Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40#ifndef _SOCK_H
41#define _SOCK_H
42
43#include <linux/hardirq.h>
44#include <linux/kernel.h>
45#include <linux/list.h>
46#include <linux/list_nulls.h>
47#include <linux/timer.h>
48#include <linux/cache.h>
49#include <linux/bitops.h>
50#include <linux/lockdep.h>
51#include <linux/netdevice.h>
52#include <linux/skbuff.h> /* struct sk_buff */
53#include <linux/mm.h>
54#include <linux/security.h>
55#include <linux/slab.h>
56#include <linux/uaccess.h>
57#include <linux/page_counter.h>
58#include <linux/memcontrol.h>
59#include <linux/static_key.h>
60#include <linux/sched.h>
61#include <linux/wait.h>
62#include <linux/cgroup-defs.h>
63
64#include <linux/filter.h>
65#include <linux/rculist_nulls.h>
66#include <linux/poll.h>
67
68#include <linux/atomic.h>
69#include <net/dst.h>
70#include <net/checksum.h>
71#include <net/tcp_states.h>
72#include <linux/net_tstamp.h>
73
74/*
75 * This structure really needs to be cleaned up.
76 * Most of it is for TCP, and not used by any of
77 * the other protocols.
78 */
79
80/* Define this to get the SOCK_DBG debugging facility. */
81#define SOCK_DEBUGGING
82#ifdef SOCK_DEBUGGING
83#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
84 printk(KERN_DEBUG msg); } while (0)
85#else
86/* Validate arguments and do nothing */
87static inline __printf(2, 3)
88void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
89{
90}
91#endif
92
93/* This is the per-socket lock. The spinlock provides a synchronization
94 * between user contexts and software interrupt processing, whereas the
95 * mini-semaphore synchronizes multiple users amongst themselves.
96 */
97typedef struct {
98 spinlock_t slock;
99 int owned;
100 wait_queue_head_t wq;
101 /*
102 * We express the mutex-alike socket_lock semantics
103 * to the lock validator by explicitly managing
104 * the slock as a lock variant (in addition to
105 * the slock itself):
106 */
107#ifdef CONFIG_DEBUG_LOCK_ALLOC
108 struct lockdep_map dep_map;
109#endif
110} socket_lock_t;
111
112struct sock;
113struct proto;
114struct net;
115
116typedef __u32 __bitwise __portpair;
117typedef __u64 __bitwise __addrpair;
118
119/**
120 * struct sock_common - minimal network layer representation of sockets
121 * @skc_daddr: Foreign IPv4 addr
122 * @skc_rcv_saddr: Bound local IPv4 addr
123 * @skc_hash: hash value used with various protocol lookup tables
124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
125 * @skc_dport: placeholder for inet_dport/tw_dport
126 * @skc_num: placeholder for inet_num/tw_num
127 * @skc_family: network address family
128 * @skc_state: Connection state
129 * @skc_reuse: %SO_REUSEADDR setting
130 * @skc_reuseport: %SO_REUSEPORT setting
131 * @skc_bound_dev_if: bound device index if != 0
132 * @skc_bind_node: bind hash linkage for various protocol lookup tables
133 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
134 * @skc_prot: protocol handlers inside a network family
135 * @skc_net: reference to the network namespace of this socket
136 * @skc_node: main hash linkage for various protocol lookup tables
137 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
138 * @skc_tx_queue_mapping: tx queue number for this connection
139 * @skc_flags: place holder for sk_flags
140 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
141 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
142 * @skc_incoming_cpu: record/match cpu processing incoming packets
143 * @skc_refcnt: reference count
144 *
145 * This is the minimal network layer representation of sockets, the header
146 * for struct sock and struct inet_timewait_sock.
147 */
148struct sock_common {
149 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
150 * address on 64bit arches : cf INET_MATCH()
151 */
152 union {
153 __addrpair skc_addrpair;
154 struct {
155 __be32 skc_daddr;
156 __be32 skc_rcv_saddr;
157 };
158 };
159 union {
160 unsigned int skc_hash;
161 __u16 skc_u16hashes[2];
162 };
163 /* skc_dport && skc_num must be grouped as well */
164 union {
165 __portpair skc_portpair;
166 struct {
167 __be16 skc_dport;
168 __u16 skc_num;
169 };
170 };
171
172 unsigned short skc_family;
173 volatile unsigned char skc_state;
174 unsigned char skc_reuse:4;
175 unsigned char skc_reuseport:1;
176 unsigned char skc_ipv6only:1;
177 unsigned char skc_net_refcnt:1;
178 int skc_bound_dev_if;
179 union {
180 struct hlist_node skc_bind_node;
181 struct hlist_node skc_portaddr_node;
182 };
183 struct proto *skc_prot;
184 possible_net_t skc_net;
185
186#if IS_ENABLED(CONFIG_IPV6)
187 struct in6_addr skc_v6_daddr;
188 struct in6_addr skc_v6_rcv_saddr;
189#endif
190
191 atomic64_t skc_cookie;
192
193 /* following fields are padding to force
194 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
195 * assuming IPV6 is enabled. We use this padding differently
196 * for different kind of 'sockets'
197 */
198 union {
199 unsigned long skc_flags;
200 struct sock *skc_listener; /* request_sock */
201 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
202 };
203 /*
204 * fields between dontcopy_begin/dontcopy_end
205 * are not copied in sock_copy()
206 */
207 /* private: */
208 int skc_dontcopy_begin[0];
209 /* public: */
210 union {
211 struct hlist_node skc_node;
212 struct hlist_nulls_node skc_nulls_node;
213 };
214 int skc_tx_queue_mapping;
215 union {
216 int skc_incoming_cpu;
217 u32 skc_rcv_wnd;
218 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
219 };
220
221 atomic_t skc_refcnt;
222 /* private: */
223 int skc_dontcopy_end[0];
224 union {
225 u32 skc_rxhash;
226 u32 skc_window_clamp;
227 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
228 };
229 /* public: */
230};
231
232/**
