at v4.9-rc7 42 kB view raw
1/* 2 * 3 * Copyright (c) 2011, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <haiyangz@microsoft.com> 20 * Hank Janssen <hjanssen@microsoft.com> 21 * K. Y. Srinivasan <kys@microsoft.com> 22 * 23 */ 24 25#ifndef _HYPERV_H 26#define _HYPERV_H 27 28#include <uapi/linux/hyperv.h> 29#include <uapi/asm/hyperv.h> 30 31#include <linux/types.h> 32#include <linux/scatterlist.h> 33#include <linux/list.h> 34#include <linux/timer.h> 35#include <linux/workqueue.h> 36#include <linux/completion.h> 37#include <linux/device.h> 38#include <linux/mod_devicetable.h> 39 40 41#define MAX_PAGE_BUFFER_COUNT 32 42#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 43 44#pragma pack(push, 1) 45 46/* Single-page buffer */ 47struct hv_page_buffer { 48 u32 len; 49 u32 offset; 50 u64 pfn; 51}; 52 53/* Multiple-page buffer */ 54struct hv_multipage_buffer { 55 /* Length and Offset determines the # of pfns in the array */ 56 u32 len; 57 u32 offset; 58 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 59}; 60 61/* 62 * Multiple-page buffer array; the pfn array is variable size: 63 * The number of entries in the PFN array is determined by 64 * "len" and "offset". 65 */ 66struct hv_mpb_array { 67 /* Length and Offset determines the # of pfns in the array */ 68 u32 len; 69 u32 offset; 70 u64 pfn_array[]; 71}; 72 73/* 0x18 includes the proprietary packet header */ 74#define MAX_PAGE_BUFFER_PACKET (0x18 + \ 75 (sizeof(struct hv_page_buffer) * \ 76 MAX_PAGE_BUFFER_COUNT)) 77#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 78 sizeof(struct hv_multipage_buffer)) 79 80 81#pragma pack(pop) 82 83struct hv_ring_buffer { 84 /* Offset in bytes from the start of ring data below */ 85 u32 write_index; 86 87 /* Offset in bytes from the start of ring data below */ 88 u32 read_index; 89 90 u32 interrupt_mask; 91 92 /* 93 * Win8 uses some of the reserved bits to implement 94 * interrupt driven flow management. On the send side 95 * we can request that the receiver interrupt the sender 96 * when the ring transitions from being full to being able 97 * to handle a message of size "pending_send_sz". 98 * 99 * Add necessary state for this enhancement. 100 */ 101 u32 pending_send_sz; 102 103 u32 reserved1[12]; 104 105 union { 106 struct { 107 u32 feat_pending_send_sz:1; 108 }; 109 u32 value; 110 } feature_bits; 111 112 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 113 u8 reserved2[4028]; 114 115 /* 116 * Ring data starts here + RingDataStartOffset 117 * !!! DO NOT place any fields below this !!! 118 */ 119 u8 buffer[0]; 120} __packed; 121 122struct hv_ring_buffer_info { 123 struct hv_ring_buffer *ring_buffer; 124 u32 ring_size; /* Include the shared header */ 125 spinlock_t ring_lock; 126 127 u32 ring_datasize; /* < ring_size */ 128 u32 ring_data_startoffset; 129 u32 priv_write_index; 130 u32 priv_read_index; 131}; 132 133/* 134 * 135 * hv_get_ringbuffer_availbytes() 136 * 137 * Get number of bytes available to read and to write to 138 * for the specified ring buffer 139 */ 140static inline void 141hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi, 142 u32 *read, u32 *write) 143{ 144 u32 read_loc, write_loc, dsize; 145 146 /* Capture the read/write indices before they changed */ 147 read_loc = rbi->ring_buffer->read_index; 148 write_loc = rbi->ring_buffer->write_index; 149 dsize = rbi->ring_datasize; 150 151 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 152 read_loc - write_loc; 153 *read = dsize - *write; 154} 155 156static inline u32 hv_get_bytes_to_read(struct hv_ring_buffer_info *rbi) 157{ 158 u32 read_loc, write_loc, dsize, read; 159 160 dsize = rbi->ring_datasize; 161 read_loc = rbi->ring_buffer->read_index; 162 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 163 164 read = write_loc >= read_loc ? (write_loc - read_loc) : 165 (dsize - read_loc) + write_loc; 166 167 return read; 168} 169 170static inline u32 hv_get_bytes_to_write(struct hv_ring_buffer_info *rbi) 171{ 172 u32 read_loc, write_loc, dsize, write; 173 174 dsize = rbi->ring_datasize; 175 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 176 write_loc = rbi->ring_buffer->write_index; 177 178 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 179 read_loc - write_loc; 180 return write; 181} 182 183/* 184 * VMBUS version is 32 bit entity broken up into 185 * two 16 bit quantities: major_number. minor_number. 186 * 187 * 0 . 13 (Windows Server 2008) 188 * 1 . 1 (Windows 7) 189 * 2 . 4 (Windows 8) 190 * 3 . 0 (Windows 8 R2) 191 * 4 . 0 (Windows 10) 192 */ 193 194#define VERSION_WS2008 ((0 << 16) | (13)) 195#define VERSION_WIN7 ((1 << 16) | (1)) 196#define VERSION_WIN8 ((2 << 16) | (4)) 197#define VERSION_WIN8_1 ((3 << 16) | (0)) 198#define VERSION_WIN10 ((4 << 16) | (0)) 199 200#define VERSION_INVAL -1 201 202#define VERSION_CURRENT VERSION_WIN10 203 204/* Make maximum size of pipe payload of 16K */ 205#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 206 207/* Define PipeMode values. */ 208#define VMBUS_PIPE_TYPE_BYTE 0x00000000 209#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 210 211/* The size of the user defined data buffer for non-pipe offers. */ 212#define MAX_USER_DEFINED_BYTES 120 213 214/* The size of the user defined data buffer for pipe offers. */ 215#define MAX_PIPE_USER_DEFINED_BYTES 116 216 217/* 218 * At the center of the Channel Management library is the Channel Offer. This 219 * struct contains the fundamental information about an offer. 