(type) \ 2272 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2273 2274enum netdev_lag_tx_type { 2275 NETDEV_LAG_TX_TYPE_UNKNOWN, 2276 NETDEV_LAG_TX_TYPE_RANDOM, 2277 NETDEV_LAG_TX_TYPE_BROADCAST, 2278 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2279 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2280 NETDEV_LAG_TX_TYPE_HASH, 2281}; 2282 2283struct netdev_lag_upper_info { 2284 enum netdev_lag_tx_type tx_type; 2285}; 2286 2287struct netdev_lag_lower_state_info { 2288 u8 link_up : 1, 2289 tx_enabled : 1; 2290}; 2291 2292#include <linux/notifier.h> 2293 2294/* netdevice notifier chain. Please remember to update the rtnetlink 2295 * notification exclusion list in rtnetlink_event() when adding new 2296 * types. 2297 */ 2298#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2299#define NETDEV_DOWN 0x0002 2300#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2301 detected a hardware crash and restarted 2302 - we can use this eg to kick tcp sessions 2303 once done */ 2304#define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2305#define NETDEV_REGISTER 0x0005 2306#define NETDEV_UNREGISTER 0x0006 2307#define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2308#define NETDEV_CHANGEADDR 0x0008 2309#define NETDEV_GOING_DOWN 0x0009 2310#define NETDEV_CHANGENAME 0x000A 2311#define NETDEV_FEAT_CHANGE 0x000B 2312#define NETDEV_BONDING_FAILOVER 0x000C 2313#define NETDEV_PRE_UP 0x000D 2314#define NETDEV_PRE_TYPE_CHANGE 0x000E 2315#define NETDEV_POST_TYPE_CHANGE 0x000F 2316#define NETDEV_POST_INIT 0x0010 2317#define NETDEV_UNREGISTER_FINAL 0x0011 2318#define NETDEV_RELEASE 0x0012 2319#define NETDEV_NOTIFY_PEERS 0x0013 2320#define NETDEV_JOIN 0x0014 2321#define NETDEV_CHANGEUPPER 0x0015 2322#define NETDEV_RESEND_IGMP 0x0016 2323#define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2324#define NETDEV_CHANGEINFODATA 0x0018 2325#define NETDEV_BONDING_INFO 0x0019 2326#define NETDEV_PRECHANGEUPPER 0x001A 2327#define NETDEV_CHANGELOWERSTATE 0x001B 2328#define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C 2329#define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E 2330 2331int register_netdevice_notifier(struct notifier_block *nb); 2332int unregister_netdevice_notifier(struct notifier_block *nb); 2333 2334struct netdev_notifier_info { 2335 struct net_device *dev; 2336}; 2337 2338struct netdev_notifier_change_info { 2339 struct netdev_notifier_info info; /* must be first */ 2340 unsigned int flags_changed; 2341}; 2342 2343struct netdev_notifier_changeupper_info { 2344 struct netdev_notifier_info info; /* must be first */ 2345 struct net_device *upper_dev; /* new upper dev */ 2346 bool master; /* is upper dev master */ 2347 bool linking; /* is the notification for link or unlink */ 2348 void *upper_info; /* upper dev info */ 2349}; 2350 2351struct netdev_notifier_changelowerstate_info { 2352 struct netdev_notifier_info info; /* must be first */ 2353 void *lower_state_info; /* is lower dev state */ 2354}; 2355 2356static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2357 struct net_device *dev) 2358{ 2359 info->dev = dev; 2360} 2361 2362static inline struct net_device * 2363netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2364{ 2365 return info->dev; 2366} 2367 2368int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2369 2370 2371extern rwlock_t dev_base_lock; /* Device list lock */ 2372 2373#define for_each_netdev(net, d) \ 2374 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2375#define for_each_netdev_reverse(net, d) \ 2376 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2377#define for_each_netdev_rcu(net, d) \ 2378 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2379#define for_each_netdev_safe(net, d, n) \ 2380 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2381#define for_each_netdev_continue(net, d) \ 2382 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2383#define for_each_netdev_continue_rcu(net, d) \ 2384 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2385#define for_each_netdev_in_bond_rcu(bond, slave) \ 2386 for_each_netdev_rcu(&init_net, slave) \ 2387 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2388#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2389 2390static inline struct net_device *next_net_device(struct net_device *dev) 2391{ 2392 struct list_head *lh; 2393 struct net *net; 2394 2395 net = dev_net(dev); 2396 lh = dev->dev_list.next; 2397 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2398} 2399 2400static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2401{ 2402 struct list_head *lh; 2403 struct net *net; 2404 2405 net = dev_net(dev); 2406 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2407 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2408} 2409 2410static inline struct net_device *first_net_device(struct net *net) 2411{ 2412 return list_empty(&net->dev_base_head) ? NULL : 2413 net_device_entry(net->dev_base_head.next); 2414} 2415 2416static inline struct net_device *first_net_device_rcu(struct net *net) 2417{ 2418 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2419 2420 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2421} 2422 2423int netdev_boot_setup_check(struct net_device *dev); 2424unsigned long netdev_boot_base(const char *prefix, int unit); 2425struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2426 const char *hwaddr); 2427struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2428struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2429void dev_add_pack(struct packet_type *pt); 2430void dev_remove_pack(struct packet_type *pt); 2431void __dev_remove_pack(struct packet_type *pt); 2432void dev_add_offload(struct packet_offload *po); 2433void dev_remove_offload(struct packet_offload *po); 2434 2435int dev_get_iflink(const struct net_device *dev); 2436int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2437struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2438 unsigned short mask); 2439struct net_device *dev_get_by_name(struct net *net, const char *name); 2440struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2441struct net_device *__dev_get_by_name(struct net *net, const char *name); 2442int dev_alloc_name(struct net_device *dev, const char *name); 2443int dev_open(struct net_device *dev); 2444int dev_close(struct net_device *dev); 2445int dev_close_many(struct list_head *head, bool unlink); 2446void dev_disable_lro(struct net_device *dev); 2447int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2448int dev_queue_xmit(struct sk_buff *skb); 2449int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2450int register_netdevice(struct net_device *dev); 2451void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2452void unregister_netdevice_many(struct list_head *head); 2453static inline void unregister_netdevice(struct net_device *dev) 2454{ 2455 unregister_netdevice_queue(dev, NULL); 2456} 2457 2458int netdev_refcnt_read(const struct net_device *dev); 2459void free_netdev(struct net_device *dev); 2460void netdev_freemem(struct net_device *dev); 2461void synchronize_net(void); 2462int init_dummy_netdev(struct net_device *dev); 2463 2464DECLARE_PER_CPU(int, xmit_recursion); 2465#define XMIT_RECURSION_LIMIT 10 2466 2467static inline int dev_recursion_level(void) 2468{ 2469 return this_cpu_read(xmit_recursion); 2470} 2471 2472struct net_device *dev_get_by_index(struct net *net, int ifindex); 2473struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2474struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2475int netdev_get_name(struct net *net, char *name, int ifindex); 2476int dev_restart(struct net_device *dev); 2477int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2478 2479static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2480{ 2481 return NAPI_GRO_CB(skb)->data_offset; 2482} 2483 2484static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2485{ 2486 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2487} 2488 2489static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2490{ 2491 NAPI_GRO_CB(skb)->data_offset += len; 2492} 2493 2494static inline void *skb_gro_header_fast(struct sk_buff *skb, 2495 unsigned int offset) 2496{ 2497 return NAPI_GRO_CB(skb)->frag0 + offset; 2498} 2499 2500static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2501{ 2502 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2503} 2504 2505static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2506 unsigned int offset) 2507{ 2508 if (!pskb_may_pull(skb, hlen)) 2509 return NULL; 2510 2511 NAPI_GRO_CB(skb)->frag0 = NULL; 2512 NAPI_GRO_CB(skb)->frag0_len = 0; 2513 return skb->data + offset; 2514} 2515 2516static inline void *skb_gro_network_header(struct sk_buff *skb) 2517{ 2518 