at v4.8 7.2 kB view raw
1/* 2 * IOMMU mmap management and range allocation functions. 3 * Based almost entirely upon the powerpc iommu allocator. 4 */ 5 6#include <linux/export.h> 7#include <linux/bitmap.h> 8#include <linux/bug.h> 9#include <linux/iommu-helper.h> 10#include <linux/iommu-common.h> 11#include <linux/dma-mapping.h> 12#include <linux/hash.h> 13 14static unsigned long iommu_large_alloc = 15; 15 16static DEFINE_PER_CPU(unsigned int, iommu_hash_common); 17 18static inline bool need_flush(struct iommu_map_table *iommu) 19{ 20 return ((iommu->flags & IOMMU_NEED_FLUSH) != 0); 21} 22 23static inline void set_flush(struct iommu_map_table *iommu) 24{ 25 iommu->flags |= IOMMU_NEED_FLUSH; 26} 27 28static inline void clear_flush(struct iommu_map_table *iommu) 29{ 30 iommu->flags &= ~IOMMU_NEED_FLUSH; 31} 32 33static void setup_iommu_pool_hash(void) 34{ 35 unsigned int i; 36 static bool do_once; 37 38 if (do_once) 39 return; 40 do_once = true; 41 for_each_possible_cpu(i) 42 per_cpu(iommu_hash_common, i) = hash_32(i, IOMMU_POOL_HASHBITS); 43} 44 45/* 46 * Initialize iommu_pool entries for the iommu_map_table. `num_entries' 47 * is the number of table entries. If `large_pool' is set to true, 48 * the top 1/4 of the table will be set aside for pool allocations 49 * of more than iommu_large_alloc pages. 50 */ 51void iommu_tbl_pool_init(struct iommu_map_table *iommu, 52 unsigned long num_entries, 53 u32 table_shift, 54 void (*lazy_flush)(struct iommu_map_table *), 55 bool large_pool, u32 npools, 56 bool skip_span_boundary_check) 57{ 58 unsigned int start, i; 59 struct iommu_pool *p = &(iommu->large_pool); 60 61 setup_iommu_pool_hash(); 62 if (npools == 0) 63 iommu->nr_pools = IOMMU_NR_POOLS; 64 else 65 iommu->nr_pools = npools; 66 BUG_ON(npools > IOMMU_NR_POOLS); 67 68 iommu->table_shift = table_shift; 69 iommu->lazy_flush = lazy_flush; 70 start = 0; 71 if (skip_span_boundary_check) 72 iommu->flags |= IOMMU_NO_SPAN_BOUND; 73 if (large_pool) 74 iommu->flags |= IOMMU_HAS_LARGE_POOL; 75 76 if (!large_pool) 77 iommu->poolsize = num_entries/iommu->nr_pools; 78 else 79 iommu->poolsize = (num_entries * 3 / 4)/iommu->nr_pools; 80 for (i = 0; i < iommu->nr_pools; i++) { 81 spin_lock_init(&(iommu->pools[i].lock)); 82 iommu->pools[i].start = start; 83 iommu->pools[i].hint = start; 84 start += iommu->poolsize; /* start for next pool */ 85 iommu->pools[i].end = start - 1; 86 } 87 if (!large_pool) 88 return; 89 /* initialize large_pool */ 90 spin_lock_init(&(p->lock)); 91 p->start = start; 92 p->hint = p->start; 93 p->end = num_entries; 94} 95EXPORT_SYMBOL(iommu_tbl_pool_init); 96 97unsigned long iommu_tbl_range_alloc(struct device *dev, 98 struct iommu_map_table *iommu, 99 unsigned long npages, 100 unsigned long *handle, 101 unsigned long mask, 102 unsigned int align_order) 103{ 104 unsigned int pool_hash = __this_cpu_read(iommu_hash_common); 105 unsigned long n, end, start, limit, boundary_size; 106 struct iommu_pool *pool; 107 int pass = 0; 108 unsigned int pool_nr; 109 unsigned int npools = iommu->nr_pools; 110 unsigned long flags; 111 bool large_pool = ((iommu->flags & IOMMU_HAS_LARGE_POOL) != 0); 112 bool largealloc = (large_pool && npages > iommu_large_alloc); 113 unsigned long shift; 114 unsigned long align_mask = 0; 115 116 if (align_order > 0) 117 align_mask = ~0ul >> (BITS_PER_LONG - align_order); 118 119 /* Sanity check */ 120 if (unlikely(npages == 0)) { 121 WARN_ON_ONCE(1); 122 return IOMMU_ERROR_CODE; 123 } 124 125 if (largealloc) { 126 pool = &(iommu->large_pool); 127 pool_nr = 0; /* to keep compiler happy */ 128 } else { 129 /* pick out pool_nr */ 130 pool_nr = pool_hash & (npools - 1); 131 pool = &(iommu->pools[pool_nr]); 132 } 133 spin_lock_irqsave(&pool->lock, flags); 134 135 again: 136 if (pass == 0 && handle && *handle && 137 (*handle >= pool->start) && (*handle < pool->end)) 138 start = *handle; 139 else 140 start = pool->hint; 141 142 limit = pool->end; 143 144 /* The case below can happen if we have a small segment appended 145 * to a large, or when the previous alloc was at the very end of 146 * the available space. If so, go back to the beginning. If a 147 * flush is needed, it will get done based on the return value 148 * from iommu_area_alloc() below. 