at v4.9 78 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/mmdebug.h> 9#include <linux/gfp.h> 10#include <linux/bug.h> 11#include <linux/list.h> 12#include <linux/mmzone.h> 13#include <linux/rbtree.h> 14#include <linux/atomic.h> 15#include <linux/debug_locks.h> 16#include <linux/mm_types.h> 17#include <linux/range.h> 18#include <linux/pfn.h> 19#include <linux/percpu-refcount.h> 20#include <linux/bit_spinlock.h> 21#include <linux/shrinker.h> 22#include <linux/resource.h> 23#include <linux/page_ext.h> 24#include <linux/err.h> 25#include <linux/page_ref.h> 26 27struct mempolicy; 28struct anon_vma; 29struct anon_vma_chain; 30struct file_ra_state; 31struct user_struct; 32struct writeback_control; 33struct bdi_writeback; 34 35#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 36extern unsigned long max_mapnr; 37 38static inline void set_max_mapnr(unsigned long limit) 39{ 40 max_mapnr = limit; 41} 42#else 43static inline void set_max_mapnr(unsigned long limit) { } 44#endif 45 46extern unsigned long totalram_pages; 47extern void * high_memory; 48extern int page_cluster; 49 50#ifdef CONFIG_SYSCTL 51extern int sysctl_legacy_va_layout; 52#else 53#define sysctl_legacy_va_layout 0 54#endif 55 56#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 57extern const int mmap_rnd_bits_min; 58extern const int mmap_rnd_bits_max; 59extern int mmap_rnd_bits __read_mostly; 60#endif 61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 62extern const int mmap_rnd_compat_bits_min; 63extern const int mmap_rnd_compat_bits_max; 64extern int mmap_rnd_compat_bits __read_mostly; 65#endif 66 67#include <asm/page.h> 68#include <asm/pgtable.h> 69#include <asm/processor.h> 70 71#ifndef __pa_symbol 72#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 73#endif 74 75#ifndef page_to_virt 76#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 77#endif 78 79/* 80 * To prevent common memory management code establishing 81 * a zero page mapping on a read fault. 82 * This macro should be defined within <asm/pgtable.h>. 83 * s390 does this to prevent multiplexing of hardware bits 84 * related to the physical page in case of virtualization. 85 */ 86#ifndef mm_forbids_zeropage 87#define mm_forbids_zeropage(X) (0) 88#endif 89 90/* 91 * Default maximum number of active map areas, this limits the number of vmas 92 * per mm struct. Users can overwrite this number by sysctl but there is a 93 * problem. 94 * 95 * When a program's coredump is generated as ELF format, a section is created 96 * per a vma. In ELF, the number of sections is represented in unsigned short. 97 * This means the number of sections should be smaller than 65535 at coredump. 98 * Because the kernel adds some informative sections to a image of program at 99 * generating coredump, we need some margin. The number of extra sections is 100 * 1-3 now and depends on arch. We use "5" as safe margin, here. 101 * 102 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 103 * not a hard limit any more. Although some userspace tools can be surprised by 104 * that. 105 */ 106#define MAPCOUNT_ELF_CORE_MARGIN (5) 107#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 108 109extern int sysctl_max_map_count; 110 111extern unsigned long sysctl_user_reserve_kbytes; 112extern unsigned long sysctl_admin_reserve_kbytes; 113 114extern int sysctl_overcommit_memory; 115extern int sysctl_overcommit_ratio; 116extern unsigned long sysctl_overcommit_kbytes; 117 118extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 119 size_t *, loff_t *); 120extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 121 size_t *, loff_t *); 122 123#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 124 125/* to align the pointer to the (next) page boundary */ 126#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 127 128/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 129#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 130 131/* 132 * Linux kernel virtual memory manager primitives. 133 * The idea being to have a "virtual" mm in the same way 134 * we have a virtual fs - giving a cleaner interface to the 135 * mm details, and allowing different kinds of memory mappings 136 * (from shared memory to executable loading to arbitrary 137 * mmap() functions). 138 */ 139 140extern struct kmem_cache *vm_area_cachep; 141 142#ifndef CONFIG_MMU 143extern struct rb_root nommu_region_tree; 144extern struct rw_semaphore nommu_region_sem; 145 146extern unsigned int kobjsize(const void *objp); 147#endif 148 149/* 150 * vm_flags in vm_area_struct, see mm_types.h. 151 * When changing, update also include/trace/events/mmflags.h 152 */ 153#define VM_NONE 0x00000000 154 155#define VM_READ 0x00000001 /* currently active flags */ 156#define VM_WRITE 0x00000002 157#define VM_EXEC 0x00000004 158#define VM_SHARED 0x00000008 159 160/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 161#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 162#define VM_MAYWRITE 0x00000020 163#define VM_MAYEXEC 0x00000040 164#define VM_MAYSHARE 0x00000080 165 166#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 167#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 168#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 169#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 170#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 171 172#define VM_LOCKED 0x00002000 173#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 174 175 /* Used by sys_madvise() */ 176#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 177#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 178 179#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 180#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 181#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 182#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 183#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 184#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 185#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 186#define VM_ARCH_2 0x02000000 187#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 188 189#ifdef CONFIG_MEM_SOFT_DIRTY 190# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 191#else 192# define VM_SOFTDIRTY 0 193#endif 194 195#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 196#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 197#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 198#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 199 200#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 201#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 202#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 203#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 204#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 205#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 206#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 207#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 208#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 209#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 210 211#if defined(CONFIG_X86) 212# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 213#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) 214# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 215# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 216# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 217# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 218# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 219#endif 220#elif defined(CONFIG_PPC) 221# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 222#elif defined(CONFIG_PARISC) 223# define VM_GROWSUP VM_ARCH_1 224#elif defined(CONFIG_METAG) 225# define VM_GROWSUP VM_ARCH_1 226#elif defined(CONFIG_IA64) 227# define VM_GROWSUP VM_ARCH_1 228#elif !defined(CONFIG_MMU) 229# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 230#endif 231 232#if defined(CONFIG_X86) 233/* MPX specific bounds table or bounds directory */ 234# define VM_MPX VM_ARCH_2 235#endif 236 237#ifndef VM_GROWSUP 238# define VM_GROWSUP VM_NONE 239#endif 240 241/* Bits set in the VMA until the stack is in its final location */ 242#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 243 244#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 245#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 246#endif 247 248#ifdef CONFIG_STACK_GROWSUP 249#define VM_STACK VM_GROWSUP 250#else 251#define VM_STACK VM_GROWSDOWN 252#endif 253 254#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 255 256/* 257 * Special vmas that are non-mergable, non-mlock()able. 258 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 259 */ 260#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 261 262/* This mask defines which mm->def_flags a process can inherit its parent */ 263#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 264 265/* This mask is used to clear all the VMA flags used by mlock */ 266#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 267 268/* 269 * mapping from the currently active vm_flags protection bits (the 270 * low four bits) to a page protection mask.. 271 */ 272extern pgprot_t protection_map[16]; 273 274#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 275#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 276#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 277#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 278#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 279#define FAULT_FLAG_TRIED 0x20 /* Second try */ 280#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 281#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 282#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 283 284/* 285 * vm_fault is filled by the the pagefault handler and passed to the vma's 286 * ->fault function. The vma's ->fault is responsible for returning a bitmask 287 * of VM_FAULT_xxx flags that give details about how the fault was handled. 288 * 289 * MM layer fills up gfp_mask for page allocations but fault handler might 290 * alter it if its implementation requires a different allocation context. 291 * 292 * pgoff should be used in favour of virtual_address, if possible. 