at v4.9 30 kB view raw
1/* 2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix 3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics 4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the version 2 of the GNU General Public License 8 * as published by the Free Software Foundation 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19#include <linux/module.h> 20#include <linux/kernel.h> 21#include <linux/slab.h> 22#include <linux/netdevice.h> 23#include <linux/if_arp.h> 24#include <linux/workqueue.h> 25#include <linux/can.h> 26#include <linux/can/dev.h> 27#include <linux/can/skb.h> 28#include <linux/can/netlink.h> 29#include <linux/can/led.h> 30#include <net/rtnetlink.h> 31 32#define MOD_DESC "CAN device driver interface" 33 34MODULE_DESCRIPTION(MOD_DESC); 35MODULE_LICENSE("GPL v2"); 36MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>"); 37 38/* CAN DLC to real data length conversion helpers */ 39 40static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7, 41 8, 12, 16, 20, 24, 32, 48, 64}; 42 43/* get data length from can_dlc with sanitized can_dlc */ 44u8 can_dlc2len(u8 can_dlc) 45{ 46 return dlc2len[can_dlc & 0x0F]; 47} 48EXPORT_SYMBOL_GPL(can_dlc2len); 49 50static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */ 51 9, 9, 9, 9, /* 9 - 12 */ 52 10, 10, 10, 10, /* 13 - 16 */ 53 11, 11, 11, 11, /* 17 - 20 */ 54 12, 12, 12, 12, /* 21 - 24 */ 55 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */ 56 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */ 57 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */ 58 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */ 59 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */ 60 61/* map the sanitized data length to an appropriate data length code */ 62u8 can_len2dlc(u8 len) 63{ 64 if (unlikely(len > 64)) 65 return 0xF; 66 67 return len2dlc[len]; 68} 69EXPORT_SYMBOL_GPL(can_len2dlc); 70 71#ifdef CONFIG_CAN_CALC_BITTIMING 72#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */ 73#define CAN_CALC_SYNC_SEG 1 74 75/* 76 * Bit-timing calculation derived from: 77 * 78 * Code based on LinCAN sources and H8S2638 project 79 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz 80 * Copyright 2005 Stanislav Marek 81 * email: pisa@cmp.felk.cvut.cz 82 * 83 * Calculates proper bit-timing parameters for a specified bit-rate 84 * and sample-point, which can then be used to set the bit-timing 85 * registers of the CAN controller. You can find more information 86 * in the header file linux/can/netlink.h. 87 */ 88static int can_update_sample_point(const struct can_bittiming_const *btc, 89 unsigned int sample_point_nominal, unsigned int tseg, 90 unsigned int *tseg1_ptr, unsigned int *tseg2_ptr, 91 unsigned int *sample_point_error_ptr) 92{ 93 unsigned int sample_point_error, best_sample_point_error = UINT_MAX; 94 unsigned int sample_point, best_sample_point = 0; 95 unsigned int tseg1, tseg2; 96 int i; 97 98 for (i = 0; i <= 1; i++) { 99 tseg2 = tseg + CAN_CALC_SYNC_SEG - (sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) / 1000 - i; 100 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max); 101 tseg1 = tseg - tseg2; 102 if (tseg1 > btc->tseg1_max) { 103 tseg1 = btc->tseg1_max; 104 tseg2 = tseg - tseg1; 105 } 106 107 sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) / (tseg + CAN_CALC_SYNC_SEG); 108 sample_point_error = abs(sample_point_nominal - sample_point); 109 110 if ((sample_point <= sample_point_nominal) && (sample_point_error < best_sample_point_error)) { 111 best_sample_point = sample_point; 112 best_sample_point_error = sample_point_error; 113 *tseg1_ptr = tseg1; 114 *tseg2_ptr = tseg2; 115 } 116 } 117 118 if (sample_point_error_ptr) 119 *sample_point_error_ptr = best_sample_point_error; 120 121 return best_sample_point; 122} 123 124static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, 125 const struct can_bittiming_const *btc) 126{ 127 struct can_priv *priv = netdev_priv(dev); 128 unsigned int bitrate; /* current bitrate */ 129 unsigned