220 */ 221struct vmbus_channel_offer { 222 uuid_le if_type; 223 uuid_le if_instance; 224 225 /* 226 * These two fields are not currently used. 227 */ 228 u64 reserved1; 229 u64 reserved2; 230 231 u16 chn_flags; 232 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 233 234 union { 235 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 236 struct { 237 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 238 } std; 239 240 /* 241 * Pipes: 242 * The following sructure is an integrated pipe protocol, which 243 * is implemented on top of standard user-defined data. Pipe 244 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 245 * use. 246 */ 247 struct { 248 u32 pipe_mode; 249 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 250 } pipe; 251 } u; 252 /* 253 * The sub_channel_index is defined in win8. 254 */ 255 u16 sub_channel_index; 256 u16 reserved3; 257} __packed; 258 259/* Server Flags */ 260#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 261#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 262#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 263#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 264#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 265#define VMBUS_CHANNEL_PARENT_OFFER 0x200 266#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 267#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000 268 269struct vmpacket_descriptor { 270 u16 type; 271 u16 offset8; 272 u16 len8; 273 u16 flags; 274 u64 trans_id; 275} __packed; 276 277struct vmpacket_header { 278 u32 prev_pkt_start_offset; 279 struct vmpacket_descriptor descriptor; 280} __packed; 281 282struct vmtransfer_page_range { 283 u32 byte_count; 284 u32 byte_offset; 285} __packed; 286 287struct vmtransfer_page_packet_header { 288 struct vmpacket_descriptor d; 289 u16 xfer_pageset_id; 290 u8 sender_owns_set; 291 u8 reserved; 292 u32 range_cnt; 293 struct vmtransfer_page_range ranges[1]; 294} __packed; 295 296struct vmgpadl_packet_header { 297 struct vmpacket_descriptor d; 298 u32 gpadl; 299 u32 reserved; 300} __packed; 301 302struct vmadd_remove_transfer_page_set { 303 struct vmpacket_descriptor d; 304 u32 gpadl; 305 u16 xfer_pageset_id; 306 u16 reserved; 307} __packed; 308 309/* 310 * This structure defines a range in guest physical space that can be made to 311 * look virtually contiguous. 312 */ 313struct gpa_range { 314 u32 byte_count; 315 u32 byte_offset; 316 u64 pfn_array[0]; 317}; 318 319/* 320 * This is the format for an Establish Gpadl packet, which contains a handle by 321 * which this GPADL will be known and a set of GPA ranges associated with it. 322 * This can be converted to a MDL by the guest OS. If there are multiple GPA 323 * ranges, then the resulting MDL will be "chained," representing multiple VA 324 * ranges. 325 */ 326struct vmestablish_gpadl { 327 struct vmpacket_descriptor d; 328 u32 gpadl; 329 u32 range_cnt; 330 struct gpa_range range[1]; 331} __packed; 332 333/* 334 * This is the format for a Teardown Gpadl packet, which indicates that the 335 * GPADL handle in the Establish Gpadl packet will never be referenced again. 336 */ 337struct vmteardown_gpadl { 338 struct vmpacket_descriptor d; 339 u32 gpadl; 340 u32 reserved; /* for alignment to a 8-byte boundary */ 341} __packed; 342 343/* 344 * This is the format for a GPA-Direct packet, which contains a set of GPA 345 * ranges, in addition to commands and/or data. 346 */ 347struct vmdata_gpa_direct { 348 struct vmpacket_descriptor d; 349 u32 reserved; 350 u32 range_cnt; 351 struct gpa_range range[1]; 352} __packed; 353 354/* This is the format for a Additional Data Packet. */ 355struct vmadditional_data { 356 struct vmpacket_descriptor d; 357 u64 total_bytes; 358 u32 offset; 359 u32 byte_cnt; 360 unsigned char data[1]; 361} __packed; 362 363union vmpacket_largest_possible_header { 364 struct vmpacket_descriptor simple_hdr; 365 struct vmtransfer_page_packet_header xfer_page_hdr; 366 struct vmgpadl_packet_header gpadl_hdr; 367 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; 368 struct vmestablish_gpadl establish_gpadl_hdr; 369 struct vmteardown_gpadl teardown_gpadl_hdr; 370 struct vmdata_gpa_direct data_gpa_direct_hdr; 371}; 372 373#define VMPACKET_DATA_START_ADDRESS(__packet) \ 374 (void *)(((unsigned char *)__packet) + \ 375 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 376 377#define VMPACKET_DATA_LENGTH(__packet) \ 378 ((((struct vmpacket_descriptor)__packet)->len8 - \ 379 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 380 381#define VMPACKET_TRANSFER_MODE(__packet) \ 382 (((struct IMPACT)__packet)->type) 383 384enum vmbus_packet_type { 385 VM_PKT_INVALID = 0x0, 386 VM_PKT_SYNCH = 0x1, 387 VM_PKT_ADD_XFER_PAGESET = 0x2, 388 VM_PKT_RM_XFER_PAGESET = 0x3, 389 VM_PKT_ESTABLISH_GPADL = 0x4, 390 VM_PKT_TEARDOWN_GPADL = 0x5, 391 VM_PKT_DATA_INBAND = 0x6, 392 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 393 VM_PKT_DATA_USING_GPADL = 0x8, 394 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 395 VM_PKT_CANCEL_REQUEST = 0xa, 396 VM_PKT_COMP = 0xb, 397 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 398 VM_PKT_ADDITIONAL_DATA = 0xd 399}; 400 401#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 402 403 404/* Version 1 messages */ 405enum vmbus_channel_message_type { 406 CHANNELMSG_INVALID = 0, 407 CHANNELMSG_OFFERCHANNEL = 1, 408 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 409 CHANNELMSG_REQUESTOFFERS = 3, 410 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 411 CHANNELMSG_OPENCHANNEL = 5, 412 CHANNELMSG_OPENCHANNEL_RESULT = 6, 413 CHANNELMSG_CLOSECHANNEL = 7, 414 CHANNELMSG_GPADL_HEADER = 8, 415 CHANNELMSG_GPADL_BODY = 9, 416 CHANNELMSG_GPADL_CREATED = 10, 417 CHANNELMSG_GPADL_TEARDOWN = 11, 418 CHANNELMSG_GPADL_TORNDOWN = 12, 419 CHANNELMSG_RELID_RELEASED = 13, 420 CHANNELMSG_INITIATE_CONTACT = 14, 421 CHANNELMSG_VERSION_RESPONSE = 15, 422 CHANNELMSG_UNLOAD = 16, 423 CHANNELMSG_UNLOAD_RESPONSE = 17, 424 CHANNELMSG_18 = 18, 425 CHANNELMSG_19 = 19, 426 CHANNELMSG_20 = 20, 427 CHANNELMSG_TL_CONNECT_REQUEST = 21, 428 CHANNELMSG_COUNT 429}; 430 431struct vmbus_channel_message_header { 432 enum vmbus_channel_message_type msgtype; 433 u32 padding; 434} __packed; 435 436/* Query VMBus Version parameters */ 437struct vmbus_channel_query_vmbus_version { 438 struct vmbus_channel_message_header header; 439 u32 version; 440} __packed; 441 442/* VMBus Version Supported parameters */ 443struct vmbus_channel_version_supported { 444 struct vmbus_channel_message_header header; 445 u8 version_supported; 446} __packed; 447 448/* Offer Channel parameters */ 449struct vmbus_channel_offer_channel { 450 struct vmbus_channel_message_header header; 451 struct vmbus_channel_offer offer; 452 u32 child_relid; 453 u8 monitorid; 454 /* 455 * win7 and beyond splits this field into a bit field. 