293 */ 294struct vm_fault { 295 unsigned int flags; /* FAULT_FLAG_xxx flags */ 296 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 297 pgoff_t pgoff; /* Logical page offset based on vma */ 298 void __user *virtual_address; /* Faulting virtual address */ 299 300 struct page *cow_page; /* Handler may choose to COW */ 301 struct page *page; /* ->fault handlers should return a 302 * page here, unless VM_FAULT_NOPAGE 303 * is set (which is also implied by 304 * VM_FAULT_ERROR). 305 */ 306 void *entry; /* ->fault handler can alternatively 307 * return locked DAX entry. In that 308 * case handler should return 309 * VM_FAULT_DAX_LOCKED and fill in 310 * entry here. 311 */ 312}; 313 314/* 315 * Page fault context: passes though page fault handler instead of endless list 316 * of function arguments. 317 */ 318struct fault_env { 319 struct vm_area_struct *vma; /* Target VMA */ 320 unsigned long address; /* Faulting virtual address */ 321 unsigned int flags; /* FAULT_FLAG_xxx flags */ 322 pmd_t *pmd; /* Pointer to pmd entry matching 323 * the 'address' 324 */ 325 pte_t *pte; /* Pointer to pte entry matching 326 * the 'address'. NULL if the page 327 * table hasn't been allocated. 328 */ 329 spinlock_t *ptl; /* Page table lock. 330 * Protects pte page table if 'pte' 331 * is not NULL, otherwise pmd. 332 */ 333 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 334 * vm_ops->map_pages() calls 335 * alloc_set_pte() from atomic context. 336 * do_fault_around() pre-allocates 337 * page table to avoid allocation from 338 * atomic context. 339 */ 340}; 341 342/* 343 * These are the virtual MM functions - opening of an area, closing and 344 * unmapping it (needed to keep files on disk up-to-date etc), pointer 345 * to the functions called when a no-page or a wp-page exception occurs. 346 */ 347struct vm_operations_struct { 348 void (*open)(struct vm_area_struct * area); 349 void (*close)(struct vm_area_struct * area); 350 int (*mremap)(struct vm_area_struct * area); 351 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 352 int (*pmd_fault)(struct vm_area_struct *, unsigned long address, 353 pmd_t *, unsigned int flags); 354 void (*map_pages)(struct fault_env *fe, 355 pgoff_t start_pgoff, pgoff_t end_pgoff); 356 357 /* notification that a previously read-only page is about to become 358 * writable, if an error is returned it will cause a SIGBUS */ 359 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 360 361 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 362 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 363 364 /* called by access_process_vm when get_user_pages() fails, typically 365 * for use by special VMAs that can switch between memory and hardware 366 */ 367 int (*access)(struct vm_area_struct *vma, unsigned long addr, 368 void *buf, int len, int write); 369 370 /* Called by the /proc/PID/maps code to ask the vma whether it 371 * has a special name. Returning non-NULL will also cause this 372 * vma to be dumped unconditionally. */ 373 const char *(*name)(struct vm_area_struct *vma); 374 375#ifdef CONFIG_NUMA 376 /* 377 * set_policy() op must add a reference to any non-NULL @new mempolicy 378 * to hold the policy upon return. Caller should pass NULL @new to 379 * remove a policy and fall back to surrounding context--i.e. do not 380 * install a MPOL_DEFAULT policy, nor the task or system default 381 * mempolicy. 382 */ 383 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 384 385 /* 386 * get_policy() op must add reference [mpol_get()] to any policy at 387 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 388 * in mm/mempolicy.c will do this automatically. 389 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 390 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 391 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 392 * must return NULL--i.e., do not "fallback" to task or system default 393 * policy. 394 */ 395 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 396 unsigned long addr); 397#endif 398 /* 399 * Called by vm_normal_page() for special PTEs to find the 400 * page for @addr. This is useful if the default behavior 401 * (using pte_page()) would not find the correct page. 402 */ 403 struct page *(*find_special_page)(struct vm_area_struct *vma, 404 unsigned long addr); 405}; 406 407struct mmu_gather; 408struct inode; 409 410#define page_private(page) ((page)->private) 411#define set_page_private(page, v) ((page)->private = (v)) 412 413#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 414static inline int pmd_devmap(pmd_t pmd) 415{ 416 return 0; 417} 418#endif 419 420/* 421 * FIXME: take this include out, include page-flags.h in 422 * files which need it (119 of them) 423 */ 424#include <linux/page-flags.h> 425#include <linux/huge_mm.h> 426 427/* 428 * Methods to modify the page usage count. 429 * 430 * What counts for a page usage: 431 * - cache mapping (page->mapping) 432 * - private data (page->private) 433 * - page mapped in a task's page tables, each mapping 434 * is counted separately 435 * 436 * Also, many kernel routines increase the page count before a critical 437 * routine so they can be sure the page doesn't go away from under them. 438 */ 439 440/* 441 * Drop a ref, return true if the refcount fell to zero (the page has no users) 442 */ 443static inline int put_page_testzero(struct page *page) 444{ 445 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 446 return page_ref_dec_and_test(page); 447} 448 449/* 450 * Try to grab a ref unless the page has a refcount of zero, return false if 451 * that is the case. 452 * This can be called when MMU is off so it must not access 453 * any of the virtual mappings. 454 */ 455static inline int get_page_unless_zero(struct page *page) 456{ 457 return page_ref_add_unless(page, 1, 0); 458} 459 460extern int page_is_ram(unsigned long pfn); 461 462enum { 463 REGION_INTERSECTS, 464 REGION_DISJOINT, 465 REGION_MIXED, 466}; 467 468int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 469 unsigned long desc); 470 471/* Support for virtually mapped pages */ 472struct page *vmalloc_to_page(const void *addr); 473unsigned long vmalloc_to_pfn(const void *addr); 474 475/* 476 * Determine if an address is within the vmalloc range 477 * 478 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 479 * is no special casing required. 480 */ 481static inline bool is_vmalloc_addr(const void *x) 482{ 483#ifdef CONFIG_MMU 484 unsigned long addr = (unsigned long)x; 485 486 return addr >= VMALLOC_START && addr < VMALLOC_END; 487#else 488 return false; 489#endif 490} 491#ifdef CONFIG_MMU 492extern int is_vmalloc_or_module_addr(const void *x); 493#else 494static inline int is_vmalloc_or_module_addr(const void *x) 495{ 496 return 0; 497} 498#endif 499 500extern void kvfree(const void *addr); 501 502static inline atomic_t *compound_mapcount_ptr(struct page *page) 503{ 504 return &page[1].compound_mapcount; 505} 506 507static inline int compound_mapcount(struct page *page) 508{ 509 VM_BUG_ON_PAGE(!PageCompound(page), page); 510 page = compound_head(page); 511 return atomic_read(compound_mapcount_ptr(page)) + 1; 512} 513 514/* 515 * The atomic page->_mapcount, starts from -1: so that transitions 516 * both from it and to it can be tracked, using atomic_inc_and_test 517 * and atomic_add_negative(-1). 518 */ 519static inline void page_mapcount_reset(struct page *page) 520{ 521 atomic_set(&(page)->_mapcount, -1); 522} 523 524int __page_mapcount(struct page *page); 525 526static inline int page_mapcount(struct page *page) 527{ 528 VM_BUG_ON_PAGE(PageSlab(page), page); 529 530 if (unlikely(PageCompound(page))) 531 return __page_mapcount(page); 532 return atomic_read(&page->_mapcount) + 1; 533} 534 535#ifdef CONFIG_TRANSPARENT_HUGEPAGE 536int total_mapcount(struct page *page); 537int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 538#else 539static inline int total_mapcount(struct page *page) 540{ 541 return page_mapcount(page); 542} 543static inline int page_trans_huge_mapcount(struct page *page, 544 int *total_mapcount) 545{ 546 int mapcount = page_mapcount(page); 547 if (total_mapcount) 548 *total_mapcount = mapcount; 549 return mapcount; 550} 551#endif 552 553static inline struct page *virt_to_head_page(const void *x) 554{ 555 struct page *page = virt_to_page(x); 556 557 return compound_head(page); 558} 559 560void __put_page(struct page *page); 561 562void put_pages_list(struct list_head *pages); 563 564void split_page(struct page *page, unsigned int order); 565 566/* 567 * Compound pages have a destructor function. Provide a 568 * prototype for that function and accessor functions. 569 * These are _only_ valid on the head of a compound page. 570 */ 571typedef void compound_page_dtor(struct page *); 572 573/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 574enum compound_dtor_id { 575 NULL_COMPOUND_DTOR, 576 COMPOUND_PAGE_DTOR, 577#ifdef CONFIG_HUGETLB_PAGE 578 HUGETLB_PAGE_DTOR, 579#endif 580#ifdef CONFIG_TRANSPARENT_HUGEPAGE 581 TRANSHUGE_PAGE_DTOR, 582#endif 583 NR_COMPOUND_DTORS, 584}; 585extern compound_page_dtor * const compound_page_dtors[]; 586 587static inline void set_compound_page_dtor(struct page *page, 588 enum compound_dtor_id compound_dtor) 589{ 590 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 591 page[1].compound_dtor = compound_dtor; 592} 593 594static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 595{ 596 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 597 return compound_page_dtors[page[1].compound_dtor]; 598} 599 600static inline unsigned int compound_order(struct page *page) 601{ 602 if (!PageHead(page)) 603 return 0; 604 return page[1].compound_order; 605} 606 607static inline void set_compound_order(struct page *page, unsigned int order) 608{ 609 page[1].compound_order = order; 610} 611 612void free_compound_page(struct page *page); 613 614#ifdef CONFIG_MMU 615/* 616 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 617 * servicing faults for write access. In the normal case, do always want 618 * pte_mkwrite. But get_user_pages can cause write faults for mappings 619 * that do not have writing enabled, when used by access_process_vm. 620 */ 621static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 622{ 623 if (likely(vma->vm_flags & VM_WRITE)) 624 pte = pte_mkwrite(pte); 625 return pte; 626} 627 628int alloc_set_pte(struct fault_env *fe, struct mem_cgroup *memcg, 629 struct page *page); 630#endif 631 632/* 633 * Multiple processes may "see" the same page. E.g. for untouched 634 * mappings of /dev/null, all processes see the same page full of 635 * zeroes, and text pages of executables and shared libraries have 636 * only one copy in memory, at most, normally. 