at v4.8 13 kB view raw
1/* flow.c: Generic flow cache. 2 * 3 * Copyright (C) 2003 Alexey N. Kuznetsov (kuznet@ms2.inr.ac.ru) 4 * Copyright (C) 2003 David S. Miller (davem@redhat.com) 5 */ 6 7#include <linux/kernel.h> 8#include <linux/module.h> 9#include <linux/list.h> 10#include <linux/jhash.h> 11#include <linux/interrupt.h> 12#include <linux/mm.h> 13#include <linux/random.h> 14#include <linux/init.h> 15#include <linux/slab.h> 16#include <linux/smp.h> 17#include <linux/completion.h> 18#include <linux/percpu.h> 19#include <linux/bitops.h> 20#include <linux/notifier.h> 21#include <linux/cpu.h> 22#include <linux/cpumask.h> 23#include <linux/mutex.h> 24#include <net/flow.h> 25#include <linux/atomic.h> 26#include <linux/security.h> 27#include <net/net_namespace.h> 28 29struct flow_cache_entry { 30 union { 31 struct hlist_node hlist; 32 struct list_head gc_list; 33 } u; 34 struct net *net; 35 u16 family; 36 u8 dir; 37 u32 genid; 38 struct flowi key; 39 struct flow_cache_object *object; 40}; 41 42struct flow_flush_info { 43 struct flow_cache *cache; 44 atomic_t cpuleft; 45 struct completion completion; 46}; 47 48static struct kmem_cache *flow_cachep __read_mostly; 49 50#define flow_cache_hash_size(cache) (1 << (cache)->hash_shift) 51#define FLOW_HASH_RND_PERIOD (10 * 60 * HZ) 52 53static void flow_cache_new_hashrnd(unsigned long arg) 54{ 55 struct flow_cache *fc = (void *) arg; 56 int i; 57 58 for_each_possible_cpu(i) 59 per_cpu_ptr(fc->percpu, i)->hash_rnd_recalc = 1; 60 61 fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD; 62 add_timer(&fc->rnd_timer); 63} 64 65static int flow_entry_valid(struct flow_cache_entry *fle, 66 struct netns_xfrm *xfrm) 67{ 68 if (atomic_read(&xfrm->flow_cache_genid) != fle->genid) 69 return 0; 70 if (fle->object && !fle->object->ops->check(fle->object)) 71 return 0; 72 return 1; 73} 74 75static void flow_entry_kill(struct flow_cache_entry *fle, 76 struct netns_xfrm *xfrm) 77{ 78 if (fle->object) 79 fle->object->ops->delete(fle->object); 80 kmem_cache_free(flow_cachep, fle); 81} 82 83static void flow_cache_gc_task(struct work_struct *work) 84{ 85 struct list_head gc_list; 86 struct flow_cache_entry *fce, *n; 87 struct netns_xfrm *xfrm = container_of(work, struct netns_xfrm, 88 flow_cache_gc_work); 89 90 INIT_LIST_HEAD(&gc_list); 91 spin_lock_bh(&xfrm->flow_cache_gc_lock); 92 list_splice_tail_init(&xfrm->flow_cache_gc_list, &gc_list); 93 spin_unlock_bh(&xfrm->flow_cache_gc_lock); 94 95 list_for_each_entry_safe(fce, n, &gc_list, u.gc_list) { 96 flow_entry_kill(fce, xfrm); 97 atomic_dec(&xfrm->flow_cache_gc_count); 98 WARN_ON(atomic_read(&xfrm->flow_cache_gc_count) < 0); 99 } 100} 101 102static void flow_cache_queue_garbage(struct flow_cache_percpu *fcp, 103 int deleted, struct list_head *gc_list, 104 struct netns_xfrm *xfrm) 105{ 106 if (deleted) { 107 atomic_add(deleted, &xfrm->flow_cache_gc_count); 108 fcp->hash_count -= deleted; 109 spin_lock_bh(&xfrm->flow_cache_gc_lock); 110 list_splice_tail(gc_list, &xfrm->flow_cache_gc_list); 111 spin_unlock_bh(&xfrm->flow_cache_gc_lock); 112 schedule_work(&xfrm->flow_cache_gc_work); 113 } 114} 115 116static void __flow_cache_shrink(struct flow_cache *fc, 117 struct flow_cache_percpu *fcp, 118 int shrink_to) 119{ 120 struct flow_cache_entry *fle; 121 struct hlist_node *tmp; 122 LIST_HEAD(gc_list); 123 int i, deleted = 0; 124 struct netns_xfrm *xfrm = container_of(fc, struct netns_xfrm, 125 flow_cache_global); 126 127 for (i = 0; i < flow_cache_hash_size(fc); i++) { 128 int saved = 0; 129 130 hlist_for_each_entry_safe(fle, tmp, 131 &fcp->hash_table[i], u.hlist) { 132 if (saved < shrink_to && 133 flow_entry_valid(fle, xfrm)) { 134 saved++; 135 } else { 136 deleted++; 137 hlist_del(&fle->u.hlist); 138 list_add_tail(&fle->u.gc_list, &gc_list); 139 } 140 } 141 } 142 143 flow_cache_queue_garbage(fcp, deleted, &gc_list, xfrm); 144} 145 146static void flow_cache_shrink(struct flow_cache *fc, 147 struct flow_cache_percpu *fcp) 148{ 149 int shrink_to = fc->low_watermark / flow_cache_hash_size(fc); 150 151 __flow_cache_shrink(fc, fcp, shrink_to); 152} 153 154static void flow_new_hash_rnd(struct flow_cache *fc, 155 struct flow_cache_percpu *fcp) 156{ 157 get_random_bytes(&fcp->hash_rnd, sizeof(u32)); 158 fcp->hash_rnd_recalc = 0; 159 __flow_cache_shrink(fc, fcp, 0); 160} 161 162static u32 flow_hash_code(struct flow_cache *fc, 163 struct flow_cache_percpu *fcp, 164 const struct flowi *key, 165 size_t keysize) 166{ 167 const u32 *k = (const u32 *) key; 168 const u32 length = keysize * sizeof(flow_compare_t) / sizeof(u32); 169 170 return jhash2(k, length, fcp->hash_rnd) 171 & (flow_cache_hash_size(fc) - 1); 172} 173 174/* I hear what you're saying, use memcmp. But memcmp cannot make 175 * important assumptions that we can here, such as alignment. 176 */ 177static int flow_key_compare(const struct flowi *key1, const struct flowi *key2, 178 size_t keysize) 179{ 180 const flow_compare_t *k1, *k1_lim, *k2; 181 182 k1 = (const flow_compare_t *) key1; 183 k1_lim = k1 + keysize; 184 185 k2 = (const flow_compare_t *) key2; 186 187 do { 188 if (*k1++ != *k2++) 189 return 1; 190 } while (k1 < k1_lim); 191 192 return 0; 193} 194 195struct flow_cache_object * 196flow_cache_lookup(struct net *net, const struct flowi *key, u16 family, u8 dir, 197 flow_resolve_t resolver, void *ctx) 198{ 199 struct flow_cache *fc = &net->xfrm.flow_cache_global; 200 struct flow_cache_percpu *fcp; 201 struct flow_cache_entry *fle, *tfle; 202 struct flow_cache_object *flo; 203 size_t keysize; 204 unsigned int hash; 205 206 local_bh_disable(); 207 fcp = this_cpu_ptr(fc->percpu); 208 209 fle = NULL; 210 flo = NULL; 211 212 keysize = flow_key_size(family); 213 if (!keysize) 214 goto nocache; 215 216 /* Packet really early in init? Making flow_cache_init a 217 * pre-smp initcall would solve this. --RR */ 218 if (!fcp->hash_table) 219 goto nocache; 220 221 if (fcp->hash_rnd_recalc) 222 flow_new_hash_rnd(fc, fcp); 223 224 hash = flow_hash_code(fc, fcp, key, keysize); 225 hlist_for_each_entry(tfle, &fcp->hash_table[hash], u.hlist) { 226 if (tfle->net == net && 227 tfle->family == family && 228 tfle->dir == dir && 229 flow_key_compare(key, &tfle->key, keysize) == 0) { 230 fle = tfle; 231 break; 232 } 233 } 234 235 if (unlikely(!fle)) { 236 if (fcp->hash_count > fc->high_watermark) 237 flow_cache_shrink(fc, fcp); 238 239 if (fcp->hash_count > 2 * fc->high_watermark || 240 atomic_read(&net->xfrm.flow_cache_gc_count) > fc->high_watermark) { 241 atomic_inc(&net->xfrm.flow_cache_genid); 242 flo = ERR_PTR(-ENOBUFS); 243 goto ret_object; 244 } 245 246 fle = kmem_cache_alloc(flow_cachep, GFP_ATOMIC); 247 if (fle) { 248 fle->net = net; 249 fle->family = family; 250 fle->dir = dir; 251 memcpy(&fle->key, key, keysize * sizeof(flow_compare_t)); 252 fle->object = NULL; 253 hlist_add_head(&fle->u.hlist, &fcp->hash_table[hash]); 254 fcp->hash_count++; 255 } 256 } else if (likely(fle->genid == atomic_read(&net->xfrm.flow_cache_genid))) { 257 flo = fle->object; 258 if (!flo) 259 goto ret_object; 260 flo = flo->ops->get(flo); 261 if (flo) 262 goto ret_object; 263 } else if (fle->object) { 264 flo = fle->object; 265 flo->ops->delete(flo); 266 fle->object = NULL; 267 } 268 269nocache: 270 flo = NULL; 271 if (fle) { 272 flo = fle->object; 273 fle->object = NULL; 274 } 275 flo = resolver(net, key, family, dir, flo, ctx); 276 if (fle) { 277 fle->genid = atomic_read(&net->xfrm.flow_cache_genid); 278 if (!IS_ERR(flo)) 279 fle->object = flo; 280 else 281 fle->genid--; 282 } else { 283 if (!IS_ERR_OR_NULL(flo)) 284 flo->ops->delete(flo); 285 } 286ret_object: 287 local_bh_enable(); 288 return flo; 289} 290EXPORT_SYMBOL(flow_cache_lookup); 291 292static void flow_cache_flush_tasklet(unsigned long data) 293{ 294 struct flow_flush_info *info = (void *)data; 295 struct flow_cache *fc = info->cache; 296 struct flow_cache_percpu *fcp; 297 struct flow_cache_entry *fle; 298 struct hlist_node *tmp; 299 LIST_HEAD(gc_list); 300 int i, deleted = 0; 301 struct netns_xfrm *xfrm = container_of(fc, struct netns_xfrm, 302 flow_cache_global); 303 304 fcp = this_cpu_ptr(fc->percpu); 305 for (i = 0; i < flow_cache_hash_size(fc); i++) { 306 hlist_for_each_entry_safe(fle, tmp, 307 &fcp->hash_table[i], u.hlist) { 308 if (flow_entry_valid(fle, xfrm)) 309 continue; 310 311 deleted++; 312 hlist_del(&fle->u.hlist); 313 list_add_tail(&fle->u.gc_list, &gc_list); 314 } 315 } 316 317 flow_cache_queue_garbage(fcp, deleted, &gc_list, xfrm); 318 319 if (atomic_dec_and_test(&info->cpuleft)) 320 complete(&info->completion); 321} 322 323/* 324 * Return whether a cpu needs flushing. Conservatively, we assume 325 * the presence of any entries means the core may require flushing, 326 * since the flow_cache_ops.check() function may assume it's running 327 * on the same core as the per-cpu cache component. 328 */ 329static int flow_cache_percpu_empty(struct flow_cache *fc, int cpu) 330{ 331 struct flow_cache_percpu *fcp; 332 int i; 333 334 fcp = per_cpu_ptr(fc->percpu, cpu); 335 for (i = 0; i < flow_cache_hash_size(fc); i++) 336 if (!hlist_empty(&fcp->hash_table[i])) 337 return 0; 338 return 1; 339} 340 341static void flow_cache_flush_per_cpu(void *data) 342{ 343 struct flow_flush_info *info = data; 344 struct tasklet_struct *tasklet; 345 346 tasklet = &this_cpu_ptr(info->cache->percpu)->flush_tasklet; 347 tasklet->data = (unsigned long)info; 348 tasklet_schedule(tasklet); 349} 350 351void flow_cache_flush(struct net *net) 352{ 353 struct flow_flush_info info; 354 cpumask_var_t mask; 355 int i, self; 356 357 /* Track which cpus need flushing to avoid disturbing all cores. */ 358 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 359 return; 360 cpumask_clear(mask); 361 362 /* Don't want cpus going down or up during this. */ 363 get_online_cpus(); 364 mutex_lock(&net->xfrm.flow_flush_sem); 365 info.cache = &net->xfrm.flow_cache_global; 366 for_each_online_cpu(i) 367 if (!flow_cache_percpu_empty(info.cache, i)) 368 cpumask_set_cpu(i, mask); 369 atomic_set(&info.cpuleft, cpumask_weight(mask)); 370 if (atomic_read(&info.cpuleft) == 0) 371 goto done; 372 373 init_completion(&info.completion); 374 375 local_bh_disable(); 376 self = cpumask_test_and_clear_cpu(smp_processor_id(), mask); 377 on_each_cpu_mask(mask, flow_cache_flush_per_cpu, &info, 0); 378 if (self) 379 flow_cache_flush_tasklet((unsigned long)&info); 380 local_bh_enable(); 381 382 wait_for_completion(&info.completion); 383 384done: 385 mutex_unlock(&net->xfrm.flow_flush_sem); 386 put_online_cpus(); 387 free_cpumask_var(mask); 388} 389 390static void flow_cache_flush_task(struct work_struct *work) 391{ 392 struct netns_xfrm *xfrm = container_of(work, struct netns_xfrm, 393 