233 * struct sock - network layer representation of sockets
234 * @__sk_common: shared layout with inet_timewait_sock
235 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
236 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
237 * @sk_lock: synchronizer
238 * @sk_rcvbuf: size of receive buffer in bytes
239 * @sk_wq: sock wait queue and async head
240 * @sk_rx_dst: receive input route used by early demux
241 * @sk_dst_cache: destination cache
242 * @sk_policy: flow policy
243 * @sk_receive_queue: incoming packets
244 * @sk_wmem_alloc: transmit queue bytes committed
245 * @sk_write_queue: Packet sending queue
246 * @sk_omem_alloc: "o" is "option" or "other"
247 * @sk_wmem_queued: persistent queue size
248 * @sk_forward_alloc: space allocated forward
249 * @sk_napi_id: id of the last napi context to receive data for sk
250 * @sk_ll_usec: usecs to busypoll when there is no data
251 * @sk_allocation: allocation mode
252 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
253 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
254 * @sk_sndbuf: size of send buffer in bytes
255 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
256 * @sk_no_check_rx: allow zero checksum in RX packets
257 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
258 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
259 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
260 * @sk_gso_max_size: Maximum GSO segment size to build
261 * @sk_gso_max_segs: Maximum number of GSO segments
262 * @sk_lingertime: %SO_LINGER l_linger setting
263 * @sk_backlog: always used with the per-socket spinlock held
264 * @sk_callback_lock: used with the callbacks in the end of this struct
265 * @sk_error_queue: rarely used
266 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
267 * IPV6_ADDRFORM for instance)
268 * @sk_err: last error
269 * @sk_err_soft: errors that don't cause failure but are the cause of a
270 * persistent failure not just 'timed out'
271 * @sk_drops: raw/udp drops counter
272 * @sk_ack_backlog: current listen backlog
273 * @sk_max_ack_backlog: listen backlog set in listen()
274 * @sk_priority: %SO_PRIORITY setting
275 * @sk_type: socket type (%SOCK_STREAM, etc)
276 * @sk_protocol: which protocol this socket belongs in this network family
277 * @sk_peer_pid: &struct pid for this socket's peer
278 * @sk_peer_cred: %SO_PEERCRED setting
279 * @sk_rcvlowat: %SO_RCVLOWAT setting
280 * @sk_rcvtimeo: %SO_RCVTIMEO setting
281 * @sk_sndtimeo: %SO_SNDTIMEO setting
282 * @sk_txhash: computed flow hash for use on transmit
283 * @sk_filter: socket filtering instructions
284 * @sk_timer: sock cleanup timer
285 * @sk_stamp: time stamp of last packet received
286 * @sk_tsflags: SO_TIMESTAMPING socket options
287 * @sk_tskey: counter to disambiguate concurrent tstamp requests
288 * @sk_socket: Identd and reporting IO signals
289 * @sk_user_data: RPC layer private data
290 * @sk_frag: cached page frag
291 * @sk_peek_off: current peek_offset value
292 * @sk_send_head: front of stuff to transmit
293 * @sk_security: used by security modules
294 * @sk_mark: generic packet mark
295 * @sk_cgrp_data: cgroup data for this cgroup
296 * @sk_memcg: this socket's memory cgroup association
297 * @sk_write_pending: a write to stream socket waits to start
298 * @sk_state_change: callback to indicate change in the state of the sock
299 * @sk_data_ready: callback to indicate there is data to be processed
300 * @sk_write_space: callback to indicate there is bf sending space available
301 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
302 * @sk_backlog_rcv: callback to process the backlog
303 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
304 * @sk_reuseport_cb: reuseport group container
305 */
306struct sock {
307 /*
308 * Now struct inet_timewait_sock also uses sock_common, so please just
309 * don't add nothing before this first member (__sk_common) --acme
310 */
311 struct sock_common __sk_common;
312#define sk_node __sk_common.skc_node
313#define sk_nulls_node __sk_common.skc_nulls_node
314#define sk_refcnt __sk_common.skc_refcnt
315#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
316
317#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
318#define sk_dontcopy_end __sk_common.skc_dontcopy_end
319#define sk_hash __sk_common.skc_hash
320#define sk_portpair __sk_common.skc_portpair
321#define sk_num __sk_common.skc_num
322#define sk_dport __sk_common.skc_dport
323#define sk_addrpair __sk_common.skc_addrpair
324#define sk_daddr __sk_common.skc_daddr
325#define sk_rcv_saddr __sk_common.skc_rcv_saddr
326#define sk_family __sk_common.skc_family
327#define sk_state __sk_common.skc_state
328#define sk_reuse __sk_common.skc_reuse
329#define sk_reuseport __sk_common.skc_reuseport
330#define sk_ipv6only __sk_common.skc_ipv6only
331#define sk_net_refcnt __sk_common.skc_net_refcnt
332#define sk_bound_dev_if __sk_common.skc_bound_dev_if
333#define sk_bind_node __sk_common.skc_bind_node
334#define sk_prot __sk_common.skc_prot
335#define sk_net __sk_common.skc_net
336#define sk_v6_daddr __sk_common.skc_v6_daddr
337#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
338#define sk_cookie __sk_common.skc_cookie
339#define sk_incoming_cpu __sk_common.skc_incoming_cpu
340#define sk_flags __sk_common.skc_flags
341#define sk_rxhash __sk_common.skc_rxhash
342
343 socket_lock_t sk_lock;
344 struct sk_buff_head sk_receive_queue;
345 /*
346 * The backlog queue is special, it is always used with
347 * the per-socket spinlock held and requires low latency
348 * access. Therefore we special case it's implementation.
349 * Note : rmem_alloc is in this structure to fill a hole
350 * on 64bit arches, not because its logically part of
351 * backlog.