int bitrate_error; /* difference between current and nominal value */ 130 unsigned int best_bitrate_error = UINT_MAX; 131 unsigned int sample_point_error; /* difference between current and nominal value */ 132 unsigned int best_sample_point_error = UINT_MAX; 133 unsigned int sample_point_nominal; /* nominal sample point */ 134 unsigned int best_tseg = 0; /* current best value for tseg */ 135 unsigned int best_brp = 0; /* current best value for brp */ 136 unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0; 137 u64 v64; 138 139 /* Use CiA recommended sample points */ 140 if (bt->sample_point) { 141 sample_point_nominal = bt->sample_point; 142 } else { 143 if (bt->bitrate > 800000) 144 sample_point_nominal = 750; 145 else if (bt->bitrate > 500000) 146 sample_point_nominal = 800; 147 else 148 sample_point_nominal = 875; 149 } 150 151 /* tseg even = round down, odd = round up */ 152 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1; 153 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) { 154 tsegall = CAN_CALC_SYNC_SEG + tseg / 2; 155 156 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */ 157 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2; 158 159 /* choose brp step which is possible in system */ 160 brp = (brp / btc->brp_inc) * btc->brp_inc; 161 if ((brp < btc->brp_min) || (brp > btc->brp_max)) 162 continue; 163 164 bitrate = priv->clock.freq / (brp * tsegall); 165 bitrate_error = abs(bt->bitrate - bitrate); 166 167 /* tseg brp biterror */ 168 if (bitrate_error > best_bitrate_error) 169 continue; 170 171 /* reset sample point error if we have a better bitrate */ 172 if (bitrate_error < best_bitrate_error) 173 best_sample_point_error = UINT_MAX; 174 175 can_update_sample_point(btc, sample_point_nominal, tseg / 2, &tseg1, &tseg2, &sample_point_error); 176 if (sample_point_error > best_sample_point_error) 177 continue; 178 179 best_sample_point_error = sample_point_error; 180 best_bitrate_error = bitrate_error; 181 best_tseg = tseg / 2; 182 best_brp = brp; 183 184 if (bitrate_error == 0 && sample_point_error == 0) 185 break; 186 } 187 188 if (best_bitrate_error) { 189 /* Error in one-tenth of a percent */ 190 v64 = (u64)best_bitrate_error * 1000; 191 do_div(v64, bt->bitrate); 192 bitrate_error = (u32)v64; 193 if (bitrate_error > CAN_CALC_MAX_ERROR) { 194 netdev_err(dev, 195 "bitrate error %d.%d%% too high\n", 196 bitrate_error / 10, bitrate_error % 10); 197 return -EDOM; 198 } 199 netdev_warn(dev, "bitrate error %d.%d%%\n", 200 bitrate_error / 10, bitrate_error % 10); 201 } 202 203 /* real sample point */ 204 bt->sample_point = can_update_sample_point(btc, sample_point_nominal, best_tseg, 205 &tseg1, &tseg2, NULL); 206 207 v64 = (u64)best_brp * 1000 * 1000 * 1000; 208 do_div(v64, priv->clock.freq); 209 bt->tq = (u32)v64; 210 bt->prop_seg = tseg1 / 2; 211 bt->phase_seg1 = tseg1 - bt->prop_seg; 212 bt->phase_seg2 = tseg2; 213 214 /* check for sjw user settings */ 215 if (!bt->sjw || !btc->sjw_max) { 216 bt->sjw = 1; 217 } else { 218 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */ 219 if (bt->sjw > btc->sjw_max) 220 bt->sjw = btc->sjw_max; 221 /* bt->sjw must not be higher than tseg2 */ 222 if (tseg2 < bt->sjw) 223 bt->sjw = tseg2; 224 } 225 226 bt->brp = best_brp; 227 228 /* real bitrate */ 229 bt->bitrate = priv->clock.freq / (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2)); 230 231 return 0; 232} 233#else /* !CONFIG_CAN_CALC_BITTIMING */ 234static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, 235 const struct can_bittiming_const *btc) 236{ 237 netdev_err(dev, "bit-timing calculation not available\n"); 238 return -EINVAL; 239} 240#endif /* CONFIG_CAN_CALC_BITTIMING */ 241 242/* 243 * Checks the validity of the specified bit-timing parameters prop_seg, 244 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate 245 * prescaler value brp. You can find more information in the header 246 * file linux/can/netlink.h. 247 */ 248static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt, 