456 */ 457 u8 monitor_allocated:1; 458 u8 reserved:7; 459 /* 460 * These are new fields added in win7 and later. 461 * Do not access these fields without checking the 462 * negotiated protocol. 463 * 464 * If "is_dedicated_interrupt" is set, we must not set the 465 * associated bit in the channel bitmap while sending the 466 * interrupt to the host. 467 * 468 * connection_id is to be used in signaling the host. 469 */ 470 u16 is_dedicated_interrupt:1; 471 u16 reserved1:15; 472 u32 connection_id; 473} __packed; 474 475/* Rescind Offer parameters */ 476struct vmbus_channel_rescind_offer { 477 struct vmbus_channel_message_header header; 478 u32 child_relid; 479} __packed; 480 481/* 482 * Request Offer -- no parameters, SynIC message contains the partition ID 483 * Set Snoop -- no parameters, SynIC message contains the partition ID 484 * Clear Snoop -- no parameters, SynIC message contains the partition ID 485 * All Offers Delivered -- no parameters, SynIC message contains the partition 486 * ID 487 * Flush Client -- no parameters, SynIC message contains the partition ID 488 */ 489 490/* Open Channel parameters */ 491struct vmbus_channel_open_channel { 492 struct vmbus_channel_message_header header; 493 494 /* Identifies the specific VMBus channel that is being opened. */ 495 u32 child_relid; 496 497 /* ID making a particular open request at a channel offer unique. */ 498 u32 openid; 499 500 /* GPADL for the channel's ring buffer. */ 501 u32 ringbuffer_gpadlhandle; 502 503 /* 504 * Starting with win8, this field will be used to specify 505 * the target virtual processor on which to deliver the interrupt for 506 * the host to guest communication. 507 * Prior to win8, incoming channel interrupts would only 508 * be delivered on cpu 0. Setting this value to 0 would 509 * preserve the earlier behavior. 510 */ 511 u32 target_vp; 512 513 /* 514 * The upstream ring buffer begins at offset zero in the memory 515 * described by RingBufferGpadlHandle. The downstream ring buffer 516 * follows it at this offset (in pages). 517 */ 518 u32 downstream_ringbuffer_pageoffset; 519 520 /* User-specific data to be passed along to the server endpoint. */ 521 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 522} __packed; 523 524/* Open Channel Result parameters */ 525struct vmbus_channel_open_result { 526 struct vmbus_channel_message_header header; 527 u32 child_relid; 528 u32 openid; 529 u32 status; 530} __packed; 531 532/* Close channel parameters; */ 533struct vmbus_channel_close_channel { 534 struct vmbus_channel_message_header header; 535 u32 child_relid; 536} __packed; 537 538/* Channel Message GPADL */ 539#define GPADL_TYPE_RING_BUFFER 1 540#define GPADL_TYPE_SERVER_SAVE_AREA 2 541#define GPADL_TYPE_TRANSACTION 8 542 543/* 544 * The number of PFNs in a GPADL message is defined by the number of 545 * pages that would be spanned by ByteCount and ByteOffset. If the 546 * implied number of PFNs won't fit in this packet, there will be a 547 * follow-up packet that contains more. 548 */ 549struct vmbus_channel_gpadl_header { 550 struct vmbus_channel_message_header header; 551 u32 child_relid; 552 u32 gpadl; 553 u16 range_buflen; 554 u16 rangecount; 555 struct gpa_range range[0]; 556} __packed; 557 558/* This is the followup packet that contains more PFNs. */ 559struct vmbus_channel_gpadl_body { 560 struct vmbus_channel_message_header header; 561 u32 msgnumber; 562 u32 gpadl; 563 u64 pfn[0]; 564} __packed; 565 566struct vmbus_channel_gpadl_created { 567 struct vmbus_channel_message_header header; 568 u32 child_relid; 569 u32 gpadl; 570 u32 creation_status; 571} __packed; 572 573struct vmbus_channel_gpadl_teardown { 574 struct vmbus_channel_message_header header; 575 u32 child_relid; 576 u32 gpadl; 577} __packed; 578 579struct vmbus_channel_gpadl_torndown { 580 struct vmbus_channel_message_header header; 581 u32 gpadl; 582} __packed; 583 584struct vmbus_channel_relid_released { 585 struct vmbus_channel_message_header header; 586 u32 child_relid; 587} __packed; 588 589struct vmbus_channel_initiate_contact { 590 struct vmbus_channel_message_header header; 591 u32 vmbus_version_requested; 592 u32 target_vcpu; /* The VCPU the host should respond to */ 593 u64 interrupt_page; 594 u64 monitor_page1; 595 u64 monitor_page2; 596} __packed; 597 598/* Hyper-V socket: guest's connect()-ing to host */ 599struct vmbus_channel_tl_connect_request { 600 struct vmbus_channel_message_header header; 601 uuid_le guest_endpoint_id; 602 uuid_le host_service_id; 603} __packed; 604 605struct vmbus_channel_version_response { 606 struct vmbus_channel_message_header header; 607 u8 version_supported; 608} __packed; 609 610enum vmbus_channel_state { 611 CHANNEL_OFFER_STATE, 612 CHANNEL_OPENING_STATE, 613 CHANNEL_OPEN_STATE, 614 CHANNEL_OPENED_STATE, 615}; 616 617/* 618 * Represents each channel msg on the vmbus connection This is a 619 * variable-size data structure depending on the msg type itself 620 */ 621struct vmbus_channel_msginfo { 622 /* Bookkeeping stuff */ 623 struct list_head msglistentry; 624 625 /* So far, this is only used to handle gpadl body message */ 626 struct list_head submsglist; 627 628 /* Synchronize the request/response if needed */ 629 struct completion waitevent; 630 union { 631 struct vmbus_channel_version_supported version_supported; 632 struct vmbus_channel_open_result open_result; 633 struct vmbus_channel_gpadl_torndown gpadl_torndown; 634 struct vmbus_channel_gpadl_created gpadl_created; 635 struct vmbus_channel_version_response version_response; 636 } response; 637 638 u32 msgsize; 639 /* 640 * The channel message that goes out on the "wire". 