352 */
353 struct {
354 atomic_t rmem_alloc;
355 int len;
356 struct sk_buff *head;
357 struct sk_buff *tail;
358 } sk_backlog;
359#define sk_rmem_alloc sk_backlog.rmem_alloc
360 int sk_forward_alloc;
361
362 __u32 sk_txhash;
363#ifdef CONFIG_NET_RX_BUSY_POLL
364 unsigned int sk_napi_id;
365 unsigned int sk_ll_usec;
366#endif
367 atomic_t sk_drops;
368 int sk_rcvbuf;
369
370 struct sk_filter __rcu *sk_filter;
371 union {
372 struct socket_wq __rcu *sk_wq;
373 struct socket_wq *sk_wq_raw;
374 };
375#ifdef CONFIG_XFRM
376 struct xfrm_policy __rcu *sk_policy[2];
377#endif
378 struct dst_entry *sk_rx_dst;
379 struct dst_entry __rcu *sk_dst_cache;
380 /* Note: 32bit hole on 64bit arches */
381 atomic_t sk_wmem_alloc;
382 atomic_t sk_omem_alloc;
383 int sk_sndbuf;
384 struct sk_buff_head sk_write_queue;
385
386 /*
387 * Because of non atomicity rules, all
388 * changes are protected by socket lock.
389 */
390 kmemcheck_bitfield_begin(flags);
391 unsigned int sk_padding : 2,
392 sk_no_check_tx : 1,
393 sk_no_check_rx : 1,
394 sk_userlocks : 4,
395 sk_protocol : 8,
396 sk_type : 16;
397#define SK_PROTOCOL_MAX U8_MAX
398 kmemcheck_bitfield_end(flags);
399
400 int sk_wmem_queued;
401 gfp_t sk_allocation;
402 u32 sk_pacing_rate; /* bytes per second */
403 u32 sk_max_pacing_rate;
404 netdev_features_t sk_route_caps;
405 netdev_features_t sk_route_nocaps;
406 int sk_gso_type;
407 unsigned int sk_gso_max_size;
408 u16 sk_gso_max_segs;
409 int sk_rcvlowat;
410 unsigned long sk_lingertime;
411 struct sk_buff_head sk_error_queue;
412 struct proto *sk_prot_creator;
413 rwlock_t sk_callback_lock;
414 int sk_err,
415 sk_err_soft;
416 u32 sk_ack_backlog;
417 u32 sk_max_ack_backlog;
418 __u32 sk_priority;
419 __u32 sk_mark;
420 struct pid *sk_peer_pid;
421 const struct cred *sk_peer_cred;
422 long sk_rcvtimeo;
423 long sk_sndtimeo;
424 struct timer_list sk_timer;
425 ktime_t sk_stamp;
426 u16 sk_tsflags;
427 u8 sk_shutdown;
428 u32 sk_tskey;
429 struct socket *sk_socket;
430 void *sk_user_data;
431 struct page_frag sk_frag;
432 struct sk_buff *sk_send_head;
433 __s32 sk_peek_off;
434 int sk_write_pending;
435#ifdef CONFIG_SECURITY
436 void *sk_security;
437#endif
438 struct sock_cgroup_data sk_cgrp_data;
439 struct mem_cgroup *sk_memcg;
440 void (*sk_state_change)(struct sock *sk);
441 void (*sk_data_ready)(struct sock *sk);
442 void (*sk_write_space)(struct sock *sk);
443 void (*sk_error_report)(struct sock *sk);
444 int (*sk_backlog_rcv)(struct sock *sk,
445 struct sk_buff *skb);
446 void (*sk_destruct)(struct sock *sk);
447 struct sock_reuseport __rcu *sk_reuseport_cb;
448 struct rcu_head sk_rcu;
449};
450
451#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
452
453#define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
454#define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
455
456/*
457 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
458 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
459 * on a socket means that the socket will reuse everybody else's port
460 * without looking at the other's sk_reuse value.
461 */
462
463#define SK_NO_REUSE 0
464#define SK_CAN_REUSE 1
465#define SK_FORCE_REUSE 2
466
467int sk_set_peek_off(struct sock *sk, int val);
468
469static inline int sk_peek_offset(struct sock *sk, int flags)
470{
471 if (unlikely(flags & MSG_PEEK)) {
472 s32 off = READ_ONCE(sk->sk_peek_off);
473 if (off >= 0)
474 return off;
475 }
476
477 return 0;
478}
479
480static inline void sk_peek_offset_bwd(struct sock *sk, int val)
481{
482 s32 off = READ_ONCE(sk->sk_peek_off);
483
484 if (unlikely(off >= 0)) {
485 off = max_t(s32, off - val, 0);
486 WRITE_ONCE(sk->sk_peek_off, off);
487 }
488}
489
490static inline void sk_peek_offset_fwd(struct sock *sk, int val)
491{
492 sk_peek_offset_bwd(sk, -val);
493}
494
495/*
496 * Hashed lists helper routines
497 */
498static inline struct sock *sk_entry(const struct hlist_node *node)
499{
500 return hlist_entry(node, struct sock, sk_node);
501}
502
503static inline struct sock *__sk_head(const struct hlist_head *head)
504{
505 return hlist_entry(head->first, struct sock, sk_node);
506}
507
508static inline struct sock *sk_head(const struct hlist_head *head)
509{
510 return hlist_empty(head) ? NULL : __sk_head(head);
511}
512
513static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
514{
515 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
516}
517
518static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
519{
520 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
521}
522
523static inline struct sock *sk_next(const struct sock *sk)
524{
525 return sk->sk_node.next ?