637 * 638 * For the non-reserved pages, page_count(page) denotes a reference count. 639 * page_count() == 0 means the page is free. page->lru is then used for 640 * freelist management in the buddy allocator. 641 * page_count() > 0 means the page has been allocated. 642 * 643 * Pages are allocated by the slab allocator in order to provide memory 644 * to kmalloc and kmem_cache_alloc. In this case, the management of the 645 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 646 * unless a particular usage is carefully commented. (the responsibility of 647 * freeing the kmalloc memory is the caller's, of course). 648 * 649 * A page may be used by anyone else who does a __get_free_page(). 650 * In this case, page_count still tracks the references, and should only 651 * be used through the normal accessor functions. The top bits of page->flags 652 * and page->virtual store page management information, but all other fields 653 * are unused and could be used privately, carefully. The management of this 654 * page is the responsibility of the one who allocated it, and those who have 655 * subsequently been given references to it. 656 * 657 * The other pages (we may call them "pagecache pages") are completely 658 * managed by the Linux memory manager: I/O, buffers, swapping etc. 659 * The following discussion applies only to them. 660 * 661 * A pagecache page contains an opaque `private' member, which belongs to the 662 * page's address_space. Usually, this is the address of a circular list of 663 * the page's disk buffers. PG_private must be set to tell the VM to call 664 * into the filesystem to release these pages. 665 * 666 * A page may belong to an inode's memory mapping. In this case, page->mapping 667 * is the pointer to the inode, and page->index is the file offset of the page, 668 * in units of PAGE_SIZE. 669 * 670 * If pagecache pages are not associated with an inode, they are said to be 671 * anonymous pages. These may become associated with the swapcache, and in that 672 * case PG_swapcache is set, and page->private is an offset into the swapcache. 673 * 674 * In either case (swapcache or inode backed), the pagecache itself holds one 675 * reference to the page. Setting PG_private should also increment the 676 * refcount. The each user mapping also has a reference to the page. 677 * 678 * The pagecache pages are stored in a per-mapping radix tree, which is 679 * rooted at mapping->page_tree, and indexed by offset. 680 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 681 * lists, we instead now tag pages as dirty/writeback in the radix tree. 682 * 683 * All pagecache pages may be subject to I/O: 684 * - inode pages may need to be read from disk, 685 * - inode pages which have been modified and are MAP_SHARED may need 686 * to be written back to the inode on disk, 687 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 688 * modified may need to be swapped out to swap space and (later) to be read 689 * back into memory. 690 */ 691 692/* 693 * The zone field is never updated after free_area_init_core() 694 * sets it, so none of the operations on it need to be atomic. 695 */ 696 697/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 698#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 699#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 700#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 701#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 702 703/* 704 * Define the bit shifts to access each section. For non-existent 705 * sections we define the shift as 0; that plus a 0 mask ensures 706 * the compiler will optimise away reference to them. 707 */ 708#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 709#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 710#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 711#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 712 713/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 714#ifdef NODE_NOT_IN_PAGE_FLAGS 715#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 716#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 717 SECTIONS_PGOFF : ZONES_PGOFF) 718#else 719#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 720#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 721 NODES_PGOFF : ZONES_PGOFF) 722#endif 723 724#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 725 726#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 727#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 728#endif 729 730#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 731#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 732#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 733#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 734#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 735 736static inline enum zone_type page_zonenum(const struct page *page) 737{ 738 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 739} 740 741#ifdef CONFIG_ZONE_DEVICE 742void get_zone_device_page(struct page *page); 743void put_zone_device_page(struct page *page); 744static inline bool is_zone_device_page(const struct page *page) 745{ 746 return page_zonenum(page) == ZONE_DEVICE; 747} 748#else 749static inline void get_zone_device_page(struct page *page) 750{ 751} 752static inline void put_zone_device_page(struct page *page) 753{ 754} 755static inline bool is_zone_device_page(const struct page *page) 756{ 757 return false; 758} 759#endif 760 761static inline void get_page(struct page *page) 762{ 763 page = compound_head(page); 764 /* 765 * Getting a normal page or the head of a compound page 766 * requires to already have an elevated page->_refcount. 767 */ 768 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 769 page_ref_inc(page); 770 771 if (unlikely(is_zone_device_page(page))) 772 get_zone_device_page(page); 773} 774 775static inline void put_page(struct page *page) 776{ 777 page = compound_head(page); 778 779 if (put_page_testzero(page)) 780 __put_page(page); 781 782 if (unlikely(is_zone_device_page(page))) 783 put_zone_device_page(page); 784} 785 786#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 787#define SECTION_IN_PAGE_FLAGS 788#endif 789 790/* 791 * The identification function is mainly used by the buddy allocator for 792 * determining if two pages could be buddies. We are not really identifying 793 * the zone since we could be using the section number id if we do not have 794 * node id available in page flags. 795 * We only guarantee that it will return the same value for two combinable 796 * pages in a zone. 797 */ 798static inline int page_zone_id(struct page *page) 799{ 800 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 801} 802 803static inline int zone_to_nid(struct zone *zone) 804{ 805#ifdef CONFIG_NUMA 806 return zone->node; 807#else 808 return 0; 809#endif 810} 811 812#ifdef NODE_NOT_IN_PAGE_FLAGS 813extern int page_to_nid(const struct page *page); 814#else 815static inline int page_to_nid(const struct page *page) 816{ 817 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 818} 819#endif 820 821#ifdef CONFIG_NUMA_BALANCING 822static inline int cpu_pid_to_cpupid(int cpu, int pid) 823{ 824 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 825} 826 827static inline int cpupid_to_pid(int cpupid) 828{ 829 return cpupid & LAST__PID_MASK; 830} 831 832static inline int cpupid_to_cpu(int cpupid) 833{ 834 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 835} 836 837static inline int cpupid_to_nid(int cpupid) 838{ 839 return cpu_to_node(cpupid_to_cpu(cpupid)); 840} 841 842static inline bool cpupid_pid_unset(int cpupid) 843{ 844 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 845} 846 847static inline bool cpupid_cpu_unset(int cpupid) 848{ 849 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 850} 851 852static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 853{ 854 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 855} 856 857#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 858#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 859static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 860{ 861 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 862} 863 864static inline int page_cpupid_last(struct page *page) 865{ 866 return page->_last_cpupid; 867} 868static inline void page_cpupid_reset_last(struct page *page) 869{ 870 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 871} 872#else 873static inline int page_cpupid_last(struct page *page) 874{ 875 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 876} 877 878extern int page_cpupid_xchg_last(struct page *page, int cpupid); 879 880static inline void page_cpupid_reset_last(struct page *page) 881{ 882 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 883} 884#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 885#else /* !CONFIG_NUMA_BALANCING */ 886static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 887{ 888 return page_to_nid(page); /* XXX */ 889} 890 891static inline int page_cpupid_last(struct page *page) 892{ 893 return page_to_nid(page); /* XXX */ 894} 895 896static inline int cpupid_to_nid(int cpupid) 897{ 898 return -1; 899} 900 901static inline int cpupid_to_pid(int cpupid) 902{ 903 return -1; 904} 905 906static inline int cpupid_to_cpu(int cpupid) 907{ 908 return -1; 909} 910 911static inline int cpu_pid_to_cpupid(int nid, int pid) 912{ 913 return -1; 914} 915 916static inline bool cpupid_pid_unset(int cpupid) 917{ 918 return 1; 919} 920 921static inline void page_cpupid_reset_last(struct page *page) 922{ 923} 924 925static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 926{ 927 return false; 928} 929#endif /* CONFIG_NUMA_BALANCING */ 930 931static inline struct zone *page_zone(const struct page *page) 932{ 933 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 934} 935 936static inline