at v4.9 28 kB view raw
1#include <linux/delay.h> 2#include <linux/dmaengine.h> 3#include <linux/dma-mapping.h> 4#include <linux/platform_device.h> 5#include <linux/module.h> 6#include <linux/of.h> 7#include <linux/slab.h> 8#include <linux/of_dma.h> 9#include <linux/of_irq.h> 10#include <linux/dmapool.h> 11#include <linux/interrupt.h> 12#include <linux/of_address.h> 13#include <linux/pm_runtime.h> 14#include "dmaengine.h" 15 16#define DESC_TYPE 27 17#define DESC_TYPE_HOST 0x10 18#define DESC_TYPE_TEARD 0x13 19 20#define TD_DESC_IS_RX (1 << 16) 21#define TD_DESC_DMA_NUM 10 22 23#define DESC_LENGTH_BITS_NUM 21 24 25#define DESC_TYPE_USB (5 << 26) 26#define DESC_PD_COMPLETE (1 << 31) 27 28/* DMA engine */ 29#define DMA_TDFDQ 4 30#define DMA_TXGCR(x) (0x800 + (x) * 0x20) 31#define DMA_RXGCR(x) (0x808 + (x) * 0x20) 32#define RXHPCRA0 4 33 34#define GCR_CHAN_ENABLE (1 << 31) 35#define GCR_TEARDOWN (1 << 30) 36#define GCR_STARV_RETRY (1 << 24) 37#define GCR_DESC_TYPE_HOST (1 << 14) 38 39/* DMA scheduler */ 40#define DMA_SCHED_CTRL 0 41#define DMA_SCHED_CTRL_EN (1 << 31) 42#define DMA_SCHED_WORD(x) ((x) * 4 + 0x800) 43 44#define SCHED_ENTRY0_CHAN(x) ((x) << 0) 45#define SCHED_ENTRY0_IS_RX (1 << 7) 46 47#define SCHED_ENTRY1_CHAN(x) ((x) << 8) 48#define SCHED_ENTRY1_IS_RX (1 << 15) 49 50#define SCHED_ENTRY2_CHAN(x) ((x) << 16) 51#define SCHED_ENTRY2_IS_RX (1 << 23) 52 53#define SCHED_ENTRY3_CHAN(x) ((x) << 24) 54#define SCHED_ENTRY3_IS_RX (1 << 31) 55 56/* Queue manager */ 57/* 4 KiB of memory for descriptors, 2 for each endpoint */ 58#define ALLOC_DECS_NUM 128 59#define DESCS_AREAS 1 60#define TOTAL_DESCS_NUM (ALLOC_DECS_NUM * DESCS_AREAS) 61#define QMGR_SCRATCH_SIZE (TOTAL_DESCS_NUM * 4) 62 63#define QMGR_LRAM0_BASE 0x80 64#define QMGR_LRAM_SIZE 0x84 65#define QMGR_LRAM1_BASE 0x88 66#define QMGR_MEMBASE(x) (0x1000 + (x) * 0x10) 67#define QMGR_MEMCTRL(x) (0x1004 + (x) * 0x10) 68#define QMGR_MEMCTRL_IDX_SH 16 69#define QMGR_MEMCTRL_DESC_SH 8 70 71#define QMGR_NUM_PEND 5 72#define QMGR_PEND(x) (0x90 + (x) * 4) 73 74#define QMGR_PENDING_SLOT_Q(x) (x / 32) 75#define QMGR_PENDING_BIT_Q(x) (x % 32) 76 77#define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10) 78#define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10) 79#define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10) 80#define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10) 81 82/* Glue layer specific */ 83/* USBSS / USB AM335x */ 84#define USBSS_IRQ_STATUS 0x28 85#define USBSS_IRQ_ENABLER 0x2c 86#define USBSS_IRQ_CLEARR 0x30 87 88#define USBSS_IRQ_PD_COMP (1 << 2) 89 90/* Packet Descriptor */ 91#define PD2_ZERO_LENGTH (1 << 19) 92 93struct cppi41_channel { 94 struct dma_chan chan; 95 struct dma_async_tx_descriptor txd; 96 struct cppi41_dd *cdd; 97 struct cppi41_desc *desc; 98 dma_addr_t desc_phys; 99 void __iomem *gcr_reg; 100 int is_tx; 101 u32 residue; 102 103 unsigned int q_num; 104 unsigned int q_comp_num; 105 unsigned int port_num; 106 107 unsigned td_retry; 108 unsigned td_queued:1; 109 unsigned td_seen:1; 110 unsigned td_desc_seen:1; 111 112 struct list_head node; /* Node for pending list */ 113}; 114 115struct cppi41_desc { 116 u32 pd0; 117 u32 pd1; 118 u32 pd2; 119 u32 pd3; 120 u32 pd4; 121 u32 pd5; 122 u32 pd6; 123 u32 pd7; 124} __aligned(32); 125 126struct chan_queues { 127 u16 submit; 128 u16 complete; 129}; 130 131struct cppi41_dd { 132 struct dma_device ddev; 133 134 void *qmgr_scratch; 135 dma_addr_t scratch_phys; 136 137 struct cppi41_desc *cd; 138 dma_addr_t descs_phys; 139 u32 first_td_desc; 140 struct cppi41_channel *chan_busy[ALLOC_DECS_NUM]; 141 142 void __iomem *usbss_mem; 143 void __iomem *ctrl_mem; 144 void __iomem *sched_mem; 145 void __iomem *qmgr_mem; 146 unsigned int irq; 147 const struct chan_queues *queues_rx; 148 const struct chan_queues *queues_tx; 149 struct chan_queues td_queue; 150 151 struct list_head pending; /* Pending queued transfers */ 152 spinlock_t lock; /* Lock for pending list */ 153 154 /* context for suspend/resume */ 155 unsigned int dma_tdfdq; 156}; 157 158#define FIST_COMPLETION_QUEUE 93 159static struct chan_queues usb_queues_tx[] = { 160 /* USB0 ENDP 1 */ 161 [ 0] = { .submit = 32, .complete = 93}, 162 [ 1] = { .submit = 34, .complete = 94}, 163 [ 2] = { .submit = 36, .complete = 95}, 164 [ 3] = { .submit = 38, .complete = 96}, 165 [ 4] = { .submit = 40, .complete = 97}, 166 [ 5] = { .submit = 42, .complete = 98}, 167 [ 6] = { .submit = 44, .complete = 99}, 168 [ 7] = { .submit = 46, .complete = 100}, 169 [ 8] = { .submit = 48, .complete = 101}, 170 [ 9] = { .submit = 50, .complete = 102}, 171 [10] = { .submit = 52, .complete = 103}, 172 [11] = { .submit = 54, .complete = 104}, 173 [12] = { .submit = 56, .complete = 105}, 174 [13] = { .submit = 58, .complete = 106}, 175 [14] = { .submit = 60, .complete = 107}, 176 177 /* USB1 ENDP1 */ 178 [15] = { .submit = 62, .complete = 125}, 179 [16] = { .submit = 64, .complete = 126}, 180 [17] = { .submit = 66, .complete = 127}, 181 [18] = { .submit = 68, .complete = 128}, 182 [19] = { .submit = 70, .complete = 129}, 183 [20] = { .submit = 72, .complete = 130}, 184 [21] = { .submit = 74, .complete = 131}, 185 [22] = { .submit = 76, .complete = 132}, 186 [23] = { .submit = 78, .complete = 133}, 187 [24] = { .submit = 80, .complete = 134}, 188 [25] = { .submit = 82, .complete = 135}, 189 [26] = { .submit = 84, .complete = 136}, 190 [27] = { .submit = 86, .complete = 137}, 191 [28] = { .submit = 88, .complete = 138}, 192 [29] = { .submit = 90, .complete = 139}, 193}; 194 195static const struct chan_queues usb_queues_rx[] = { 196 /* USB0 ENDP 1 */ 197 [ 0] = { .submit = 1, .complete = 109}, 198 [ 1] = { .submit = 2, .complete = 110}, 199 [ 2] = { .submit = 3, .complete = 111}, 200 [ 3] = { .submit = 4, .complete = 112}, 201 [ 4] = { .submit = 5, .complete = 113}, 202 [ 5] = { .submit = 6, .complete = 114}, 203 [ 6] = { .submit = 7, .complete = 115}, 204 [ 7] = { .submit = 8, .complete = 116}, 205 [ 8] = { .submit = 9, .complete = 117}, 206 [ 9] = { .submit = 10, .complete = 118}, 207 [10] = { .submit = 11, .complete = 119}, 208 [11] = { .submit = 12, .complete = 120}, 209 [12] = { .submit = 13, .complete = 121}, 210 [13] = { .submit = 14, .complete = 122}, 211 [14] = { .submit = 15, .complete = 123}, 212 213 /* USB1 ENDP 1 */ 214 [15] = { .submit = 16, .complete = 141}, 215 [16] = { .submit = 17, .complete = 142}, 216 [17] = { .submit = 18, .complete = 143}, 217 [18] = { .submit = 19, .complete = 144}, 218 [19] = { .submit = 20, .complete = 145}, 219 [20] = { .submit = 21, .complete = 146}, 220 [21] = { .submit = 22, .complete = 147}, 221 [22] = { .submit = 23, .complete = 148}, 222 [23] = { .submit = 24, .complete = 149}, 223 [24] = { .submit = 25, .complete = 150}, 224 [25] = { .submit = 26, .complete = 151}, 225 [26] = { .submit = 27, .complete = 152}, 226 [27] = { .submit = 28, .complete = 153}, 227 [28] = { .submit = 29, .complete = 154}, 228 [29] = { .submit = 30, .complete = 155}, 229}; 230 231struct cppi_glue_infos { 232 irqreturn_t (*isr)(int irq, void *data); 233 const struct chan_queues *queues_rx; 234 const struct chan_queues *queues_tx; 235 struct chan_queues td_queue; 236}; 237 238static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c) 239{ 240 return container_of(c, struct cppi41_channel, chan); 241} 242 243static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc) 244{ 245 struct cppi41_channel *c; 246 u32 descs_size; 247 u32 desc_num; 248 249 descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM; 250 251 if (!