641 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 642 */ 643 unsigned char msg[0]; 644}; 645 646struct vmbus_close_msg { 647 struct vmbus_channel_msginfo info; 648 struct vmbus_channel_close_channel msg; 649}; 650 651/* Define connection identifier type. */ 652union hv_connection_id { 653 u32 asu32; 654 struct { 655 u32 id:24; 656 u32 reserved:8; 657 } u; 658}; 659 660/* Definition of the hv_signal_event hypercall input structure. */ 661struct hv_input_signal_event { 662 union hv_connection_id connectionid; 663 u16 flag_number; 664 u16 rsvdz; 665}; 666 667struct hv_input_signal_event_buffer { 668 u64 align8; 669 struct hv_input_signal_event event; 670}; 671 672enum hv_signal_policy { 673 HV_SIGNAL_POLICY_DEFAULT = 0, 674 HV_SIGNAL_POLICY_EXPLICIT, 675}; 676 677enum hv_numa_policy { 678 HV_BALANCED = 0, 679 HV_LOCALIZED, 680}; 681 682enum vmbus_device_type { 683 HV_IDE = 0, 684 HV_SCSI, 685 HV_FC, 686 HV_NIC, 687 HV_ND, 688 HV_PCIE, 689 HV_FB, 690 HV_KBD, 691 HV_MOUSE, 692 HV_KVP, 693 HV_TS, 694 HV_HB, 695 HV_SHUTDOWN, 696 HV_FCOPY, 697 HV_BACKUP, 698 HV_DM, 699 HV_UNKOWN, 700}; 701 702struct vmbus_device { 703 u16 dev_type; 704 uuid_le guid; 705 bool perf_device; 706}; 707 708struct vmbus_channel { 709 struct list_head listentry; 710 711 struct hv_device *device_obj; 712 713 enum vmbus_channel_state state; 714 715 struct vmbus_channel_offer_channel offermsg; 716 /* 717 * These are based on the OfferMsg.MonitorId. 718 * Save it here for easy access. 719 */ 720 u8 monitor_grp; 721 u8 monitor_bit; 722 723 bool rescind; /* got rescind msg */ 724 725 u32 ringbuffer_gpadlhandle; 726 727 /* Allocated memory for ring buffer */ 728 void *ringbuffer_pages; 729 u32 ringbuffer_pagecount; 730 struct hv_ring_buffer_info outbound; /* send to parent */ 731 struct hv_ring_buffer_info inbound; /* receive from parent */ 732 spinlock_t inbound_lock; 733 734 struct vmbus_close_msg close_msg; 735 736 /* Channel callback are invoked in this workqueue context */ 737 /* HANDLE dataWorkQueue; */ 738 739 void (*onchannel_callback)(void *context); 740 void *channel_callback_context; 741 742 /* 743 * A channel can be marked for efficient (batched) 744 * reading: 745 * If batched_reading is set to "true", we read until the 746 * channel is empty and hold off interrupts from the host 747 * during the entire read process. 748 * If batched_reading is set to "false", the client is not 749 * going to perform batched reading. 750 * 751 * By default we will enable batched reading; specific 752 * drivers that don't want this behavior can turn it off. 753 */ 754 755 bool batched_reading; 756 757 bool is_dedicated_interrupt; 758 struct hv_input_signal_event_buffer sig_buf; 759 struct hv_input_signal_event *sig_event; 760 761 /* 762 * Starting with win8, this field will be used to specify 763 * the target virtual processor on which to deliver the interrupt for 764 * the host to guest communication. 765 * Prior to win8, incoming channel interrupts would only 766 * be delivered on cpu 0. Setting this value to 0 would 767 * preserve the earlier behavior. 768 */ 769 u32 target_vp; 770 /* The corresponding CPUID in the guest */ 771 u32 target_cpu; 772 /* 773 * State to manage the CPU affiliation of channels. 774 */ 775 struct cpumask alloced_cpus_in_node; 776 int numa_node; 777 /* 778 * Support for sub-channels. For high performance devices, 779 * it will be useful to have multiple sub-channels to support 780 * a scalable communication infrastructure with the host. 781 * The support for sub-channels is implemented as an extention 782 * to the current infrastructure. 783 * The initial offer is considered the primary channel and this 784 * offer message will indicate if the host supports sub-channels. 785 * The guest is free to ask for sub-channels to be offerred and can 786 * open these sub-channels as a normal "primary" channel. However, 787 * all sub-channels will have the same type and instance guids as the 788 * primary channel. Requests sent on a given channel will result in a 789 * response on the same channel. 790 */ 791 792 /* 793 * Sub-channel creation callback. This callback will be called in 794 * process context when a sub-channel offer is received from the host. 795 * The guest can open the sub-channel in the context of this callback. 796 */ 797 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 798 799 /* 800 * Channel rescind callback. Some channels (the hvsock ones), need to 801 * register a callback which is invoked in vmbus_onoffer_rescind(). 802 */ 803 void (*chn_rescind_callback)(struct vmbus_channel *channel); 804 805 /* 806 * The spinlock to protect the structure. It is being used to protect 807 * test-and-set access to various attributes of the structure as well 808 * as all sc_list operations. 809 */ 810 spinlock_t lock; 811 /* 812 * All Sub-channels of a primary channel are linked here. 813 */ 814 struct list_head sc_list; 815 /* 816 * Current number of sub-channels. 817 */ 818 int num_sc; 819 /* 820 * Number of a sub-channel (position within sc_list) which is supposed 821 * to be used as the next outgoing channel. 822 */ 823 int next_oc; 824 /* 825 * The primary channel this sub-channel belongs to. 826 * This will be NULL for the primary channel. 827 */ 828 struct vmbus_channel *primary_channel; 829 /* 830 * Support per-channel state for use by vmbus drivers. 