at v4.8 2277 lines 64 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40#ifndef _SOCK_H 41#define _SOCK_H 42 43#include <linux/hardirq.h> 44#include <linux/kernel.h> 45#include <linux/list.h> 46#include <linux/list_nulls.h> 47#include <linux/timer.h> 48#include <linux/cache.h> 49#include <linux/bitops.h> 50#include <linux/lockdep.h> 51#include <linux/netdevice.h> 52#include <linux/skbuff.h> /* struct sk_buff */ 53#include <linux/mm.h> 54#include <linux/security.h> 55#include <linux/slab.h> 56#include <linux/uaccess.h> 57#include <linux/page_counter.h> 58#include <linux/memcontrol.h> 59#include <linux/static_key.h> 60#include <linux/sched.h> 61#include <linux/wait.h> 62#include <linux/cgroup-defs.h> 63 64#include <linux/filter.h> 65#include <linux/rculist_nulls.h> 66#include <linux/poll.h> 67 68#include <linux/atomic.h> 69#include <net/dst.h> 70#include <net/checksum.h> 71#include <net/tcp_states.h> 72#include <linux/net_tstamp.h> 73 74/* 75 * This structure really needs to be cleaned up. 76 * Most of it is for TCP, and not used by any of 77 * the other protocols. 78 */ 79 80/* Define this to get the SOCK_DBG debugging facility. */ 81#define SOCK_DEBUGGING 82#ifdef SOCK_DEBUGGING 83#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 84 printk(KERN_DEBUG msg); } while (0) 85#else 86/* Validate arguments and do nothing */ 87static inline __printf(2, 3) 88void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 89{ 90} 91#endif 92 93/* This is the per-socket lock. The spinlock provides a synchronization 94 * between user contexts and software interrupt processing, whereas the 95 * mini-semaphore synchronizes multiple users amongst themselves. 96 */ 97typedef struct { 98 spinlock_t slock; 99 int owned; 100 wait_queue_head_t wq; 101 /* 102 * We express the mutex-alike socket_lock semantics 103 * to the lock validator by explicitly managing 104 * the slock as a lock variant (in addition to 105 * the slock itself): 106 */ 107#ifdef CONFIG_DEBUG_LOCK_ALLOC 108 struct lockdep_map dep_map; 109#endif 110} socket_lock_t; 111 112struct sock; 113struct proto; 114struct net; 115 116typedef __u32 __bitwise __portpair; 117typedef __u64 __bitwise __addrpair; 118 119/** 120 * struct sock_common - minimal network layer representation of sockets 121 * @skc_daddr: Foreign IPv4 addr 122 * @skc_rcv_saddr: Bound local IPv4 addr 123 * @skc_hash: hash value used with various protocol lookup tables 124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 125 * @skc_dport: placeholder for inet_dport/tw_dport 126 * @skc_num: placeholder for inet_num/tw_num 127 * @skc_family: network address family 128 * @skc_state: Connection state 129 * @skc_reuse: %SO_REUSEADDR setting 130 * @skc_reuseport: %SO_REUSEPORT setting 131 * @skc_bound_dev_if: bound device index if != 0 132 * @skc_bind_node: bind hash linkage for various protocol lookup tables 133 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 134 * @skc_prot: protocol handlers inside a network family 135 * @skc_net: reference to the network namespace of this socket 136 * @skc_node: main hash linkage for various protocol lookup tables 137 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 138 * @skc_tx_queue_mapping: tx queue number for this connection 139 * @skc_flags: place holder for sk_flags 140 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 141 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 142 * @skc_incoming_cpu: record/match cpu processing incoming packets 143 * @skc_refcnt: reference count 144 * 145 * This is the minimal network layer representation of sockets, the header 146 * for struct sock and struct inet_timewait_sock. 147 */ 148struct sock_common { 149 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 150 * address on 64bit arches : cf INET_MATCH() 151 */ 152 union { 153 __addrpair skc_addrpair; 154 struct { 155 __be32 skc_daddr; 156 __be32 skc_rcv_saddr; 157 }; 158 }; 159 union { 160 unsigned int skc_hash; 161 __u16 skc_u16hashes[2]; 162 }; 163 /* skc_dport && skc_num must be grouped as well */ 164 union { 165 __portpair skc_portpair; 166 struct { 167 __be16 skc_dport; 168 __u16 skc_num; 169 }; 170 }; 171 172 unsigned short skc_family; 173 volatile unsigned char skc_state; 174 unsigned char skc_reuse:4; 175 unsigned char skc_reuseport:1; 176 unsigned char skc_ipv6only:1; 177 unsigned char skc_net_refcnt:1; 178 int skc_bound_dev_if; 179 union { 180 struct hlist_node skc_bind_node; 181 struct hlist_node skc_portaddr_node; 182 }; 183 struct proto *skc_prot; 184 possible_net_t skc_net; 185 186#if IS_ENABLED(CONFIG_IPV6) 187 struct in6_addr skc_v6_daddr; 188 struct in6_addr skc_v6_rcv_saddr; 189#endif 190 191 atomic64_t skc_cookie; 192 193 /* following fields are padding to force 194 * offset(struct sock, sk_refcnt) == 128 on 64bit arches 195 * assuming IPV6 is enabled. We use this padding differently 196 * for different kind of 'sockets' 197 */ 198 union { 199 unsigned long skc_flags; 200 struct sock *skc_listener; /* request_sock */ 201 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ 202 }; 203 /* 204 * fields between dontcopy_begin/dontcopy_end 205 * are not copied in sock_copy() 206 */ 207 /* private: */ 208 int skc_dontcopy_begin[0]; 209 /* public: */ 210 union { 211 struct hlist_node skc_node; 212 struct hlist_nulls_node skc_nulls_node; 213 }; 214 int skc_tx_queue_mapping; 215 union { 216 int skc_incoming_cpu; 217 u32 skc_rcv_wnd; 218 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ 219 }; 220 221 atomic_t skc_refcnt; 222 /* private: */ 223 int skc_dontcopy_end[0]; 224 union { 225 u32 skc_rxhash; 226 u32 skc_window_clamp; 227 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ 228 }; 229 /* public: */ 230}; 231 232/** 233 * struct sock - network layer representation of sockets 234 * @__sk_common: shared layout with inet_timewait_sock 235 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 236 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 237 * @sk_lock: synchronizer 238 * @sk_rcvbuf: size of receive buffer in bytes 239 * @sk_wq: sock wait queue and async head 240 * @sk_rx_dst: receive input route used by early demux 241 * @sk_dst_cache: destination cache 242 * @sk_policy: flow policy 243 * @sk_receive_queue: incoming packets 244 * @sk_wmem_alloc: transmit queue bytes committed 245 * @sk_write_queue: Packet sending queue 246 * @sk_omem_alloc: "o" is "option" or "other" 247 * @sk_wmem_queued: persistent queue size 248 * @sk_forward_alloc: space allocated forward 249 * @sk_napi_id: id of the last napi context to receive data for sk 250 * @sk_ll_usec: usecs to busypoll when there is no data 251 * @sk_allocation: allocation mode 252 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 253 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 254 * @sk_sndbuf: size of send buffer in bytes 255 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 256 * @sk_no_check_rx: allow zero checksum in RX packets 257 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 258 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 259 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 260 * @sk_gso_max_size: Maximum GSO segment size to build 261 * @sk_gso_max_segs: Maximum number of GSO segments 262 * @sk_lingertime: %SO_LINGER l_linger setting 263 * @sk_backlog: always used with the per-socket spinlock held 264 * @sk_callback_lock: used with the callbacks in the end of this struct 265 * @sk_error_queue: rarely used 266 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 267 * IPV6_ADDRFORM for instance) 268 * @sk_err: last error 269 * @sk_err_soft: errors that don't cause failure but are the cause of a 270 * persistent failure not just 'timed out' 271 * @sk_drops: raw/udp drops counter 272 * @sk_ack_backlog: current listen backlog 273 * @sk_max_ack_backlog: listen backlog set in listen() 274 * @sk_priority: %SO_PRIORITY setting 275 * @sk_type: socket type (%SOCK_STREAM, etc) 276 * @sk_protocol: which protocol this socket belongs in this network family 277 * @sk_peer_pid: &struct pid for this socket's peer 278 * @sk_peer_cred: %SO_PEERCRED setting 279 * @sk_rcvlowat: %SO_RCVLOWAT setting 280 * @sk_rcvtimeo: %SO_RCVTIMEO setting 281 * @sk_sndtimeo: %SO_SNDTIMEO setting 282 * @sk_txhash: computed flow hash for use on transmit 283 * @sk_filter: socket filtering instructions 284 * @sk_timer: sock cleanup timer 285 * @sk_stamp: time stamp of last packet received 286 * @sk_tsflags: SO_TIMESTAMPING socket