pg_data_t *page_pgdat(const struct page *page) 937{ 938 return NODE_DATA(page_to_nid(page)); 939} 940 941#ifdef SECTION_IN_PAGE_FLAGS 942static inline void set_page_section(struct page *page, unsigned long section) 943{ 944 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 945 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 946} 947 948static inline unsigned long page_to_section(const struct page *page) 949{ 950 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 951} 952#endif 953 954static inline void set_page_zone(struct page *page, enum zone_type zone) 955{ 956 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 957 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 958} 959 960static inline void set_page_node(struct page *page, unsigned long node) 961{ 962 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 963 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 964} 965 966static inline void set_page_links(struct page *page, enum zone_type zone, 967 unsigned long node, unsigned long pfn) 968{ 969 set_page_zone(page, zone); 970 set_page_node(page, node); 971#ifdef SECTION_IN_PAGE_FLAGS 972 set_page_section(page, pfn_to_section_nr(pfn)); 973#endif 974} 975 976#ifdef CONFIG_MEMCG 977static inline struct mem_cgroup *page_memcg(struct page *page) 978{ 979 return page->mem_cgroup; 980} 981static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 982{ 983 WARN_ON_ONCE(!rcu_read_lock_held()); 984 return READ_ONCE(page->mem_cgroup); 985} 986#else 987static inline struct mem_cgroup *page_memcg(struct page *page) 988{ 989 return NULL; 990} 991static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 992{ 993 WARN_ON_ONCE(!rcu_read_lock_held()); 994 return NULL; 995} 996#endif 997 998/* 999 * Some inline functions in vmstat.h depend on page_zone() 1000 */ 1001#include <linux/vmstat.h> 1002 1003static __always_inline void *lowmem_page_address(const struct page *page) 1004{ 1005 return page_to_virt(page); 1006} 1007 1008#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1009#define HASHED_PAGE_VIRTUAL 1010#endif 1011 1012#if defined(WANT_PAGE_VIRTUAL) 1013static inline void *page_address(const struct page *page) 1014{ 1015 return page->virtual; 1016} 1017static inline void set_page_address(struct page *page, void *address) 1018{ 1019 page->virtual = address; 1020} 1021#define page_address_init() do { } while(0) 1022#endif 1023 1024#if defined(HASHED_PAGE_VIRTUAL) 1025void *page_address(const struct page *page); 1026void set_page_address(struct page *page, void *virtual); 1027void page_address_init(void); 1028#endif 1029 1030#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1031#define page_address(page) lowmem_page_address(page) 1032#define set_page_address(page, address) do { } while(0) 1033#define page_address_init() do { } while(0) 1034#endif 1035 1036extern void *page_rmapping(struct page *page); 1037extern struct anon_vma *page_anon_vma(struct page *page); 1038extern struct address_space *page_mapping(struct page *page); 1039 1040extern struct address_space *__page_file_mapping(struct page *); 1041 1042static inline 1043struct address_space *page_file_mapping(struct page *page) 1044{ 1045 if (unlikely(PageSwapCache(page))) 1046 return __page_file_mapping(page); 1047 1048 return page->mapping; 1049} 1050 1051extern pgoff_t __page_file_index(struct page *page); 1052 1053/* 1054 * Return the pagecache index of the passed page. Regular pagecache pages 1055 * use ->index whereas swapcache pages use swp_offset(->private) 1056 */ 1057static inline pgoff_t page_index(struct page *page) 1058{ 1059 if (unlikely(PageSwapCache(page))) 1060 return __page_file_index(page); 1061 return page->index; 1062} 1063 1064bool page_mapped(struct page *page); 1065struct address_space *page_mapping(struct page *page); 1066 1067/* 1068 * Return true only if the page has been allocated with 1069 * ALLOC_NO_WATERMARKS and the low watermark was not 1070 * met implying that the system is under some pressure. 1071 */ 1072static inline bool page_is_pfmemalloc(struct page *page) 1073{ 1074 /* 1075 * Page index cannot be this large so this must be 1076 * a pfmemalloc page. 1077 */ 1078 return page->index == -1UL; 1079} 1080 1081/* 1082 * Only to be called by the page allocator on a freshly allocated 1083 * page. 1084 */ 1085static inline void set_page_pfmemalloc(struct page *page) 1086{ 1087 page->index = -1UL; 1088} 1089 1090static inline void clear_page_pfmemalloc(struct page *page) 1091{ 1092 page->index = 0; 1093} 1094 1095/* 1096 * Different kinds of faults, as returned by handle_mm_fault(). 1097 * Used to decide whether a process gets delivered SIGBUS or 1098 * just gets major/minor fault counters bumped up. 1099 */ 1100 1101#define VM_FAULT_OOM 0x0001 1102#define VM_FAULT_SIGBUS 0x0002 1103#define VM_FAULT_MAJOR 0x0004 1104#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1105#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1106#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1107#define VM_FAULT_SIGSEGV 0x0040 1108 1109#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1110#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1111#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1112#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1113#define VM_FAULT_DAX_LOCKED 0x1000 /* ->fault has locked DAX entry */ 1114 1115#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1116 1117#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1118 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1119 VM_FAULT_FALLBACK) 1120 1121/* Encode hstate index for a hwpoisoned large page */ 1122#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1123#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1124 1125/* 1126 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1127 */ 1128extern void pagefault_out_of_memory(void); 1129 1130#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1131 1132/* 1133 * Flags passed to show_mem() and show_free_areas() to suppress output in 1134 * various contexts. 1135 */ 1136#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1137 1138extern void show_free_areas(unsigned int flags); 1139extern bool skip_free_areas_node(unsigned int flags, int nid); 1140 1141int shmem_zero_setup(struct vm_area_struct *); 1142#ifdef CONFIG_SHMEM 1143bool shmem_mapping(struct address_space *mapping); 1144#else 1145static inline bool shmem_mapping(struct address_space *mapping) 1146{ 1147 return false; 1148} 1149#endif 1150 1151extern bool can_do_mlock(void); 1152extern int user_shm_lock(size_t, struct user_struct *); 1153extern void user_shm_unlock(size_t, struct user_struct *); 1154 1155/* 1156 * Parameter block passed down to zap_pte_range in exceptional cases. 1157 */ 1158struct zap_details { 1159 struct address_space *check_mapping; /* Check page->mapping if set */ 1160 pgoff_t first_index; /* Lowest page->index to unmap */ 1161 pgoff_t last_index; /* Highest page->index to unmap */ 1162 bool ignore_dirty; /* Ignore dirty pages */ 1163 bool check_swap_entries; /* Check also swap entries */ 1164}; 1165 1166struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1167 pte_t pte); 1168struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1169 pmd_t pmd); 1170 1171int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1172 unsigned long size); 1173void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1174 unsigned long size, struct zap_details *); 1175void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1176 unsigned long start, unsigned long end); 1177 1178/** 1179 * mm_walk - callbacks for walk_page_range 1180 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1181 * this handler is required to be able to handle 1182 * pmd_trans_huge() pmds. They may simply choose to 1183 * split_huge_page() instead of handling it explicitly. 1184 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1185 * @pte_hole: if set, called for each hole at all levels 1186 * @hugetlb_entry: if set, called for each hugetlb entry 1187 * @test_walk: caller specific callback function to determine whether 1188 * we walk over the current vma or not. Returning 0 1189 * value means "do page table walk over the current vma," 1190 * and a negative one means "abort current page table walk 1191 * right now." 1 means "skip the current vma." 1192 * @mm: mm_struct representing the target process of page table walk 1193 * @vma: vma currently walked (NULL if walking outside vmas) 1194 * @private: private data for callbacks' usage 1195 * 1196 * (see the comment on walk_page_range() for more details) 1197 */ 1198struct mm_walk { 1199 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1200 unsigned long next, struct mm_walk *walk); 1201 int (*pte_entry)(pte_t *pte, unsigned long addr, 1202 unsigned long next, struct mm_walk *walk); 1203 int (*pte_hole)(unsigned long addr, unsigned long next, 1204 struct mm_walk *walk); 1205 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1206 unsigned long addr, unsigned long next, 1207 struct mm_walk *walk); 1208 int (*test_walk)(unsigned long addr, unsigned long next, 1209 struct mm_walk *walk); 1210 struct mm_struct *mm; 1211 struct vm_area_struct *vma; 1212 void *private; 1213}; 1214 1215int walk_page_range(unsigned long addr, unsigned long end, 1216 struct mm_walk *walk); 1217int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1218void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1219 unsigned long end, unsigned long floor, unsigned long ceiling); 1220int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1221 struct vm_area_struct *vma); 1222void unmap_mapping_range(struct address_space *mapping, 1223 loff_t const holebegin, loff_t const holelen, int even_cows); 1224int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1225 unsigned long *pfn); 1226int follow_phys(struct vm_area_struct *vma, unsigned long address, 1227 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1228int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1229 void *buf, int len, int write); 1230 1231static inline void unmap_shared_mapping_range(struct address_space *mapping, 1232 loff_t const holebegin, loff_t const holelen) 1233{ 1234 unmap_mapping_range(mapping, holebegin, holelen, 0); 1235} 