249 const struct can_bittiming_const *btc) 250{ 251 struct can_priv *priv = netdev_priv(dev); 252 int tseg1, alltseg; 253 u64 brp64; 254 255 tseg1 = bt->prop_seg + bt->phase_seg1; 256 if (!bt->sjw) 257 bt->sjw = 1; 258 if (bt->sjw > btc->sjw_max || 259 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max || 260 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max) 261 return -ERANGE; 262 263 brp64 = (u64)priv->clock.freq * (u64)bt->tq; 264 if (btc->brp_inc > 1) 265 do_div(brp64, btc->brp_inc); 266 brp64 += 500000000UL - 1; 267 do_div(brp64, 1000000000UL); /* the practicable BRP */ 268 if (btc->brp_inc > 1) 269 brp64 *= btc->brp_inc; 270 bt->brp = (u32)brp64; 271 272 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max) 273 return -EINVAL; 274 275 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1; 276 bt->bitrate = priv->clock.freq / (bt->brp * alltseg); 277 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg; 278 279 return 0; 280} 281 282static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt, 283 const struct can_bittiming_const *btc) 284{ 285 int err; 286 287 /* Check if the CAN device has bit-timing parameters */ 288 if (!btc) 289 return -EOPNOTSUPP; 290 291 /* 292 * Depending on the given can_bittiming parameter structure the CAN 293 * timing parameters are calculated based on the provided bitrate OR 294 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are 295 * provided directly which are then checked and fixed up. 296 */ 297 if (!bt->tq && bt->bitrate) 298 err = can_calc_bittiming(dev, bt, btc); 299 else if (bt->tq && !bt->bitrate) 300 err = can_fixup_bittiming(dev, bt, btc); 301 else 302 err = -EINVAL; 303 304 return err; 305} 306 307static void can_update_state_error_stats(struct net_device *dev, 308 enum can_state new_state) 309{ 310 struct can_priv *priv = netdev_priv(dev); 311 312 if (new_state <= priv->state) 313 return; 314 315 switch (new_state) { 316 case CAN_STATE_ERROR_WARNING: 317 priv->can_stats.error_warning++; 318 break; 319 case CAN_STATE_ERROR_PASSIVE: 320 priv->can_stats.error_passive++; 321 break; 322 case CAN_STATE_BUS_OFF: 323 priv->can_stats.bus_off++; 324 break; 325 default: 326 break; 327 } 328} 329 330static int can_tx_state_to_frame(struct net_device *dev, enum can_state state) 331{ 332 switch (state) { 333 case CAN_STATE_ERROR_ACTIVE: 334 return CAN_ERR_CRTL_ACTIVE; 335 case CAN_STATE_ERROR_WARNING: 336 return CAN_ERR_CRTL_TX_WARNING; 337 case CAN_STATE_ERROR_PASSIVE: 338 return CAN_ERR_CRTL_TX_PASSIVE; 339 default: 340 return 0; 341 } 342} 343 344static int can_rx_state_to_frame(struct net_device *dev, enum can_state state) 345{ 346 switch (state) { 347 case CAN_STATE_ERROR_ACTIVE: 348 return CAN_ERR_CRTL_ACTIVE; 349 case CAN_STATE_ERROR_WARNING: 350 return CAN_ERR_CRTL_RX_WARNING; 351 case CAN_STATE_ERROR_PASSIVE: 352 return CAN_ERR_CRTL_RX_PASSIVE; 353 default: 354 return 0; 355 } 356} 357 358void can_change_state(struct net_device *dev, struct can_frame *cf, 359 enum can_state tx_state, enum can_state rx_state) 360{ 361 struct can_priv *priv = netdev_priv(dev); 362 enum can_state new_state = max(tx_state, rx_state); 363 364 if (unlikely(new_state == priv->state)) { 365 netdev_warn(dev, "%s: oops, state did not change", __func__); 366 return; 367 } 368 369 netdev_dbg(dev, "New error state: %d\n", new_state); 370 371 can_update_state_error_stats(dev, new_state); 372 priv->state = new_state; 373 374 if (unlikely(new_state == CAN_STATE_BUS_OFF)) { 375 cf->can_id |= CAN_ERR_BUSOFF; 376 return; 377 } 378 379 cf->can_id |= CAN_ERR_CRTL; 380 cf->data[1] |= tx_state >= rx_state ? 381 can_tx_state_to_frame(dev, tx_state) : 0; 382 cf->data[1] |= tx_state <= rx_state ? 383 can_rx_state_to_frame(dev, rx_state) : 0; 384} 385EXPORT_SYMBOL_GPL(can_change_state); 386 387/* 388 * Local echo of CAN messages 389 * 390 * CAN network devices *should* support a local echo functionality 391 * (see Documentation/networking/can.txt). To test the handling of CAN 392 * interfaces that do not support the local echo both driver types are 393 * implemented. In the case that the driver does not support the echo 394 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core 395 * to perform the echo as a fallback solution. 