options 287 * @sk_tskey: counter to disambiguate concurrent tstamp requests 288 * @sk_socket: Identd and reporting IO signals 289 * @sk_user_data: RPC layer private data 290 * @sk_frag: cached page frag 291 * @sk_peek_off: current peek_offset value 292 * @sk_send_head: front of stuff to transmit 293 * @sk_security: used by security modules 294 * @sk_mark: generic packet mark 295 * @sk_cgrp_data: cgroup data for this cgroup 296 * @sk_memcg: this socket's memory cgroup association 297 * @sk_write_pending: a write to stream socket waits to start 298 * @sk_state_change: callback to indicate change in the state of the sock 299 * @sk_data_ready: callback to indicate there is data to be processed 300 * @sk_write_space: callback to indicate there is bf sending space available 301 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 302 * @sk_backlog_rcv: callback to process the backlog 303 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 304 * @sk_reuseport_cb: reuseport group container 305 */ 306struct sock { 307 /* 308 * Now struct inet_timewait_sock also uses sock_common, so please just 309 * don't add nothing before this first member (__sk_common) --acme 310 */ 311 struct sock_common __sk_common; 312#define sk_node __sk_common.skc_node 313#define sk_nulls_node __sk_common.skc_nulls_node 314#define sk_refcnt __sk_common.skc_refcnt 315#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 316 317#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 318#define sk_dontcopy_end __sk_common.skc_dontcopy_end 319#define sk_hash __sk_common.skc_hash 320#define sk_portpair __sk_common.skc_portpair 321#define sk_num __sk_common.skc_num 322#define sk_dport __sk_common.skc_dport 323#define sk_addrpair __sk_common.skc_addrpair 324#define sk_daddr __sk_common.skc_daddr 325#define sk_rcv_saddr __sk_common.skc_rcv_saddr 326#define sk_family __sk_common.skc_family 327#define sk_state __sk_common.skc_state 328#define sk_reuse __sk_common.skc_reuse 329#define sk_reuseport __sk_common.skc_reuseport 330#define sk_ipv6only __sk_common.skc_ipv6only 331#define sk_net_refcnt __sk_common.skc_net_refcnt 332#define sk_bound_dev_if __sk_common.skc_bound_dev_if 333#define sk_bind_node __sk_common.skc_bind_node 334#define sk_prot __sk_common.skc_prot 335#define sk_net __sk_common.skc_net 336#define sk_v6_daddr __sk_common.skc_v6_daddr 337#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 338#define sk_cookie __sk_common.skc_cookie 339#define sk_incoming_cpu __sk_common.skc_incoming_cpu 340#define sk_flags __sk_common.skc_flags 341#define sk_rxhash __sk_common.skc_rxhash 342 343 socket_lock_t sk_lock; 344 struct sk_buff_head sk_receive_queue; 345 /* 346 * The backlog queue is special, it is always used with 347 * the per-socket spinlock held and requires low latency 348 * access. Therefore we special case it's implementation. 349 * Note : rmem_alloc is in this structure to fill a hole 350 * on 64bit arches, not because its logically part of 351 * backlog. 352 */ 353 struct { 354 atomic_t rmem_alloc; 355 int len; 356 struct sk_buff *head; 357 struct sk_buff *tail; 358 } sk_backlog; 359#define sk_rmem_alloc sk_backlog.rmem_alloc 360 int sk_forward_alloc; 361 362 __u32 sk_txhash; 363#ifdef CONFIG_NET_RX_BUSY_POLL 364 unsigned int sk_napi_id; 365 unsigned int sk_ll_usec; 366#endif 367 atomic_t sk_drops; 368 int sk_rcvbuf; 369 370 struct sk_filter __rcu *sk_filter; 371 union { 372 struct socket_wq __rcu *sk_wq; 373 struct socket_wq *sk_wq_raw; 374 }; 375#ifdef CONFIG_XFRM 376 struct xfrm_policy __rcu *sk_policy[2]; 377#endif 378 struct dst_entry *sk_rx_dst; 379 struct dst_entry __rcu *sk_dst_cache; 380 /* Note: 32bit hole on 64bit arches */ 381 atomic_t sk_wmem_alloc; 382 atomic_t sk_omem_alloc; 383 int sk_sndbuf; 384 struct sk_buff_head sk_write_queue; 385 386 /* 387 * Because of non atomicity rules, all 388 * changes are protected by socket lock. 389 */ 390 kmemcheck_bitfield_begin(flags); 391 unsigned int sk_padding : 2, 392 sk_no_check_tx : 1, 393 sk_no_check_rx : 1, 394 sk_userlocks : 4, 395 sk_protocol : 8, 396 sk_type : 16; 397#define SK_PROTOCOL_MAX U8_MAX 398 kmemcheck_bitfield_end(flags); 399 400 int sk_wmem_queued; 401 gfp_t sk_allocation; 402 u32 sk_pacing_rate; /* bytes per second */ 403 u32 sk_max_pacing_rate; 404 netdev_features_t sk_route_caps; 405 netdev_features_t sk_route_nocaps; 406 int sk_gso_type; 407 unsigned int sk_gso_max_size; 408 u16 sk_gso_max_segs; 409 int sk_rcvlowat; 410 unsigned long sk_lingertime; 411 struct sk_buff_head sk_error_queue; 412 struct proto *sk_prot_creator; 413 rwlock_t sk_callback_lock; 414 int sk_err, 415 sk_err_soft; 416 u32 sk_ack_backlog; 417 u32 sk_max_ack_backlog; 418 __u32 sk_priority; 419 __u32 sk_mark; 420 struct pid *sk_peer_pid; 421 const struct cred *sk_peer_cred; 422 long sk_rcvtimeo; 423 long sk_sndtimeo; 424 struct timer_list sk_timer; 425 ktime_t sk_stamp; 426 u16 sk_tsflags; 427 u8 sk_shutdown; 428 u32 sk_tskey; 429 struct socket *sk_socket; 430 void *sk_user_data; 431 struct page_frag sk_frag; 432 struct sk_buff *sk_send_head; 433 __s32 sk_peek_off; 434 int sk_write_pending; 435#ifdef CONFIG_SECURITY 436 void *sk_security; 437#endif 438 struct sock_cgroup_data sk_cgrp_data; 439 struct mem_cgroup *sk_memcg; 440 void (*sk_state_change)(struct sock *sk); 441 void (*sk_data_ready)(struct sock *sk); 442 void (*sk_write_space)(struct sock *sk); 443 void (*sk_error_report)(struct sock *sk); 444 int (*sk_backlog_rcv)(struct sock *sk, 445 struct sk_buff *skb); 446 void (*sk_destruct)(struct sock *sk); 447 struct sock_reuseport __rcu *sk_reuseport_cb; 448 struct rcu_head sk_rcu; 449}; 450 451#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 452 453#define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 454#define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 455 456/* 457 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 458 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 459 * on a socket means that the socket will reuse everybody else's port 460 * without looking at the other's sk_reuse value. 461 */ 462 463#define SK_NO_REUSE 0 464#define SK_CAN_REUSE 1 465#define SK_FORCE_REUSE 2 466 467int sk_set_peek_off(struct sock *sk, int val); 468 469static inline int sk_peek_offset(struct sock *sk, int flags) 470{ 471 if (unlikely(flags & MSG_PEEK)) { 472 s32 off = READ_ONCE(sk->sk_peek_off); 473 if (off >= 0) 474 return off; 475 } 476 477 return 0; 478} 479 480static inline void sk_peek_offset_bwd(struct sock *sk, int val) 481{ 482 s32 off = READ_ONCE(sk->sk_peek_off); 483 484 if (unlikely(off >= 0)) { 485 off = max_t(s32, off - val, 0); 486 WRITE_ONCE(sk->sk_peek_off, off); 487 } 488} 489 490static inline void sk_peek_offset_fwd(struct sock *sk, int val) 491{ 492 sk_peek_offset_bwd(sk, -val); 493} 494 495/* 496 * Hashed lists helper routines 497 */ 498static inline struct sock *sk_entry(const struct hlist_node *node) 499{ 500 return hlist_entry(node, struct sock, sk_node); 501} 502 503static inline struct sock *__sk_head(const struct hlist_head *head) 504{ 505 return hlist_entry(head->first, struct sock, sk_node); 506} 507 508static inline struct sock *sk_head(const struct hlist_head *head) 509{ 510 return hlist_empty(head) ? NULL : __sk_head(head); 511} 512 513static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 514{ 515 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 516} 517 518static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 519{ 520 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 521} 522 523static inline struct sock *sk_next(const struct sock *sk) 524{ 525 return sk->sk_node.next ? 526 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 527} 528 529static inline struct sock *sk_nulls_next(const struct sock *sk) 530{ 531 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 532 hlist_nulls_entry(sk->sk_nulls_node.next, 533 struct sock, sk_nulls_node) : 534 NULL; 535} 536 537static inline bool sk_unhashed(const struct sock *sk) 538{ 539 return hlist_unhashed(&sk->sk_node); 540} 541 542static inline bool sk_hashed(const struct sock *sk) 543{ 544 return !sk_unhashed(sk); 545} 546 547static inline void sk_node_init(struct hlist_node *node) 548{ 549 node->pprev = NULL; 550} 551 552static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 553{ 554 node->pprev = NULL; 555} 556 557static inline void __sk_del_node(struct sock *sk) 558{ 559 __hlist_del(&sk->sk_node); 560} 561 562/* NB: equivalent to hlist_del_init_rcu */ 563static inline bool __sk_del_node_init(struct sock *sk) 564{ 565 if (sk_hashed(sk)) { 566 __sk_del_node(sk); 567 sk_node_init(&sk->sk_node); 568 return true; 569 } 570 return false; 571} 572 573/* Grab socket reference count. This operation is valid only 574 when sk is ALREADY grabbed f.e. it is found in hash table 575 or a list and the lookup is made under lock preventing hash table 576 modifications. 