1236 1237extern void truncate_pagecache(struct inode *inode, loff_t new); 1238extern void truncate_setsize(struct inode *inode, loff_t newsize); 1239void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1240void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1241int truncate_inode_page(struct address_space *mapping, struct page *page); 1242int generic_error_remove_page(struct address_space *mapping, struct page *page); 1243int invalidate_inode_page(struct page *page); 1244 1245#ifdef CONFIG_MMU 1246extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 1247 unsigned int flags); 1248extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1249 unsigned long address, unsigned int fault_flags, 1250 bool *unlocked); 1251#else 1252static inline int handle_mm_fault(struct vm_area_struct *vma, 1253 unsigned long address, unsigned int flags) 1254{ 1255 /* should never happen if there's no MMU */ 1256 BUG(); 1257 return VM_FAULT_SIGBUS; 1258} 1259static inline int fixup_user_fault(struct task_struct *tsk, 1260 struct mm_struct *mm, unsigned long address, 1261 unsigned int fault_flags, bool *unlocked) 1262{ 1263 /* should never happen if there's no MMU */ 1264 BUG(); 1265 return -EFAULT; 1266} 1267#endif 1268 1269extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1270 unsigned int gup_flags); 1271extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1272 void *buf, int len, unsigned int gup_flags); 1273 1274long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1275 unsigned long start, unsigned long nr_pages, 1276 unsigned int gup_flags, struct page **pages, 1277 struct vm_area_struct **vmas); 1278long get_user_pages(unsigned long start, unsigned long nr_pages, 1279 unsigned int gup_flags, struct page **pages, 1280 struct vm_area_struct **vmas); 1281long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1282 unsigned int gup_flags, struct page **pages, int *locked); 1283long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1284 unsigned long start, unsigned long nr_pages, 1285 struct page **pages, unsigned int gup_flags); 1286long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1287 struct page **pages, unsigned int gup_flags); 1288int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1289 struct page **pages); 1290 1291/* Container for pinned pfns / pages */ 1292struct frame_vector { 1293 unsigned int nr_allocated; /* Number of frames we have space for */ 1294 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1295 bool got_ref; /* Did we pin pages by getting page ref? */ 1296 bool is_pfns; /* Does array contain pages or pfns? */ 1297 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1298 * pfns_vector_pages() or pfns_vector_pfns() 1299 * for access */ 1300}; 1301 1302struct frame_vector *frame_vector_create(unsigned int nr_frames); 1303void frame_vector_destroy(struct frame_vector *vec); 1304int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1305 unsigned int gup_flags, struct frame_vector *vec); 1306void put_vaddr_frames(struct frame_vector *vec); 1307int frame_vector_to_pages(struct frame_vector *vec); 1308void frame_vector_to_pfns(struct frame_vector *vec); 1309 1310static inline unsigned int frame_vector_count(struct frame_vector *vec) 1311{ 1312 return vec->nr_frames; 1313} 1314 1315static inline struct page **frame_vector_pages(struct frame_vector *vec) 1316{ 1317 if (vec->is_pfns) { 1318 int err = frame_vector_to_pages(vec); 1319 1320 if (err) 1321 return ERR_PTR(err); 1322 } 1323 return (struct page **)(vec->ptrs); 1324} 1325 1326static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1327{ 1328 if (!vec->is_pfns) 1329 frame_vector_to_pfns(vec); 1330 return (unsigned long *)(vec->ptrs); 1331} 1332 1333struct kvec; 1334int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1335 struct page **pages); 1336int get_kernel_page(unsigned long start, int write, struct page **pages); 1337struct page *get_dump_page(unsigned long addr); 1338 1339extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1340extern void do_invalidatepage(struct page *page, unsigned int offset, 1341 unsigned int length); 1342 1343int __set_page_dirty_nobuffers(struct page *page); 1344int __set_page_dirty_no_writeback(struct page *page); 1345int redirty_page_for_writepage(struct writeback_control *wbc, 1346 struct page *page); 1347void account_page_dirtied(struct page *page, struct address_space *mapping); 1348void account_page_cleaned(struct page *page, struct address_space *mapping, 1349 struct bdi_writeback *wb); 1350int set_page_dirty(struct page *page); 1351int set_page_dirty_lock(struct page *page); 1352void cancel_dirty_page(struct page *page); 1353int clear_page_dirty_for_io(struct page *page); 1354 1355int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1356 1357/* Is the vma a continuation of the stack vma above it? */ 1358static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1359{ 1360 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1361} 1362 1363static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1364{ 1365 return !vma->vm_ops; 1366} 1367 1368static inline int stack_guard_page_start(struct vm_area_struct *vma, 1369 unsigned long addr) 1370{ 1371 return (vma->vm_flags & VM_GROWSDOWN) && 1372 (vma->vm_start == addr) && 1373 !vma_growsdown(vma->vm_prev, addr); 1374} 1375 1376/* Is the vma a continuation of the stack vma below it? */ 1377static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1378{ 1379 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1380} 1381 1382static inline int stack_guard_page_end(struct vm_area_struct *vma, 1383 unsigned long addr) 1384{ 1385 return (vma->vm_flags & VM_GROWSUP) && 1386 (vma->vm_end == addr) && 1387 !vma_growsup(vma->vm_next, addr); 1388} 1389 1390int vma_is_stack_for_current(struct vm_area_struct *vma); 1391 1392extern unsigned long move_page_tables(struct vm_area_struct *vma, 1393 unsigned long old_addr, struct vm_area_struct *new_vma, 1394 unsigned long new_addr, unsigned long len, 1395 bool need_rmap_locks); 1396extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1397 unsigned long end, pgprot_t newprot, 1398 int dirty_accountable, int prot_numa); 1399extern int mprotect_fixup(struct vm_area_struct *vma, 1400 struct vm_area_struct **pprev, unsigned long start, 1401 unsigned long end, unsigned long newflags); 1402 1403/* 1404 * doesn't attempt to fault and will return short. 1405 */ 1406int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1407 struct page **pages); 1408/* 1409 * per-process(per-mm_struct) statistics. 1410 */ 1411static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1412{ 1413 long val = atomic_long_read(&mm->rss_stat.count[member]); 1414 1415#ifdef SPLIT_RSS_COUNTING 1416 /* 1417 * counter is updated in asynchronous manner and may go to minus. 1418 * But it's never be expected number for users. 1419 */ 1420 if (val < 0) 1421 val = 0; 1422#endif 1423 return (unsigned long)val; 1424} 1425 1426static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1427{ 1428 atomic_long_add(value, &mm->rss_stat.count[member]); 1429} 1430 1431static inline void inc_mm_counter(struct mm_struct *mm, int member) 1432{ 1433 atomic_long_inc(&mm->rss_stat.count[member]); 1434} 1435 1436static inline void dec_mm_counter(struct mm_struct *mm, int member) 1437{ 1438 atomic_long_dec(&mm->rss_stat.count[member]); 1439} 1440 1441/* Optimized variant when page is already known not to be PageAnon */ 1442static inline int mm_counter_file(struct page *page) 1443{ 1444 if (PageSwapBacked(page)) 1445 return MM_SHMEMPAGES; 1446 return MM_FILEPAGES; 1447} 1448 1449static inline int mm_counter(struct page *page) 1450{ 1451 if (PageAnon(page)) 1452 return MM_ANONPAGES; 1453 return mm_counter_file(page); 1454} 1455 1456static inline unsigned long get_mm_rss(struct mm_struct *mm) 1457{ 1458 return get_mm_counter(mm, MM_FILEPAGES) + 1459 get_mm_counter(mm, MM_ANONPAGES) + 1460 get_mm_counter(mm, MM_SHMEMPAGES); 1461} 1462 1463static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1464{ 1465 return max(mm->hiwater_rss, get_mm_rss(mm)); 1466} 1467 1468static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1469{ 1470 return max(mm->hiwater_vm, mm->total_vm); 1471} 1472 1473static inline void update_hiwater_rss(struct mm_struct *mm) 1474{ 1475 unsigned long _rss = get_mm_rss(mm); 1476 1477 if ((mm)->hiwater_rss < _rss) 1478 (mm)->hiwater_rss = _rss; 1479} 1480 1481static inline void update_hiwater_vm(struct mm_struct *mm) 1482{ 1483 if (mm->hiwater_vm < mm->total_vm) 1484 mm->hiwater_vm = mm->total_vm; 1485} 1486 1487static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1488{ 1489 mm->hiwater_rss = get_mm_rss(mm); 1490} 1491 1492static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1493 struct mm_struct *mm) 1494{ 1495 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1496 1497 if (*maxrss < hiwater_rss) 1498 *maxrss = hiwater_rss; 1499} 1500 1501#if defined(SPLIT_RSS_COUNTING) 1502void sync_mm_rss(struct mm_struct *mm); 1503#else 1504static inline void sync_mm_rss(struct mm_struct *mm) 1505{ 1506} 1507#endif 1508 1509#ifndef __HAVE_ARCH_PTE_DEVMAP 1510static inline int pte_devmap(pte_t pte) 1511{ 1512 return 0; 1513} 1514#endif 1515 1516int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1517 1518extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1519 spinlock_t **ptl); 1520static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1521 spinlock_t **ptl) 1522{ 1523 pte_t *ptep; 1524 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1525 return ptep; 1526} 1527 1528#ifdef __PAGETABLE_PUD_FOLDED 1529static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1530 unsigned long address) 1531{ 1532 return 0; 1533} 1534#else 1535int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1536#endif 1537 1538#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1539static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1540 unsigned long address) 1541{ 1542 return 0; 1543} 1544 1545static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1546 1547static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1548{ 1549 return 0; 1550} 1551 1552static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1553static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1554 1555#else 1556int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1557 1558static inline void mm_nr_pmds_init(struct mm_struct *mm) 1559{ 1560 atomic_long_set(&mm->nr_pmds, 0); 1561} 1562 1563static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1564{ 1565 return atomic_long_read(&mm->nr_pmds); 1566} 1567 1568static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1569{ 1570 atomic_long_inc(&mm->nr_pmds); 1571} 1572 1573static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1574{ 1575 atomic_long_dec(&mm->nr_pmds); 1576} 1577#endif 1578 1579int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1580int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1581 1582/* 1583 * The following ifdef needed to get the 4level-fixup.h header to work. 1584 * Remove it when 4level-fixup.h has been removed. 