526 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
527}
528
529static inline struct sock *sk_nulls_next(const struct sock *sk)
530{
531 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
532 hlist_nulls_entry(sk->sk_nulls_node.next,
533 struct sock, sk_nulls_node) :
534 NULL;
535}
536
537static inline bool sk_unhashed(const struct sock *sk)
538{
539 return hlist_unhashed(&sk->sk_node);
540}
541
542static inline bool sk_hashed(const struct sock *sk)
543{
544 return !sk_unhashed(sk);
545}
546
547static inline void sk_node_init(struct hlist_node *node)
548{
549 node->pprev = NULL;
550}
551
552static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
553{
554 node->pprev = NULL;
555}
556
557static inline void __sk_del_node(struct sock *sk)
558{
559 __hlist_del(&sk->sk_node);
560}
561
562/* NB: equivalent to hlist_del_init_rcu */
563static inline bool __sk_del_node_init(struct sock *sk)
564{
565 if (sk_hashed(sk)) {
566 __sk_del_node(sk);
567 sk_node_init(&sk->sk_node);
568 return true;
569 }
570 return false;
571}
572
573/* Grab socket reference count. This operation is valid only
574 when sk is ALREADY grabbed f.e. it is found in hash table
575 or a list and the lookup is made under lock preventing hash table
576 modifications.
577 */
578
579static __always_inline void sock_hold(struct sock *sk)
580{
581 atomic_inc(&sk->sk_refcnt);
582}
583
584/* Ungrab socket in the context, which assumes that socket refcnt
585 cannot hit zero, f.e. it is true in context of any socketcall.
586 */
587static __always_inline void __sock_put(struct sock *sk)
588{
589 atomic_dec(&sk->sk_refcnt);
590}
591
592static inline bool sk_del_node_init(struct sock *sk)
593{
594 bool rc = __sk_del_node_init(sk);
595
596 if (rc) {
597 /* paranoid for a while -acme */
598 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
599 __sock_put(sk);
600 }
601 return rc;
602}
603#define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
604
605static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
606{
607 if (sk_hashed(sk)) {
608 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
609 return true;
610 }
611 return false;
612}
613
614static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
615{
616 bool rc = __sk_nulls_del_node_init_rcu(sk);
617
618 if (rc) {
619 /* paranoid for a while -acme */
620 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
621 __sock_put(sk);
622 }
623 return rc;
624}
625
626static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
627{
628 hlist_add_head(&sk->sk_node, list);
629}
630
631static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
632{
633 sock_hold(sk);
634 __sk_add_node(sk, list);
635}
636
637static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
638{
639 sock_hold(sk);
640 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
641 sk->sk_family == AF_INET6)
642 hlist_add_tail_rcu(&sk->sk_node, list);
643 else
644 hlist_add_head_rcu(&sk->sk_node, list);
645}
646
647static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
648{
649 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
650 sk->sk_family == AF_INET6)
651 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
652 else
653 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
654}
655
656static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
657{
658 sock_hold(sk);
659 __sk_nulls_add_node_rcu(sk, list);
660}
661
662static inline void __sk_del_bind_node(struct sock *sk)
663{
664 __hlist_del(&sk->sk_bind_node);
665}
666
667static inline void sk_add_bind_node(struct sock *sk,
668 struct hlist_head *list)
669{
670 hlist_add_head(&sk->sk_bind_node, list);
671}
672
673#define sk_for_each(__sk, list) \
674 hlist_for_each_entry(__sk, list, sk_node)
675#define sk_for_each_rcu(__sk, list) \
676 hlist_for_each_entry_rcu(__sk, list, sk_node)
677#define sk_nulls_for_each(__sk, node, list) \
678 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
679#define sk_nulls_for_each_rcu(__sk, node, list) \
680 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
681#define sk_for_each_from(__sk) \
682 hlist_for_each_entry_from(__sk, sk_node)
683#define sk_nulls_for_each_from(__sk, node) \
684 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
685 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
686#define sk_for_each_safe(__sk, tmp, list) \
687 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
688#define sk_for_each_bound(__sk, list) \
689 hlist_for_each_entry(__sk, list, sk_bind_node)
690
691/**
692 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
693 * @tpos: the type * to use as a loop cursor.
694 * @pos: the &struct hlist_node to use as a loop cursor.
695 * @head: the head for your list.
696 * @offset: offset of hlist_node within the struct.
697 *
698 */
699#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
700 for (pos = rcu_dereference((head)->first); \
701 pos != NULL && \
702 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
703 pos = rcu_dereference(pos->next))
704
705static inline struct user_namespace *sk_user_ns(struct sock *sk)
706{
707 /* Careful only use this in a context where these parameters
708 * can not change and must all be valid, such as recvmsg from
709 * userspace.
710 */
711 return sk->sk_socket->file->f_cred->user_ns;
712}
713
714/* Sock flags */
715enum sock_flags {
716 SOCK_DEAD,
717 SOCK_DONE,
718 SOCK_URGINLINE,
719 SOCK_KEEPOPEN,
720 SOCK_LINGER,
721 SOCK_DESTROY,
722 SOCK_BROADCAST,
723 SOCK_TIMESTAMP,
724 SOCK_ZAPPED,
725 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
726 SOCK_DBG, /* %SO_DEBUG setting */
727 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
728 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
729 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
730 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
731 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
732 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
733 SOCK_FASYNC, /* fasync() active */
734 SOCK_RXQ_OVFL,
735 SOCK_ZEROCOPY, /* buffers from userspace */
736 SOCK_WIFI_STATUS, /* push wifi status to userspace */
737 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
738 * Will use last 4 bytes of packet sent from
739 * user-space instead.