577 */ 578 579static __always_inline void sock_hold(struct sock *sk) 580{ 581 atomic_inc(&sk->sk_refcnt); 582} 583 584/* Ungrab socket in the context, which assumes that socket refcnt 585 cannot hit zero, f.e. it is true in context of any socketcall. 586 */ 587static __always_inline void __sock_put(struct sock *sk) 588{ 589 atomic_dec(&sk->sk_refcnt); 590} 591 592static inline bool sk_del_node_init(struct sock *sk) 593{ 594 bool rc = __sk_del_node_init(sk); 595 596 if (rc) { 597 /* paranoid for a while -acme */ 598 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 599 __sock_put(sk); 600 } 601 return rc; 602} 603#define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 604 605static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 606{ 607 if (sk_hashed(sk)) { 608 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 609 return true; 610 } 611 return false; 612} 613 614static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 615{ 616 bool rc = __sk_nulls_del_node_init_rcu(sk); 617 618 if (rc) { 619 /* paranoid for a while -acme */ 620 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 621 __sock_put(sk); 622 } 623 return rc; 624} 625 626static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 627{ 628 hlist_add_head(&sk->sk_node, list); 629} 630 631static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 632{ 633 sock_hold(sk); 634 __sk_add_node(sk, list); 635} 636 637static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 638{ 639 sock_hold(sk); 640 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 641 sk->sk_family == AF_INET6) 642 hlist_add_tail_rcu(&sk->sk_node, list); 643 else 644 hlist_add_head_rcu(&sk->sk_node, list); 645} 646 647static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 648{ 649 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 650 sk->sk_family == AF_INET6) 651 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); 652 else 653 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 654} 655 656static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 657{ 658 sock_hold(sk); 659 __sk_nulls_add_node_rcu(sk, list); 660} 661 662static inline void __sk_del_bind_node(struct sock *sk) 663{ 664 __hlist_del(&sk->sk_bind_node); 665} 666 667static inline void sk_add_bind_node(struct sock *sk, 668 struct hlist_head *list) 669{ 670 hlist_add_head(&sk->sk_bind_node, list); 671} 672 673#define sk_for_each(__sk, list) \ 674 hlist_for_each_entry(__sk, list, sk_node) 675#define sk_for_each_rcu(__sk, list) \ 676 hlist_for_each_entry_rcu(__sk, list, sk_node) 677#define sk_nulls_for_each(__sk, node, list) \ 678 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 679#define sk_nulls_for_each_rcu(__sk, node, list) \ 680 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 681#define sk_for_each_from(__sk) \ 682 hlist_for_each_entry_from(__sk, sk_node) 683#define sk_nulls_for_each_from(__sk, node) \ 684 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 685 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 686#define sk_for_each_safe(__sk, tmp, list) \ 687 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 688#define sk_for_each_bound(__sk, list) \ 689 hlist_for_each_entry(__sk, list, sk_bind_node) 690 691/** 692 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset 693 * @tpos: the type * to use as a loop cursor. 694 * @pos: the &struct hlist_node to use as a loop cursor. 695 * @head: the head for your list. 696 * @offset: offset of hlist_node within the struct. 697 * 698 */ 699#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ 700 for (pos = rcu_dereference((head)->first); \ 701 pos != NULL && \ 702 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 703 pos = rcu_dereference(pos->next)) 704 705static inline struct user_namespace *sk_user_ns(struct sock *sk) 706{ 707 /* Careful only use this in a context where these parameters 708 * can not change and must all be valid, such as recvmsg from 709 * userspace. 710 */ 711 return sk->sk_socket->file->f_cred->user_ns; 712} 713 714/* Sock flags */ 715enum sock_flags { 716 SOCK_DEAD, 717 SOCK_DONE, 718 SOCK_URGINLINE, 719 SOCK_KEEPOPEN, 720 SOCK_LINGER, 721 SOCK_DESTROY, 722 SOCK_BROADCAST, 723 SOCK_TIMESTAMP, 724 SOCK_ZAPPED, 725 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 726 SOCK_DBG, /* %SO_DEBUG setting */ 727 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 728 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 729 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 730 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 731 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 732 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 733 SOCK_FASYNC, /* fasync() active */ 734 SOCK_RXQ_OVFL, 735 SOCK_ZEROCOPY, /* buffers from userspace */ 736 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 737 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 738 * Will use last 4 bytes of packet sent from 739 * user-space instead. 740 */ 741 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 742 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 743 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ 744}; 745 746#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 747 748static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 749{ 750 nsk->sk_flags = osk->sk_flags; 751} 752 753static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 754{ 755 __set_bit(flag, &sk->sk_flags); 756} 757 758static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 759{ 760 __clear_bit(flag, &sk->sk_flags); 761} 762 763static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 764{ 765 return test_bit(flag, &sk->sk_flags); 766} 767 768#ifdef CONFIG_NET 769extern struct static_key memalloc_socks; 770static inline int sk_memalloc_socks(void) 771{ 772 return static_key_false(&memalloc_socks); 773} 774#else 775 776static inline int sk_memalloc_socks(void) 777{ 778 return 0; 779} 780 781#endif 782 783static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) 784{ 785 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); 786} 787 788static inline void sk_acceptq_removed(struct sock *sk) 789{ 790 sk->sk_ack_backlog--; 791} 792 793static inline void sk_acceptq_added(struct sock *sk) 794{ 795 sk->sk_ack_backlog++; 796} 797 798static inline bool sk_acceptq_is_full(const struct sock *sk) 799{ 800 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 801} 802 803/* 804 * Compute minimal free write space needed to queue new packets. 805 */ 806static inline int sk_stream_min_wspace(const struct sock *sk) 807{ 808 return sk->sk_wmem_queued >> 1; 809} 810 811static inline int sk_stream_wspace(const struct sock *sk) 812{ 813 return sk->sk_sndbuf - sk->sk_wmem_queued; 814} 815 816void sk_stream_write_space(struct sock *sk); 817 818/* OOB backlog add */ 819static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 820{ 821 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 822 skb_dst_force_safe(skb); 823 824 if (!sk->sk_backlog.tail) 825 sk->sk_backlog.head = skb; 826 else 827 sk->sk_backlog.tail->next = skb; 828 829 sk->sk_backlog.tail = skb; 830 skb->next = NULL; 831} 832 833/* 834 * Take into account size of receive queue and backlog queue 835 * Do not take into account this skb truesize, 836 * to allow even a single big packet to come. 837 */ 838static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 839{ 840 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 841 842 return qsize > limit; 843} 844 845/* The per-socket spinlock must be held here. */ 846static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 847 unsigned int limit) 848{ 849 if (sk_rcvqueues_full(sk, limit)) 850 return -ENOBUFS; 851 852 /* 853 * If the skb was allocated from pfmemalloc reserves, only 854 * allow SOCK_MEMALLOC sockets to use it as this socket is 855 * helping free memory 856 */ 857 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 858 return -ENOMEM; 859 860 __sk_add_backlog(sk, skb); 861 sk->sk_backlog.len += skb->truesize; 862 return 0; 