149 */ 150 if (start >= limit) 151 start = pool->start; 152 shift = iommu->table_map_base >> iommu->table_shift; 153 if (limit + shift > mask) { 154 limit = mask - shift + 1; 155 /* If we're constrained on address range, first try 156 * at the masked hint to avoid O(n) search complexity, 157 * but on second pass, start at 0 in pool 0. 158 */ 159 if ((start & mask) >= limit || pass > 0) { 160 spin_unlock(&(pool->lock)); 161 pool = &(iommu->pools[0]); 162 spin_lock(&(pool->lock)); 163 start = pool->start; 164 } else { 165 start &= mask; 166 } 167 } 168 169 if (dev) 170 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1, 171 1 << iommu->table_shift); 172 else 173 boundary_size = ALIGN(1ULL << 32, 1 << iommu->table_shift); 174 175 boundary_size = boundary_size >> iommu->table_shift; 176 /* 177 * if the skip_span_boundary_check had been set during init, we set 178 * things up so that iommu_is_span_boundary() merely checks if the 179 * (index + npages) < num_tsb_entries 180 */ 181 if ((iommu->flags & IOMMU_NO_SPAN_BOUND) != 0) { 182 shift = 0; 183 boundary_size = iommu->poolsize * iommu->nr_pools; 184 } 185 n = iommu_area_alloc(iommu->map, limit, start, npages, shift, 186 boundary_size, align_mask); 187 if (n == -1) { 188 if (likely(pass == 0)) { 189 /* First failure, rescan from the beginning. */ 190 pool->hint = pool->start; 191 set_flush(iommu); 192 pass++; 193 goto again; 194 } else if (!largealloc && pass <= iommu->nr_pools) { 195 spin_unlock(&(pool->lock)); 196 pool_nr = (pool_nr + 1) & (iommu->nr_pools - 1); 197 pool = &(iommu->pools[pool_nr]); 198 spin_lock(&(pool->lock)); 199 pool->hint = pool->start; 200 set_flush(iommu); 201 pass++; 202 goto again; 203 } else { 204 /* give up */ 205 n = IOMMU_ERROR_CODE; 206 goto bail; 207 } 208 } 209 if (iommu->lazy_flush && 210 (n < pool->hint || need_flush(iommu))) { 211 clear_flush(iommu); 212 iommu->lazy_flush(iommu); 213 } 214 215 end = n + npages; 216 pool->hint = end; 217 218 /* Update handle for SG allocations */ 219 if (handle) 220 *handle = end; 221bail: 222 spin_unlock_irqrestore(&(pool->lock), flags); 223 224 return n; 225} 226EXPORT_SYMBOL(iommu_tbl_range_alloc); 227 228static struct iommu_pool *get_pool(struct iommu_map_table *tbl, 229 unsigned long entry) 230{ 231 struct iommu_pool *p; 232 unsigned long largepool_start = tbl->large_pool.start; 233 bool large_pool = ((tbl->flags & IOMMU_HAS_LARGE_POOL) != 0); 234 235 /* The large pool is the last pool at the top of the table */ 236 if (large_pool && entry >= largepool_start) { 237 p = &tbl->large_pool; 238 } else { 239 unsigned int pool_nr = entry / tbl->poolsize; 240 241 BUG_ON(pool_nr >= tbl->nr_pools); 242 p = &tbl->pools[pool_nr]; 243 } 244 return p; 245} 246 247/* Caller supplies the index of the entry into the iommu map table 248 * itself when the mapping from dma_addr to the entry is not the 249 * default addr->entry mapping below. 250 */ 251void iommu_tbl_range_free(struct iommu_map_table *iommu, u64 dma_addr, 252 unsigned long npages, unsigned long entry) 253{ 254 struct iommu_pool *pool; 255 unsigned long flags; 256 unsigned long shift = iommu->table_shift; 257 258 if (entry == IOMMU_ERROR_CODE) /* use default addr->entry mapping */ 259 entry = (dma_addr - iommu->table_map_base) >> shift; 260 pool = get_pool(iommu, entry); 261 262 spin_lock_irqsave(&(pool->lock), flags); 263 bitmap_clear(iommu->map, entry, npages); 264 spin_unlock_irqrestore(&(pool->lock), flags); 265} 266EXPORT_SYMBOL(iommu_tbl_range_free);