831 */ 832 void *per_channel_state; 833 /* 834 * To support per-cpu lookup mapping of relid to channel, 835 * link up channels based on their CPU affinity. 836 */ 837 struct list_head percpu_list; 838 /* 839 * Host signaling policy: The default policy will be 840 * based on the ring buffer state. We will also support 841 * a policy where the client driver can have explicit 842 * signaling control. 843 */ 844 enum hv_signal_policy signal_policy; 845 /* 846 * On the channel send side, many of the VMBUS 847 * device drivers explicity serialize access to the 848 * outgoing ring buffer. Give more control to the 849 * VMBUS device drivers in terms how to serialize 850 * accesss to the outgoing ring buffer. 851 * The default behavior will be to aquire the 852 * ring lock to preserve the current behavior. 853 */ 854 bool acquire_ring_lock; 855 /* 856 * For performance critical channels (storage, networking 857 * etc,), Hyper-V has a mechanism to enhance the throughput 858 * at the expense of latency: 859 * When the host is to be signaled, we just set a bit in a shared page 860 * and this bit will be inspected by the hypervisor within a certain 861 * window and if the bit is set, the host will be signaled. The window 862 * of time is the monitor latency - currently around 100 usecs. This 863 * mechanism improves throughput by: 864 * 865 * A) Making the host more efficient - each time it wakes up, 866 * potentially it will process morev number of packets. The 867 * monitor latency allows a batch to build up. 868 * B) By deferring the hypercall to signal, we will also minimize 869 * the interrupts. 870 * 871 * Clearly, these optimizations improve throughput at the expense of 872 * latency. Furthermore, since the channel is shared for both 873 * control and data messages, control messages currently suffer 874 * unnecessary latency adversley impacting performance and boot 875 * time. To fix this issue, permit tagging the channel as being 876 * in "low latency" mode. In this mode, we will bypass the monitor 877 * mechanism. 878 */ 879 bool low_latency; 880 881 /* 882 * NUMA distribution policy: 883 * We support teo policies: 884 * 1) Balanced: Here all performance critical channels are 885 * distributed evenly amongst all the NUMA nodes. 886 * This policy will be the default policy. 887 * 2) Localized: All channels of a given instance of a 888 * performance critical service will be assigned CPUs 889 * within a selected NUMA node. 890 */ 891 enum hv_numa_policy affinity_policy; 892 893}; 894 895static inline void set_channel_lock_state(struct vmbus_channel *c, bool state) 896{ 897 c->acquire_ring_lock = state; 898} 899 900static inline bool is_hvsock_channel(const struct vmbus_channel *c) 901{ 902 return !!(c->offermsg.offer.chn_flags & 903 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER); 904} 905 906static inline void set_channel_signal_state(struct vmbus_channel *c, 907 enum hv_signal_policy policy) 908{ 909 c->signal_policy = policy; 910} 911 912static inline void set_channel_affinity_state(struct vmbus_channel *c, 913 enum hv_numa_policy policy) 914{ 915 c->affinity_policy = policy; 916} 917 918static inline void set_channel_read_state(struct vmbus_channel *c, bool state) 919{ 920 c->batched_reading = state; 921} 922 923static inline void set_per_channel_state(struct vmbus_channel *c, void *s) 924{ 925 c->per_channel_state = s; 926} 927 928static inline void *get_per_channel_state(struct vmbus_channel *c) 929{ 930 return c->per_channel_state; 931} 932 933static inline void set_channel_pending_send_size(struct vmbus_channel *c, 934 u32 size) 935{ 936 c->outbound.ring_buffer->pending_send_sz = size; 937} 938 939static inline void set_low_latency_mode(struct vmbus_channel *c) 940{ 941 c->low_latency = true; 942} 943 944static inline void clear_low_latency_mode(struct vmbus_channel *c) 945{ 946 c->low_latency = false; 947} 948 949void vmbus_onmessage(void *context); 950 951int vmbus_request_offers(void); 952 953/* 954 * APIs for managing sub-channels. 955 */ 956 957void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 958 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 959 960void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, 961 void (*chn_rescind_cb)(struct vmbus_channel *)); 962 963/* 964 * Retrieve the (sub) channel on which to send an outgoing request. 965 * When a primary channel has multiple sub-channels, we choose a 966 * channel whose VCPU binding is closest to the VCPU on which 967 * this call is being made. 968 */ 969struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary); 970 971/* 972 * Check if sub-channels have already been offerred. This API will be useful 973 * when the driver is unloaded after establishing sub-channels. In this case, 974 * when the driver is re-loaded, the driver would have to check if the 975 * subchannels have already been established before attempting to request 976 * the creation of sub-channels. 977 * This function returns TRUE to indicate that subchannels have already been 978 * created. 979 * This function should be invoked after setting the callback function for 980 * sub-channel creation. 