740 */
741 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
742 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
743 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
744};
745
746#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
747
748static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
749{
750 nsk->sk_flags = osk->sk_flags;
751}
752
753static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
754{
755 __set_bit(flag, &sk->sk_flags);
756}
757
758static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
759{
760 __clear_bit(flag, &sk->sk_flags);
761}
762
763static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
764{
765 return test_bit(flag, &sk->sk_flags);
766}
767
768#ifdef CONFIG_NET
769extern struct static_key memalloc_socks;
770static inline int sk_memalloc_socks(void)
771{
772 return static_key_false(&memalloc_socks);
773}
774#else
775
776static inline int sk_memalloc_socks(void)
777{
778 return 0;
779}
780
781#endif
782
783static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
784{
785 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
786}
787
788static inline void sk_acceptq_removed(struct sock *sk)
789{
790 sk->sk_ack_backlog--;
791}
792
793static inline void sk_acceptq_added(struct sock *sk)
794{
795 sk->sk_ack_backlog++;
796}
797
798static inline bool sk_acceptq_is_full(const struct sock *sk)
799{
800 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
801}
802
803/*
804 * Compute minimal free write space needed to queue new packets.
805 */
806static inline int sk_stream_min_wspace(const struct sock *sk)
807{
808 return sk->sk_wmem_queued >> 1;
809}
810
811static inline int sk_stream_wspace(const struct sock *sk)
812{
813 return sk->sk_sndbuf - sk->sk_wmem_queued;
814}
815
816void sk_stream_write_space(struct sock *sk);
817
818/* OOB backlog add */
819static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
820{
821 /* dont let skb dst not refcounted, we are going to leave rcu lock */
822 skb_dst_force_safe(skb);
823
824 if (!sk->sk_backlog.tail)
825 sk->sk_backlog.head = skb;
826 else
827 sk->sk_backlog.tail->next = skb;
828
829 sk->sk_backlog.tail = skb;
830 skb->next = NULL;
831}
832
833/*
834 * Take into account size of receive queue and backlog queue
835 * Do not take into account this skb truesize,
836 * to allow even a single big packet to come.
837 */
838static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
839{
840 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
841
842 return qsize > limit;
843}
844
845/* The per-socket spinlock must be held here. */
846static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
847 unsigned int limit)
848{
849 if (sk_rcvqueues_full(sk, limit))
850 return -ENOBUFS;
851
852 /*
853 * If the skb was allocated from pfmemalloc reserves, only
854 * allow SOCK_MEMALLOC sockets to use it as this socket is
855 * helping free memory
856 */
857 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
858 return -ENOMEM;
859
860 __sk_add_backlog(sk, skb);
861 sk->sk_backlog.len += skb->truesize;
862 return 0;
863}
864
865int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
866
867static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
868{
869 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
870 return __sk_backlog_rcv(sk, skb);
871
872 return sk->sk_backlog_rcv(sk, skb);
873}
874
875static inline void sk_incoming_cpu_update(struct sock *sk)
876{
877 sk->sk_incoming_cpu = raw_smp_processor_id();
878}
879
880static inline void sock_rps_record_flow_hash(__u32 hash)
881{
882#ifdef CONFIG_RPS
883 struct rps_sock_flow_table *sock_flow_table;
884
885 rcu_read_lock();
886 sock_flow_table = rcu_dereference(rps_sock_flow_table);
887 rps_record_sock_flow(sock_flow_table, hash);
888 rcu_read_unlock();
889#endif
890}
891
892static inline void sock_rps_record_flow(const struct sock *sk)
893{
894#ifdef CONFIG_RPS
895 sock_rps_record_flow_hash(sk->sk_rxhash);
896#endif
897}
898
899static inline void sock_rps_save_rxhash(struct sock *sk,
900 const struct sk_buff *skb)
901{
902#ifdef CONFIG_RPS
903 if (unlikely(sk->sk_rxhash != skb->hash))
904 sk->sk_rxhash = skb->hash;
905#endif
906}
907
908static inline void sock_rps_reset_rxhash(struct sock *sk)
909{
910#ifdef CONFIG_RPS
911 sk->sk_rxhash = 0;
912#endif
913}
914
915#define sk_wait_event(__sk, __timeo, __condition) \
916 ({ int __rc; \
917 release_sock(__sk); \
918 __rc = __condition; \
919 if (!__rc) { \
920 *(__timeo) = schedule_timeout(*(__timeo)); \
921 } \
922 sched_annotate_sleep(); \
923 lock_sock(__sk); \
924 __rc = __condition; \
925 __rc; \
926 })
927
928int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
929int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
930void sk_stream_wait_close(struct sock *sk, long timeo_p);
931int sk_stream_error(struct sock *sk, int flags, int err);
932void sk_stream_kill_queues(struct sock *sk);
933void sk_set_memalloc(struct sock *sk);
934void sk_clear_memalloc(struct sock *sk);
935
936void __sk_flush_backlog(struct sock *sk);
937
938static inline bool sk_flush_backlog(struct sock *sk)
939{
940 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
941 __sk_flush_backlog(sk);
942 return true;
943 }
944 return false;
945}
946
947int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
948
949struct request_sock_ops;
950struct timewait_sock_ops;
951struct inet_hashinfo;
952struct raw_hashinfo;
953struct module;
954
955/*
956 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
957 * un-modified. Special care is taken when initializing object to zero.
958 */
959static inline void sk_prot_clear_nulls(struct sock *sk, int size)
960{
961 if (offsetof(struct sock, sk_node.next) != 0)
962 memset(sk, 0, offsetof(struct sock, sk_node.next));
963 memset(&sk->sk_node.pprev, 0,
964 size - offsetof(struct sock, sk_node.pprev));
965}
966
967/* Networking protocol blocks we attach to sockets.