863} 864 865int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 866 867static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 868{ 869 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 870 return __sk_backlog_rcv(sk, skb); 871 872 return sk->sk_backlog_rcv(sk, skb); 873} 874 875static inline void sk_incoming_cpu_update(struct sock *sk) 876{ 877 sk->sk_incoming_cpu = raw_smp_processor_id(); 878} 879 880static inline void sock_rps_record_flow_hash(__u32 hash) 881{ 882#ifdef CONFIG_RPS 883 struct rps_sock_flow_table *sock_flow_table; 884 885 rcu_read_lock(); 886 sock_flow_table = rcu_dereference(rps_sock_flow_table); 887 rps_record_sock_flow(sock_flow_table, hash); 888 rcu_read_unlock(); 889#endif 890} 891 892static inline void sock_rps_record_flow(const struct sock *sk) 893{ 894#ifdef CONFIG_RPS 895 sock_rps_record_flow_hash(sk->sk_rxhash); 896#endif 897} 898 899static inline void sock_rps_save_rxhash(struct sock *sk, 900 const struct sk_buff *skb) 901{ 902#ifdef CONFIG_RPS 903 if (unlikely(sk->sk_rxhash != skb->hash)) 904 sk->sk_rxhash = skb->hash; 905#endif 906} 907 908static inline void sock_rps_reset_rxhash(struct sock *sk) 909{ 910#ifdef CONFIG_RPS 911 sk->sk_rxhash = 0; 912#endif 913} 914 915#define sk_wait_event(__sk, __timeo, __condition) \ 916 ({ int __rc; \ 917 release_sock(__sk); \ 918 __rc = __condition; \ 919 if (!__rc) { \ 920 *(__timeo) = schedule_timeout(*(__timeo)); \ 921 } \ 922 sched_annotate_sleep(); \ 923 lock_sock(__sk); \ 924 __rc = __condition; \ 925 __rc; \ 926 }) 927 928int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 929int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 930void sk_stream_wait_close(struct sock *sk, long timeo_p); 931int sk_stream_error(struct sock *sk, int flags, int err); 932void sk_stream_kill_queues(struct sock *sk); 933void sk_set_memalloc(struct sock *sk); 934void sk_clear_memalloc(struct sock *sk); 935 936void __sk_flush_backlog(struct sock *sk); 937 938static inline bool sk_flush_backlog(struct sock *sk) 939{ 940 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { 941 __sk_flush_backlog(sk); 942 return true; 943 } 944 return false; 945} 946 947int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 948 949struct request_sock_ops; 950struct timewait_sock_ops; 951struct inet_hashinfo; 952struct raw_hashinfo; 953struct module; 954 955/* 956 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes 957 * un-modified. Special care is taken when initializing object to zero. 958 */ 959static inline void sk_prot_clear_nulls(struct sock *sk, int size) 960{ 961 if (offsetof(struct sock, sk_node.next) != 0) 962 memset(sk, 0, offsetof(struct sock, sk_node.next)); 963 memset(&sk->sk_node.pprev, 0, 964 size - offsetof(struct sock, sk_node.pprev)); 965} 966 967/* Networking protocol blocks we attach to sockets. 968 * socket layer -> transport layer interface 969 */ 970struct proto { 971 void (*close)(struct sock *sk, 972 long timeout); 973 int (*connect)(struct sock *sk, 974 struct sockaddr *uaddr, 975 int addr_len); 976 int (*disconnect)(struct sock *sk, int flags); 977 978 struct sock * (*accept)(struct sock *sk, int flags, int *err); 979 980 int (*ioctl)(struct sock *sk, int cmd, 981 unsigned long arg); 982 int (*init)(struct sock *sk); 983 void (*destroy)(struct sock *sk); 984 void (*shutdown)(struct sock *sk, int how); 985 int (*setsockopt)(struct sock *sk, int level, 986 int optname, char __user *optval, 987 unsigned int optlen); 988 int (*getsockopt)(struct sock *sk, int level, 989 int optname, char __user *optval, 990 int __user *option); 991#ifdef CONFIG_COMPAT 992 int (*compat_setsockopt)(struct sock *sk, 993 int level, 994 int optname, char __user *optval, 995 unsigned int optlen); 996 int (*compat_getsockopt)(struct sock *sk, 997 int level, 998 int optname, char __user *optval, 999 int __user *option); 1000 int (*compat_ioctl)(struct sock *sk, 1001 unsigned int cmd, unsigned long arg); 1002#endif 1003 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 1004 size_t len); 1005 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 1006 size_t len, int noblock, int flags, 1007 int *addr_len); 1008 int (*sendpage)(struct sock *sk, struct page *page, 1009 int offset, size_t size, int flags); 1010 int (*bind)(struct sock *sk, 1011 struct sockaddr *uaddr, int addr_len); 1012 1013 int (*backlog_rcv) (struct sock *sk, 1014 struct sk_buff *skb); 1015 1016 void (*release_cb)(struct sock *sk); 1017 1018 /* Keeping track of sk's, looking them up, and port selection methods. */ 1019 int (*hash)(struct sock *sk); 1020 void (*unhash)(struct sock *sk); 1021 void (*rehash)(struct sock *sk); 1022 int (*get_port)(struct sock *sk, unsigned short snum); 1023 void (*clear_sk)(struct sock *sk, int size); 1024 1025 /* Keeping track of sockets in use */ 1026#ifdef CONFIG_PROC_FS 1027 unsigned int inuse_idx; 1028#endif 1029 1030 bool (*stream_memory_free)(const struct sock *sk); 1031 /* Memory pressure */ 1032 void (*enter_memory_pressure)(struct sock *sk); 1033 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1034 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1035 /* 1036 * Pressure flag: try to collapse. 1037 * Technical note: it is used by multiple contexts non atomically. 1038 * All the __sk_mem_schedule() is of this nature: accounting 1039 * is strict, actions are advisory and have some latency. 1040 */ 1041 int *memory_pressure; 1042 long *sysctl_mem; 1043 int *sysctl_wmem; 1044 int *sysctl_rmem; 1045 int max_header; 1046 bool no_autobind; 1047 1048 struct kmem_cache *slab; 1049 unsigned int obj_size; 1050 int slab_flags; 1051 1052 struct percpu_counter *orphan_count; 1053 1054 struct request_sock_ops *rsk_prot; 1055 struct timewait_sock_ops *twsk_prot; 1056 1057 union { 1058 struct inet_hashinfo *hashinfo; 1059 struct udp_table *udp_table; 1060 struct raw_hashinfo *raw_hash; 1061 } h; 1062 1063 struct module *owner; 1064 1065 char name[32]; 1066 1067 struct list_head node; 1068#ifdef SOCK_REFCNT_DEBUG 1069 atomic_t socks; 1070#endif 1071 int (*diag_destroy)(struct sock *sk, int err); 1072}; 1073 1074int proto_register(struct proto *prot, int alloc_slab); 1075void proto_unregister(struct proto *prot); 1076 1077#ifdef SOCK_REFCNT_DEBUG 1078static inline void sk_refcnt_debug_inc(struct sock *sk) 1079{ 1080 atomic_inc(&sk->sk_prot->socks); 1081} 1082 1083static inline void sk_refcnt_debug_dec(struct sock *sk) 1084{ 1085 atomic_dec(&sk->sk_prot->socks); 1086 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1087 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1088} 1089 1090static inline void sk_refcnt_debug_release(const struct sock *sk) 1091{ 1092 if (atomic_read(&sk->sk_refcnt) != 1) 1093 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1094 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 1095} 1096#else /* SOCK_REFCNT_DEBUG */ 1097#define sk_refcnt_debug_inc(sk) do { } while (0) 1098#define sk_refcnt_debug_dec(sk) do { } while (0) 1099#define sk_refcnt_debug_release(sk) do { } while (0) 1100#endif /* SOCK_REFCNT_DEBUG */ 1101 1102static inline bool sk_stream_memory_free(const struct sock *sk) 1103{ 1104 if (sk->sk_wmem_queued >= sk->sk_sndbuf) 1105 return false; 1106 1107 return sk->sk_prot->stream_memory_free ? 1108 sk->sk_prot->stream_memory_free(sk) : true; 1109} 1110 1111static inline bool sk_stream_is_writeable(const struct sock *sk) 1112{ 1113 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1114 sk_stream_memory_free(sk); 1115} 1116 1117 1118static inline bool sk_has_memory_pressure(const struct sock *sk) 1119{ 1120 return sk->sk_prot->memory_pressure != NULL; 1121} 1122 1123static inline bool sk_under_memory_pressure(const struct sock *sk) 1124{ 1125 if (!sk->sk_prot->memory_pressure) 1126 return false; 1127 1128 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 1129 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 1130 return true; 1131 1132 return !!