981 */ 982bool vmbus_are_subchannels_present(struct vmbus_channel *primary); 983 984/* The format must be the same as struct vmdata_gpa_direct */ 985struct vmbus_channel_packet_page_buffer { 986 u16 type; 987 u16 dataoffset8; 988 u16 length8; 989 u16 flags; 990 u64 transactionid; 991 u32 reserved; 992 u32 rangecount; 993 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 994} __packed; 995 996/* The format must be the same as struct vmdata_gpa_direct */ 997struct vmbus_channel_packet_multipage_buffer { 998 u16 type; 999 u16 dataoffset8; 1000 u16 length8; 1001 u16 flags; 1002 u64 transactionid; 1003 u32 reserved; 1004 u32 rangecount; /* Always 1 in this case */ 1005 struct hv_multipage_buffer range; 1006} __packed; 1007 1008/* The format must be the same as struct vmdata_gpa_direct */ 1009struct vmbus_packet_mpb_array { 1010 u16 type; 1011 u16 dataoffset8; 1012 u16 length8; 1013 u16 flags; 1014 u64 transactionid; 1015 u32 reserved; 1016 u32 rangecount; /* Always 1 in this case */ 1017 struct hv_mpb_array range; 1018} __packed; 1019 1020 1021extern int vmbus_open(struct vmbus_channel *channel, 1022 u32 send_ringbuffersize, 1023 u32 recv_ringbuffersize, 1024 void *userdata, 1025 u32 userdatalen, 1026 void(*onchannel_callback)(void *context), 1027 void *context); 1028 1029extern void vmbus_close(struct vmbus_channel *channel); 1030 1031extern int vmbus_sendpacket(struct vmbus_channel *channel, 1032 void *buffer, 1033 u32 bufferLen, 1034 u64 requestid, 1035 enum vmbus_packet_type type, 1036 u32 flags); 1037 1038extern int vmbus_sendpacket_ctl(struct vmbus_channel *channel, 1039 void *buffer, 1040 u32 bufferLen, 1041 u64 requestid, 1042 enum vmbus_packet_type type, 1043 u32 flags, 1044 bool kick_q); 1045 1046extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 1047 struct hv_page_buffer pagebuffers[], 1048 u32 pagecount, 1049 void *buffer, 1050 u32 bufferlen, 1051 u64 requestid); 1052 1053extern int vmbus_sendpacket_pagebuffer_ctl(struct vmbus_channel *channel, 1054 struct hv_page_buffer pagebuffers[], 1055 u32 pagecount, 1056 void *buffer, 1057 u32 bufferlen, 1058 u64 requestid, 1059 u32 flags, 1060 bool kick_q); 1061 1062extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel, 1063 struct hv_multipage_buffer *mpb, 1064 void *buffer, 1065 u32 bufferlen, 1066 u64 requestid); 1067 1068extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel, 1069 struct vmbus_packet_mpb_array *mpb, 1070 u32 desc_size, 1071 void *buffer, 1072 u32 bufferlen, 1073 u64 requestid); 1074 1075extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1076 void *kbuffer, 1077 u32 size, 1078 u32 *gpadl_handle); 1079 1080extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1081 u32 gpadl_handle); 1082 1083extern int vmbus_recvpacket(struct vmbus_channel *channel, 1084 void *buffer, 1085 u32 bufferlen, 1086 u32 *buffer_actual_len, 1087 u64 *requestid); 1088 1089extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1090 void *buffer, 1091 u32 bufferlen, 1092 u32 *buffer_actual_len, 1093 u64 *requestid); 1094 1095 1096extern void vmbus_ontimer(unsigned long data); 1097 1098/* Base driver object */ 1099struct hv_driver { 1100 const char *name; 1101 1102 /* 1103 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 1104 * channel flag, actually doesn't mean a synthetic device because the 1105 * offer's if_type/if_instance can change for every new hvsock 1106 * connection. 1107 * 1108 * However, to facilitate the notification of new-offer/rescind-offer 1109 * from vmbus driver to hvsock driver, we can handle hvsock offer as 1110 * a special vmbus device, and hence we need the below flag to 1111 * indicate if the driver is the hvsock driver or not: we need to 1112 * specially treat the hvosck offer & driver in vmbus_match(). 1113 */ 1114 bool hvsock; 1115 1116 /* the device type supported by this driver */ 1117 uuid_le dev_type; 1118 const struct hv_vmbus_device_id *id_table; 1119 1120 struct device_driver driver; 1121 1122 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1123 int (*remove)(struct hv_device *); 1124 void (*shutdown)(struct hv_device *); 1125 1126}; 1127 1128/* Base device object */ 1129struct hv_device { 1130 /* the device type id of this device */ 1131 uuid_le dev_type; 1132 1133 /* the device instance id of this device */ 1134 uuid_le dev_instance; 1135 u16 vendor_id; 1136 u16 device_id; 1137 1138 struct device device; 1139 1140 struct vmbus_channel *channel; 1141}; 1142 1143 1144static inline struct hv_device *device_to_hv_device(struct device *d) 1145{ 1146 return container_of(d, struct hv_device, device); 1147} 1148 1149static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d) 1150{ 1151 return container_of(d, struct hv_driver, driver); 1152} 1153 1154static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1155{ 1156 dev_set_drvdata(&dev->device, data); 1157} 1158 1159static inline void *hv_get_drvdata(struct hv_device *dev) 1160{ 1161 return dev_get_drvdata(&dev->device); 1162} 1163 1164/* Vmbus interface */ 1165#define vmbus_driver_register(driver) \ 1166 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1167int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1168 struct module *owner, 1169 const char *mod_name); 1170void vmbus_driver_unregister(struct hv_driver *hv_driver); 1171 1172void vmbus_hvsock_device_unregister(struct vmbus_channel *channel); 1173 1174int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1175 resource_size_t min, resource_size_t max, 1176 resource_size_t size, resource_size_t align, 1177 bool fb_overlap_ok); 1178void vmbus_free_mmio(resource_size_t start, resource_size_t size); 1179int vmbus_cpu_number_to_vp_number(int cpu_number); 1180u64 hv_do_hypercall(u64 control, void *input, void *output); 1181 1182/* 1183 * GUID definitions of various offer types - services offered to the guest. 