396 */ 397static void can_flush_echo_skb(struct net_device *dev) 398{ 399 struct can_priv *priv = netdev_priv(dev); 400 struct net_device_stats *stats = &dev->stats; 401 int i; 402 403 for (i = 0; i < priv->echo_skb_max; i++) { 404 if (priv->echo_skb[i]) { 405 kfree_skb(priv->echo_skb[i]); 406 priv->echo_skb[i] = NULL; 407 stats->tx_dropped++; 408 stats->tx_aborted_errors++; 409 } 410 } 411} 412 413/* 414 * Put the skb on the stack to be looped backed locally lateron 415 * 416 * The function is typically called in the start_xmit function 417 * of the device driver. The driver must protect access to 418 * priv->echo_skb, if necessary. 419 */ 420void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev, 421 unsigned int idx) 422{ 423 struct can_priv *priv = netdev_priv(dev); 424 425 BUG_ON(idx >= priv->echo_skb_max); 426 427 /* check flag whether this packet has to be looped back */ 428 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK || 429 (skb->protocol != htons(ETH_P_CAN) && 430 skb->protocol != htons(ETH_P_CANFD))) { 431 kfree_skb(skb); 432 return; 433 } 434 435 if (!priv->echo_skb[idx]) { 436 437 skb = can_create_echo_skb(skb); 438 if (!skb) 439 return; 440 441 /* make settings for echo to reduce code in irq context */ 442 skb->pkt_type = PACKET_BROADCAST; 443 skb->ip_summed = CHECKSUM_UNNECESSARY; 444 skb->dev = dev; 445 446 /* save this skb for tx interrupt echo handling */ 447 priv->echo_skb[idx] = skb; 448 } else { 449 /* locking problem with netif_stop_queue() ?? */ 450 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__); 451 kfree_skb(skb); 452 } 453} 454EXPORT_SYMBOL_GPL(can_put_echo_skb); 455 456/* 457 * Get the skb from the stack and loop it back locally 458 * 459 * The function is typically called when the TX done interrupt 460 * is handled in the device driver. The driver must protect 461 * access to priv->echo_skb, if necessary. 462 */ 463unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx) 464{ 465 struct can_priv *priv = netdev_priv(dev); 466 467 BUG_ON(idx >= priv->echo_skb_max); 468 469 if (priv->echo_skb[idx]) { 470 struct sk_buff *skb = priv->echo_skb[idx]; 471 struct can_frame *cf = (struct can_frame *)skb->data; 472 u8 dlc = cf->can_dlc; 473 474 netif_rx(priv->echo_skb[idx]); 475 priv->echo_skb[idx] = NULL; 476 477 return dlc; 478 } 479 480 return 0; 481} 482EXPORT_SYMBOL_GPL(can_get_echo_skb); 483 484/* 485 * Remove the skb from the stack and free it. 486 * 487 * The function is typically called when TX failed. 488 */ 489void can_free_echo_skb(struct net_device *dev, unsigned int idx) 490{ 491 struct can_priv *priv = netdev_priv(dev); 492 493 BUG_ON(idx >= priv->echo_skb_max); 494 495 if (priv->echo_skb[idx]) { 496 dev_kfree_skb_any(priv->echo_skb[idx]); 497 priv->echo_skb[idx] = NULL; 498 } 499} 500EXPORT_SYMBOL_GPL(can_free_echo_skb); 501 502/* 503 * CAN device restart for bus-off recovery 504 */ 505static void can_restart(struct net_device *dev) 506{ 507 struct can_priv *priv = netdev_priv(dev); 508 struct net_device_stats *stats = &dev->stats; 509 struct sk_buff *skb; 510 struct can_frame *cf; 511 int err; 512 513 BUG_ON(netif_carrier_ok(dev)); 514 515 /* 516 * No synchronization needed because the device is bus-off and 517 * no messages can come in or go out. 518 */ 519 can_flush_echo_skb(dev); 520 521 /* send restart message upstream */ 522 skb = alloc_can_err_skb(dev, &cf); 523 if (skb == NULL) { 524 err = -ENOMEM; 525 goto restart; 526 } 527 cf->can_id |= CAN_ERR_RESTARTED; 528 529 netif_rx(skb); 530 531 stats->rx_packets++; 532 stats->rx_bytes += cf->can_dlc; 533 534restart: 535 netdev_dbg(dev, "restarted\n"); 536 priv->can_stats.restarts++; 537 538 /* Now restart the device */ 539 err = priv->do_set_mode(dev, CAN_MODE_START); 540 541 netif_carrier_on(dev); 542 