*sk->sk_prot->memory_pressure; 1133} 1134 1135static inline void sk_leave_memory_pressure(struct sock *sk) 1136{ 1137 int *memory_pressure = sk->sk_prot->memory_pressure; 1138 1139 if (!memory_pressure) 1140 return; 1141 1142 if (*memory_pressure) 1143 *memory_pressure = 0; 1144} 1145 1146static inline void sk_enter_memory_pressure(struct sock *sk) 1147{ 1148 if (!sk->sk_prot->enter_memory_pressure) 1149 return; 1150 1151 sk->sk_prot->enter_memory_pressure(sk); 1152} 1153 1154static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1155{ 1156 return sk->sk_prot->sysctl_mem[index]; 1157} 1158 1159static inline long 1160sk_memory_allocated(const struct sock *sk) 1161{ 1162 return atomic_long_read(sk->sk_prot->memory_allocated); 1163} 1164 1165static inline long 1166sk_memory_allocated_add(struct sock *sk, int amt) 1167{ 1168 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); 1169} 1170 1171static inline void 1172sk_memory_allocated_sub(struct sock *sk, int amt) 1173{ 1174 atomic_long_sub(amt, sk->sk_prot->memory_allocated); 1175} 1176 1177static inline void sk_sockets_allocated_dec(struct sock *sk) 1178{ 1179 percpu_counter_dec(sk->sk_prot->sockets_allocated); 1180} 1181 1182static inline void sk_sockets_allocated_inc(struct sock *sk) 1183{ 1184 percpu_counter_inc(sk->sk_prot->sockets_allocated); 1185} 1186 1187static inline int 1188sk_sockets_allocated_read_positive(struct sock *sk) 1189{ 1190 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); 1191} 1192 1193static inline int 1194proto_sockets_allocated_sum_positive(struct proto *prot) 1195{ 1196 return percpu_counter_sum_positive(prot->sockets_allocated); 1197} 1198 1199static inline long 1200proto_memory_allocated(struct proto *prot) 1201{ 1202 return atomic_long_read(prot->memory_allocated); 1203} 1204 1205static inline bool 1206proto_memory_pressure(struct proto *prot) 1207{ 1208 if (!prot->memory_pressure) 1209 return false; 1210 return !!*prot->memory_pressure; 1211} 1212 1213 1214#ifdef CONFIG_PROC_FS 1215/* Called with local bh disabled */ 1216void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1217int sock_prot_inuse_get(struct net *net, struct proto *proto); 1218#else 1219static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1220 int inc) 1221{ 1222} 1223#endif 1224 1225 1226/* With per-bucket locks this operation is not-atomic, so that 1227 * this version is not worse. 1228 */ 1229static inline int __sk_prot_rehash(struct sock *sk) 1230{ 1231 sk->sk_prot->unhash(sk); 1232 return sk->sk_prot->hash(sk); 1233} 1234 1235void sk_prot_clear_portaddr_nulls(struct sock *sk, int size); 1236 1237/* About 10 seconds */ 1238#define SOCK_DESTROY_TIME (10*HZ) 1239 1240/* Sockets 0-1023 can't be bound to unless you are superuser */ 1241#define PROT_SOCK 1024 1242 1243#define SHUTDOWN_MASK 3 1244#define RCV_SHUTDOWN 1 1245#define SEND_SHUTDOWN 2 1246 1247#define SOCK_SNDBUF_LOCK 1 1248#define SOCK_RCVBUF_LOCK 2 1249#define SOCK_BINDADDR_LOCK 4 1250#define SOCK_BINDPORT_LOCK 8 1251 1252struct socket_alloc { 1253 struct socket socket; 1254 struct inode vfs_inode; 1255}; 1256 1257static inline struct socket *SOCKET_I(struct inode *inode) 1258{ 1259 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1260} 1261 1262static inline struct inode *SOCK_INODE(struct socket *socket) 1263{ 1264 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1265} 1266 1267/* 1268 * Functions for memory accounting 1269 */ 1270int __sk_mem_schedule(struct sock *sk, int size, int kind); 1271void __sk_mem_reclaim(struct sock *sk, int amount); 1272 1273#define SK_MEM_QUANTUM ((int)PAGE_SIZE) 1274#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1275#define SK_MEM_SEND 0 1276#define SK_MEM_RECV 1 1277 1278static inline int sk_mem_pages(int amt) 1279{ 1280 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1281} 1282 1283static inline bool sk_has_account(struct sock *sk) 1284{ 1285 /* return true if protocol supports memory accounting */ 1286 return !!sk->sk_prot->memory_allocated; 1287} 1288 1289static inline bool sk_wmem_schedule(struct sock *sk, int size) 1290{ 1291 if (!sk_has_account(sk)) 1292 return true; 1293 return size <= sk->sk_forward_alloc || 1294 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1295} 1296 1297static inline bool 1298sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1299{ 1300 if (!sk_has_account(sk)) 1301 return true; 1302 return size<= sk->sk_forward_alloc || 1303 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1304 skb_pfmemalloc(skb); 1305} 1306 1307static inline void sk_mem_reclaim(struct sock *sk) 1308{ 1309 if (!sk_has_account(sk)) 1310 return; 1311 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1312 __sk_mem_reclaim(sk, sk->sk_forward_alloc); 1313} 1314 1315static inline void sk_mem_reclaim_partial(struct sock *sk) 1316{ 1317 if (!sk_has_account(sk)) 1318 return; 1319 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1320 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); 1321} 1322 1323static inline void sk_mem_charge(struct sock *sk, int size) 1324{ 1325 if (!sk_has_account(sk)) 1326 return; 1327 sk->sk_forward_alloc -= size; 1328} 1329 1330static inline void sk_mem_uncharge(struct sock *sk, int size) 1331{ 1332 if (!sk_has_account(sk)) 1333 return; 1334 sk->sk_forward_alloc += size; 1335 1336 /* Avoid a possible overflow. 1337 * TCP send queues can make this happen, if sk_mem_reclaim() 1338 * is not called and more than 2 GBytes are released at once. 1339 * 1340 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is 1341 * no need to hold that much forward allocation anyway. 1342 */ 1343 if (unlikely(sk->sk_forward_alloc >= 1 << 21)) 1344 __sk_mem_reclaim(sk, 1 << 20); 1345} 1346 1347static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1348{ 1349 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1350 sk->sk_wmem_queued -= skb->truesize; 1351 sk_mem_uncharge(sk, skb->truesize); 1352 __kfree_skb(skb); 1353} 1354 1355static inline void sock_release_ownership(struct sock *sk) 1356{ 1357 if (sk->sk_lock.owned) { 1358 sk->sk_lock.owned = 0; 1359 1360 /* The sk_lock has mutex_unlock() semantics: */ 1361 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_); 1362 } 1363} 1364 1365/* 1366 * Macro so as to not evaluate some arguments when 1367 * lockdep is not enabled. 1368 * 1369 * Mark both the sk_lock and the sk_lock.slock as a 1370 * per-address-family lock class. 1371 */ 1372#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1373do { \ 1374 sk->sk_lock.owned = 0; \ 1375 init_waitqueue_head(&sk->sk_lock.wq); \ 1376 spin_lock_init(&(sk)->sk_lock.slock); \ 1377 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1378 sizeof((sk)->sk_lock)); \ 1379 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1380 (skey), (sname)); \ 1381 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1382} while (0) 1383 1384#ifdef CONFIG_LOCKDEP 1385static inline bool lockdep_sock_is_held(const struct sock *csk) 1386{ 1387 struct sock *sk = (struct sock *)csk; 1388 1389 return lockdep_is_held(&sk->sk_lock) || 1390 lockdep_is_held(&sk->sk_lock.slock); 1391} 1392#endif 1393 1394void lock_sock_nested(struct sock *sk, int subclass); 1395 1396static inline void lock_sock(struct sock *sk) 1397{ 1398 lock_sock_nested(sk, 0); 1399} 1400 1401void release_sock(struct sock *sk); 1402 1403/* BH context may only use the following locking interface. */ 1404#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1405#define bh_lock_sock_nested(__sk) \ 1406 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1407 SINGLE_DEPTH_NESTING) 1408#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1409 1410bool lock_sock_fast(struct sock *sk); 1411/** 1412 * unlock_sock_fast - complement of lock_sock_fast 1413 * @sk: socket 1414 * @slow: slow mode 1415 * 1416 * fast unlock socket for user context. 1417 * If slow mode is on, we call regular release_sock() 1418 */ 1419static inline void unlock_sock_fast(struct sock *sk, bool slow) 1420{ 1421 if (slow) 1422 release_sock(sk); 1423 else 1424 spin_unlock_bh(&sk->sk_lock.slock); 1425} 1426 1427/* Used by processes to "lock" a socket state, so that 1428 * interrupts and bottom half handlers won't change it 1429 * from under us. It essentially blocks any incoming 1430 * packets, so that we won't get any new data or any 1431 * packets that change the state of the socket. 1432 * 1433 * While locked, BH processing will add new packets to 1434 * the backlog queue. This queue is processed by the 1435 * owner of the socket lock right before it is released. 1436 * 1437 * Since ~2.3.5 it is also exclusive sleep lock serializing 1438 * accesses from user process context. 