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2519 skb_network_offset(skb); 2520} 2521 2522static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2523 const void *start, unsigned int len) 2524{ 2525 if (NAPI_GRO_CB(skb)->csum_valid) 2526 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2527 csum_partial(start, len, 0)); 2528} 2529 2530/* GRO checksum functions. These are logical equivalents of the normal 2531 * checksum functions (in skbuff.h) except that they operate on the GRO 2532 * offsets and fields in sk_buff. 2533 */ 2534 2535__sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2536 2537static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2538{ 2539 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2540} 2541 2542static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2543 bool zero_okay, 2544 __sum16 check) 2545{ 2546 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2547 skb_checksum_start_offset(skb) < 2548 skb_gro_offset(skb)) && 2549 !skb_at_gro_remcsum_start(skb) && 2550 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2551 (!zero_okay || check)); 2552} 2553 2554static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2555 __wsum psum) 2556{ 2557 if (NAPI_GRO_CB(skb)->csum_valid && 2558 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2559 return 0; 2560 2561 NAPI_GRO_CB(skb)->csum = psum; 2562 2563 return __skb_gro_checksum_complete(skb); 2564} 2565 2566static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2567{ 2568 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2569 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2570 NAPI_GRO_CB(skb)->csum_cnt--; 2571 } else { 2572 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2573 * verified a new top level checksum or an encapsulated one 2574 * during GRO. This saves work if we fallback to normal path. 2575 */ 2576 __skb_incr_checksum_unnecessary(skb); 2577 } 2578} 2579 2580#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2581 compute_pseudo) \ 2582({ \ 2583 __sum16 __ret = 0; \ 2584 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2585 __ret = __skb_gro_checksum_validate_complete(skb, \ 2586 compute_pseudo(skb, proto)); \ 2587 if (__ret) \ 2588 __skb_mark_checksum_bad(skb); \ 2589 else \ 2590 skb_gro_incr_csum_unnecessary(skb); \ 2591 __ret; \ 2592}) 2593 2594#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2595 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2596 2597#define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2598 compute_pseudo) \ 2599 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2600 2601#define skb_gro_checksum_simple_validate(skb) \ 2602 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2603 2604static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2605{ 2606 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2607 !NAPI_GRO_CB(skb)->csum_valid); 2608} 2609 2610static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2611 __sum16 check, __wsum pseudo) 2612{ 2613 NAPI_GRO_CB(skb)->csum = ~pseudo; 2614 NAPI_GRO_CB(skb)->csum_valid = 1; 2615} 2616 2617#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2618do { \ 2619 if (__skb_gro_checksum_convert_check(skb)) \ 2620 __skb_gro_checksum_convert(skb, check, \ 2621 compute_pseudo(skb, proto)); \ 2622} while (0) 2623 2624struct gro_remcsum { 2625 int offset; 2626 __wsum delta; 2627}; 2628 2629static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2630{ 2631 grc->offset = 0; 2632 grc->delta = 0; 2633} 2634 2635static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2636 unsigned int off, size_t hdrlen, 2637 int start, int offset, 2638 struct gro_remcsum *grc, 2639 bool nopartial) 2640{ 2641 __wsum delta; 2642 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2643 2644 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2645 2646 if (!nopartial) { 2647 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2648 return ptr; 2649 } 2650 2651 ptr = skb_gro_header_fast(skb, off); 2652 if (skb_gro_header_hard(skb, off + plen)) { 2653 ptr = skb_gro_header_slow(skb, off + plen, off); 2654 if (!ptr) 2655 return NULL; 2656 } 2657 2658 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2659 start, offset); 2660 2661 /* Adjust skb->csum since we changed the packet */ 2662 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2663 2664 grc->offset = off + hdrlen + offset; 2665 grc->delta = delta; 2666 2667 return ptr; 2668} 2669 2670static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2671 struct gro_remcsum *grc) 2672{ 2673 void *ptr; 2674 size_t plen = grc->offset + sizeof(u16); 2675 2676 if (!grc->delta) 2677 return; 2678 2679 ptr = skb_gro_header_fast(skb, grc->offset); 2680 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2681 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2682 if (!ptr) 2683 return; 2684 } 2685 2686 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2687} 2688 2689struct skb_csum_offl_spec { 2690 __u16 ipv4_okay:1, 2691 ipv6_okay:1, 2692 encap_okay:1, 2693 ip_options_okay:1, 2694 ext_hdrs_okay:1, 2695 tcp_okay:1, 2696 udp_okay:1, 2697 sctp_okay:1, 2698 vlan_okay:1, 2699 no_encapped_ipv6:1, 2700 no_not_encapped:1; 2701}; 2702 2703bool __skb_csum_offload_chk(struct sk_buff *skb, 2704 const struct skb_csum_offl_spec *spec, 2705 bool *csum_encapped, 2706 bool csum_help); 2707 2708static inline bool skb_csum_offload_chk(struct sk_buff *skb, 2709 const struct skb_csum_offl_spec *spec, 2710 bool *csum_encapped, 2711 bool csum_help) 2712{ 2713 if (skb->ip_summed != CHECKSUM_PARTIAL) 2714 return false; 2715 2716 return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help); 2717} 2718 2719static inline bool skb_csum_offload_chk_help(struct sk_buff *skb, 2720 const struct skb_csum_offl_spec *spec) 2721{ 2722 bool csum_encapped; 2723 2724 return skb_csum_offload_chk(skb, spec, &csum_encapped, true); 2725} 2726 2727static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb) 2728{ 2729 static const struct skb_csum_offl_spec csum_offl_spec = { 2730 .ipv4_okay = 1, 2731 .ip_options_okay = 1, 2732 .ipv6_okay = 1, 2733 .vlan_okay = 1, 2734 .tcp_okay = 1, 2735 .udp_okay = 1, 2736 }; 2737 2738 return skb_csum_offload_chk_help(skb, &csum_offl_spec); 2739} 2740 2741static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb) 2742{ 2743 static const struct skb_csum_offl_spec csum_offl_spec = { 2744 .ipv4_okay = 1, 2745 .ip_options_okay = 1, 2746 .tcp_okay = 1, 2747 .udp_okay = 1, 2748 .vlan_okay = 1, 2749 }; 2750 2751 return skb_csum_offload_chk_help(skb, &csum_offl_spec); 2752} 2753 2754static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2755 unsigned short type, 2756 const void *daddr, const void *saddr, 2757 unsigned int len) 2758{ 2759 if (!dev->header_ops || !dev->header_ops->create) 2760 return 0; 2761 2762 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2763} 2764 2765static inline int dev_parse_header(const struct sk_buff *skb, 2766 unsigned char *haddr) 2767{ 2768 const struct net_device *dev = skb->dev; 2769 2770 if (!dev->header_ops || !dev->header_ops->parse) 2771 return 0; 2772 return dev->header_ops->parse(skb, haddr); 2773} 2774 2775/* ll_header must have at least hard_header_len allocated */ 2776static inline bool dev_validate_header(const struct net_device *dev, 2777 char *ll_header, int len) 2778{ 2779 if (likely(len >= dev->hard_header_len)) 2780 return true; 2781 2782 if (capable(CAP_SYS_RAWIO)) { 2783 memset(ll_header + len, 0, dev->hard_header_len - len); 2784 return true; 2785 } 2786 2787 if (dev->header_ops && dev->header_ops->validate) 2788 return dev->header_ops->validate(ll_header, len); 2789 2790 return false; 2791} 2792 2793typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2794int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2795static inline int unregister_gifconf(unsigned int family) 2796{ 2797 return register_gifconf(family, NULL); 2798} 2799 2800#ifdef CONFIG_NET_FLOW_LIMIT 2801#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2802struct sd_flow_limit { 2803 u64 count; 2804 unsigned int num_buckets; 2805 unsigned int history_head; 2806 u16 history[FLOW_LIMIT_HISTORY]; 2807 u8 buckets[]; 2808}; 2809 2810extern int netdev_flow_limit_table_len; 2811#endif /* CONFIG_NET_FLOW_LIMIT */ 2812 2813/* 2814 * Incoming packets are placed on per-CPU queues 2815 */ 2816struct softnet_data { 2817 struct list_head poll_list; 2818 struct sk_buff_head process_queue; 2819 2820 /* stats */ 2821 unsigned int processed; 2822 unsigned int time_squeeze; 2823 unsigned int received_rps; 2824#ifdef CONFIG_RPS 2825 struct softnet_data *rps_ipi_list; 2826#endif 2827#ifdef CONFIG_NET_FLOW_LIMIT 2828 struct sd_flow_limit __rcu *flow_limit; 2829#endif 2830 struct Qdisc *output_queue; 2831 struct Qdisc **output_queue_tailp; 2832 struct sk_buff *completion_queue; 2833 2834#ifdef CONFIG_RPS 2835 /* input_queue_head should be written by cpu owning this struct, 2836 * and only read by other cpus. Worth using a cache line. 2837 */ 2838 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2839 2840 /* Elements below can be accessed between CPUs for RPS/RFS */ 2841 struct call_single_data csd ____cacheline_aligned_in_smp; 2842 struct softnet_data *rps_ipi_next; 2843 unsigned int cpu; 2844 unsigned int input_queue_tail; 2845#endif 2846 unsigned int dropped; 2847 struct sk_buff_head input_pkt_queue; 2848 struct napi_struct backlog; 2849 2850}; 2851 2852static inline void input_queue_head_incr(struct softnet_data *sd) 2853{ 2854#ifdef CONFIG_RPS 2855 sd->input_queue_head++; 2856#endif 2857} 2858 2859static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2860 unsigned int *qtail) 2861{ 2862#ifdef CONFIG_RPS 2863 *qtail = ++sd->input_queue_tail; 2864#endif 2865} 2866 2867DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2868 2869void __netif_schedule(struct Qdisc *q); 2870void netif_schedule_queue(struct netdev_queue *txq); 2871 2872static inline void netif_tx_schedule_all(struct net_device *dev) 2873{ 2874 unsigned int i; 2875 2876 for (i = 0; i < dev->num_tx_queues; i++) 2877 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2878} 2879 2880static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2881{ 2882 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2883} 2884 2885/** 2886 * netif_start_queue - allow transmit 2887 * @dev: network device 2888 * 2889 * Allow upper layers to call the device hard_start_xmit routine. 2890 */ 2891static inline void netif_start_queue(struct net_device *dev) 2892{ 2893 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2894} 2895 2896static inline void netif_tx_start_all_queues(struct net_device *dev) 2897{ 2898 unsigned int i; 2899 2900 for (i = 0; i < dev->num_tx_queues; i++) { 2901 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2902 netif_tx_start_queue(txq); 2903 } 2904} 2905 2906void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2907 2908/** 2909 * netif_wake_queue - restart transmit 2910 * @dev: network device 2911 * 2912 * Allow upper layers to call the device hard_start_xmit routine. 2913 * Used for flow control when transmit resources are available. 2914 */ 2915static inline void netif_wake_queue(struct net_device *dev) 2916{ 2917 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2918} 2919 2920static inline void netif_tx_wake_all_queues(struct net_device *dev) 2921{ 2922 unsigned int i; 2923 2924 for (i = 0; i < dev->num_tx_queues; i++) { 2925 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2926 netif_tx_wake_queue(txq); 2927 } 2928} 2929 2930static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2931{ 2932 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2933} 2934 2935/** 2936 * netif_stop_queue - stop transmitted packets 2937 * @dev: network device 2938 * 2939 * Stop upper layers calling the device hard_start_xmit routine. 2940 * Used for flow control when transmit resources are unavailable. 2941 */ 2942static inline void netif_stop_queue(struct net_device *dev) 2943{ 2944 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2945} 2946 2947void netif_tx_stop_all_queues(struct net_device *dev); 2948 2949static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2950{ 2951 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2952} 2953 2954/** 2955 * netif_queue_stopped - test if transmit queue is flowblocked 2956 * @dev: network device 2957 * 2958 * Test if transmit queue on device is currently unable to send. 2959 */ 2960static inline bool netif_queue_stopped(const struct net_device *dev) 2961{ 2962 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2963} 2964 2965static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2966{ 2967 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2968} 2969 2970static inline bool 2971netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2972{ 2973 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2974} 2975 2976static inline bool 2977netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2978{ 2979 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2980} 2981 2982/** 2983 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2984 * @dev_queue: pointer to transmit queue 2985 * 2986 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2987 * to give appropriate hint to the CPU. 2988 */ 2989static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2990{ 2991#ifdef CONFIG_BQL 2992 prefetchw(&dev_queue->dql.num_queued); 2993#endif 2994} 2995 2996/** 2997 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2998 * @dev_queue: pointer to transmit queue 2999 * 3000 * BQL enabled drivers might use this helper in their TX completion path, 3001 * to give appropriate hint to the CPU. 3002 */ 3003static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3004{ 3005#ifdef CONFIG_BQL 3006 prefetchw(&dev_queue->dql.limit); 3007#endif 3008} 3009 3010static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3011 unsigned int bytes) 3012{ 3013#ifdef CONFIG_BQL 3014 dql_queued(&dev_queue->dql, bytes); 3015 3016 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3017 return; 3018 3019 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3020 3021 /* 3022 * The XOFF flag must be set before checking the dql_avail below, 3023 * because in netdev_tx_completed_queue we update the dql_completed 3024 * before checking the XOFF flag. 3025 */ 3026 smp_mb(); 3027 3028 /* check again in case another CPU has just made room avail */ 3029 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3030 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3031#endif 3032} 3033 3034/** 3035 * netdev_sent_queue - report the number of bytes queued to hardware 3036 * @dev: network device 3037 * @bytes: number of bytes queued to the hardware device queue 3038 * 3039 * Report the number of bytes queued for sending/completion to the network 3040 * device hardware queue. @bytes should be a good approximation and should 3041 * exactly match netdev_completed_queue() @bytes 3042 */ 3043static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3044{ 3045 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3046} 3047 3048static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3049 unsigned int pkts, unsigned int bytes) 3050{ 3051#ifdef CONFIG_BQL 3052 if (unlikely(!bytes)) 3053 return; 3054 3055 dql_completed(&dev_queue->dql, bytes); 3056 3057 /* 3058 * Without the memory barrier there is a small possiblity that 3059 * netdev_tx_sent_queue will miss the update and cause the queue to 3060 * be stopped forever 3061 */ 3062 smp_mb(); 3063 3064 if (dql_avail(&dev_queue->dql) < 0) 3065 return; 3066 3067 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3068 netif_schedule_queue(dev_queue); 3069#endif 3070} 3071 3072/** 3073 * netdev_completed_queue - report bytes and packets completed by device 3074 * @dev: network device 3075 * @pkts: actual number of packets sent over the medium 3076 * @bytes: actual number of bytes sent over the medium 3077 * 3078 * Report the number of bytes and packets transmitted by the network device 3079 * hardware queue over the physical medium, @bytes must exactly match the 3080 * @bytes amount passed to netdev_sent_queue() 3081 */ 3082static inline void netdev_completed_queue(struct net_device *dev, 3083 unsigned int pkts, unsigned int bytes) 3084{ 3085 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3086} 3087 3088static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3089{ 3090#ifdef CONFIG_BQL 3091 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3092 dql_reset(&q->dql); 3093#endif 3094} 3095 3096/** 3097 * netdev_reset_queue - reset the packets and bytes count of a network device 3098 * @dev_queue: network device 3099 * 3100 * Reset the bytes and packet count of a network device and clear the 3101 * software flow control OFF bit for this network device 3102 */ 3103static inline void netdev_reset_queue(struct net_device *dev_queue) 3104{ 3105 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3106} 3107 3108/** 3109 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3110 * @dev: network device 3111 * @queue_index: given tx queue index 3112 * 3113 * Returns 0 if given tx queue index >= number of device tx queues, 3114 * otherwise returns the originally passed tx queue index. 