968 * socket layer -> transport layer interface
969 */
970struct proto {
971 void (*close)(struct sock *sk,
972 long timeout);
973 int (*connect)(struct sock *sk,
974 struct sockaddr *uaddr,
975 int addr_len);
976 int (*disconnect)(struct sock *sk, int flags);
977
978 struct sock * (*accept)(struct sock *sk, int flags, int *err);
979
980 int (*ioctl)(struct sock *sk, int cmd,
981 unsigned long arg);
982 int (*init)(struct sock *sk);
983 void (*destroy)(struct sock *sk);
984 void (*shutdown)(struct sock *sk, int how);
985 int (*setsockopt)(struct sock *sk, int level,
986 int optname, char __user *optval,
987 unsigned int optlen);
988 int (*getsockopt)(struct sock *sk, int level,
989 int optname, char __user *optval,
990 int __user *option);
991#ifdef CONFIG_COMPAT
992 int (*compat_setsockopt)(struct sock *sk,
993 int level,
994 int optname, char __user *optval,
995 unsigned int optlen);
996 int (*compat_getsockopt)(struct sock *sk,
997 int level,
998 int optname, char __user *optval,
999 int __user *option);
1000 int (*compat_ioctl)(struct sock *sk,
1001 unsigned int cmd, unsigned long arg);
1002#endif
1003 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1004 size_t len);
1005 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1006 size_t len, int noblock, int flags,
1007 int *addr_len);
1008 int (*sendpage)(struct sock *sk, struct page *page,
1009 int offset, size_t size, int flags);
1010 int (*bind)(struct sock *sk,
1011 struct sockaddr *uaddr, int addr_len);
1012
1013 int (*backlog_rcv) (struct sock *sk,
1014 struct sk_buff *skb);
1015
1016 void (*release_cb)(struct sock *sk);
1017
1018 /* Keeping track of sk's, looking them up, and port selection methods. */
1019 int (*hash)(struct sock *sk);
1020 void (*unhash)(struct sock *sk);
1021 void (*rehash)(struct sock *sk);
1022 int (*get_port)(struct sock *sk, unsigned short snum);
1023 void (*clear_sk)(struct sock *sk, int size);
1024
1025 /* Keeping track of sockets in use */
1026#ifdef CONFIG_PROC_FS
1027 unsigned int inuse_idx;
1028#endif
1029
1030 bool (*stream_memory_free)(const struct sock *sk);
1031 /* Memory pressure */
1032 void (*enter_memory_pressure)(struct sock *sk);
1033 atomic_long_t *memory_allocated; /* Current allocated memory. */
1034 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1035 /*
1036 * Pressure flag: try to collapse.
1037 * Technical note: it is used by multiple contexts non atomically.
1038 * All the __sk_mem_schedule() is of this nature: accounting
1039 * is strict, actions are advisory and have some latency.
1040 */
1041 int *memory_pressure;
1042 long *sysctl_mem;
1043 int *sysctl_wmem;
1044 int *sysctl_rmem;
1045 int max_header;
1046 bool no_autobind;
1047
1048 struct kmem_cache *slab;
1049 unsigned int obj_size;
1050 int slab_flags;
1051
1052 struct percpu_counter *orphan_count;
1053
1054 struct request_sock_ops *rsk_prot;
1055 struct timewait_sock_ops *twsk_prot;
1056
1057 union {
1058 struct inet_hashinfo *hashinfo;
1059 struct udp_table *udp_table;
1060 struct raw_hashinfo *raw_hash;
1061 } h;
1062
1063 struct module *owner;
1064
1065 char name[32];
1066
1067 struct list_head node;
1068#ifdef SOCK_REFCNT_DEBUG
1069 atomic_t socks;
1070#endif
1071 int (*diag_destroy)(struct sock *sk, int err);
1072};
1073
1074int proto_register(struct proto *prot, int alloc_slab);
1075void proto_unregister(struct proto *prot);
1076
1077#ifdef SOCK_REFCNT_DEBUG
1078static inline void sk_refcnt_debug_inc(struct sock *sk)
1079{
1080 atomic_inc(&sk->sk_prot->socks);
1081}
1082
1083static inline void sk_refcnt_debug_dec(struct sock *sk)
1084{
1085 atomic_dec(&sk->sk_prot->socks);
1086 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1087 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1088}
1089
1090static inline void sk_refcnt_debug_release(const struct sock *sk)
1091{
1092 if (atomic_read(&sk->sk_refcnt) != 1)
1093 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1094 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1095}
1096#else /* SOCK_REFCNT_DEBUG */
1097#define sk_refcnt_debug_inc(sk) do { } while (0)
1098#define sk_refcnt_debug_dec(sk) do { } while (0)
1099#define sk_refcnt_debug_release(sk) do { } while (0)
1100#endif /* SOCK_REFCNT_DEBUG */
1101
1102static inline bool sk_stream_memory_free(const struct sock *sk)
1103{
1104 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1105 return false;
1106
1107 return sk->sk_prot->stream_memory_free ?
1108 sk->sk_prot->stream_memory_free(sk) : true;
1109}
1110
1111static inline bool sk_stream_is_writeable(const struct sock *sk)
1112{
1113 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1114 sk_stream_memory_free(sk);
1115}
1116
1117
1118static inline bool sk_has_memory_pressure(const struct sock *sk)
1119{
1120 return sk->sk_prot->memory_pressure != NULL;
1121}
1122
1123static inline bool sk_under_memory_pressure(const struct sock *sk)
1124{
1125 if (!sk->sk_prot->memory_pressure)
1126 return false;
1127
1128 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1129 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1130 return true;
1131
1132 return !!*sk->sk_prot->memory_pressure;
1133}
1134
1135static inline void sk_leave_memory_pressure(struct sock *sk)
1136{
1137 int *memory_pressure = sk->sk_prot->memory_pressure;
1138
1139 if (!memory_pressure)
1140 return;
1141
1142 if (*memory_pressure)
1143 *memory_pressure = 0;
1144}
1145
1146static inline void sk_enter_memory_pressure(struct sock *sk)
1147{
1148 if (!sk->sk_prot->enter_memory_pressure)
1149 return;
1150
1151 sk->sk_prot->enter_memory_pressure(sk);
1152}
1153
1154static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1155{
1156 return sk->sk_prot->sysctl_mem[index];
1157}
1158
1159static inline long
1160sk_memory_allocated(const struct sock *sk)
1161{
1162 return atomic_long_read(sk->sk_prot->memory_allocated);
1163}
1164
1165static inline long
1166sk_memory_allocated_add(struct sock *sk, int amt)
1167{
1168 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1169}
1170
1171static inline void
1172sk_memory_allocated_sub(struct sock *sk, int amt)
1173{
1174 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1175}
1176
1177static inline void sk_sockets_allocated_dec(struct sock *sk)
1178{
1179 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1180}
1181
1182static inline void sk_sockets_allocated_inc(struct sock *sk)
1183{
1184 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1185}
1186
1187static inline int
1188sk_sockets_allocated_read_positive(struct sock *sk)
1189{
1190 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1191}
1192
1193static inline int
1194proto_sockets_allocated_sum_positive(struct proto *prot)
1195{
1196 return percpu_counter_sum_positive(prot->sockets_allocated);
1197}
1198
1199static inline long
1200proto_memory_allocated(struct proto *prot)
1201{
1202 return atomic_long_read(prot->memory_allocated);
1203}
1204
1205static inline bool
1206proto_memory_pressure(struct proto *prot)
1207{
1208 if (!prot->memory_pressure)
1209 return false;
1210 return !!*prot->memory_pressure;
1211}
1212
1213
1214#ifdef CONFIG_PROC_FS
1215/* Called with local bh disabled */
1216void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1217int sock_prot_inuse_get(struct net *net, struct proto *proto);
1218#else
1219static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1220 int inc)
1221{
1222}
1223#endif
1224
1225
1226/* With per-bucket locks this operation is not-atomic, so that
1227 * this version is not worse.