if (err) 543 netdev_err(dev, "Error %d during restart", err); 544} 545 546static void can_restart_work(struct work_struct *work) 547{ 548 struct delayed_work *dwork = to_delayed_work(work); 549 struct can_priv *priv = container_of(dwork, struct can_priv, restart_work); 550 551 can_restart(priv->dev); 552} 553 554int can_restart_now(struct net_device *dev) 555{ 556 struct can_priv *priv = netdev_priv(dev); 557 558 /* 559 * A manual restart is only permitted if automatic restart is 560 * disabled and the device is in the bus-off state 561 */ 562 if (priv->restart_ms) 563 return -EINVAL; 564 if (priv->state != CAN_STATE_BUS_OFF) 565 return -EBUSY; 566 567 cancel_delayed_work_sync(&priv->restart_work); 568 can_restart(dev); 569 570 return 0; 571} 572 573/* 574 * CAN bus-off 575 * 576 * This functions should be called when the device goes bus-off to 577 * tell the netif layer that no more packets can be sent or received. 578 * If enabled, a timer is started to trigger bus-off recovery. 579 */ 580void can_bus_off(struct net_device *dev) 581{ 582 struct can_priv *priv = netdev_priv(dev); 583 584 netdev_dbg(dev, "bus-off\n"); 585 586 netif_carrier_off(dev); 587 588 if (priv->restart_ms) 589 schedule_delayed_work(&priv->restart_work, 590 msecs_to_jiffies(priv->restart_ms)); 591} 592EXPORT_SYMBOL_GPL(can_bus_off); 593 594static void can_setup(struct net_device *dev) 595{ 596 dev->type = ARPHRD_CAN; 597 dev->mtu = CAN_MTU; 598 dev->hard_header_len = 0; 599 dev->addr_len = 0; 600 dev->tx_queue_len = 10; 601 602 /* New-style flags. */ 603 dev->flags = IFF_NOARP; 604 dev->features = NETIF_F_HW_CSUM; 605} 606 607struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf) 608{ 609 struct sk_buff *skb; 610 611 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + 612 sizeof(struct can_frame)); 613 if (unlikely(!skb)) 614 return NULL; 615 616 skb->protocol = htons(ETH_P_CAN); 617 skb->pkt_type = PACKET_BROADCAST; 618 skb->ip_summed = CHECKSUM_UNNECESSARY; 619 620 skb_reset_mac_header(skb); 621 skb_reset_network_header(skb); 622 skb_reset_transport_header(skb); 623 624 can_skb_reserve(skb); 625 can_skb_prv(skb)->ifindex = dev->ifindex; 626 can_skb_prv(skb)->skbcnt = 0; 627 628 *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame)); 629 memset(*cf, 0, sizeof(struct can_frame)); 630 631 return skb; 632} 633EXPORT_SYMBOL_GPL(alloc_can_skb); 634 635struct sk_buff *alloc_canfd_skb(struct net_device *dev, 636 struct canfd_frame **cfd) 637{ 638 struct sk_buff *skb; 639 640 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + 641 sizeof(struct canfd_frame)); 642 if (unlikely(!skb)) 643 return NULL; 644 645 skb->protocol = htons(ETH_P_CANFD); 646 skb->pkt_type = PACKET_BROADCAST; 647 skb->ip_summed = CHECKSUM_UNNECESSARY; 648 649 skb_reset_mac_header(skb); 650 skb_reset_network_header(skb); 651 skb_reset_transport_header(skb); 652 653 can_skb_reserve(skb); 654 can_skb_prv(skb)->ifindex = dev->ifindex; 655 can_skb_prv(skb)->skbcnt = 0; 656 657 *cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame)); 658 memset(*cfd, 0, sizeof(struct canfd_frame)); 659 660 return skb; 661} 662EXPORT_SYMBOL_GPL(alloc_canfd_skb); 663 664struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf) 665{ 666 struct sk_buff *skb; 667 668 skb = alloc_can_skb(dev, cf); 669 if (unlikely(!skb)) 670 return NULL; 671 672 (*cf)->can_id = CAN_ERR_FLAG; 673 (*cf)->can_dlc = CAN_ERR_DLC; 674 675 return skb; 676} 677EXPORT_SYMBOL_GPL(alloc_can_err_skb); 678 679/* 680 * Allocate and setup space for the CAN network device 681 */ 682struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max) 683{ 684 struct net_device *dev; 685 struct can_priv *priv; 686 int size; 687 688 if (echo_skb_max) 689 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) + 690 echo_skb_max * sizeof(struct sk_buff *); 691 else 692 size = sizeof_priv; 693 694 dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup); 695 if (!dev) 696 return NULL; 697 698 priv = netdev_priv(dev); 699 priv->dev = dev; 700 701 