flow_cache_flush_work); 394 struct net *net = container_of(xfrm, struct net, xfrm); 395 396 flow_cache_flush(net); 397} 398 399void flow_cache_flush_deferred(struct net *net) 400{ 401 schedule_work(&net->xfrm.flow_cache_flush_work); 402} 403 404static int flow_cache_cpu_prepare(struct flow_cache *fc, int cpu) 405{ 406 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu); 407 size_t sz = sizeof(struct hlist_head) * flow_cache_hash_size(fc); 408 409 if (!fcp->hash_table) { 410 fcp->hash_table = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu)); 411 if (!fcp->hash_table) { 412 pr_err("NET: failed to allocate flow cache sz %zu\n", sz); 413 return -ENOMEM; 414 } 415 fcp->hash_rnd_recalc = 1; 416 fcp->hash_count = 0; 417 tasklet_init(&fcp->flush_tasklet, flow_cache_flush_tasklet, 0); 418 } 419 return 0; 420} 421 422static int flow_cache_cpu(struct notifier_block *nfb, 423 unsigned long action, 424 void *hcpu) 425{ 426 struct flow_cache *fc = container_of(nfb, struct flow_cache, 427 hotcpu_notifier); 428 int res, cpu = (unsigned long) hcpu; 429 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu); 430 431 switch (action) { 432 case CPU_UP_PREPARE: 433 case CPU_UP_PREPARE_FROZEN: 434 res = flow_cache_cpu_prepare(fc, cpu); 435 if (res) 436 return notifier_from_errno(res); 437 break; 438 case CPU_DEAD: 439 case CPU_DEAD_FROZEN: 440 __flow_cache_shrink(fc, fcp, 0); 441 break; 442 } 443 return NOTIFY_OK; 444} 445 446int flow_cache_init(struct net *net) 447{ 448 int i; 449 struct flow_cache *fc = &net->xfrm.flow_cache_global; 450 451 if (!flow_cachep) 452 flow_cachep = kmem_cache_create("flow_cache", 453 sizeof(struct flow_cache_entry), 454 0, SLAB_PANIC, NULL); 455 spin_lock_init(&net->xfrm.flow_cache_gc_lock); 456 INIT_LIST_HEAD(&net->xfrm.flow_cache_gc_list); 457 INIT_WORK(&net->xfrm.flow_cache_gc_work, flow_cache_gc_task); 458 INIT_WORK(&net->xfrm.flow_cache_flush_work, flow_cache_flush_task); 459 mutex_init(&net->xfrm.flow_flush_sem); 460 atomic_set(&net->xfrm.flow_cache_gc_count, 0); 461 462 fc->hash_shift = 10; 463 fc->low_watermark = 2 * flow_cache_hash_size(fc); 464 fc->high_watermark = 4 * flow_cache_hash_size(fc); 465 466 fc->percpu = alloc_percpu(struct flow_cache_percpu); 467 if (!fc->percpu) 468 return -ENOMEM; 469 470 cpu_notifier_register_begin(); 471 472 for_each_online_cpu(i) { 473 if (flow_cache_cpu_prepare(fc, i)) 474 goto err; 475 } 476 fc->hotcpu_notifier = (struct notifier_block){ 477 .notifier_call = flow_cache_cpu, 478 }; 479 __register_hotcpu_notifier(&fc->hotcpu_notifier); 480 481 cpu_notifier_register_done(); 482 483 setup_timer(&fc->rnd_timer, flow_cache_new_hashrnd, 484 (unsigned long) fc); 485 fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD; 486 add_timer(&fc->rnd_timer); 487 488 return 0; 489 490err: 491 for_each_possible_cpu(i) { 492 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, i); 493 kfree(fcp->hash_table); 494 fcp->hash_table = NULL; 495 } 496 497 cpu_notifier_register_done(); 498 499 free_percpu(fc->percpu); 500 fc->percpu = NULL; 501 502 return -ENOMEM; 503} 504EXPORT_SYMBOL(flow_cache_init); 505 506void flow_cache_fini(struct net *net) 507{ 508 int i; 509 struct flow_cache *fc = &net->xfrm.flow_cache_global; 510 511 del_timer_sync(&fc->rnd_timer); 512 unregister_hotcpu_notifier(&fc->hotcpu_notifier); 513 514 for_each_possible_cpu(i) { 515 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, i); 516 kfree(fcp->hash_table); 517 fcp->hash_table = NULL; 518 } 519 520 free_percpu(fc->percpu); 521 fc->percpu = NULL; 522} 523EXPORT_SYMBOL(flow_cache_fini);