((desc >= cdd->descs_phys) && 252 (desc < (cdd->descs_phys + descs_size)))) { 253 return NULL; 254 } 255 256 desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc); 257 BUG_ON(desc_num >= ALLOC_DECS_NUM); 258 c = cdd->chan_busy[desc_num]; 259 cdd->chan_busy[desc_num] = NULL; 260 return c; 261} 262 263static void cppi_writel(u32 val, void *__iomem *mem) 264{ 265 __raw_writel(val, mem); 266} 267 268static u32 cppi_readl(void *__iomem *mem) 269{ 270 return __raw_readl(mem); 271} 272 273static u32 pd_trans_len(u32 val) 274{ 275 return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1); 276} 277 278static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num) 279{ 280 u32 desc; 281 282 desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num)); 283 desc &= ~0x1f; 284 return desc; 285} 286 287static irqreturn_t cppi41_irq(int irq, void *data) 288{ 289 struct cppi41_dd *cdd = data; 290 struct cppi41_channel *c; 291 u32 status; 292 int i; 293 294 status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS); 295 if (!(status & USBSS_IRQ_PD_COMP)) 296 return IRQ_NONE; 297 cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS); 298 299 for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND; 300 i++) { 301 u32 val; 302 u32 q_num; 303 304 val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i)); 305 if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) { 306 u32 mask; 307 /* set corresponding bit for completetion Q 93 */ 308 mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE); 309 /* not set all bits for queues less than Q 93 */ 310 mask--; 311 /* now invert and keep only Q 93+ set */ 312 val &= ~mask; 313 } 314 315 if (val) 316 __iormb(); 317 318 while (val) { 319 u32 desc, len; 320 int error; 321 322 error = pm_runtime_get(cdd->ddev.dev); 323 if (error < 0) 324 dev_err(cdd->ddev.dev, "%s pm runtime get: %i\n", 325 __func__, error); 326 327 q_num = __fls(val); 328 val &= ~(1 << q_num); 329 q_num += 32 * i; 330 desc = cppi41_pop_desc(cdd, q_num); 331 c = desc_to_chan(cdd, desc); 332 if (WARN_ON(!c)) { 333 pr_err("%s() q %d desc %08x\n", __func__, 334 q_num, desc); 335 continue; 336 } 337 338 if (c->desc->pd2 & PD2_ZERO_LENGTH) 339 len = 0; 340 else 341 len = pd_trans_len(c->desc->pd0); 342 343 c->residue = pd_trans_len(c->desc->pd6) - len; 344 dma_cookie_complete(&c->txd); 345 dmaengine_desc_get_callback_invoke(&c->txd, NULL); 346 347 pm_runtime_mark_last_busy(cdd->ddev.dev); 348 pm_runtime_put_autosuspend(cdd->ddev.dev); 349 } 350 } 351 return IRQ_HANDLED; 352} 353 354static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx) 355{ 356 dma_cookie_t cookie; 357 358 cookie = dma_cookie_assign(tx); 359 360 return cookie; 361} 362 363static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan) 364{ 365 struct cppi41_channel *c = to_cpp41_chan(chan); 366 struct cppi41_dd *cdd = c->cdd; 367 int error; 368 369 error = pm_runtime_get_sync(cdd->ddev.dev); 370 if (error < 0) { 371 dev_err(cdd->ddev.dev, "%s pm runtime get: %i\n", 372 __func__, error); 373 pm_runtime_put_noidle(cdd->ddev.dev); 374 375 return error; 376 } 377 378 dma_cookie_init(chan); 379 dma_async_tx_descriptor_init(&c->txd, chan); 380 c->txd.tx_submit = cppi41_tx_submit; 381 382 if (!c->is_tx) 383 cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0); 384 385 pm_runtime_mark_last_busy(cdd->ddev.dev); 386 pm_runtime_put_autosuspend(cdd->ddev.dev); 387 388 return 0; 389} 390 391static void cppi41_dma_free_chan_resources(struct dma_chan *chan) 392{ 393 struct cppi41_channel *c = to_cpp41_chan(chan); 394 struct cppi41_dd *cdd = c->cdd; 395 int error; 396 397 error = pm_runtime_get_sync(cdd->ddev.dev); 398 if (error < 0) { 399 pm_runtime_put_noidle(cdd->ddev.dev); 400 401 return; 402 } 403 404 WARN_ON(!list_empty(&cdd->pending)); 405 406 pm_runtime_mark_last_busy(cdd->ddev.dev); 407 pm_runtime_put_autosuspend(cdd->ddev.dev); 408} 409 410static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan, 411 dma_cookie_t cookie, struct dma_tx_state *txstate) 412{ 413 struct cppi41_channel *c = to_cpp41_chan(chan); 414 enum dma_status ret; 415 416 /* lock */ 417 ret = dma_cookie_status(chan, cookie, txstate); 418 if (txstate && ret == DMA_COMPLETE) 419 txstate->residue = c->residue; 420 /* unlock */ 421 422 return ret; 423} 424 425static void push_desc_queue(struct cppi41_channel *c) 426{ 427 struct cppi41_dd *cdd = c->cdd; 428 u32 desc_num; 429 u32 desc_phys; 430 u32 reg; 431 432 c->residue = 0; 433 434 reg = GCR_CHAN_ENABLE; 435 if (!c->is_tx) { 436 reg |= GCR_STARV_RETRY; 437 reg |= GCR_DESC_TYPE_HOST; 438 reg |= c->q_comp_num; 439 } 440 441 cppi_writel(reg, c->gcr_reg); 442 443 /* 444 * We don't use writel() but __raw_writel() so we have to make sure 445 * that the DMA descriptor in coherent memory made to the main memory 446 * before starting the dma engine. 