if (echo_skb_max) { 702 priv->echo_skb_max = echo_skb_max; 703 priv->echo_skb = (void *)priv + 704 ALIGN(sizeof_priv, sizeof(struct sk_buff *)); 705 } 706 707 priv->state = CAN_STATE_STOPPED; 708 709 INIT_DELAYED_WORK(&priv->restart_work, can_restart_work); 710 711 return dev; 712} 713EXPORT_SYMBOL_GPL(alloc_candev); 714 715/* 716 * Free space of the CAN network device 717 */ 718void free_candev(struct net_device *dev) 719{ 720 free_netdev(dev); 721} 722EXPORT_SYMBOL_GPL(free_candev); 723 724/* 725 * changing MTU and control mode for CAN/CANFD devices 726 */ 727int can_change_mtu(struct net_device *dev, int new_mtu) 728{ 729 struct can_priv *priv = netdev_priv(dev); 730 731 /* Do not allow changing the MTU while running */ 732 if (dev->flags & IFF_UP) 733 return -EBUSY; 734 735 /* allow change of MTU according to the CANFD ability of the device */ 736 switch (new_mtu) { 737 case CAN_MTU: 738 /* 'CANFD-only' controllers can not switch to CAN_MTU */ 739 if (priv->ctrlmode_static & CAN_CTRLMODE_FD) 740 return -EINVAL; 741 742 priv->ctrlmode &= ~CAN_CTRLMODE_FD; 743 break; 744 745 case CANFD_MTU: 746 /* check for potential CANFD ability */ 747 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) && 748 !(priv->ctrlmode_static & CAN_CTRLMODE_FD)) 749 return -EINVAL; 750 751 priv->ctrlmode |= CAN_CTRLMODE_FD; 752 break; 753 754 default: 755 return -EINVAL; 756 } 757 758 dev->mtu = new_mtu; 759 return 0; 760} 761EXPORT_SYMBOL_GPL(can_change_mtu); 762 763/* 764 * Common open function when the device gets opened. 765 * 766 * This function should be called in the open function of the device 767 * driver. 768 */ 769int open_candev(struct net_device *dev) 770{ 771 struct can_priv *priv = netdev_priv(dev); 772 773 if (!priv->bittiming.bitrate) { 774 netdev_err(dev, "bit-timing not yet defined\n"); 775 return -EINVAL; 776 } 777 778 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */ 779 if ((priv->ctrlmode & CAN_CTRLMODE_FD) && 780 (!priv->data_bittiming.bitrate || 781 (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) { 782 netdev_err(dev, "incorrect/missing data bit-timing\n"); 783 return -EINVAL; 784 } 785 786 /* Switch carrier on if device was stopped while in bus-off state */ 787 if (!netif_carrier_ok(dev)) 788 netif_carrier_on(dev); 789 790 return 0; 791} 792EXPORT_SYMBOL_GPL(open_candev); 793 794/* 795 * Common close function for cleanup before the device gets closed. 796 * 797 * This function should be called in the close function of the device 798 * driver. 799 */ 800void close_candev(struct net_device *dev) 801{ 802 struct can_priv *priv = netdev_priv(dev); 803 804 cancel_delayed_work_sync(&priv->restart_work); 805 can_flush_echo_skb(dev); 806} 807EXPORT_SYMBOL_GPL(close_candev); 808 809/* 810 * CAN netlink interface 811 */ 812static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = { 813 [IFLA_CAN_STATE] = { .type = NLA_U32 }, 814 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) }, 815 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 }, 816 [IFLA_CAN_RESTART] = { .type = NLA_U32 }, 817 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) }, 818 [IFLA_CAN_BITTIMING_CONST] 819 = { .len = sizeof(struct can_bittiming_const) }, 820 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) }, 821 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) }, 822 [IFLA_CAN_DATA_BITTIMING] 823 = { .len = sizeof(struct can_bittiming) }, 824 [IFLA_CAN_DATA_BITTIMING_CONST] 825 = { .len = sizeof(struct can_bittiming_const) }, 826}; 827 828static int can_validate(struct nlattr *tb[], struct nlattr *data[]) 829{ 830 bool is_can_fd = false; 831 832 /* Make sure that valid CAN FD configurations always consist of 833 * - nominal/arbitration bittiming 834 * - data bittiming 835 * - control mode with CAN_CTRLMODE_FD set 836 */ 837 838 if (!data) 839 return 0; 840 841 if (data[IFLA_CAN_CTRLMODE]) { 842 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]); 843 844 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD; 845 } 846 847 