1439 */ 1440 1441static inline void sock_owned_by_me(const struct sock *sk) 1442{ 1443#ifdef CONFIG_LOCKDEP 1444 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); 1445#endif 1446} 1447 1448static inline bool sock_owned_by_user(const struct sock *sk) 1449{ 1450 sock_owned_by_me(sk); 1451 return sk->sk_lock.owned; 1452} 1453 1454/* no reclassification while locks are held */ 1455static inline bool sock_allow_reclassification(const struct sock *csk) 1456{ 1457 struct sock *sk = (struct sock *)csk; 1458 1459 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock); 1460} 1461 1462struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1463 struct proto *prot, int kern); 1464void sk_free(struct sock *sk); 1465void sk_destruct(struct sock *sk); 1466struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1467 1468struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1469 gfp_t priority); 1470void __sock_wfree(struct sk_buff *skb); 1471void sock_wfree(struct sk_buff *skb); 1472void skb_orphan_partial(struct sk_buff *skb); 1473void sock_rfree(struct sk_buff *skb); 1474void sock_efree(struct sk_buff *skb); 1475#ifdef CONFIG_INET 1476void sock_edemux(struct sk_buff *skb); 1477#else 1478#define sock_edemux(skb) sock_efree(skb) 1479#endif 1480 1481int sock_setsockopt(struct socket *sock, int level, int op, 1482 char __user *optval, unsigned int optlen); 1483 1484int sock_getsockopt(struct socket *sock, int level, int op, 1485 char __user *optval, int __user *optlen); 1486struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1487 int noblock, int *errcode); 1488struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1489 unsigned long data_len, int noblock, 1490 int *errcode, int max_page_order); 1491void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1492void sock_kfree_s(struct sock *sk, void *mem, int size); 1493void sock_kzfree_s(struct sock *sk, void *mem, int size); 1494void sk_send_sigurg(struct sock *sk); 1495 1496struct sockcm_cookie { 1497 u32 mark; 1498 u16 tsflags; 1499}; 1500 1501int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, 1502 struct sockcm_cookie *sockc); 1503int sock_cmsg_send(struct sock *sk, struct msghdr *msg, 1504 struct sockcm_cookie *sockc); 1505 1506/* 1507 * Functions to fill in entries in struct proto_ops when a protocol 1508 * does not implement a particular function. 1509 */ 1510int sock_no_bind(struct socket *, struct sockaddr *, int); 1511int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1512int sock_no_socketpair(struct socket *, struct socket *); 1513int sock_no_accept(struct socket *, struct socket *, int); 1514int sock_no_getname(struct socket *, struct sockaddr *, int *, int); 1515unsigned int sock_no_poll(struct file *, struct socket *, 1516 struct poll_table_struct *); 1517int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1518int sock_no_listen(struct socket *, int); 1519int sock_no_shutdown(struct socket *, int); 1520int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1521int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1522int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1523int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1524int sock_no_mmap(struct file *file, struct socket *sock, 1525 struct vm_area_struct *vma); 1526ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1527 size_t size, int flags); 1528 1529/* 1530 * Functions to fill in entries in struct proto_ops when a protocol 1531 * uses the inet style. 1532 */ 1533int sock_common_getsockopt(struct socket *sock, int level, int optname, 1534 char __user *optval, int __user *optlen); 1535int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1536 int flags); 1537int sock_common_setsockopt(struct socket *sock, int level, int optname, 1538 char __user *optval, unsigned int optlen); 1539int compat_sock_common_getsockopt(struct socket *sock, int level, 1540 int optname, char __user *optval, int __user *optlen); 1541int compat_sock_common_setsockopt(struct socket *sock, int level, 1542 int optname, char __user *optval, unsigned int optlen); 1543 1544void sk_common_release(struct sock *sk); 1545 1546/* 1547 * Default socket callbacks and setup code 1548 */ 1549 1550/* Initialise core socket variables */ 1551void sock_init_data(struct socket *sock, struct sock *sk); 1552 1553/* 1554 * Socket reference counting postulates. 1555 * 1556 * * Each user of socket SHOULD hold a reference count. 1557 * * Each access point to socket (an hash table bucket, reference from a list, 1558 * running timer, skb in flight MUST hold a reference count. 1559 * * When reference count hits 0, it means it will never increase back. 1560 * * When reference count hits 0, it means that no references from 1561 * outside exist to this socket and current process on current CPU 1562 * is last user and may/should destroy this socket. 1563 * * sk_free is called from any context: process, BH, IRQ. When 1564 * it is called, socket has no references from outside -> sk_free 1565 * may release descendant resources allocated by the socket, but 1566 * to the time when it is called, socket is NOT referenced by any 1567 * hash tables, lists etc. 1568 * * Packets, delivered from outside (from network or from another process) 1569 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1570 * when they sit in queue. Otherwise, packets will leak to hole, when 1571 * socket is looked up by one cpu and unhasing is made by another CPU. 1572 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1573 * (leak to backlog). Packet socket does all the processing inside 1574 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1575 * use separate SMP lock, so that they are prone too. 1576 */ 1577 1578/* Ungrab socket and destroy it, if it was the last reference. */ 1579static inline void sock_put(struct sock *sk) 1580{ 1581 if (atomic_dec_and_test(&sk->sk_refcnt)) 1582 sk_free(sk); 1583} 1584/* Generic version of sock_put(), dealing with all sockets 1585 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1586 */ 1587void sock_gen_put(struct sock *sk); 1588 1589int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, 1590 unsigned int trim_cap); 1591static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1592 const int nested) 1593{ 1594 return __sk_receive_skb(sk, skb, nested, 1); 1595} 1596 1597static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1598{ 1599 sk->sk_tx_queue_mapping = tx_queue; 1600} 1601 1602static inline void sk_tx_queue_clear(struct sock *sk) 1603{ 1604 sk->sk_tx_queue_mapping = -1; 1605} 1606 1607static inline int sk_tx_queue_get(const struct sock *sk) 1608{ 1609 return sk ? sk->sk_tx_queue_mapping : -1; 1610} 1611 1612static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1613{ 1614 sk_tx_queue_clear(sk); 1615 sk->sk_socket = sock; 1616} 1617 1618static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1619{ 1620 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1621 return &rcu_dereference_raw(sk->sk_wq)->wait; 1622} 1623/* Detach socket from process context. 1624 * Announce socket dead, detach it from wait queue and inode. 1625 * Note that parent inode held reference count on this struct sock, 1626 * we do not release it in this function, because protocol 1627 * probably wants some additional cleanups or even continuing 1628 * to work with this socket (TCP). 1629 */ 1630static inline void sock_orphan(struct sock *sk) 1631{ 1632 write_lock_bh(&sk->sk_callback_lock); 1633 sock_set_flag(sk, SOCK_DEAD); 1634 sk_set_socket(sk, NULL); 1635 sk->sk_wq = NULL; 1636 write_unlock_bh(&sk->sk_callback_lock); 1637} 1638 1639static inline void sock_graft(struct sock *sk, struct socket *parent) 1640{ 1641 write_lock_bh(&sk->sk_callback_lock); 1642 sk->sk_wq = parent->wq; 1643 parent->sk = sk; 1644 sk_set_socket(sk, parent); 1645 security_sock_graft(sk, parent); 1646 write_unlock_bh(&sk->sk_callback_lock); 1647} 1648 1649kuid_t sock_i_uid(struct sock *sk); 1650unsigned long sock_i_ino(struct sock *sk); 1651 1652static inline u32 net_tx_rndhash(void) 1653{ 1654 u32 v = prandom_u32(); 1655 1656 return v ?: 1; 1657} 1658 1659static inline void sk_set_txhash(struct sock *sk) 1660{ 1661 sk->sk_txhash = net_tx_rndhash(); 1662} 1663 1664static inline void sk_rethink_txhash(struct sock *sk) 1665{ 1666 if (sk->sk_txhash) 1667 sk_set_txhash(sk); 1668} 1669 1670static inline struct dst_entry * 1671__sk_dst_get(struct sock *sk) 1672{ 1673 return rcu_dereference_check(sk->sk_dst_cache, 1674 lockdep_sock_is_held(sk)); 1675} 1676 1677static inline struct dst_entry * 1678sk_dst_get(struct sock *sk) 1679{ 1680 struct dst_entry *dst; 1681 1682 rcu_read_lock(); 1683 dst = rcu_dereference(sk->sk_dst_cache); 1684 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1685 dst = NULL; 1686 