3115 */ 3116static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3117{ 3118 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3119 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3120 dev->name, queue_index, 3121 dev->real_num_tx_queues); 3122 return 0; 3123 } 3124 3125 return queue_index; 3126} 3127 3128/** 3129 * netif_running - test if up 3130 * @dev: network device 3131 * 3132 * Test if the device has been brought up. 3133 */ 3134static inline bool netif_running(const struct net_device *dev) 3135{ 3136 return test_bit(__LINK_STATE_START, &dev->state); 3137} 3138 3139/* 3140 * Routines to manage the subqueues on a device. We only need start, 3141 * stop, and a check if it's stopped. All other device management is 3142 * done at the overall netdevice level. 3143 * Also test the device if we're multiqueue. 3144 */ 3145 3146/** 3147 * netif_start_subqueue - allow sending packets on subqueue 3148 * @dev: network device 3149 * @queue_index: sub queue index 3150 * 3151 * Start individual transmit queue of a device with multiple transmit queues. 3152 */ 3153static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3154{ 3155 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3156 3157 netif_tx_start_queue(txq); 3158} 3159 3160/** 3161 * netif_stop_subqueue - stop sending packets on subqueue 3162 * @dev: network device 3163 * @queue_index: sub queue index 3164 * 3165 * Stop individual transmit queue of a device with multiple transmit queues. 3166 */ 3167static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3168{ 3169 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3170 netif_tx_stop_queue(txq); 3171} 3172 3173/** 3174 * netif_subqueue_stopped - test status of subqueue 3175 * @dev: network device 3176 * @queue_index: sub queue index 3177 * 3178 * Check individual transmit queue of a device with multiple transmit queues. 3179 */ 3180static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3181 u16 queue_index) 3182{ 3183 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3184 3185 return netif_tx_queue_stopped(txq); 3186} 3187 3188static inline bool netif_subqueue_stopped(const struct net_device *dev, 3189 struct sk_buff *skb) 3190{ 3191 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3192} 3193 3194void netif_wake_subqueue(struct net_device *dev, u16 queue_index); 3195 3196#ifdef CONFIG_XPS 3197int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3198 u16 index); 3199#else 3200static inline int netif_set_xps_queue(struct net_device *dev, 3201 const struct cpumask *mask, 3202 u16 index) 3203{ 3204 return 0; 3205} 3206#endif 3207 3208u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3209 unsigned int num_tx_queues); 3210 3211/* 3212 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 3213 * as a distribution range limit for the returned value. 3214 */ 3215static inline u16 skb_tx_hash(const struct net_device *dev, 3216 struct sk_buff *skb) 3217{ 3218 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 3219} 3220 3221/** 3222 * netif_is_multiqueue - test if device has multiple transmit queues 3223 * @dev: network device 3224 * 3225 * Check if device has multiple transmit queues 3226 */ 3227static inline bool netif_is_multiqueue(const struct net_device *dev) 3228{ 3229 return dev->num_tx_queues > 1; 3230} 3231 3232int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3233 3234#ifdef CONFIG_SYSFS 3235int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3236#else 3237static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3238 unsigned int rxq) 3239{ 3240 return 0; 3241} 3242#endif 3243 3244#ifdef CONFIG_SYSFS 3245static inline unsigned int get_netdev_rx_queue_index( 3246 struct netdev_rx_queue *queue) 3247{ 3248 struct net_device *dev = queue->dev; 3249 int index = queue - dev->_rx; 3250 3251 BUG_ON(index >= dev->num_rx_queues); 3252 return index; 3253} 3254#endif 3255 3256#define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3257int netif_get_num_default_rss_queues(void); 3258 3259enum skb_free_reason { 3260 SKB_REASON_CONSUMED, 3261 SKB_REASON_DROPPED, 3262}; 3263 3264void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3265void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3266 3267/* 3268 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3269 * interrupt context or with hardware interrupts being disabled. 3270 * (in_irq() || irqs_disabled()) 3271 * 3272 * We provide four helpers that can be used in following contexts : 3273 * 3274 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3275 * replacing kfree_skb(skb) 3276 * 3277 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3278 * Typically used in place of consume_skb(skb) in TX completion path 3279 * 3280 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3281 * replacing kfree_skb(skb) 3282 * 3283 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3284 * and consumed a packet. Used in place of consume_skb(skb) 3285 */ 3286static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3287{ 3288 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3289} 3290 3291static inline void dev_consume_skb_irq(struct sk_buff *skb) 3292{ 3293 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3294} 3295 3296static inline void dev_kfree_skb_any(struct sk_buff *skb) 3297{ 3298 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3299} 3300 3301static inline void dev_consume_skb_any(struct sk_buff *skb) 3302{ 3303 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3304} 3305 3306int netif_rx(struct sk_buff *skb); 3307int netif_rx_ni(struct sk_buff *skb); 3308int netif_receive_skb(struct sk_buff *skb); 3309gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3310void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3311struct sk_buff *napi_get_frags(struct napi_struct *napi); 3312gro_result_t napi_gro_frags(struct napi_struct *napi); 3313struct packet_offload *gro_find_receive_by_type(__be16 type); 3314struct packet_offload *gro_find_complete_by_type(__be16 type); 3315 3316static inline void napi_free_frags(struct napi_struct *napi) 3317{ 3318 kfree_skb(napi->skb); 3319 napi->skb = NULL; 3320} 3321 3322bool netdev_is_rx_handler_busy(struct net_device *dev); 3323int netdev_rx_handler_register(struct net_device *dev, 3324 rx_handler_func_t *rx_handler, 3325 void *rx_handler_data); 3326void netdev_rx_handler_unregister(struct net_device *dev); 3327 3328bool dev_valid_name(const char *name); 3329int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 3330int dev_ethtool(struct net *net, struct ifreq *); 3331unsigned int dev_get_flags(const struct net_device *); 3332int __dev_change_flags(struct net_device *, unsigned int flags); 3333int dev_change_flags(struct net_device *, unsigned int); 3334void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3335 unsigned int gchanges); 3336int dev_change_name(struct net_device *, const char *); 3337int dev_set_alias(struct net_device *, const char *, size_t); 3338int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3339int dev_set_mtu(struct net_device *, int); 3340void dev_set_group(struct net_device *, int); 3341int dev_set_mac_address(struct net_device *, struct sockaddr *); 3342int dev_change_carrier(struct net_device *, bool new_carrier); 3343int dev_get_phys_port_id(struct net_device *dev, 3344 struct netdev_phys_item_id *ppid); 3345int dev_get_phys_port_name(struct net_device *dev, 3346 char *name, size_t len); 3347int dev_change_proto_down(struct net_device *dev, bool proto_down); 3348int dev_change_xdp_fd(struct net_device *dev, int fd); 3349struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 3350struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3351 struct netdev_queue *txq, int *ret); 3352int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3353int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3354bool is_skb_forwardable(const struct net_device *dev, 3355 const struct sk_buff *skb); 3356 3357static __always_inline int ____dev_forward_skb(struct net_device *dev, 3358 struct sk_buff *skb) 3359{ 3360 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3361 unlikely(!is_skb_forwardable(dev, skb))) { 3362 atomic_long_inc(&dev->rx_dropped); 3363 kfree_skb(skb); 3364 return NET_RX_DROP; 3365 } 3366 3367 skb_scrub_packet(skb, true); 3368 skb->priority = 0; 3369 return 0; 3370} 3371 3372void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3373 3374extern int netdev_budget; 3375 3376/* Called by rtnetlink.c:rtnl_unlock() */ 3377void netdev_run_todo(void); 3378 3379/** 3380 * dev_put - release reference to device 3381 * @dev: network device 3382 * 3383 * Release reference to device to allow it to be freed. 3384 */ 3385static inline void dev_put(struct net_device *dev) 3386{ 3387 this_cpu_dec(*dev->pcpu_refcnt); 3388} 3389 3390/** 3391 * dev_hold - get reference to device 3392 * @dev: network device 3393 * 3394 * Hold reference to device to keep it from being freed. 3395 */ 3396static inline void dev_hold(struct net_device *dev) 3397{ 3398 this_cpu_inc(*dev->pcpu_refcnt); 3399} 3400 3401/* Carrier loss detection, dial on demand. The functions netif_carrier_on 3402 * and _off may be called from IRQ context, but it is caller 3403 * who is responsible for serialization of these calls. 