1228 */
1229static inline int __sk_prot_rehash(struct sock *sk)
1230{
1231 sk->sk_prot->unhash(sk);
1232 return sk->sk_prot->hash(sk);
1233}
1234
1235void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1236
1237/* About 10 seconds */
1238#define SOCK_DESTROY_TIME (10*HZ)
1239
1240/* Sockets 0-1023 can't be bound to unless you are superuser */
1241#define PROT_SOCK 1024
1242
1243#define SHUTDOWN_MASK 3
1244#define RCV_SHUTDOWN 1
1245#define SEND_SHUTDOWN 2
1246
1247#define SOCK_SNDBUF_LOCK 1
1248#define SOCK_RCVBUF_LOCK 2
1249#define SOCK_BINDADDR_LOCK 4
1250#define SOCK_BINDPORT_LOCK 8
1251
1252struct socket_alloc {
1253 struct socket socket;
1254 struct inode vfs_inode;
1255};
1256
1257static inline struct socket *SOCKET_I(struct inode *inode)
1258{
1259 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1260}
1261
1262static inline struct inode *SOCK_INODE(struct socket *socket)
1263{
1264 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1265}
1266
1267/*
1268 * Functions for memory accounting
1269 */
1270int __sk_mem_schedule(struct sock *sk, int size, int kind);
1271void __sk_mem_reclaim(struct sock *sk, int amount);
1272
1273#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1274#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1275#define SK_MEM_SEND 0
1276#define SK_MEM_RECV 1
1277
1278static inline int sk_mem_pages(int amt)
1279{
1280 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1281}
1282
1283static inline bool sk_has_account(struct sock *sk)
1284{
1285 /* return true if protocol supports memory accounting */
1286 return !!sk->sk_prot->memory_allocated;
1287}
1288
1289static inline bool sk_wmem_schedule(struct sock *sk, int size)
1290{
1291 if (!sk_has_account(sk))
1292 return true;
1293 return size <= sk->sk_forward_alloc ||
1294 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1295}
1296
1297static inline bool
1298sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1299{
1300 if (!sk_has_account(sk))
1301 return true;
1302 return size<= sk->sk_forward_alloc ||
1303 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1304 skb_pfmemalloc(skb);
1305}
1306
1307static inline void sk_mem_reclaim(struct sock *sk)
1308{
1309 if (!sk_has_account(sk))
1310 return;
1311 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1312 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1313}
1314
1315static inline void sk_mem_reclaim_partial(struct sock *sk)
1316{
1317 if (!sk_has_account(sk))
1318 return;
1319 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1320 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1321}
1322
1323static inline void sk_mem_charge(struct sock *sk, int size)
1324{
1325 if (!sk_has_account(sk))
1326 return;
1327 sk->sk_forward_alloc -= size;
1328}
1329
1330static inline void sk_mem_uncharge(struct sock *sk, int size)
1331{
1332 if (!sk_has_account(sk))
1333 return;
1334 sk->sk_forward_alloc += size;
1335
1336 /* Avoid a possible overflow.
1337 * TCP send queues can make this happen, if sk_mem_reclaim()
1338 * is not called and more than 2 GBytes are released at once.
1339 *
1340 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1341 * no need to hold that much forward allocation anyway.
1342 */
1343 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1344 __sk_mem_reclaim(sk, 1 << 20);
1345}
1346
1347static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1348{
1349 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1350 sk->sk_wmem_queued -= skb->truesize;
1351 sk_mem_uncharge(sk, skb->truesize);
1352 __kfree_skb(skb);
1353}
1354
1355static inline void sock_release_ownership(struct sock *sk)
1356{
1357 if (sk->sk_lock.owned) {
1358 sk->sk_lock.owned = 0;
1359
1360 /* The sk_lock has mutex_unlock() semantics: */
1361 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1362 }
1363}
1364
1365/*
1366 * Macro so as to not evaluate some arguments when
1367 * lockdep is not enabled.
1368 *
1369 * Mark both the sk_lock and the sk_lock.slock as a
1370 * per-address-family lock class.