1585 */ 1586#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1587static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1588{ 1589 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1590 NULL: pud_offset(pgd, address); 1591} 1592 1593static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1594{ 1595 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1596 NULL: pmd_offset(pud, address); 1597} 1598#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1599 1600#if USE_SPLIT_PTE_PTLOCKS 1601#if ALLOC_SPLIT_PTLOCKS 1602void __init ptlock_cache_init(void); 1603extern bool ptlock_alloc(struct page *page); 1604extern void ptlock_free(struct page *page); 1605 1606static inline spinlock_t *ptlock_ptr(struct page *page) 1607{ 1608 return page->ptl; 1609} 1610#else /* ALLOC_SPLIT_PTLOCKS */ 1611static inline void ptlock_cache_init(void) 1612{ 1613} 1614 1615static inline bool ptlock_alloc(struct page *page) 1616{ 1617 return true; 1618} 1619 1620static inline void ptlock_free(struct page *page) 1621{ 1622} 1623 1624static inline spinlock_t *ptlock_ptr(struct page *page) 1625{ 1626 return &page->ptl; 1627} 1628#endif /* ALLOC_SPLIT_PTLOCKS */ 1629 1630static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1631{ 1632 return ptlock_ptr(pmd_page(*pmd)); 1633} 1634 1635static inline bool ptlock_init(struct page *page) 1636{ 1637 /* 1638 * prep_new_page() initialize page->private (and therefore page->ptl) 1639 * with 0. Make sure nobody took it in use in between. 1640 * 1641 * It can happen if arch try to use slab for page table allocation: 1642 * slab code uses page->slab_cache, which share storage with page->ptl. 1643 */ 1644 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1645 if (!ptlock_alloc(page)) 1646 return false; 1647 spin_lock_init(ptlock_ptr(page)); 1648 return true; 1649} 1650 1651/* Reset page->mapping so free_pages_check won't complain. */ 1652static inline void pte_lock_deinit(struct page *page) 1653{ 1654 page->mapping = NULL; 1655 ptlock_free(page); 1656} 1657 1658#else /* !USE_SPLIT_PTE_PTLOCKS */ 1659/* 1660 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1661 */ 1662static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1663{ 1664 return &mm->page_table_lock; 1665} 1666static inline void ptlock_cache_init(void) {} 1667static inline bool ptlock_init(struct page *page) { return true; } 1668static inline void pte_lock_deinit(struct page *page) {} 1669#endif /* USE_SPLIT_PTE_PTLOCKS */ 1670 1671static inline void pgtable_init(void) 1672{ 1673 ptlock_cache_init(); 1674 pgtable_cache_init(); 1675} 1676 1677static inline bool pgtable_page_ctor(struct page *page) 1678{ 1679 if (!ptlock_init(page)) 1680 return false; 1681 inc_zone_page_state(page, NR_PAGETABLE); 1682 return true; 1683} 1684 1685static inline void pgtable_page_dtor(struct page *page) 1686{ 1687 pte_lock_deinit(page); 1688 dec_zone_page_state(page, NR_PAGETABLE); 1689} 1690 1691#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1692({ \ 1693 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1694 pte_t *__pte = pte_offset_map(pmd, address); \ 1695 *(ptlp) = __ptl; \ 1696 spin_lock(__ptl); \ 1697 __pte; \ 1698}) 1699 1700#define pte_unmap_unlock(pte, ptl) do { \ 1701 spin_unlock(ptl); \ 1702 pte_unmap(pte); \ 1703} while (0) 1704 1705#define pte_alloc(mm, pmd, address) \ 1706 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1707 1708#define pte_alloc_map(mm, pmd, address) \ 1709 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1710 1711#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1712 (pte_alloc(mm, pmd, address) ? \ 1713 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1714 1715#define pte_alloc_kernel(pmd, address) \ 1716 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1717 NULL: pte_offset_kernel(pmd, address)) 1718 1719#if USE_SPLIT_PMD_PTLOCKS 1720 1721static struct page *pmd_to_page(pmd_t *pmd) 1722{ 1723 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1724 return virt_to_page((void *)((unsigned long) pmd & mask)); 1725} 1726 1727static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1728{ 1729 return ptlock_ptr(pmd_to_page(pmd)); 1730} 1731 1732static inline bool pgtable_pmd_page_ctor(struct page *page) 1733{ 1734#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1735 page->pmd_huge_pte = NULL; 1736#endif 1737 return ptlock_init(page); 1738} 1739 1740static inline void pgtable_pmd_page_dtor(struct page *page) 1741{ 1742#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1743 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1744#endif 1745 ptlock_free(page); 1746} 1747 1748#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1749 1750#else 1751 1752static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1753{ 1754 return &mm->page_table_lock; 1755} 1756 1757static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1758static inline void pgtable_pmd_page_dtor(struct page *page) {} 1759 1760#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1761 1762#endif 1763 1764static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1765{ 1766 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1767 spin_lock(ptl); 1768 return ptl; 1769} 1770 1771extern void free_area_init(unsigned long * zones_size); 1772extern void free_area_init_node(int nid, unsigned long * zones_size, 1773 unsigned long zone_start_pfn, unsigned long *zholes_size); 1774extern void free_initmem(void); 1775 1776/* 1777 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1778 * into the buddy system. The freed pages will be poisoned with pattern 1779 * "poison" if it's within range [0, UCHAR_MAX]. 1780 * Return pages freed into the buddy system. 1781 */ 1782extern unsigned long free_reserved_area(void *start, void *end, 1783 int poison, char *s); 1784 1785#ifdef CONFIG_HIGHMEM 1786/* 1787 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1788 * and totalram_pages. 1789 */ 1790extern void free_highmem_page(struct page *page); 1791#endif 1792 1793extern void adjust_managed_page_count(struct page *page, long count); 1794extern void mem_init_print_info(const char *str); 1795 1796extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 1797 1798/* Free the reserved page into the buddy system, so it gets managed. */ 1799static inline void __free_reserved_page(struct page *page) 1800{ 1801 ClearPageReserved(page); 1802 init_page_count(page); 1803 __free_page(page); 1804} 1805 1806static inline void free_reserved_page(struct page *page) 1807{ 1808 __free_reserved_page(page); 1809 adjust_managed_page_count(page, 1); 1810} 1811 1812static inline void mark_page_reserved(struct page *page) 1813{ 1814 SetPageReserved(page); 1815 adjust_managed_page_count(page, -1); 1816} 1817 1818/* 1819 * Default method to free all the __init memory into the buddy system. 1820 * The freed pages will be poisoned with pattern "poison" if it's within 1821 * range [0, UCHAR_MAX]. 1822 * Return pages freed into the buddy system. 1823 */ 1824static inline unsigned long free_initmem_default(int poison) 1825{ 1826 extern char __init_begin[], __init_end[]; 1827 1828 return free_reserved_area(&__init_begin, &__init_end, 1829 poison, "unused kernel"); 1830} 1831 1832static inline unsigned long get_num_physpages(void) 1833{ 1834 int nid; 1835 unsigned long phys_pages = 0; 1836 1837 for_each_online_node(nid) 1838 phys_pages += node_present_pages(nid); 1839 1840 return phys_pages; 1841} 1842 1843#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1844/* 1845 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1846 * zones, allocate the backing mem_map and account for memory holes in a more 1847 * architecture independent manner. This is a substitute for creating the 1848 * zone_sizes[] and zholes_size[] arrays and passing them to 1849 * free_area_init_node() 1850 * 1851 * An architecture is expected to register range of page frames backed by 1852 * physical memory with memblock_add[_node]() before calling 1853 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1854 * usage, an architecture is expected to do something like 1855 * 1856 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1857 * max_highmem_pfn}; 1858 * for_each_valid_physical_page_range() 1859 * memblock_add_node(base, size, nid) 1860 * free_area_init_nodes(max_zone_pfns); 1861 * 1862 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1863 * registered physical page range. Similarly 1864 * sparse_memory_present_with_active_regions() calls memory_present() for 1865 * each range when SPARSEMEM is enabled. 