rcu_read_unlock(); 1687 return dst; 1688} 1689 1690static inline void dst_negative_advice(struct sock *sk) 1691{ 1692 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1693 1694 sk_rethink_txhash(sk); 1695 1696 if (dst && dst->ops->negative_advice) { 1697 ndst = dst->ops->negative_advice(dst); 1698 1699 if (ndst != dst) { 1700 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1701 sk_tx_queue_clear(sk); 1702 } 1703 } 1704} 1705 1706static inline void 1707__sk_dst_set(struct sock *sk, struct dst_entry *dst) 1708{ 1709 struct dst_entry *old_dst; 1710 1711 sk_tx_queue_clear(sk); 1712 /* 1713 * This can be called while sk is owned by the caller only, 1714 * with no state that can be checked in a rcu_dereference_check() cond 1715 */ 1716 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1717 rcu_assign_pointer(sk->sk_dst_cache, dst); 1718 dst_release(old_dst); 1719} 1720 1721static inline void 1722sk_dst_set(struct sock *sk, struct dst_entry *dst) 1723{ 1724 struct dst_entry *old_dst; 1725 1726 sk_tx_queue_clear(sk); 1727 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1728 dst_release(old_dst); 1729} 1730 1731static inline void 1732__sk_dst_reset(struct sock *sk) 1733{ 1734 __sk_dst_set(sk, NULL); 1735} 1736 1737static inline void 1738sk_dst_reset(struct sock *sk) 1739{ 1740 sk_dst_set(sk, NULL); 1741} 1742 1743struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1744 1745struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1746 1747bool sk_mc_loop(struct sock *sk); 1748 1749static inline bool sk_can_gso(const struct sock *sk) 1750{ 1751 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1752} 1753 1754void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1755 1756static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1757{ 1758 sk->sk_route_nocaps |= flags; 1759 sk->sk_route_caps &= ~flags; 1760} 1761 1762static inline bool sk_check_csum_caps(struct sock *sk) 1763{ 1764 return (sk->sk_route_caps & NETIF_F_HW_CSUM) || 1765 (sk->sk_family == PF_INET && 1766 (sk->sk_route_caps & NETIF_F_IP_CSUM)) || 1767 (sk->sk_family == PF_INET6 && 1768 (sk->sk_route_caps & NETIF_F_IPV6_CSUM)); 1769} 1770 1771static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1772 struct iov_iter *from, char *to, 1773 int copy, int offset) 1774{ 1775 if (skb->ip_summed == CHECKSUM_NONE) { 1776 __wsum csum = 0; 1777 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy) 1778 return -EFAULT; 1779 skb->csum = csum_block_add(skb->csum, csum, offset); 1780 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1781 if (copy_from_iter_nocache(to, copy, from) != copy) 1782 return -EFAULT; 1783 } else if (copy_from_iter(to, copy, from) != copy) 1784 return -EFAULT; 1785 1786 return 0; 1787} 1788 1789static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1790 struct iov_iter *from, int copy) 1791{ 1792 int err, offset = skb->len; 1793 1794 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1795 copy, offset); 1796 if (err) 1797 __skb_trim(skb, offset); 1798 1799 return err; 1800} 1801 1802static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 1803 struct sk_buff *skb, 1804 struct page *page, 1805 int off, int copy) 1806{ 1807 int err; 1808 1809 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1810 copy, skb->len); 1811 if (err) 1812 return err; 1813 1814 skb->len += copy; 1815 skb->data_len += copy; 1816 skb->truesize += copy; 1817 sk->sk_wmem_queued += copy; 1818 sk_mem_charge(sk, copy); 1819 return 0; 1820} 1821 1822/** 1823 * sk_wmem_alloc_get - returns write allocations 1824 * @sk: socket 1825 * 1826 * Returns sk_wmem_alloc minus initial offset of one 1827 */ 1828static inline int sk_wmem_alloc_get(const struct sock *sk) 1829{ 1830 return atomic_read(&sk->sk_wmem_alloc) - 1; 1831} 1832 1833/** 1834 * sk_rmem_alloc_get - returns read allocations 1835 * @sk: socket 1836 * 1837 * Returns sk_rmem_alloc 1838 */ 1839static inline int sk_rmem_alloc_get(const struct sock *sk) 1840{ 1841 return atomic_read(&sk->sk_rmem_alloc); 1842} 1843 1844/** 1845 * sk_has_allocations - check if allocations are outstanding 1846 * @sk: socket 1847 * 1848 * Returns true if socket has write or read allocations 1849 */ 1850static inline bool sk_has_allocations(const struct sock *sk) 1851{ 1852 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1853} 1854 1855/** 1856 * skwq_has_sleeper - check if there are any waiting processes 1857 * @wq: struct socket_wq 1858 * 1859 * Returns true if socket_wq has waiting processes 1860 * 1861 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory 1862 * barrier call. They were added due to the race found within the tcp code. 1863 * 1864 * Consider following tcp code paths: 1865 * 1866 * CPU1 CPU2 1867 * 1868 * sys_select receive packet 1869 * ... ... 1870 * __add_wait_queue update tp->rcv_nxt 1871 * ... ... 1872 * tp->rcv_nxt check sock_def_readable 1873 * ... { 1874 * schedule rcu_read_lock(); 1875 * wq = rcu_dereference(sk->sk_wq); 1876 * if (wq && waitqueue_active(&wq->wait)) 1877 * wake_up_interruptible(&wq->wait) 1878 * ... 1879 * } 1880 * 1881 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1882 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1883 * could then endup calling schedule and sleep forever if there are no more 1884 * data on the socket. 1885 * 1886 */ 1887static inline bool skwq_has_sleeper(struct socket_wq *wq) 1888{ 1889 return wq && wq_has_sleeper(&wq->wait); 1890} 1891 1892/** 1893 * sock_poll_wait - place memory barrier behind the poll_wait call. 1894 * @filp: file 1895 * @wait_address: socket wait queue 1896 * @p: poll_table 1897 * 1898 * See the comments in the wq_has_sleeper function. 1899 */ 1900static inline void sock_poll_wait(struct file *filp, 1901 wait_queue_head_t *wait_address, poll_table *p) 1902{ 1903 if (!poll_does_not_wait(p) && wait_address) { 1904 poll_wait(filp, wait_address, p); 1905 /* We need to be sure we are in sync with the 1906 * socket flags modification. 1907 * 1908 * This memory barrier is paired in the wq_has_sleeper. 1909 */ 1910 smp_mb(); 1911 } 1912} 1913 1914static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 1915{ 1916 if (sk->sk_txhash) { 1917 skb->l4_hash = 1; 1918 skb->hash = sk->sk_txhash; 1919 } 1920} 1921 1922void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); 1923 1924/* 1925 * Queue a received datagram if it will fit. Stream and sequenced 1926 * protocols can't normally use this as they need to fit buffers in 1927 * and play with them. 1928 * 1929 * Inlined as it's very short and called for pretty much every 1930 * packet ever received. 1931 */ 1932static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1933{ 1934 skb_orphan(skb); 1935 skb->sk = sk; 1936 skb->destructor = sock_rfree; 1937 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1938 sk_mem_charge(sk, skb->truesize); 1939} 1940 1941void sk_reset_timer(struct sock *sk, struct timer_list *timer, 1942 unsigned long expires); 1943 1944void sk_stop_timer(struct sock *sk, struct timer_list *timer); 1945 1946int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1947int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1948 1949int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 1950struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 1951 1952/* 1953 * Recover an error report and clear atomically 1954 */ 1955 1956static inline int sock_error(struct sock *sk) 1957{ 1958 int err; 1959 if (likely(!sk->sk_err)) 1960 return 0; 1961 err = xchg(&sk->sk_err, 0); 1962 return -err; 1963} 1964 1965static inline unsigned long sock_wspace(struct sock *sk) 1966{ 1967 int amt = 0; 1968 1969 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1970 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1971 if (amt < 0) 1972 amt = 0; 1973 } 1974 return amt; 1975} 1976 1977/* Note: 1978 * We use sk->sk_wq_raw, from contexts knowing this 1979 * pointer is not NULL and cannot disappear/change. 1980 */ 1981static inline void sk_set_bit(int nr, struct sock *sk) 1982{ 1983 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 1984 !sock_flag(sk, SOCK_FASYNC)) 1985 return; 1986 1987 set_bit(nr, &sk->sk_wq_raw->flags); 1988} 1989 1990static inline void sk_clear_bit(int nr, struct sock *sk) 1991{ 1992 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && 1993 !sock_flag(sk, SOCK_FASYNC)) 1994 return; 1995 1996 clear_bit(nr, &sk->sk_wq_raw->flags); 1997} 1998 1999static inline void sk_wake_async(const struct sock *sk, int how, int band) 2000{ 2001 if (sock_flag(sk, SOCK_FASYNC)) { 2002 rcu_read_lock(); 2003 sock_wake_async(rcu_dereference(sk->sk_wq), how, band); 2004 rcu_read_unlock(); 2005 } 2006} 2007 2008/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2009 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2010 * Note: for send buffers, TCP works better if we can build two skbs at 2011 * minimum. 