1184 */ 1185 1186/* 1187 * Network GUID 1188 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1189 */ 1190#define HV_NIC_GUID \ 1191 .guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \ 1192 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e) 1193 1194/* 1195 * IDE GUID 1196 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1197 */ 1198#define HV_IDE_GUID \ 1199 .guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \ 1200 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5) 1201 1202/* 1203 * SCSI GUID 1204 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1205 */ 1206#define HV_SCSI_GUID \ 1207 .guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \ 1208 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f) 1209 1210/* 1211 * Shutdown GUID 1212 * {0e0b6031-5213-4934-818b-38d90ced39db} 1213 */ 1214#define HV_SHUTDOWN_GUID \ 1215 .guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \ 1216 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb) 1217 1218/* 1219 * Time Synch GUID 1220 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1221 */ 1222#define HV_TS_GUID \ 1223 .guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \ 1224 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf) 1225 1226/* 1227 * Heartbeat GUID 1228 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1229 */ 1230#define HV_HEART_BEAT_GUID \ 1231 .guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \ 1232 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d) 1233 1234/* 1235 * KVP GUID 1236 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1237 */ 1238#define HV_KVP_GUID \ 1239 .guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \ 1240 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6) 1241 1242/* 1243 * Dynamic memory GUID 1244 * {525074dc-8985-46e2-8057-a307dc18a502} 1245 */ 1246#define HV_DM_GUID \ 1247 .guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \ 1248 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02) 1249 1250/* 1251 * Mouse GUID 1252 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1253 */ 1254#define HV_MOUSE_GUID \ 1255 .guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \ 1256 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a) 1257 1258/* 1259 * Keyboard GUID 1260 * {f912ad6d-2b17-48ea-bd65-f927a61c7684} 1261 */ 1262#define HV_KBD_GUID \ 1263 .guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \ 1264 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84) 1265 1266/* 1267 * VSS (Backup/Restore) GUID 1268 */ 1269#define HV_VSS_GUID \ 1270 .guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \ 1271 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40) 1272/* 1273 * Synthetic Video GUID 1274 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1275 */ 1276#define HV_SYNTHVID_GUID \ 1277 .guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \ 1278 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8) 1279 1280/* 1281 * Synthetic FC GUID 1282 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1283 */ 1284#define HV_SYNTHFC_GUID \ 1285 .guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \ 1286 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda) 1287 1288/* 1289 * Guest File Copy Service 1290 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192} 1291 */ 1292 1293#define HV_FCOPY_GUID \ 1294 .guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \ 1295 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92) 1296 1297/* 1298 * NetworkDirect. This is the guest RDMA service. 1299 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501} 1300 */ 1301#define HV_ND_GUID \ 1302 .guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \ 1303 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01) 1304 1305/* 1306 * PCI Express Pass Through 1307 * {44C4F61D-4444-4400-9D52-802E27EDE19F} 1308 */ 1309 1310#define HV_PCIE_GUID \ 1311 .guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \ 1312 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f) 1313 1314/* 1315 * Linux doesn't support the 3 devices: the first two are for 1316 * Automatic Virtual Machine Activation, and the third is for 1317 * Remote Desktop Virtualization. 1318 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5} 1319 * {3375baf4-9e15-4b30-b765-67acb10d607b} 1320 * {276aacf4-ac15-426c-98dd-7521ad3f01fe} 1321 */ 1322 1323#define HV_AVMA1_GUID \ 1324 .guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \ 1325 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5) 1326 1327#define HV_AVMA2_GUID \ 1328 .guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \ 1329 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b) 1330 1331#define HV_RDV_GUID \ 1332 .guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \ 1333 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe) 1334 1335/* 1336 * Common header for Hyper-V ICs 1337 */ 1338 1339#define ICMSGTYPE_NEGOTIATE 0 1340#define ICMSGTYPE_HEARTBEAT 1 1341#define ICMSGTYPE_KVPEXCHANGE 2 1342#define ICMSGTYPE_SHUTDOWN 3 1343#define ICMSGTYPE_TIMESYNC 4 1344#define ICMSGTYPE_VSS 5 1345 1346#define ICMSGHDRFLAG_TRANSACTION 1 1347#define ICMSGHDRFLAG_REQUEST 2 1348#define ICMSGHDRFLAG_RESPONSE 4 1349 1350 1351/* 1352 * While we want to handle util services as regular devices, 1353 * there is only one instance of each of these services; so 1354 * we statically allocate the service specific state. 1355 */ 1356 1357struct hv_util_service { 1358 u8 *recv_buffer; 1359 void *channel; 1360 void (*util_cb)(void *); 1361 int (*util_init)(struct hv_util_service *); 1362 void (*util_deinit)(void); 1363}; 1364 1365struct vmbuspipe_hdr { 1366 u32 flags; 1367 u32 msgsize; 1368} __packed; 1369 1370struct ic_version { 1371 u16 major; 1372 u16 minor; 1373} __packed; 1374 1375struct icmsg_hdr { 1376 struct ic_version icverframe; 1377 u16 icmsgtype; 1378 struct ic_version icvermsg; 1379 u16 icmsgsize; 1380 u32 status; 1381 u8 ictransaction_id; 1382 u8 icflags; 1383 u8 reserved[2]; 1384} __packed; 1385 1386struct icmsg_negotiate { 1387 u16 icframe_vercnt; 1388 u16 icmsg_vercnt; 1389 u32 reserved; 1390 struct ic_version icversion_data[1]; /* any size array */ 1391} __packed; 1392 1393struct shutdown_msg_data { 1394 u32 reason_code; 1395 u32 timeout_seconds; 1396 u32 flags; 1397 u8 display_message[2048]; 1398} __packed; 1399 1400struct heartbeat_msg_data { 1401 u64 seq_num; 1402 u32 reserved[8]; 1403} __packed; 1404 1405/* Time Sync IC defs */ 1406#define ICTIMESYNCFLAG_PROBE 0 1407#define ICTIMESYNCFLAG_SYNC 1 1408#define ICTIMESYNCFLAG_SAMPLE 2 1409 