1866 * 1867 * See mm/page_alloc.c for more information on each function exposed by 1868 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1869 */ 1870extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1871unsigned long node_map_pfn_alignment(void); 1872unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1873 unsigned long end_pfn); 1874extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1875 unsigned long end_pfn); 1876extern void get_pfn_range_for_nid(unsigned int nid, 1877 unsigned long *start_pfn, unsigned long *end_pfn); 1878extern unsigned long find_min_pfn_with_active_regions(void); 1879extern void free_bootmem_with_active_regions(int nid, 1880 unsigned long max_low_pfn); 1881extern void sparse_memory_present_with_active_regions(int nid); 1882 1883#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1884 1885#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1886 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1887static inline int __early_pfn_to_nid(unsigned long pfn, 1888 struct mminit_pfnnid_cache *state) 1889{ 1890 return 0; 1891} 1892#else 1893/* please see mm/page_alloc.c */ 1894extern int __meminit early_pfn_to_nid(unsigned long pfn); 1895/* there is a per-arch backend function. */ 1896extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1897 struct mminit_pfnnid_cache *state); 1898#endif 1899 1900extern void set_dma_reserve(unsigned long new_dma_reserve); 1901extern void memmap_init_zone(unsigned long, int, unsigned long, 1902 unsigned long, enum memmap_context); 1903extern void setup_per_zone_wmarks(void); 1904extern int __meminit init_per_zone_wmark_min(void); 1905extern void mem_init(void); 1906extern void __init mmap_init(void); 1907extern void show_mem(unsigned int flags); 1908extern long si_mem_available(void); 1909extern void si_meminfo(struct sysinfo * val); 1910extern void si_meminfo_node(struct sysinfo *val, int nid); 1911#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 1912extern unsigned long arch_reserved_kernel_pages(void); 1913#endif 1914 1915extern __printf(2, 3) 1916void warn_alloc(gfp_t gfp_mask, const char *fmt, ...); 1917 1918extern void setup_per_cpu_pageset(void); 1919 1920extern void zone_pcp_update(struct zone *zone); 1921extern void zone_pcp_reset(struct zone *zone); 1922 1923/* page_alloc.c */ 1924extern int min_free_kbytes; 1925extern int watermark_scale_factor; 1926 1927/* nommu.c */ 1928extern atomic_long_t mmap_pages_allocated; 1929extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1930 1931/* interval_tree.c */ 1932void vma_interval_tree_insert(struct vm_area_struct *node, 1933 struct rb_root *root); 1934void vma_interval_tree_insert_after(struct vm_area_struct *node, 1935 struct vm_area_struct *prev, 1936 struct rb_root *root); 1937void vma_interval_tree_remove(struct vm_area_struct *node, 1938 struct rb_root *root); 1939struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1940 unsigned long start, unsigned long last); 1941struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1942 unsigned long start, unsigned long last); 1943 1944#define vma_interval_tree_foreach(vma, root, start, last) \ 1945 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1946 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1947 1948void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1949 struct rb_root *root); 1950void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1951 struct rb_root *root); 1952struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1953 struct rb_root *root, unsigned long start, unsigned long last); 1954struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1955 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1956#ifdef CONFIG_DEBUG_VM_RB 1957void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1958#endif 1959 1960#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1961 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1962 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1963 1964/* mmap.c */ 1965extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1966extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 1967 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 1968 struct vm_area_struct *expand); 1969static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1970 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 1971{ 1972 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 1973} 1974extern struct vm_area_struct *vma_merge(struct mm_struct *, 1975 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1976 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1977 struct mempolicy *, struct vm_userfaultfd_ctx); 1978extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1979extern int split_vma(struct mm_struct *, 1980 struct vm_area_struct *, unsigned long addr, int new_below); 1981extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1982extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1983 struct rb_node **, struct rb_node *); 1984extern void unlink_file_vma(struct vm_area_struct *); 1985extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1986 unsigned long addr, unsigned long len, pgoff_t pgoff, 1987 bool *need_rmap_locks); 1988extern void exit_mmap(struct mm_struct *); 1989 1990static inline int check_data_rlimit(unsigned long rlim, 1991 unsigned long new, 1992 unsigned long start, 1993 unsigned long end_data, 1994 unsigned long start_data) 1995{ 1996 if (rlim < RLIM_INFINITY) { 1997 if (((new - start) + (end_data - start_data)) > rlim) 1998 return -ENOSPC; 1999 } 2000 2001 return 0; 2002} 2003 2004extern int mm_take_all_locks(struct mm_struct *mm); 2005extern void mm_drop_all_locks(struct mm_struct *mm); 2006 2007extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2008extern struct file *get_mm_exe_file(struct mm_struct *mm); 2009extern struct file *get_task_exe_file(struct task_struct *task); 2010 2011extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2012extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2013 2014extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2015 const struct vm_special_mapping *sm); 2016extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2017 unsigned long addr, unsigned long len, 2018 unsigned long flags, 2019 const struct vm_special_mapping *spec); 2020/* This is an obsolete alternative to _install_special_mapping. */ 2021extern int install_special_mapping(struct mm_struct *mm, 2022 unsigned long addr, unsigned long len, 2023 unsigned long flags, struct page **pages); 2024 2025extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2026 2027extern unsigned long mmap_region(struct file *file, unsigned long addr, 2028 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 2029extern unsigned long do_mmap(struct file *file, unsigned long addr, 2030 unsigned long len, unsigned long prot, unsigned long flags, 2031 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate); 2032extern int do_munmap(struct mm_struct *, unsigned long, size_t); 2033 2034static inline unsigned long 2035do_mmap_pgoff(struct file *file, unsigned long addr, 2036 unsigned long len, unsigned long prot, unsigned long flags, 2037 unsigned long pgoff, unsigned long *populate) 2038{ 2039 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate); 2040} 2041 2042#ifdef CONFIG_MMU 2043extern int __mm_populate(unsigned long addr, unsigned long len, 2044 int ignore_errors); 2045static inline void mm_populate(unsigned long addr, unsigned long len) 2046{ 2047 /* Ignore errors */ 2048 (void) __mm_populate(addr, len, 1); 2049} 2050#else 2051static inline void mm_populate(unsigned long addr, unsigned long len) {} 2052#endif 2053 2054/* These take the mm semaphore themselves */ 2055extern int __must_check vm_brk(unsigned long, unsigned long); 2056extern int vm_munmap(unsigned long, size_t); 2057extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2058 unsigned long, unsigned long, 2059 unsigned long, unsigned long); 2060 2061struct vm_unmapped_area_info { 2062#define VM_UNMAPPED_AREA_TOPDOWN 1 2063 unsigned long flags; 2064 unsigned long length; 2065 unsigned long low_limit; 2066 unsigned long high_limit; 2067 unsigned long align_mask; 2068 unsigned long align_offset; 2069}; 2070 2071extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2072extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2073 2074/* 2075 * Search for an unmapped address range. 2076 * 2077 * We are looking for a range that: 2078 * - does not intersect with any VMA; 2079 * - is contained within the [low_limit, high_limit) interval; 2080 * - is at least the desired size. 2081 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2082 */ 2083static inline unsigned long 2084vm_unmapped_area(struct vm_unmapped_area_info *info) 2085{ 2086 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2087 return unmapped_area_topdown(info); 2088 else 2089 return unmapped_area(info); 2090} 2091 2092/* truncate.c */ 2093extern void truncate_inode_pages(struct address_space *, loff_t); 2094extern void truncate_inode_pages_range(struct address_space *, 2095 loff_t lstart, loff_t lend); 2096extern void truncate_inode_pages_final(struct address_space *); 2097 2098/* generic vm_area_ops exported for stackable file systems */ 2099extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 2100extern void filemap_map_pages(struct fault_env *fe, 2101 pgoff_t start_pgoff, pgoff_t end_pgoff); 2102extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 2103 2104/* mm/page-writeback.c */ 2105int write_one_page(struct page *page, int wait); 2106void task_dirty_inc(struct task_struct *tsk); 2107 2108/* readahead.c */ 2109#define VM_MAX_READAHEAD 128 /* kbytes */ 2110#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2111 2112int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2113 pgoff_t offset, unsigned long nr_to_read); 2114 2115void page_cache_sync_readahead(struct address_space *mapping, 2116 struct file_ra_state *ra, 2117 struct file *filp, 2118 pgoff_t offset, 2119 unsigned long size); 2120 2121void page_cache_async_readahead(struct address_space *mapping, 2122 struct file_ra_state *ra, 2123 struct file *filp, 2124 struct page *pg, 2125 pgoff_t offset, 2126 unsigned long size); 2127 2128/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2129extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2130 2131/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2132extern int expand_downwards(struct vm_area_struct *vma, 2133 unsigned long address); 2134#if VM_GROWSUP 2135extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2136#else 2137 #define expand_upwards(vma, address) (0) 2138#endif 2139 2140/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2141extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2142extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2143 struct vm_area_struct **pprev); 2144 2145/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2146 NULL if none. Assume start_addr < end_addr. */ 2147static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2148{ 2149 struct vm_area_struct * vma = find_vma(mm,start_addr); 