447 */ 448 __iowmb(); 449 450 desc_phys = lower_32_bits(c->desc_phys); 451 desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc); 452 WARN_ON(cdd->chan_busy[desc_num]); 453 cdd->chan_busy[desc_num] = c; 454 455 reg = (sizeof(struct cppi41_desc) - 24) / 4; 456 reg |= desc_phys; 457 cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num)); 458} 459 460static void pending_desc(struct cppi41_channel *c) 461{ 462 struct cppi41_dd *cdd = c->cdd; 463 unsigned long flags; 464 465 spin_lock_irqsave(&cdd->lock, flags); 466 list_add_tail(&c->node, &cdd->pending); 467 spin_unlock_irqrestore(&cdd->lock, flags); 468} 469 470static void cppi41_dma_issue_pending(struct dma_chan *chan) 471{ 472 struct cppi41_channel *c = to_cpp41_chan(chan); 473 struct cppi41_dd *cdd = c->cdd; 474 int error; 475 476 error = pm_runtime_get(cdd->ddev.dev); 477 if ((error != -EINPROGRESS) && error < 0) { 478 pm_runtime_put_noidle(cdd->ddev.dev); 479 dev_err(cdd->ddev.dev, "Failed to pm_runtime_get: %i\n", 480 error); 481 482 return; 483 } 484 485 if (likely(pm_runtime_active(cdd->ddev.dev))) 486 push_desc_queue(c); 487 else 488 pending_desc(c); 489 490 pm_runtime_mark_last_busy(cdd->ddev.dev); 491 pm_runtime_put_autosuspend(cdd->ddev.dev); 492} 493 494static u32 get_host_pd0(u32 length) 495{ 496 u32 reg; 497 498 reg = DESC_TYPE_HOST << DESC_TYPE; 499 reg |= length; 500 501 return reg; 502} 503 504static u32 get_host_pd1(struct cppi41_channel *c) 505{ 506 u32 reg; 507 508 reg = 0; 509 510 return reg; 511} 512 513static u32 get_host_pd2(struct cppi41_channel *c) 514{ 515 u32 reg; 516 517 reg = DESC_TYPE_USB; 518 reg |= c->q_comp_num; 519 520 return reg; 521} 522 523static u32 get_host_pd3(u32 length) 524{ 525 u32 reg; 526 527 /* PD3 = packet size */ 528 reg = length; 529 530 return reg; 531} 532 533static u32 get_host_pd6(u32 length) 534{ 535 u32 reg; 536 537 /* PD6 buffer size */ 538 reg = DESC_PD_COMPLETE; 539 reg |= length; 540 541 return reg; 542} 543 544static u32 get_host_pd4_or_7(u32 addr) 545{ 546 u32 reg; 547 548 reg = addr; 549 550 return reg; 551} 552 553static u32 get_host_pd5(void) 554{ 555 u32 reg; 556 557 reg = 0; 558 559 return reg; 560} 561 562static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg( 563 struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len, 564 enum dma_transfer_direction dir, unsigned long tx_flags, void *context) 565{ 566 struct cppi41_channel *c = to_cpp41_chan(chan); 567 struct cppi41_desc *d; 568 struct scatterlist *sg; 569 unsigned int i; 570 571 d = c->desc; 572 for_each_sg(sgl, sg, sg_len, i) { 573 u32 addr; 574 u32 len; 575 576 /* We need to use more than one desc once musb supports sg */ 577 addr = lower_32_bits(sg_dma_address(sg)); 578 len = sg_dma_len(sg); 579 580 d->pd0 = get_host_pd0(len); 581 d->pd1 = get_host_pd1(c); 582 d->pd2 = get_host_pd2(c); 583 d->pd3 = get_host_pd3(len); 584 d->pd4 = get_host_pd4_or_7(addr); 585 d->pd5 = get_host_pd5(); 586 d->pd6 = get_host_pd6(len); 587 d->pd7 = get_host_pd4_or_7(addr); 588 589 d++; 590 } 591 592 return &c->txd; 593} 594 595static void cppi41_compute_td_desc(struct cppi41_desc *d) 596{ 597 d->pd0 = DESC_TYPE_TEARD << DESC_TYPE; 598} 599 600static int cppi41_tear_down_chan(struct cppi41_channel *c) 601{ 602 struct cppi41_dd *cdd = c->cdd; 603 struct cppi41_desc *td; 604 u32 reg; 605 u32 desc_phys; 606 u32 td_desc_phys; 607 608 td = cdd->cd; 609 td += cdd->first_td_desc; 610 611 td_desc_phys = cdd->descs_phys; 612 td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc); 613 614 if (!c->td_queued) { 615 cppi41_compute_td_desc(td); 616 __iowmb(); 617 618 reg = (sizeof(struct cppi41_desc) - 24) / 4; 619 reg |= td_desc_phys; 620 cppi_writel(reg, cdd->qmgr_mem + 621 QMGR_QUEUE_D(cdd->td_queue.submit)); 622 623 reg = GCR_CHAN_ENABLE; 624 if (!c->is_tx) { 625 reg |= GCR_STARV_RETRY; 626 reg |= GCR_DESC_TYPE_HOST; 627 reg |= c->q_comp_num; 628 } 629 reg |= GCR_TEARDOWN; 630 cppi_writel(reg, c->gcr_reg); 631 c->td_queued = 1; 632 c->td_retry = 500; 633 } 634 635 if (!c->td_seen || !c->td_desc_seen) { 636 637 desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete); 638 if (!desc_phys) 639 desc_phys = cppi41_pop_desc(cdd, c->q_comp_num); 640 641 if (desc_phys == c->desc_phys) { 642 c->td_desc_seen = 1; 643 644 } else if (desc_phys == td_desc_phys) { 645 u32 pd0; 646 647 __iormb(); 648 pd0 = td->pd0; 649 WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD); 650 WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX)); 651 WARN_ON((pd0 & 0x1f) != c->port_num); 652 c->td_seen = 1; 653 } else if (desc_phys) { 654 WARN_ON_ONCE(1); 655 } 656 } 657 c->td_retry--; 658 /* 659 * If the TX descriptor / channel is in use, the caller needs to poke 660 * his TD bit multiple times. After that he hardware releases the 661 * transfer descriptor followed by TD descriptor. Waiting seems not to 662 * cause any difference. 663 * RX seems to be thrown out right away. However once the TearDown 664 * descriptor gets through we are done. If we have seens the transfer 665 * descriptor before the TD we fetch it from enqueue, it has to be 666 * there waiting for us. 667 */ 668 if (!c->td_seen && c->td_retry) { 669 udelay(1); 670 return -EAGAIN; 671 } 672 WARN_ON(!c->td_retry); 673 674 if (!c->td_desc_seen) { 675 desc_phys = cppi41_pop_desc(cdd, c->q_num); 676 if (!desc_phys) 677 desc_phys = cppi41_pop_desc(cdd, c->q_comp_num); 678 WARN_ON(!desc_phys); 679 } 680 681 c->td_queued = 0; 682 c->td_seen = 0; 683 c->td_desc_seen = 0; 684 cppi_writel(0, c->gcr_reg); 685 return 0; 686} 687 688static int cppi41_stop_chan(struct dma_chan *chan) 689{ 690 struct cppi41_channel *c = to_cpp41_chan(chan); 691 struct cppi41_dd *cdd = c->cdd; 692 u32 desc_num; 693 u32 desc_phys; 694 int ret; 695 696 desc_phys = lower_32_bits(c->desc_phys); 697 desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc); 698 if (!cdd->chan_busy[desc_num]) 699 return 0; 700 701 ret = cppi41_tear_down_chan(c); 702 if (ret) 703 return ret; 704 705 WARN_ON(!cdd->chan_busy[desc_num]); 706 cdd->chan_busy[desc_num] = NULL; 707 708 return 0; 709} 710 711static void cleanup_chans(struct cppi41_dd *cdd) 712{ 713 while (!list_empty(&cdd->ddev.channels)) { 714 struct cppi41_channel *cchan; 715 716 cchan = list_first_entry(&cdd->ddev.channels, 717 struct cppi41_channel, chan.device_node); 718 list_del(&cchan->chan.device_node); 719 kfree(cchan); 720 } 721} 722 723static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd) 724{ 725 struct cppi41_channel *cchan; 726 int i; 727 int ret; 728 u32 n_chans; 729 730 ret = of_property_read_u32(dev->of_node, "#dma-channels", 731 &n_chans); 732 if (ret) 733 return ret; 734 /* 735 * The channels can only be used as TX or as RX. So we add twice 736 * that much dma channels because USB can only do RX or TX. 737 */ 738 n_chans *= 2; 739 740 for (i = 0; i < n_chans; i++) { 741 cchan = kzalloc(sizeof(*cchan), GFP_KERNEL); 742 if (!cchan) 743 goto err; 744 745 cchan->cdd = cdd; 746 if (i & 1) { 747 cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1); 748 cchan->is_tx = 1; 749 } else { 750 cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1); 751 cchan->is_tx = 0; 752 } 753 cchan->port_num = i >> 1; 754 cchan->desc = &cdd->cd[i]; 755 cchan->desc_phys = cdd->descs_phys; 756 cchan->desc_phys += i * sizeof(struct cppi41_desc); 757 cchan->chan.device = &cdd->ddev; 758 list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels); 759 } 760 cdd->first_td_desc = n_chans; 761 762 return 0; 763err: 764 cleanup_chans(cdd); 765 return -ENOMEM; 766} 767 768static void purge_descs(struct device *dev, struct cppi41_dd *cdd) 769{ 770 unsigned int mem_decs; 771 int i; 772 773 mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc); 774 775 for (i = 0; i < DESCS_AREAS; i++) { 776 777 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i)); 778 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i)); 779 780 dma_free_coherent(dev, mem_decs, cdd->cd, 781 cdd->descs_phys); 782 } 783} 784 785static void disable_sched(struct cppi41_dd *cdd) 786{ 787 cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL); 788} 789 790static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd) 791{ 792 disable_sched(cdd); 793 794 purge_descs(dev, cdd); 795 796 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE); 797 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE); 798 dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch, 799 cdd->scratch_phys); 800} 801 802static int init_descs(struct device *dev, struct cppi41_dd *cdd) 803{ 804 unsigned int desc_size; 805 unsigned int mem_decs; 806 int i; 807 u32 reg; 808 u32 idx; 809 810 BUILD_BUG_ON(sizeof(struct cppi41_desc) & 811 (sizeof(struct cppi41_desc) - 1)); 812 BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32); 813 BUILD_BUG_ON(ALLOC_DECS_NUM < 32); 814 815 desc_size = sizeof(struct cppi41_desc); 816 mem_decs = ALLOC_DECS_NUM * desc_size; 817 818 idx = 0; 819 for (i = 0; i < DESCS_AREAS; i++) { 820 821 reg = idx << QMGR_MEMCTRL_IDX_SH; 822 reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH; 823 reg |= ilog2(ALLOC_DECS_NUM) - 5; 824 825 BUILD_BUG_ON(DESCS_AREAS != 1); 826 cdd->cd = dma_alloc_coherent(dev, mem_decs, 827 &cdd->descs_phys, GFP_KERNEL); 828 if (!cdd->cd) 829 return -ENOMEM; 830 831 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i)); 832 cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i)); 833 834 idx += ALLOC_DECS_NUM; 835 } 836 return 0; 837} 838 839static void init_sched(struct cppi41_dd *cdd) 840{ 841 unsigned ch; 842 unsigned word; 843 u32 reg; 844 845 word = 0; 846 cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL); 847 for (ch = 0; ch < 15 * 2; ch += 2) { 848 849 reg = SCHED_ENTRY0_CHAN(ch); 850 reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX; 851 852 reg |= SCHED_ENTRY2_CHAN(ch + 1); 853 reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX; 854 cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word)); 855 word++; 856 } 857 reg = 15 * 2 * 2 - 1; 858 reg |= DMA_SCHED_CTRL_EN; 859 cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL); 860} 861 862static int init_cppi41(struct device *dev, struct cppi41_dd *cdd) 863{ 864 int ret; 865 866 BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1)); 867 cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE, 868 &cdd->scratch_phys, GFP_KERNEL); 869 if (!cdd->qmgr_scratch) 870 return -ENOMEM; 871 872 cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE); 873 cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE); 874 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE); 875 876 ret = init_descs(dev, cdd); 877 if (ret) 878 goto err_td; 879 880 cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ); 881 init_sched(cdd); 882 return 0; 883err_td: 884 deinit_cppi41(dev, cdd); 885 return ret; 886} 887 888static struct platform_driver cpp41_dma_driver; 889/* 890 * The param format is: 891 * X Y 892 * X: Port 893 * Y: 0 = RX else TX 894 */ 895#define INFO_PORT 0 896#define INFO_IS_TX 1 897 898static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param) 899{ 900 struct cppi41_channel *cchan; 901 struct cppi41_dd *cdd; 902 const struct chan_queues *queues; 903 u32 *num = param; 904 905 if (chan->device->dev->driver != &cpp41_dma_driver.driver) 906 return false; 907 908 cchan = to_cpp41_chan(chan); 909 910 if (cchan->port_num != num[INFO_PORT]) 911 return false; 912 913 if (cchan->is_tx && !num[INFO_IS_TX]) 914 return false; 915 cdd = cchan->cdd; 916 if (cchan->is_tx) 917 queues = cdd->queues_tx; 918 else 919 queues = cdd->queues_rx; 920 921 BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx)); 922 if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx))) 