2012 */ 2013#define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2014 2015#define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2016#define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2017 2018static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2019{ 2020 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 2021 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2022 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); 2023 } 2024} 2025 2026struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 2027 bool force_schedule); 2028 2029/** 2030 * sk_page_frag - return an appropriate page_frag 2031 * @sk: socket 2032 * 2033 * If socket allocation mode allows current thread to sleep, it means its 2034 * safe to use the per task page_frag instead of the per socket one. 2035 */ 2036static inline struct page_frag *sk_page_frag(struct sock *sk) 2037{ 2038 if (gfpflags_allow_blocking(sk->sk_allocation)) 2039 return &current->task_frag; 2040 2041 return &sk->sk_frag; 2042} 2043 2044bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2045 2046/* 2047 * Default write policy as shown to user space via poll/select/SIGIO 2048 */ 2049static inline bool sock_writeable(const struct sock *sk) 2050{ 2051 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2052} 2053 2054static inline gfp_t gfp_any(void) 2055{ 2056 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2057} 2058 2059static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2060{ 2061 return noblock ? 0 : sk->sk_rcvtimeo; 2062} 2063 2064static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2065{ 2066 return noblock ? 0 : sk->sk_sndtimeo; 2067} 2068 2069static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2070{ 2071 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2072} 2073 2074/* Alas, with timeout socket operations are not restartable. 2075 * Compare this to poll(). 2076 */ 2077static inline int sock_intr_errno(long timeo) 2078{ 2079 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2080} 2081 2082struct sock_skb_cb { 2083 u32 dropcount; 2084}; 2085 2086/* Store sock_skb_cb at the end of skb->cb[] so protocol families 2087 * using skb->cb[] would keep using it directly and utilize its 2088 * alignement guarantee. 2089 */ 2090#define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \ 2091 sizeof(struct sock_skb_cb))) 2092 2093#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2094 SOCK_SKB_CB_OFFSET)) 2095 2096#define sock_skb_cb_check_size(size) \ 2097 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2098 2099static inline void 2100sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2101{ 2102 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops); 2103} 2104 2105static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) 2106{ 2107 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2108 2109 atomic_add(segs, &sk->sk_drops); 2110} 2111 2112void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2113 struct sk_buff *skb); 2114void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2115 struct sk_buff *skb); 2116 2117static inline void 2118sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2119{ 2120 ktime_t kt = skb->tstamp; 2121 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2122 2123 /* 2124 * generate control messages if 2125 * - receive time stamping in software requested 2126 * - software time stamp available and wanted 2127 * - hardware time stamps available and wanted 2128 */ 2129 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2130 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2131 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2132 (hwtstamps->hwtstamp.tv64 && 2133 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2134 __sock_recv_timestamp(msg, sk, skb); 2135 else 2136 sk->sk_stamp = kt; 2137 2138 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2139 __sock_recv_wifi_status(msg, sk, skb); 2140} 2141 2142void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2143 struct sk_buff *skb); 2144 2145static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2146 struct sk_buff *skb) 2147{ 2148#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2149 (1UL << SOCK_RCVTSTAMP)) 2150#define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2151 SOF_TIMESTAMPING_RAW_HARDWARE) 2152 2153 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2154 __sock_recv_ts_and_drops(msg, sk, skb); 2155 else 2156 sk->sk_stamp = skb->tstamp; 2157} 2158 2159void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); 2160 2161/** 2162 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2163 * @sk: socket sending this packet 2164 * @tsflags: timestamping flags to use 2165 * @tx_flags: completed with instructions for time stamping 2166 * 2167 * Note : callers should take care of initial *tx_flags value (usually 0) 2168 */ 2169static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags, 2170 __u8 *tx_flags) 2171{ 2172 if (unlikely(tsflags)) 2173 __sock_tx_timestamp(tsflags, tx_flags); 2174 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2175 *tx_flags |= SKBTX_WIFI_STATUS; 2176} 2177 2178/** 2179 * sk_eat_skb - Release a skb if it is no longer needed 2180 * @sk: socket to eat this skb from 2181 * @skb: socket buffer to eat 2182 * 2183 * This routine must be called with interrupts disabled or with the socket 2184 * locked so that the sk_buff queue operation is ok. 2185*/ 2186static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2187{ 2188 __skb_unlink(skb, &sk->sk_receive_queue); 2189 __kfree_skb(skb); 2190} 2191 2192static inline 2193struct net *sock_net(const struct sock *sk) 2194{ 2195 return read_pnet(&sk->sk_net); 2196} 2197 2198static inline 2199void sock_net_set(struct sock *sk, struct net *net) 2200{ 2201 write_pnet(&sk->sk_net, net); 2202} 2203 2204static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2205{ 2206 if (skb->sk) { 2207 struct sock *sk = skb->sk; 2208 2209 skb->destructor = NULL; 2210 skb->sk = NULL; 2211 return sk; 2212 } 2213 return NULL; 2214} 2215 2216/* This helper checks if a socket is a full socket, 2217 * ie _not_ a timewait or request socket. 2218 */ 2219static inline bool sk_fullsock(const struct sock *sk) 2220{ 2221 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2222} 2223 2224/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV 2225 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) 2226 */ 2227static inline bool sk_listener(const struct sock *sk) 2228{ 2229 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); 2230} 2231 2232/** 2233 * sk_state_load - read sk->sk_state for lockless contexts 2234 * @sk: socket pointer 2235 * 2236 * Paired with sk_state_store(). Used in places we do not hold socket lock : 2237 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ... 2238 */ 2239static inline int sk_state_load(const struct sock *sk) 2240{ 2241 return smp_load_acquire(&sk->sk_state); 2242} 2243 2244/** 2245 * sk_state_store - update sk->sk_state 2246 * @sk: socket pointer 2247 * @newstate: new state 2248 * 2249 * Paired with sk_state_load(). Should be used in contexts where 2250 * state change might impact lockless readers. 2251 */ 2252static inline void sk_state_store(struct sock *sk, int newstate) 2253{ 2254 smp_store_release(&sk->sk_state, newstate); 2255} 2256 2257void sock_enable_timestamp(struct sock *sk, int flag); 2258int sock_get_timestamp(struct sock *, struct timeval __user *); 2259int sock_get_timestampns(struct sock *, struct timespec __user *); 2260int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2261 int type); 2262 2263bool sk_ns_capable(const struct sock *sk, 2264 struct user_namespace *user_ns, int cap); 2265bool sk_capable(const struct sock *sk, int cap); 2266bool sk_net_capable(const struct sock *sk, int cap); 2267 2268extern __u32 sysctl_wmem_max; 2269extern __u32 sysctl_rmem_max; 2270 2271extern int sysctl_tstamp_allow_data; 2272extern int sysctl_optmem_max; 2273 2274extern __u32 sysctl_wmem_default; 2275extern __u32 sysctl_rmem_default; 2276 2277#endif /* _SOCK_H */