3404 * 3405 * The name carrier is inappropriate, these functions should really be 3406 * called netif_lowerlayer_*() because they represent the state of any 3407 * kind of lower layer not just hardware media. 3408 */ 3409 3410void linkwatch_init_dev(struct net_device *dev); 3411void linkwatch_fire_event(struct net_device *dev); 3412void linkwatch_forget_dev(struct net_device *dev); 3413 3414/** 3415 * netif_carrier_ok - test if carrier present 3416 * @dev: network device 3417 * 3418 * Check if carrier is present on device 3419 */ 3420static inline bool netif_carrier_ok(const struct net_device *dev) 3421{ 3422 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3423} 3424 3425unsigned long dev_trans_start(struct net_device *dev); 3426 3427void __netdev_watchdog_up(struct net_device *dev); 3428 3429void netif_carrier_on(struct net_device *dev); 3430 3431void netif_carrier_off(struct net_device *dev); 3432 3433/** 3434 * netif_dormant_on - mark device as dormant. 3435 * @dev: network device 3436 * 3437 * Mark device as dormant (as per RFC2863). 3438 * 3439 * The dormant state indicates that the relevant interface is not 3440 * actually in a condition to pass packets (i.e., it is not 'up') but is 3441 * in a "pending" state, waiting for some external event. For "on- 3442 * demand" interfaces, this new state identifies the situation where the 3443 * interface is waiting for events to place it in the up state. 3444 */ 3445static inline void netif_dormant_on(struct net_device *dev) 3446{ 3447 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3448 linkwatch_fire_event(dev); 3449} 3450 3451/** 3452 * netif_dormant_off - set device as not dormant. 3453 * @dev: network device 3454 * 3455 * Device is not in dormant state. 3456 */ 3457static inline void netif_dormant_off(struct net_device *dev) 3458{ 3459 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3460 linkwatch_fire_event(dev); 3461} 3462 3463/** 3464 * netif_dormant - test if carrier present 3465 * @dev: network device 3466 * 3467 * Check if carrier is present on device 3468 */ 3469static inline bool netif_dormant(const struct net_device *dev) 3470{ 3471 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3472} 3473 3474 3475/** 3476 * netif_oper_up - test if device is operational 3477 * @dev: network device 3478 * 3479 * Check if carrier is operational 3480 */ 3481static inline bool netif_oper_up(const struct net_device *dev) 3482{ 3483 return (dev->operstate == IF_OPER_UP || 3484 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3485} 3486 3487/** 3488 * netif_device_present - is device available or removed 3489 * @dev: network device 3490 * 3491 * Check if device has not been removed from system. 3492 */ 3493static inline bool netif_device_present(struct net_device *dev) 3494{ 3495 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3496} 3497 3498void netif_device_detach(struct net_device *dev); 3499 3500void netif_device_attach(struct net_device *dev); 3501 3502/* 3503 * Network interface message level settings 3504 */ 3505 3506enum { 3507 NETIF_MSG_DRV = 0x0001, 3508 NETIF_MSG_PROBE = 0x0002, 3509 NETIF_MSG_LINK = 0x0004, 3510 NETIF_MSG_TIMER = 0x0008, 3511 NETIF_MSG_IFDOWN = 0x0010, 3512 NETIF_MSG_IFUP = 0x0020, 3513 NETIF_MSG_RX_ERR = 0x0040, 3514 NETIF_MSG_TX_ERR = 0x0080, 3515 NETIF_MSG_TX_QUEUED = 0x0100, 3516 NETIF_MSG_INTR = 0x0200, 3517 NETIF_MSG_TX_DONE = 0x0400, 3518 NETIF_MSG_RX_STATUS = 0x0800, 3519 NETIF_MSG_PKTDATA = 0x1000, 3520 NETIF_MSG_HW = 0x2000, 3521 NETIF_MSG_WOL = 0x4000, 3522}; 3523 3524#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3525#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3526#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3527#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3528#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3529#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3530#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3531#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3532#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3533#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3534#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3535#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3536#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3537#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3538#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3539 3540static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3541{ 3542 /* use default */ 3543 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3544 return default_msg_enable_bits; 3545 if (debug_value == 0) /* no output */ 3546 return 0; 3547 /* set low N bits */ 3548 return (1 << debug_value) - 1; 3549} 3550 3551static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3552{ 3553 spin_lock(&txq->_xmit_lock); 3554 txq->xmit_lock_owner = cpu; 3555} 3556 3557static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3558{ 3559 spin_lock_bh(&txq->_xmit_lock); 3560 txq->xmit_lock_owner = smp_processor_id(); 3561} 3562 3563static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3564{ 3565 bool ok = spin_trylock(&txq->_xmit_lock); 3566 if (likely(ok)) 3567 txq->xmit_lock_owner = smp_processor_id(); 3568 return ok; 3569} 3570 3571static inline void __netif_tx_unlock(struct netdev_queue *txq) 3572{ 3573 txq->xmit_lock_owner = -1; 3574 spin_unlock(&txq->_xmit_lock); 3575} 3576 3577static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3578{ 3579 txq->xmit_lock_owner = -1; 3580 spin_unlock_bh(&txq->_xmit_lock); 3581} 3582 3583static inline void txq_trans_update(struct netdev_queue *txq) 3584{ 3585 if (txq->xmit_lock_owner != -1) 3586 txq->trans_start = jiffies; 3587} 3588 3589/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3590static inline void netif_trans_update(struct net_device *dev) 3591{ 3592 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3593 3594 if (txq->trans_start != jiffies) 3595 txq->trans_start = jiffies; 3596} 3597 3598/** 3599 * netif_tx_lock - grab network device transmit lock 3600 * @dev: network device 3601 * 3602 * Get network device transmit lock 3603 */ 3604static inline void netif_tx_lock(struct net_device *dev) 3605{ 3606 unsigned int i; 3607 int cpu; 3608 3609 spin_lock(&dev->tx_global_lock); 3610 cpu = smp_processor_id(); 3611 for (i = 0; i < dev->num_tx_queues; i++) { 3612 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3613 3614 /* We are the only thread of execution doing a 3615 * freeze, but we have to grab the _xmit_lock in 3616 * order to synchronize with threads which are in 3617 * the ->hard_start_xmit() handler and already 3618 * checked the frozen bit. 3619 */ 3620 __netif_tx_lock(txq, cpu); 3621 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3622 __netif_tx_unlock(txq); 3623 } 3624} 3625 3626static inline void netif_tx_lock_bh(struct net_device *dev) 3627{ 3628 local_bh_disable(); 3629 netif_tx_lock(dev); 3630} 3631 3632static inline void netif_tx_unlock(struct net_device *dev) 3633{ 3634 unsigned int i; 3635 3636 for (i = 0; i < dev->num_tx_queues; i++) { 3637 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3638 3639 /* No need to grab the _xmit_lock here. If the 3640 * queue is not stopped for another reason, we 3641 * force a schedule. 3642 */ 3643 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3644 netif_schedule_queue(txq); 3645 } 3646 spin_unlock(&dev->tx_global_lock); 3647} 3648 3649static inline void netif_tx_unlock_bh(struct net_device *dev) 3650{ 3651 netif_tx_unlock(dev); 3652 local_bh_enable(); 3653} 3654 3655#define HARD_TX_LOCK(dev, txq, cpu) { \ 3656 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3657 __netif_tx_lock(txq, cpu); \ 3658 } \ 3659} 3660 3661#define HARD_TX_TRYLOCK(dev, txq) \ 3662 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3663 __netif_tx_trylock(txq) : \ 3664 true ) 3665 3666#define HARD_TX_UNLOCK(dev, txq) { \ 3667 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3668 __netif_tx_unlock(txq); \ 3669 } \ 3670} 3671 3672static inline void netif_tx_disable(struct net_device *dev) 3673{ 3674 unsigned int i; 3675 int cpu; 3676 3677 local_bh_disable(); 3678 cpu = smp_processor_id(); 3679 for (i = 0; i < dev->num_tx_queues; i++) { 3680 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3681 3682 __netif_tx_lock(txq, cpu); 3683 netif_tx_stop_queue(txq); 3684 __netif_tx_unlock(txq); 3685 } 3686 local_bh_enable(); 3687} 3688 3689static inline void netif_addr_lock(struct net_device *dev) 3690{ 3691 spin_lock(&dev->addr_list_lock); 3692} 3693 3694static inline void netif_addr_lock_nested(struct net_device *dev) 3695{ 3696 int subclass = SINGLE_DEPTH_NESTING; 3697 3698 if (dev->netdev_ops->ndo_get_lock_subclass) 3699 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3700 3701 spin_lock_nested(&dev->addr_list_lock, subclass); 3702} 3703 3704static inline void netif_addr_lock_bh(struct net_device *dev) 3705{ 3706 spin_lock_bh(&dev->addr_list_lock); 3707} 3708 3709static inline void netif_addr_unlock(struct net_device *dev) 3710{ 3711 spin_unlock(&dev->addr_list_lock); 3712} 3713 3714static inline void netif_addr_unlock_bh(struct net_device *dev) 3715{ 3716 spin_unlock_bh(&dev->addr_list_lock); 3717} 3718 3719/* 3720 * dev_addrs walker. Should be used only for read access. Call with 3721 * rcu_read_lock held. 3722 */ 3723#define for_each_dev_addr(dev, ha) \ 3724 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3725 3726/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3727 3728void ether_setup(struct net_device *dev); 3729 3730/* Support for loadable net-drivers */ 3731struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3732 unsigned char name_assign_type, 3733 void (*setup)(struct net_device *), 3734 unsigned int txqs, unsigned int rxqs); 3735#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3736 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3737 3738#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3739 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3740 count) 3741 3742int register_netdev(struct net_device *dev); 3743void unregister_netdev(struct net_device *dev); 3744 3745/* General hardware address lists handling functions */ 3746int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3747 struct netdev_hw_addr_list *from_list, int addr_len); 3748void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3749 struct netdev_hw_addr_list *from_list, int addr_len); 3750int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3751 struct net_device *dev, 3752 int (*sync)(struct net_device *, const unsigned char *), 3753 int (*unsync)(struct net_device *, 3754 const unsigned char *)); 3755void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3756 struct net_device *dev, 3757 int (*unsync)(struct net_device *, 3758 const unsigned char *)); 3759void __hw_addr_init(struct netdev_hw_addr_list *list); 3760 3761/* Functions used for device addresses handling */ 3762int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3763 unsigned char addr_type); 3764int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3765 unsigned char addr_type); 3766void dev_addr_flush(struct net_device *dev); 3767int dev_addr_init(struct net_device *dev); 3768 3769/* Functions used for unicast addresses handling */ 3770int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3771int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3772int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3773int dev_uc_sync(struct net_device *to, struct net_device *from); 3774int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3775void dev_uc_unsync(struct net_device *to, struct net_device *from); 3776void dev_uc_flush(struct net_device *dev); 3777void dev_uc_init(struct net_device *dev); 3778 3779/** 3780 * __dev_uc_sync - Synchonize device's unicast list 3781 * @dev: device to sync 3782 * @sync: function to call if address should be added 3783 * @unsync: function to call if address should be removed 3784 * 3785 * Add newly added addresses to the interface, and release 3786 * addresses that have been deleted. 3787 */ 3788static inline int __dev_uc_sync(struct net_device *dev, 3789 int (*sync)(struct net_device *, 3790 const unsigned char *), 3791 int (*unsync)(struct net_device *, 3792 const unsigned char *)) 3793{ 3794 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3795} 3796 3797/** 3798 * __dev_uc_unsync - Remove synchronized addresses from device 3799 * @dev: device to sync 3800 * @unsync: function to call if address should be removed 3801 * 3802 * Remove all addresses that were added to the device by dev_uc_sync(). 3803 */ 3804static inline void __dev_uc_unsync(struct net_device *dev, 3805 int (*unsync)(struct net_device *, 3806 const unsigned char *)) 3807{ 3808 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3809} 3810 3811/* Functions used for multicast addresses handling */ 3812int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3813int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3814int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3815int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3816int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3817int dev_mc_sync(struct net_device *to, struct net_device *from); 3818int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3819void dev_mc_unsync(struct net_device *to, struct net_device *from); 3820void dev_mc_flush(struct net_device *dev); 3821void dev_mc_init(struct net_device *dev); 3822 3823/** 3824 * __dev_mc_sync - Synchonize device's multicast list 3825 * @dev: device to sync 3826 * @sync: function to call if address should be added 3827 * @unsync: function to call if address should be removed 3828 * 3829 * Add newly added addresses to the interface, and release 3830 * addresses that have been deleted. 3831 */ 3832static inline int __dev_mc_sync(struct net_device *dev, 3833 int (*sync)(struct net_device *, 3834 const unsigned char *), 3835 int (*unsync)(struct net_device *, 3836 const unsigned char *)) 3837{ 3838 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3839} 3840 3841/** 3842 * __dev_mc_unsync - Remove synchronized addresses from device 3843 * @dev: device to sync 3844 * @unsync: function to call if address should be removed 3845 * 3846 * Remove all addresses that were added to the device by dev_mc_sync(). 3847 */ 3848static inline void __dev_mc_unsync(struct net_device *dev, 3849 int (*unsync)(struct net_device *, 3850 const unsigned char *)) 3851{ 3852 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3853} 3854 3855/* Functions used for secondary unicast and multicast support */ 3856void dev_set_rx_mode(struct net_device *dev); 3857void __dev_set_rx_mode(struct net_device *dev); 3858int dev_set_promiscuity(struct net_device *dev, int inc); 3859int dev_set_allmulti(struct net_device *dev, int inc); 3860void netdev_state_change(struct net_device *dev); 3861void netdev_notify_peers(struct net_device *dev); 3862void netdev_features_change(struct net_device *dev); 3863/* Load a device via the kmod */ 3864void dev_load(struct net *net, const char *name); 3865struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3866 struct rtnl_link_stats64 *storage); 3867void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3868 const struct net_device_stats *netdev_stats); 3869 3870extern int netdev_max_backlog; 3871extern int netdev_tstamp_prequeue; 3872extern int weight_p; 3873 3874bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3875struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3876 struct list_head **iter); 3877struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3878 struct list_head **iter); 3879 3880/* iterate through upper list, must be called under RCU read lock */ 3881#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3882 for (iter = &(dev)->adj_list.upper, \ 3883 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3884 updev; \ 3885 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3886 3887/* iterate through upper list, must be called under RCU read lock */ 3888#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \ 3889 for (iter = &(dev)->all_adj_list.upper, \ 3890 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \ 3891 updev; \ 3892 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter))) 3893 3894void *netdev_lower_get_next_private(struct net_device *dev, 3895 struct list_head **iter); 3896void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3897 struct list_head **iter); 3898 3899#define netdev_for_each_lower_private(dev, priv, iter) \ 3900 for (iter = (dev)->adj_list.lower.next, \ 3901 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3902 priv; \ 3903 priv = netdev_lower_get_next_private(dev, &(iter))) 3904 3905#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3906 for (iter = &(dev)->adj_list.lower, \ 3907 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3908 priv; \ 3909 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3910 3911void *netdev_lower_get_next(struct net_device *dev, 3912 struct list_head **iter); 3913 3914#define netdev_for_each_lower_dev(dev, ldev, iter) \ 3915 for (iter = (dev)->adj_list.lower.next, \ 3916 ldev = netdev_lower_get_next(dev, &(iter)); \ 3917 ldev; \ 3918 ldev = netdev_lower_get_next(dev, &(iter))) 3919 3920struct net_device *netdev_all_lower_get_next(struct net_device *dev, 3921 struct list_head **iter); 3922struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 3923 struct list_head **iter); 3924 3925#define netdev_for_each_all_lower_dev(dev, ldev, iter) \ 3926 for (iter = (dev)->all_adj_list.lower.next, \ 3927 ldev = netdev_all_lower_get_next(dev, &(iter)); \ 3928 ldev; \ 3929 ldev = netdev_all_lower_get_next(dev, &(iter))) 3930 3931#define netdev_for_each_all_lower_dev_rcu(dev, ldev, iter) \ 3932 for (iter = &(dev)->all_adj_list.lower, \ 3933 ldev = netdev_all_lower_get_next_rcu(dev, &(iter)); \ 3934 ldev; \ 3935 ldev = netdev_all_lower_get_next_rcu(dev, &(iter))) 3936 3937void *netdev_adjacent_get_private(struct list_head *adj_list); 3938void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3939struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3940struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3941int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3942int netdev_master_upper_dev_link(struct net_device *dev, 3943 struct net_device *upper_dev, 3944 void *upper_priv, void *upper_info); 3945void netdev_upper_dev_unlink(struct net_device *dev, 3946 struct net_device *upper_dev); 3947void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3948void *netdev_lower_dev_get_private(struct net_device *dev, 3949 struct net_device *lower_dev); 3950void netdev_lower_state_changed(struct net_device *lower_dev, 3951 void *lower_state_info); 3952int netdev_default_l2upper_neigh_construct(struct net_device *dev, 3953 struct neighbour *n); 3954void netdev_default_l2upper_neigh_destroy(struct net_device *dev, 3955 struct neighbour *n); 3956 3957/* RSS keys are 40 or 52 bytes long */ 3958#define NETDEV_RSS_KEY_LEN 52 3959extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 3960void netdev_rss_key_fill(void *buffer, size_t len); 3961 3962int dev_get_nest_level(struct net_device *dev); 3963int skb_checksum_help(struct sk_buff *skb); 3964struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3965 netdev_features_t features, bool tx_path); 3966struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3967 netdev_features_t features); 3968 3969struct netdev_bonding_info { 3970 ifslave slave; 3971 ifbond master; 3972}; 3973 3974struct netdev_notifier_bonding_info { 3975 struct netdev_notifier_info info; /* must be first */ 3976 struct netdev_bonding_info bonding_info; 3977}; 3978 3979void netdev_bonding_info_change(struct net_device *dev, 3980 struct netdev_bonding_info *bonding_info); 3981 3982static inline 3983struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3984{ 3985 return __skb_gso_segment(skb, features, true); 3986} 3987__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3988 3989static inline bool can_checksum_protocol(netdev_features_t features, 3990 __be16 protocol) 3991{ 3992 if (protocol == htons(ETH_P_FCOE)) 3993 return !!(features & NETIF_F_FCOE_CRC); 3994 3995 /* Assume this is an IP checksum (not SCTP CRC) */ 3996 3997 if (features & NETIF_F_HW_CSUM) { 3998 /* Can checksum everything */ 3999 return true; 4000 } 4001 4002 switch (protocol) { 4003 case htons(ETH_P_IP): 4004 return !!(features & NETIF_F_IP_CSUM); 4005 case htons(ETH_P_IPV6): 4006 return !!(features & NETIF_F_IPV6_CSUM); 4007 default: 4008 return false; 4009 } 4010} 4011 4012/* Map an ethertype into IP protocol if possible */ 4013static inline int eproto_to_ipproto(int eproto) 4014{ 4015 switch (eproto) { 4016 case htons(ETH_P_IP): 4017 return IPPROTO_IP; 4018 case htons(ETH_P_IPV6): 4019 return IPPROTO_IPV6; 4020 default: 4021 return -1; 4022 } 4023} 4024 4025#ifdef CONFIG_BUG 4026void netdev_rx_csum_fault(struct net_device *dev); 4027#else 4028static inline void netdev_rx_csum_fault(struct net_device *dev) 4029{ 4030} 4031#endif 4032/* rx skb timestamps */ 4033void net_enable_timestamp(void); 4034void net_disable_timestamp(void); 4035 4036#ifdef CONFIG_PROC_FS 4037int __init dev_proc_init(void); 4038#else 4039#define dev_proc_init() 0 4040#endif 4041 4042static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4043 struct sk_buff *skb, struct net_device *dev, 4044 bool more) 4045{ 4046 skb->xmit_more = more ? 1 : 0; 4047 return ops->ndo_start_xmit(skb, dev); 4048} 4049 4050static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4051 struct netdev_queue *txq, bool more) 4052{ 4053 const struct net_device_ops *ops = dev->netdev_ops; 4054 int rc; 4055 4056 rc = __netdev_start_xmit(ops, skb, dev, more); 4057 if (rc == NETDEV_TX_OK) 4058 txq_trans_update(txq); 4059 4060 return rc; 4061} 4062 4063int netdev_class_create_file_ns(struct class_attribute *class_attr, 4064 const void *ns); 4065void netdev_class_remove_file_ns(struct class_attribute *class_attr, 4066 const void *ns); 4067 4068static inline int netdev_class_create_file(struct class_attribute *class_attr) 4069{ 4070 return netdev_class_create_file_ns(class_attr, NULL); 4071} 4072 4073static inline void netdev_class_remove_file(struct class_attribute *class_attr) 4074{ 4075 netdev_class_remove_file_ns(class_attr, NULL); 4076} 4077 4078extern struct kobj_ns_type_operations net_ns_type_operations; 4079 4080const char *netdev_drivername(const struct net_device *dev); 4081 4082void linkwatch_run_queue(void); 4083 4084static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4085 netdev_features_t f2) 4086{ 4087 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4088 if (f1 & NETIF_F_HW_CSUM) 4089 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4090 else 4091 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4092 } 4093 4094 return f1 & f2; 4095} 4096 4097static inline netdev_features_t netdev_get_wanted_features( 4098 struct net_device *dev) 4099{ 4100 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4101} 4102netdev_features_t netdev_increment_features(netdev_features_t all, 4103 netdev_features_t one, netdev_features_t mask); 4104 4105/* Allow TSO being used on stacked device : 4106 * Performing the GSO segmentation before last device 4107 * is a performance improvement. 4108 */ 4109static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4110 netdev_features_t mask) 4111{ 4112 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4113} 4114 4115int __netdev_update_features(struct net_device *dev); 4116void netdev_update_features(struct net_device *dev); 4117void netdev_change_features(struct net_device *dev); 4118 4119void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4120 struct net_device *dev); 4121 4122netdev_features_t passthru_features_check(struct sk_buff *skb, 4123 struct net_device *dev, 4124 netdev_features_t features); 4125netdev_features_t netif_skb_features(struct sk_buff *skb); 4126 4127static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4128{ 4129 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4130 4131 /* check flags correspondence */ 4132 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4133 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 4134 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4135 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4136 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4137 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4138 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4139 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4140 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4141 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4142 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4143 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4144 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4145 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4146 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4147 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4148 4149 return (features & feature) == feature; 4150} 4151 4152static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4153{ 4154 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4155 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4156} 4157 4158static inline bool netif_needs_gso(struct sk_buff *skb, 4159 netdev_features_t features) 4160{ 4161 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4162 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4163 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4164} 4165 4166static inline void netif_set_gso_max_size(struct net_device *dev, 4167 unsigned int size) 4168{ 4169 dev->gso_max_size = size; 4170} 4171 4172static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4173 int pulled_hlen, u16 mac_offset, 4174 int mac_len) 4175{ 4176 skb->protocol = protocol; 4177 skb->encapsulation = 1; 4178 skb_push(skb, pulled_hlen); 4179 skb_reset_transport_header(skb); 4180 skb->mac_header = mac_offset; 4181 skb->network_header = skb->mac_header + mac_len; 4182 skb->mac_len = mac_len; 4183} 4184 4185static inline bool netif_is_macsec(const struct net_device *dev) 4186{ 4187 return dev->priv_flags & IFF_MACSEC; 4188} 4189 4190static inline bool netif_is_macvlan(const struct net_device *dev) 4191{ 4192 return dev->priv_flags & IFF_MACVLAN; 4193} 4194 4195static inline bool netif_is_macvlan_port(const struct net_device *dev) 4196{ 4197 return dev->priv_flags & IFF_MACVLAN_PORT; 4198} 4199 4200static inline bool netif_is_ipvlan(const struct net_device *dev) 4201{ 4202 return dev->priv_flags & IFF_IPVLAN_SLAVE; 4203} 4204 4205static inline bool netif_is_ipvlan_port(const struct net_device *dev) 4206{ 4207 return dev->priv_flags & IFF_IPVLAN_MASTER; 4208} 4209 4210static inline bool netif_is_bond_master(const struct net_device *dev) 4211{ 4212 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4213} 4214 4215static inline bool netif_is_bond_slave(const struct net_device *dev) 4216{ 4217 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4218} 4219 4220static inline bool netif_supports_nofcs(struct net_device *dev) 4221{ 4222 return dev->priv_flags & IFF_SUPP_NOFCS; 4223} 4224 4225static inline bool netif_is_l3_master(const struct net_device *dev) 4226{ 4227 return dev->priv_flags & IFF_L3MDEV_MASTER; 4228} 4229 4230static inline bool netif_is_l3_slave(const struct net_device *dev) 4231{ 4232 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4233} 4234 4235static inline bool netif_is_bridge_master(const struct net_device *dev) 4236{ 4237 return dev->priv_flags & IFF_EBRIDGE; 4238} 4239 4240static inline bool netif_is_bridge_port(const struct net_device *dev) 4241{ 4242 return dev->priv_flags & IFF_BRIDGE_PORT; 4243} 4244 4245static inline bool netif_is_ovs_master(const struct net_device *dev) 4246{ 4247 return dev->priv_flags & IFF_OPENVSWITCH; 4248} 4249 4250static inline bool netif_is_team_master(const struct net_device *dev) 4251{ 4252 return dev->priv_flags & IFF_TEAM; 4253} 4254 4255static inline bool netif_is_team_port(const struct net_device *dev) 4256{ 4257 return dev->priv_flags & IFF_TEAM_PORT; 4258} 4259 4260static inline bool netif_is_lag_master(const struct net_device *dev) 4261{ 4262 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4263} 4264 4265static inline bool netif_is_lag_port(const struct net_device *dev) 4266{ 4267 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4268} 4269 4270static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4271{ 4272 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4273} 4274 4275/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4276static inline void netif_keep_dst(struct net_device *dev) 4277{ 4278 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4279} 4280 4281/* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4282static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4283{ 4284 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4285 return dev->priv_flags & IFF_MACSEC; 4286} 4287 4288extern struct pernet_operations __net_initdata loopback_net_ops; 4289 4290/* Logging, debugging and troubleshooting/diagnostic helpers. */ 4291 4292/* netdev_printk helpers, similar to dev_printk */ 4293 4294static inline const char *netdev_name(const struct net_device *dev) 4295{ 4296 if (!dev->name[0] || strchr(dev->name, '%')) 4297 return "(unnamed net_device)"; 4298 return dev->name; 4299} 4300 4301static inline const char *netdev_reg_state(const struct net_device *dev) 4302{ 4303 switch (dev->reg_state) { 4304 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4305 case NETREG_REGISTERED: return ""; 4306 case NETREG_UNREGISTERING: return " (unregistering)"; 4307 case NETREG_UNREGISTERED: return " (unregistered)"; 4308 case NETREG_RELEASED: return " (released)"; 4309 case NETREG_DUMMY: return " (dummy)"; 4310 } 4311 4312 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4313 return " (unknown)"; 4314} 4315 4316__printf(3, 4) 4317void netdev_printk(const char *level, const struct net_device *dev, 4318 const char *format, ...); 4319__printf(2, 3) 4320void netdev_emerg(const struct net_device *dev, const char *format, ...); 4321__printf(2, 3) 4322void netdev_alert(const struct net_device *dev, const char *format, ...); 4323__printf(2, 3) 4324void netdev_crit(const struct net_device *dev, const char *format, ...); 4325__printf(2, 3) 4326void netdev_err(const struct net_device *dev, const char *format, ...); 4327__printf(2, 3) 4328void netdev_warn(const struct net_device *dev, const char *format, ...); 4329__printf(2, 3) 4330void netdev_notice(const struct net_device *dev, const char *format, ...); 4331__printf(2, 3) 4332void netdev_info(const struct net_device *dev, const char *format, ...); 4333 4334#define MODULE_ALIAS_NETDEV(device) \ 4335 MODULE_ALIAS("netdev-" device) 4336 4337#if defined(CONFIG_DYNAMIC_DEBUG) 4338#define netdev_dbg(__dev, format, args...) \ 4339do { \ 4340 dynamic_netdev_dbg(__dev, format, ##args); \ 4341} while (0) 4342#elif defined(DEBUG) 4343#define netdev_dbg(__dev, format, args...) \ 4344 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4345#else 4346#define netdev_dbg(__dev, format, args...) \ 4347({ \ 4348 if (0) \ 4349 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4350}) 4351#endif 4352 4353#if defined(VERBOSE_DEBUG) 4354#define netdev_vdbg netdev_dbg 4355#else 4356 4357#define netdev_vdbg(dev, format, args...) \ 4358({ \ 4359 if (0) \ 4360 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4361 0; \ 4362}) 4363#endif 4364 4365/* 4366 * netdev_WARN() acts like dev_printk(), but with the key difference 4367 * of using a WARN/WARN_ON to get the message out, including the 4368 * file/line information and a backtrace. 4369 */ 4370#define netdev_WARN(dev, format, args...) \ 4371 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 4372 netdev_reg_state(dev), ##args) 4373 4374/* netif printk helpers, similar to netdev_printk */ 4375 4376#define netif_printk(priv, type, level, dev, fmt, args...) \ 4377do { \ 4378 if (netif_msg_##type(priv)) \ 4379 netdev_printk(level, (dev), fmt, ##args); \ 4380} while (0) 4381 4382#define netif_level(level, priv, type, dev, fmt, args...) \ 4383do { \ 4384 if (netif_msg_##type(priv)) \ 4385 netdev_##level(dev, fmt, ##args); \ 4386} while (0) 4387 4388#define netif_emerg(priv, type, dev, fmt, args...) \ 4389 netif_level(emerg, priv, type, dev, fmt, ##args) 4390#define netif_alert(priv, type, dev, fmt, args...) \ 4391 netif_level(alert, priv, type, dev, fmt, ##args) 4392#define netif_crit(priv, type, dev, fmt, args...) \ 4393 netif_level(crit, priv, type, dev, fmt, ##args) 4394#define netif_err(priv, type, dev, fmt, args...) \ 4395 netif_level(err, priv, type, dev, fmt, ##args) 4396#define netif_warn(priv, type, dev, fmt, args...) \ 4397 netif_level(warn, priv, type, dev, fmt, ##args) 4398#define netif_notice(priv, type, dev, fmt, args...) \ 4399 netif_level(notice, priv, type, dev, fmt, ##args) 4400#define netif_info(priv, type, dev, fmt, args...) \ 4401 netif_level(info, priv, type, dev, fmt, ##args) 4402 4403#if defined(CONFIG_DYNAMIC_DEBUG) 4404#define netif_dbg(priv, type, netdev, format, args...) \ 4405do { \ 4406 if (netif_msg_##type(priv)) \ 4407 dynamic_netdev_dbg(netdev, format, ##args); \ 4408} while (0) 4409#elif defined(DEBUG) 4410#define netif_dbg(priv, type, dev, format, args...) \ 4411 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4412#else 4413#define netif_dbg(priv, type, dev, format, args...) \ 4414({ \ 4415 if (0) \ 4416 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4417 0; \ 4418}) 4419#endif 4420 4421#if defined(VERBOSE_DEBUG) 4422#define netif_vdbg netif_dbg 4423#else 4424#define netif_vdbg(priv, type, dev, format, args...) \ 4425({ \ 4426 if (0) \ 4427 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4428 0; \ 4429}) 4430#endif 4431 4432/* 4433 * The list of packet types we will receive (as opposed to discard) 4434 * and the routines to invoke. 4435 * 4436 * Why 16. Because with 16 the only overlap we get on a hash of the 4437 * low nibble of the protocol value is RARP/SNAP/X.25. 4438 * 4439 * NOTE: That is no longer true with the addition of VLAN tags. Not 4440 * sure which should go first, but I bet it won't make much 4441 * difference if we are running VLANs. The good news is that 4442 * this protocol won't be in the list unless compiled in, so 4443 * the average user (w/out VLANs) will not be adversely affected. 4444 * --BLG 4445 * 4446 * 0800 IP 4447 * 8100 802.1Q VLAN 4448 * 0001 802.3 4449 * 0002 AX.25 4450 * 0004 802.2 4451 * 8035 RARP 4452 * 0005 SNAP 4453 * 0805 X.25 4454 * 0806 ARP 4455 * 8137 IPX 4456 * 0009 Localtalk 4457 * 86DD IPv6 4458 */ 4459#define PTYPE_HASH_SIZE (16) 4460#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4461 4462#endif /* _LINUX_NETDEVICE_H */