923 return false; 924 925 cchan->q_num = queues[cchan->port_num].submit; 926 cchan->q_comp_num = queues[cchan->port_num].complete; 927 return true; 928} 929 930static struct of_dma_filter_info cpp41_dma_info = { 931 .filter_fn = cpp41_dma_filter_fn, 932}; 933 934static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec, 935 struct of_dma *ofdma) 936{ 937 int count = dma_spec->args_count; 938 struct of_dma_filter_info *info = ofdma->of_dma_data; 939 940 if (!info || !info->filter_fn) 941 return NULL; 942 943 if (count != 2) 944 return NULL; 945 946 return dma_request_channel(info->dma_cap, info->filter_fn, 947 &dma_spec->args[0]); 948} 949 950static const struct cppi_glue_infos usb_infos = { 951 .isr = cppi41_irq, 952 .queues_rx = usb_queues_rx, 953 .queues_tx = usb_queues_tx, 954 .td_queue = { .submit = 31, .complete = 0 }, 955}; 956 957static const struct of_device_id cppi41_dma_ids[] = { 958 { .compatible = "ti,am3359-cppi41", .data = &usb_infos}, 959 {}, 960}; 961MODULE_DEVICE_TABLE(of, cppi41_dma_ids); 962 963static const struct cppi_glue_infos *get_glue_info(struct device *dev) 964{ 965 const struct of_device_id *of_id; 966 967 of_id = of_match_node(cppi41_dma_ids, dev->of_node); 968 if (!of_id) 969 return NULL; 970 return of_id->data; 971} 972 973#define CPPI41_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 974 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 975 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ 976 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 977 978static int cppi41_dma_probe(struct platform_device *pdev) 979{ 980 struct cppi41_dd *cdd; 981 struct device *dev = &pdev->dev; 982 const struct cppi_glue_infos *glue_info; 983 int irq; 984 int ret; 985 986 glue_info = get_glue_info(dev); 987 if (!glue_info) 988 return -EINVAL; 989 990 cdd = devm_kzalloc(&pdev->dev, sizeof(*cdd), GFP_KERNEL); 991 if (!cdd) 992 return -ENOMEM; 993 994 dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask); 995 cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources; 996 cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources; 997 cdd->ddev.device_tx_status = cppi41_dma_tx_status; 998 cdd->ddev.device_issue_pending = cppi41_dma_issue_pending; 999 cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg; 1000 cdd->ddev.device_terminate_all = cppi41_stop_chan; 1001 cdd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1002 cdd->ddev.src_addr_widths = CPPI41_DMA_BUSWIDTHS; 1003 cdd->ddev.dst_addr_widths = CPPI41_DMA_BUSWIDTHS; 1004 cdd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1005 cdd->ddev.dev = dev; 1006 INIT_LIST_HEAD(&cdd->ddev.channels); 1007 cpp41_dma_info.dma_cap = cdd->ddev.cap_mask; 1008 1009 cdd->usbss_mem = of_iomap(dev->of_node, 0); 1010 cdd->ctrl_mem = of_iomap(dev->of_node, 1); 1011 cdd->sched_mem = of_iomap(dev->of_node, 2); 1012 cdd->qmgr_mem = of_iomap(dev->of_node, 3); 1013 spin_lock_init(&cdd->lock); 1014 INIT_LIST_HEAD(&cdd->pending); 1015 1016 platform_set_drvdata(pdev, cdd); 1017 1018 if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem || 1019 !cdd->qmgr_mem) 1020 return -ENXIO; 1021 1022 pm_runtime_enable(dev); 1023 pm_runtime_set_autosuspend_delay(dev, 100); 1024 pm_runtime_use_autosuspend(dev); 1025 ret = pm_runtime_get_sync(dev); 1026 if (ret < 0) 1027 goto err_get_sync; 1028 1029 cdd->queues_rx = glue_info->queues_rx; 1030 cdd->queues_tx = glue_info->queues_tx; 1031 cdd->td_queue = glue_info->td_queue; 1032 1033 ret = init_cppi41(dev, cdd); 1034 if (ret) 1035 goto err_init_cppi; 1036 1037 ret = cppi41_add_chans(dev, cdd); 1038 if (ret) 1039 goto err_chans; 1040 1041 irq = irq_of_parse_and_map(dev->of_node, 0); 1042 if (!irq) { 1043 ret = -EINVAL; 1044 goto err_irq; 1045 } 1046 1047 cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER); 1048 1049 ret = devm_request_irq(&pdev->dev, irq, glue_info->isr, IRQF_SHARED, 1050 dev_name(dev), cdd); 1051 if (ret) 1052 goto err_irq; 1053 cdd->irq = irq; 1054 1055 ret = dma_async_device_register(&cdd->ddev); 