1410#ifdef __x86_64__ 1411#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1412#else 1413#define WLTIMEDELTA 116444736000000000LL 1414#endif 1415 1416struct ictimesync_data { 1417 u64 parenttime; 1418 u64 childtime; 1419 u64 roundtriptime; 1420 u8 flags; 1421} __packed; 1422 1423struct ictimesync_ref_data { 1424 u64 parenttime; 1425 u64 vmreferencetime; 1426 u8 flags; 1427 char leapflags; 1428 char stratum; 1429 u8 reserved[3]; 1430} __packed; 1431 1432struct hyperv_service_callback { 1433 u8 msg_type; 1434 char *log_msg; 1435 uuid_le data; 1436 struct vmbus_channel *channel; 1437 void (*callback) (void *context); 1438}; 1439 1440#define MAX_SRV_VER 0x7ffffff 1441extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *, 1442 struct icmsg_negotiate *, u8 *, int, 1443 int); 1444 1445void hv_event_tasklet_disable(struct vmbus_channel *channel); 1446void hv_event_tasklet_enable(struct vmbus_channel *channel); 1447 1448void hv_process_channel_removal(struct vmbus_channel *channel, u32 relid); 1449 1450/* 1451 * Negotiated version with the Host. 1452 */ 1453 1454extern __u32 vmbus_proto_version; 1455 1456int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id, 1457 const uuid_le *shv_host_servie_id); 1458void vmbus_set_event(struct vmbus_channel *channel); 1459 1460/* Get the start of the ring buffer. */ 1461static inline void * 1462hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info) 1463{ 1464 return (void *)ring_info->ring_buffer->buffer; 1465} 1466 1467/* 1468 * To optimize the flow management on the send-side, 1469 * when the sender is blocked because of lack of 1470 * sufficient space in the ring buffer, potential the 1471 * consumer of the ring buffer can signal the producer. 1472 * This is controlled by the following parameters: 1473 * 1474 * 1. pending_send_sz: This is the size in bytes that the 1475 * producer is trying to send. 1476 * 2. The feature bit feat_pending_send_sz set to indicate if 1477 * the consumer of the ring will signal when the ring 1478 * state transitions from being full to a state where 1479 * there is room for the producer to send the pending packet. 1480 */ 1481 1482static inline bool hv_need_to_signal_on_read(struct hv_ring_buffer_info *rbi) 1483{ 1484 u32 cur_write_sz; 1485 u32 pending_sz; 1486 1487 /* 1488 * Issue a full memory barrier before making the signaling decision. 1489 * Here is the reason for having this barrier: 1490 * If the reading of the pend_sz (in this function) 1491 * were to be reordered and read before we commit the new read 1492 * index (in the calling function) we could 1493 * have a problem. If the host were to set the pending_sz after we 1494 * have sampled pending_sz and go to sleep before we commit the 1495 * read index, we could miss sending the interrupt. Issue a full 1496 * memory barrier to address this. 1497 */ 1498 virt_mb(); 1499 1500 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz); 1501 /* If the other end is not blocked on write don't bother. */ 1502 if (pending_sz == 0) 1503 return false; 1504 1505 cur_write_sz = hv_get_bytes_to_write(rbi); 1506 1507 if (cur_write_sz >= pending_sz) 1508 return true; 1509 1510 return false; 1511} 1512 1513/* 1514 * An API to support in-place processing of incoming VMBUS packets. 1515 */ 1516#define VMBUS_PKT_TRAILER 8 1517 1518static inline struct vmpacket_descriptor * 1519get_next_pkt_raw(struct vmbus_channel *channel) 1520{ 1521 struct hv_ring_buffer_info *ring_info = &channel->inbound; 1522 u32 read_loc = ring_info->priv_read_index; 1523 void *ring_buffer = hv_get_ring_buffer(ring_info); 1524 struct vmpacket_descriptor *cur_desc; 1525 u32 packetlen; 1526 u32 dsize = ring_info->ring_datasize; 1527 u32 delta = read_loc - ring_info->ring_buffer->read_index; 1528 u32 bytes_avail_toread = (hv_get_bytes_to_read(ring_info) - delta); 1529 1530 if (bytes_avail_toread < sizeof(struct vmpacket_descriptor)) 1531 return NULL; 1532 1533 if ((read_loc + sizeof(*cur_desc)) > dsize) 1534 return NULL; 1535 1536 cur_desc = ring_buffer + read_loc; 1537 packetlen = cur_desc->len8 << 3; 1538 1539 /* 1540 * If the packet under consideration is wrapping around, 1541 * return failure. 1542 */ 1543 if ((read_loc + packetlen + VMBUS_PKT_TRAILER) > (dsize - 1)) 1544 return NULL; 1545 1546 return cur_desc; 1547} 1548 1549/* 1550 * A helper function to step through packets "in-place" 1551 * This API is to be called after each successful call 1552 * get_next_pkt_raw(). 1553 */ 1554static inline void put_pkt_raw(struct vmbus_channel *channel, 1555 struct vmpacket_descriptor *desc) 1556{ 1557 struct hv_ring_buffer_info *ring_info = &channel->inbound; 1558 u32 read_loc = ring_info->priv_read_index; 1559 u32 packetlen = desc->len8 << 3; 1560 u32 dsize = ring_info->ring_datasize; 1561 1562 if ((read_loc + packetlen + VMBUS_PKT_TRAILER) > dsize) 1563 BUG(); 1564 /* 1565 * Include the packet trailer. 1566 */ 1567 ring_info->priv_read_index += packetlen + VMBUS_PKT_TRAILER; 1568} 1569 1570/* 1571 * This call commits the read index and potentially signals the host. 1572 * Here is the pattern for using the "in-place" consumption APIs: 1573 * 1574 * while (get_next_pkt_raw() { 1575 * process the packet "in-place"; 1576 * put_pkt_raw(); 1577 * } 1578 * if (packets processed in place) 1579 * commit_rd_index(); 1580 */ 1581static inline void commit_rd_index(struct vmbus_channel *channel) 1582{ 1583 struct hv_ring_buffer_info *ring_info = &channel->inbound; 1584 /* 1585 * Make sure all reads are done before we update the read index since 1586 * the writer may start writing to the read area once the read index 1587 * is updated. 1588 */ 1589 virt_rmb(); 1590 ring_info->ring_buffer->read_index = ring_info->priv_read_index; 1591 1592 if (hv_need_to_signal_on_read(ring_info)) 1593 vmbus_set_event(channel); 1594} 1595 1596 1597#endif /* _HYPERV_H */