2150 2151 if (vma && end_addr <= vma->vm_start) 2152 vma = NULL; 2153 return vma; 2154} 2155 2156static inline unsigned long vma_pages(struct vm_area_struct *vma) 2157{ 2158 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2159} 2160 2161/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2162static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2163 unsigned long vm_start, unsigned long vm_end) 2164{ 2165 struct vm_area_struct *vma = find_vma(mm, vm_start); 2166 2167 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2168 vma = NULL; 2169 2170 return vma; 2171} 2172 2173#ifdef CONFIG_MMU 2174pgprot_t vm_get_page_prot(unsigned long vm_flags); 2175void vma_set_page_prot(struct vm_area_struct *vma); 2176#else 2177static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2178{ 2179 return __pgprot(0); 2180} 2181static inline void vma_set_page_prot(struct vm_area_struct *vma) 2182{ 2183 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2184} 2185#endif 2186 2187#ifdef CONFIG_NUMA_BALANCING 2188unsigned long change_prot_numa(struct vm_area_struct *vma, 2189 unsigned long start, unsigned long end); 2190#endif 2191 2192struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2193int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2194 unsigned long pfn, unsigned long size, pgprot_t); 2195int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2196int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2197 unsigned long pfn); 2198int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2199 unsigned long pfn, pgprot_t pgprot); 2200int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2201 pfn_t pfn); 2202int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2203 2204 2205struct page *follow_page_mask(struct vm_area_struct *vma, 2206 unsigned long address, unsigned int foll_flags, 2207 unsigned int *page_mask); 2208 2209static inline struct page *follow_page(struct vm_area_struct *vma, 2210 unsigned long address, unsigned int foll_flags) 2211{ 2212 unsigned int unused_page_mask; 2213 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2214} 2215 2216#define FOLL_WRITE 0x01 /* check pte is writable */ 2217#define FOLL_TOUCH 0x02 /* mark page accessed */ 2218#define FOLL_GET 0x04 /* do get_page on page */ 2219#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2220#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2221#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2222 * and return without waiting upon it */ 2223#define FOLL_POPULATE 0x40 /* fault in page */ 2224#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2225#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2226#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2227#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2228#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2229#define FOLL_MLOCK 0x1000 /* lock present pages */ 2230#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2231#define FOLL_COW 0x4000 /* internal GUP flag */ 2232 2233typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2234 void *data); 2235extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2236 unsigned long size, pte_fn_t fn, void *data); 2237 2238 2239#ifdef CONFIG_PAGE_POISONING 2240extern bool page_poisoning_enabled(void); 2241extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2242extern bool page_is_poisoned(struct page *page); 2243#else 2244static inline bool page_poisoning_enabled(void) { return false; } 2245static inline void kernel_poison_pages(struct page *page, int numpages, 2246 int enable) { } 2247static inline bool page_is_poisoned(struct page *page) { return false; } 2248#endif 2249 2250#ifdef CONFIG_DEBUG_PAGEALLOC 2251extern bool _debug_pagealloc_enabled; 2252extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2253 2254static inline bool debug_pagealloc_enabled(void) 2255{ 2256 return _debug_pagealloc_enabled; 2257} 2258 2259static inline void 2260kernel_map_pages(struct page *page, int numpages, int enable) 2261{ 2262 if (!debug_pagealloc_enabled()) 2263 return; 2264 2265 __kernel_map_pages(page, numpages, enable); 2266} 2267#ifdef CONFIG_HIBERNATION 2268extern bool kernel_page_present(struct page *page); 2269#endif /* CONFIG_HIBERNATION */ 2270#else /* CONFIG_DEBUG_PAGEALLOC */ 2271static inline void 2272kernel_map_pages(struct page *page, int numpages, int enable) {} 2273#ifdef CONFIG_HIBERNATION 2274static inline bool kernel_page_present(struct page *page) { return true; } 2275#endif /* CONFIG_HIBERNATION */ 2276static inline bool debug_pagealloc_enabled(void) 2277{ 2278 return false; 2279} 2280#endif /* CONFIG_DEBUG_PAGEALLOC */ 2281 2282#ifdef __HAVE_ARCH_GATE_AREA 2283extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2284extern int in_gate_area_no_mm(unsigned long addr); 2285extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2286#else 2287static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2288{ 2289 return NULL; 2290} 2291static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2292static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2293{ 2294 return 0; 2295} 2296#endif /* __HAVE_ARCH_GATE_AREA */ 2297 2298extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2299 2300#ifdef CONFIG_SYSCTL 2301extern int sysctl_drop_caches; 2302int drop_caches_sysctl_handler(struct ctl_table *, int, 2303 void __user *, size_t *, loff_t *); 2304#endif 2305 2306void drop_slab(void); 2307void drop_slab_node(int nid); 2308 2309#ifndef CONFIG_MMU 2310#define randomize_va_space 0 2311#else 2312extern int randomize_va_space; 2313#endif 2314 2315const char * arch_vma_name(struct vm_area_struct *vma); 2316void print_vma_addr(char *prefix, unsigned long rip); 2317 2318void sparse_mem_maps_populate_node(struct page **map_map, 2319 unsigned long pnum_begin, 2320 unsigned long pnum_end, 2321 unsigned long map_count, 2322 int nodeid); 2323 2324struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2325pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2326pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2327pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2328pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2329void *vmemmap_alloc_block(unsigned long size, int node); 2330struct vmem_altmap; 2331void *__vmemmap_alloc_block_buf(unsigned long size, int node, 2332 struct vmem_altmap *altmap); 2333static inline void *vmemmap_alloc_block_buf(unsigned long size, int node) 2334{ 2335 return __vmemmap_alloc_block_buf(size, node, NULL); 2336} 2337 2338void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2339int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2340 int node); 2341int vmemmap_populate(unsigned long start, unsigned long end, int node); 2342void vmemmap_populate_print_last(void); 2343#ifdef CONFIG_MEMORY_HOTPLUG 2344void vmemmap_free(unsigned long start, unsigned long end); 2345#endif 2346void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2347 unsigned long size); 2348 2349enum mf_flags { 2350 MF_COUNT_INCREASED = 1 << 0, 2351 MF_ACTION_REQUIRED = 1 << 1, 2352 MF_MUST_KILL = 1 << 2, 2353 MF_SOFT_OFFLINE = 1 << 3, 2354}; 2355extern int memory_failure(unsigned long pfn, int trapno, int flags); 2356extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2357extern int unpoison_memory(unsigned long pfn); 2358extern int get_hwpoison_page(struct page *page); 2359#define put_hwpoison_page(page) put_page(page) 2360extern int sysctl_memory_failure_early_kill; 2361extern int sysctl_memory_failure_recovery; 2362extern void shake_page(struct page *p, int access); 2363extern atomic_long_t num_poisoned_pages; 2364extern int soft_offline_page(struct page *page, int flags); 2365 2366 2367/* 2368 * Error handlers for various types of pages. 2369 */ 2370enum mf_result { 2371 MF_IGNORED, /* Error: cannot be handled */ 2372 MF_FAILED, /* Error: handling failed */ 2373 MF_DELAYED, /* Will be handled later */ 2374 MF_RECOVERED, /* Successfully recovered */ 2375}; 2376 2377enum mf_action_page_type { 2378 MF_MSG_KERNEL, 2379 MF_MSG_KERNEL_HIGH_ORDER, 2380 MF_MSG_SLAB, 2381 MF_MSG_DIFFERENT_COMPOUND, 2382 MF_MSG_POISONED_HUGE, 2383 MF_MSG_HUGE, 2384 MF_MSG_FREE_HUGE, 2385 MF_MSG_UNMAP_FAILED, 2386 MF_MSG_DIRTY_SWAPCACHE, 2387 MF_MSG_CLEAN_SWAPCACHE, 2388 MF_MSG_DIRTY_MLOCKED_LRU, 2389 MF_MSG_CLEAN_MLOCKED_LRU, 2390 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2391 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2392 MF_MSG_DIRTY_LRU, 2393 MF_MSG_CLEAN_LRU, 2394 MF_MSG_TRUNCATED_LRU, 2395 MF_MSG_BUDDY, 2396 MF_MSG_BUDDY_2ND, 2397 MF_MSG_UNKNOWN, 2398}; 2399 2400#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2401extern void clear_huge_page(struct page *page, 2402 unsigned long addr, 2403 unsigned int pages_per_huge_page); 2404extern void copy_user_huge_page(struct page *dst, struct page *src, 2405 unsigned long addr, struct vm_area_struct *vma, 2406 unsigned int pages_per_huge_page); 2407#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2408 2409extern struct page_ext_operations debug_guardpage_ops; 2410extern struct page_ext_operations page_poisoning_ops; 2411 2412#ifdef CONFIG_DEBUG_PAGEALLOC 2413extern unsigned int _debug_guardpage_minorder; 2414extern bool _debug_guardpage_enabled; 2415 2416static inline unsigned int debug_guardpage_minorder(void) 2417{ 2418 return _debug_guardpage_minorder; 2419} 2420 2421static inline bool debug_guardpage_enabled(void) 2422{ 2423 return _debug_guardpage_enabled; 2424} 2425 2426static inline bool page_is_guard(struct page *page) 2427{ 2428 struct page_ext *page_ext; 2429 2430 if (!debug_guardpage_enabled()) 2431 return false; 2432 2433 page_ext = lookup_page_ext(page); 2434 if (unlikely(!page_ext)) 2435 return false; 2436 2437 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2438} 2439#else 2440static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2441static inline bool debug_guardpage_enabled(void) { return false; } 2442static inline bool page_is_guard(struct page *page) { return false; } 2443#endif /* CONFIG_DEBUG_PAGEALLOC */ 2444 2445#if MAX_NUMNODES > 1 2446void __init setup_nr_node_ids(void); 2447#else 2448static inline void setup_nr_node_ids(void) {} 2449#endif 2450 2451#endif /* __KERNEL__ */ 2452#endif /* _LINUX_MM_H */