1056 if (ret) 1057 goto err_dma_reg; 1058 1059 ret = of_dma_controller_register(dev->of_node, 1060 cppi41_dma_xlate, &cpp41_dma_info); 1061 if (ret) 1062 goto err_of; 1063 1064 pm_runtime_mark_last_busy(dev); 1065 pm_runtime_put_autosuspend(dev); 1066 1067 return 0; 1068err_of: 1069 dma_async_device_unregister(&cdd->ddev); 1070err_dma_reg: 1071err_irq: 1072 cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR); 1073 cleanup_chans(cdd); 1074err_chans: 1075 deinit_cppi41(dev, cdd); 1076err_init_cppi: 1077 pm_runtime_dont_use_autosuspend(dev); 1078err_get_sync: 1079 pm_runtime_put_sync(dev); 1080 pm_runtime_disable(dev); 1081 iounmap(cdd->usbss_mem); 1082 iounmap(cdd->ctrl_mem); 1083 iounmap(cdd->sched_mem); 1084 iounmap(cdd->qmgr_mem); 1085 return ret; 1086} 1087 1088static int cppi41_dma_remove(struct platform_device *pdev) 1089{ 1090 struct cppi41_dd *cdd = platform_get_drvdata(pdev); 1091 int error; 1092 1093 error = pm_runtime_get_sync(&pdev->dev); 1094 if (error < 0) 1095 dev_err(&pdev->dev, "%s could not pm_runtime_get: %i\n", 1096 __func__, error); 1097 of_dma_controller_free(pdev->dev.of_node); 1098 dma_async_device_unregister(&cdd->ddev); 1099 1100 cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR); 1101 devm_free_irq(&pdev->dev, cdd->irq, cdd); 1102 cleanup_chans(cdd); 1103 deinit_cppi41(&pdev->dev, cdd); 1104 iounmap(cdd->usbss_mem); 1105 iounmap(cdd->ctrl_mem); 1106 iounmap(cdd->sched_mem); 1107 iounmap(cdd->qmgr_mem); 1108 pm_runtime_dont_use_autosuspend(&pdev->dev); 1109 pm_runtime_put_sync(&pdev->dev); 1110 pm_runtime_disable(&pdev->dev); 1111 return 0; 1112} 1113 1114static int __maybe_unused cppi41_suspend(struct device *dev) 1115{ 1116 struct cppi41_dd *cdd = dev_get_drvdata(dev); 1117 1118 cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ); 1119 cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR); 1120 disable_sched(cdd); 1121 1122 return 0; 1123} 1124 1125static int __maybe_unused cppi41_resume(struct device *dev) 1126{ 1127 struct cppi41_dd *cdd = dev_get_drvdata(dev); 1128 struct cppi41_channel *c; 1129 int i; 1130 1131 for (i = 0; i < DESCS_AREAS; i++) 1132 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i)); 1133 1134 list_for_each_entry(c, &cdd->ddev.channels, chan.device_node) 1135 if (!c->is_tx) 1136 cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0); 1137 1138 init_sched(cdd); 1139 1140 cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ); 1141 cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE); 1142 cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE); 1143 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE); 1144 1145 cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER); 1146 1147 return 0; 1148} 1149 1150static int __maybe_unused cppi41_runtime_suspend(struct device *dev) 1151{ 1152 struct cppi41_dd *cdd = dev_get_drvdata(dev); 1153 1154 WARN_ON(!list_empty(&cdd->pending)); 1155 1156 return 0; 1157} 1158 1159static int __maybe_unused cppi41_runtime_resume(struct device *dev) 1160{ 1161 struct cppi41_dd *cdd = dev_get_drvdata(dev); 1162 struct cppi41_channel *c, *_c; 1163 unsigned long flags; 1164 1165 spin_lock_irqsave(&cdd->lock, flags); 1166 list_for_each_entry_safe(c, _c, &cdd->pending, node) { 1167 push_desc_queue(c); 1168 list_del(&c->node); 1169 } 1170 spin_unlock_irqrestore(&cdd->lock, flags); 1171 1172 return 0; 1173} 1174 1175static const struct dev_pm_ops cppi41_pm_ops = { 1176 SET_LATE_SYSTEM_SLEEP_PM_OPS(cppi41_suspend, cppi41_resume) 1177 SET_RUNTIME_PM_OPS(cppi41_runtime_suspend, 1178 cppi41_runtime_resume, 1179 NULL) 1180}; 1181 1182static struct platform_driver cpp41_dma_driver = { 1183 .probe = cppi41_dma_probe, 1184 .remove = cppi41_dma_remove, 1185 .driver = { 1186 .name = "cppi41-dma-engine", 1187 .pm = &cppi41_pm_ops, 1188 .of_match_table = of_match_ptr(cppi41_dma_ids), 1189 }, 1190}; 1191 1192module_platform_driver(cpp41_dma_driver); 1193MODULE_LICENSE("GPL"); 1194MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");