if (is_can_fd) { 848 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING]) 849 return -EOPNOTSUPP; 850 } 851 852 if (data[IFLA_CAN_DATA_BITTIMING]) { 853 if (!is_can_fd || !data[IFLA_CAN_BITTIMING]) 854 return -EOPNOTSUPP; 855 } 856 857 return 0; 858} 859 860static int can_changelink(struct net_device *dev, 861 struct nlattr *tb[], struct nlattr *data[]) 862{ 863 struct can_priv *priv = netdev_priv(dev); 864 int err; 865 866 /* We need synchronization with dev->stop() */ 867 ASSERT_RTNL(); 868 869 if (data[IFLA_CAN_BITTIMING]) { 870 struct can_bittiming bt; 871 872 /* Do not allow changing bittiming while running */ 873 if (dev->flags & IFF_UP) 874 return -EBUSY; 875 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt)); 876 err = can_get_bittiming(dev, &bt, priv->bittiming_const); 877 if (err) 878 return err; 879 memcpy(&priv->bittiming, &bt, sizeof(bt)); 880 881 if (priv->do_set_bittiming) { 882 /* Finally, set the bit-timing registers */ 883 err = priv->do_set_bittiming(dev); 884 if (err) 885 return err; 886 } 887 } 888 889 if (data[IFLA_CAN_CTRLMODE]) { 890 struct can_ctrlmode *cm; 891 u32 ctrlstatic; 892 u32 maskedflags; 893 894 /* Do not allow changing controller mode while running */ 895 if (dev->flags & IFF_UP) 896 return -EBUSY; 897 cm = nla_data(data[IFLA_CAN_CTRLMODE]); 898 ctrlstatic = priv->ctrlmode_static; 899 maskedflags = cm->flags & cm->mask; 900 901 /* check whether provided bits are allowed to be passed */ 902 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic)) 903 return -EOPNOTSUPP; 904 905 /* do not check for static fd-non-iso if 'fd' is disabled */ 906 if (!(maskedflags & CAN_CTRLMODE_FD)) 907 ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO; 908 909 /* make sure static options are provided by configuration */ 910 if ((maskedflags & ctrlstatic) != ctrlstatic) 911 return -EOPNOTSUPP; 912 913 /* clear bits to be modified and copy the flag values */ 914 priv->ctrlmode &= ~cm->mask; 915 priv->ctrlmode |= maskedflags; 916 917 /* CAN_CTRLMODE_FD can only be set when driver supports FD */ 918 if (priv->ctrlmode & CAN_CTRLMODE_FD) 919 dev->mtu = CANFD_MTU; 920 else 921 dev->mtu = CAN_MTU; 922 } 923 924 if (data[IFLA_CAN_RESTART_MS]) { 925 /* Do not allow changing restart delay while running */ 926 if (dev->flags & IFF_UP) 927 return -EBUSY; 928 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]); 929 } 930 931 if (data[IFLA_CAN_RESTART]) { 932 /* Do not allow a restart while not running */ 933 if (!(dev->flags & IFF_UP)) 934 return -EINVAL; 935 err = can_restart_now(dev); 936 if (err) 937 return err; 938 } 939 940 if (data[IFLA_CAN_DATA_BITTIMING]) { 941 struct can_bittiming dbt; 942 943 /* Do not allow changing bittiming while running */ 944 if (dev->flags & IFF_UP) 945 return -EBUSY; 946 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]), 947 sizeof(dbt)); 948 err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const); 949 if (err) 950 return err; 951 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt)); 952 953 if (priv->do_set_data_bittiming) { 954 /* Finally, set the bit-timing registers */ 955 err = priv->do_set_data_bittiming(dev); 956 if (err) 957 return err; 958 } 959 } 960 961 return 0; 962} 963 964static size_t can_get_size(const struct net_device *dev) 965{ 966 struct can_priv *priv = netdev_priv(dev); 967 size_t size = 0; 968 969 if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */ 970 size += nla_total_size(sizeof(struct can_bittiming)); 971 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */ 972 size += nla_total_size(sizeof(struct can_bittiming_const)); 973 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */ 974 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */ 975 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */ 976 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */ 977 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */ 978 size += nla_total_size(sizeof(struct can_berr_counter)); 979 if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */ 980 size += nla_total_size(sizeof(struct can_bittiming)); 981 if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */ 982 size += nla_total_size(sizeof(struct can_bittiming_const)); 983 984 return size; 985} 986 987static int can_fill_info(struct sk_buff *skb, const struct net_device *dev) 988{ 989 struct can_priv *priv = netdev_priv(dev); 990 struct can_ctrlmode cm = {.flags = priv->ctrlmode}; 991 struct can_berr_counter bec; 992 enum can_state state = priv->state; 993 994 if (priv->do_get_state) 995 priv->do_get_state(dev, &state); 996 997 if ((priv->bittiming.bitrate && 998 nla_put(skb, IFLA_CAN_BITTIMING, 999 sizeof(priv->bittiming), &priv->bittiming)) || 1000 1001 (priv->bittiming_const && 1002 nla_put(skb, IFLA_CAN_BITTIMING_CONST, 1003 sizeof(*priv->bittiming_const), priv->bittiming_const)) || 1004 1005 nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) || 1006 nla_put_u32(skb, IFLA_CAN_STATE, state) || 1007 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) || 1008 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) || 1009 1010 (priv->do_get_berr_counter && 1011 !priv->do_get_berr_counter(dev, &bec) && 1012 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) || 1013 1014 (priv->data_bittiming.bitrate && 1015 nla_put(skb, IFLA_CAN_DATA_BITTIMING, 1016 sizeof(priv->data_bittiming), &priv->data_bittiming)) || 1017 1018 (priv->data_bittiming_const && 1019 nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST, 1020 sizeof(*priv->data_bittiming_const), 1021 priv->data_bittiming_const))) 1022 return -EMSGSIZE; 1023 1024 return 0; 1025} 1026 1027static size_t can_get_xstats_size(const struct net_device *dev) 1028{ 1029 return sizeof(struct can_device_stats); 1030} 1031 1032static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev) 1033{ 1034 struct can_priv *priv = netdev_priv(dev); 1035 1036 if (nla_put(skb, IFLA_INFO_XSTATS, 1037 sizeof(priv->can_stats), &priv->can_stats)) 1038 goto nla_put_failure; 1039 return 0; 1040 1041nla_put_failure: 1042 return -EMSGSIZE; 1043} 1044 1045static int can_newlink(struct net *src_net, struct net_device *dev, 1046 struct nlattr *tb[], struct nlattr *data[]) 1047{ 1048 return -EOPNOTSUPP; 1049} 1050 1051static void can_dellink(struct net_device *dev, struct list_head *head) 1052{ 1053 return; 1054} 1055 1056static struct rtnl_link_ops can_link_ops __read_mostly = { 1057 .kind = "can", 1058 .maxtype = IFLA_CAN_MAX, 1059 .policy = can_policy, 1060 .setup = can_setup, 1061 .validate = can_validate, 1062 .newlink = can_newlink, 1063 .changelink = can_changelink, 1064 .dellink = can_dellink, 1065 .get_size = can_get_size, 1066 .fill_info = can_fill_info, 1067 .get_xstats_size = can_get_xstats_size, 1068 .fill_xstats = can_fill_xstats, 1069}; 1070 1071/* 1072 * Register the CAN network device 1073 */ 1074int register_candev(struct net_device *dev) 1075{ 1076 dev->rtnl_link_ops = &can_link_ops; 1077 return register_netdev(dev); 1078} 1079EXPORT_SYMBOL_GPL(register_candev); 1080 1081/* 1082 * Unregister the CAN network device 1083 */ 1084void unregister_candev(struct net_device *dev) 1085{ 1086 unregister_netdev(dev); 1087} 1088EXPORT_SYMBOL_GPL(unregister_candev); 1089 1090/* 1091 * Test if a network device is a candev based device 1092 * and return the can_priv* if so. 1093 */ 1094struct can_priv *safe_candev_priv(struct net_device *dev) 1095{ 1096 if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops)) 1097 return NULL; 1098 1099 return netdev_priv(dev); 1100} 1101EXPORT_SYMBOL_GPL(safe_candev_priv); 1102 1103static __init int can_dev_init(void) 1104{ 1105 int err; 1106 1107 can_led_notifier_init(); 1108 1109 err = rtnl_link_register(&can_link_ops); 1110 if (!err) 1111 printk(KERN_INFO MOD_DESC "\n"); 1112 1113 return err; 1114} 1115module_init(can_dev_init); 1116 1117static __exit void can_dev_exit(void) 1118{ 1119 rtnl_link_unregister(&can_link_ops); 1120 1121 can_led_notifier_exit(); 1122} 1123module_exit(can_dev_exit); 1124 1125MODULE_ALIAS_RTNL_LINK("can");