1371 */
1372#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1373do { \
1374 sk->sk_lock.owned = 0; \
1375 init_waitqueue_head(&sk->sk_lock.wq); \
1376 spin_lock_init(&(sk)->sk_lock.slock); \
1377 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1378 sizeof((sk)->sk_lock)); \
1379 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1380 (skey), (sname)); \
1381 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1382} while (0)
1383
1384#ifdef CONFIG_LOCKDEP
1385static inline bool lockdep_sock_is_held(const struct sock *csk)
1386{
1387 struct sock *sk = (struct sock *)csk;
1388
1389 return lockdep_is_held(&sk->sk_lock) ||
1390 lockdep_is_held(&sk->sk_lock.slock);
1391}
1392#endif
1393
1394void lock_sock_nested(struct sock *sk, int subclass);
1395
1396static inline void lock_sock(struct sock *sk)
1397{
1398 lock_sock_nested(sk, 0);
1399}
1400
1401void release_sock(struct sock *sk);
1402
1403/* BH context may only use the following locking interface. */
1404#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1405#define bh_lock_sock_nested(__sk) \
1406 spin_lock_nested(&((__sk)->sk_lock.slock), \
1407 SINGLE_DEPTH_NESTING)
1408#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1409
1410bool lock_sock_fast(struct sock *sk);
1411/**
1412 * unlock_sock_fast - complement of lock_sock_fast
1413 * @sk: socket
1414 * @slow: slow mode
1415 *
1416 * fast unlock socket for user context.
1417 * If slow mode is on, we call regular release_sock()
1418 */
1419static inline void unlock_sock_fast(struct sock *sk, bool slow)
1420{
1421 if (slow)
1422 release_sock(sk);
1423 else
1424 spin_unlock_bh(&sk->sk_lock.slock);
1425}
1426
1427/* Used by processes to "lock" a socket state, so that
1428 * interrupts and bottom half handlers won't change it
1429 * from under us. It essentially blocks any incoming
1430 * packets, so that we won't get any new data or any
1431 * packets that change the state of the socket.
1432 *
1433 * While locked, BH processing will add new packets to
1434 * the backlog queue. This queue is processed by the
1435 * owner of the socket lock right before it is released.
1436 *
1437 * Since ~2.3.5 it is also exclusive sleep lock serializing
1438 * accesses from user process context.
1439 */
1440
1441static inline void sock_owned_by_me(const struct sock *sk)
1442{
1443#ifdef CONFIG_LOCKDEP
1444 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1445#endif
1446}
1447
1448static inline bool sock_owned_by_user(const struct sock *sk)
1449{
1450 sock_owned_by_me(sk);
1451 return sk->sk_lock.owned;
1452}
1453
1454/* no reclassification while locks are held */
1455static inline bool sock_allow_reclassification(const struct sock *csk)
1456{
1457 struct sock *sk = (struct sock *)csk;
1458
1459 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1460}
1461
1462struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1463 struct proto *prot, int kern);
1464void sk_free(struct sock *sk);
1465void sk_destruct(struct sock *sk);
1466struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1467
1468struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1469 gfp_t priority);
1470void __sock_wfree(struct sk_buff *skb);
1471void sock_wfree(struct sk_buff *skb);
1472void skb_orphan_partial(struct sk_buff *skb);
1473void sock_rfree(struct sk_buff *skb);
1474void sock_efree(struct sk_buff *skb);
1475#ifdef CONFIG_INET
1476void sock_edemux(struct sk_buff *skb);
1477#else
1478#define sock_edemux(skb) sock_efree(skb)
1479#endif
1480
1481int sock_setsockopt(struct socket *sock, int level, int op,
1482 char __user *optval, unsigned int optlen);
1483
1484int sock_getsockopt(struct socket *sock, int level, int op,
1485 char __user *optval, int __user *optlen);
1486struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1487 int noblock, int *errcode);
1488struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1489 unsigned long data_len, int noblock,
1490 int *errcode, int max_page_order);
1491void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1492void sock_kfree_s(struct sock *sk, void *mem, int size);
1493void sock_kzfree_s(struct sock *sk, void *mem, int size);
1494void sk_send_sigurg(struct sock *sk);
1495
1496struct sockcm_cookie {
1497 u32 mark;
1498 u16 tsflags;
1499};
1500
1501int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1502 struct sockcm_cookie *sockc);
1503int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1504 struct sockcm_cookie *sockc);
1505
1506/*
1507 * Functions to fill in entries in struct proto_ops when a protocol
1508 * does not implement a particular function.
1509 */
1510int sock_no_bind(struct socket *, struct sockaddr *, int);
1511int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1512int sock_no_socketpair(struct socket *, struct socket *);
1513int sock_no_accept(struct socket *, struct socket *, int);
1514int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1515unsigned int sock_no_poll(struct file *, struct socket *,
1516 struct poll_table_struct *);
1517int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1518int sock_no_listen(struct socket *, int);
1519int sock_no_shutdown(struct socket *, int);
1520int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1521int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1522int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1523int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1524int sock_no_mmap(struct file *file, struct socket *sock,
1525 struct vm_area_struct *vma);
1526ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1527 size_t size, int flags);
1528
1529/*
1530 * Functions to fill in entries in struct proto_ops when a protocol
1531 * uses the inet style.
1532 */
1533int sock_common_getsockopt(struct socket *sock, int level, int optname,
1534 char __user *optval, int __user *optlen);
1535int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1536 int flags);
1537int sock_common_setsockopt(struct socket *sock, int level, int optname,
1538 char __user *optval, unsigned int optlen);
1539int compat_sock_common_getsockopt(struct socket *sock, int level,
1540 int optname, char __user *optval, int __user *optlen);
1541int compat_sock_common_setsockopt(struct socket *sock, int level,
1542 int optname, char __user *optval, unsigned int optlen);
1543
1544void sk_common_release(struct sock *sk);
1545
1546/*
1547 * Default socket callbacks and setup code
1548 */
1549
1550/* Initialise core socket variables */
1551void sock_init_data(struct socket *sock, struct sock *sk);
1552
1553/*
1554 * Socket reference counting postulates.
1555 *
1556 * * Each user of socket SHOULD hold a reference count.
1557 * * Each access point to socket (an hash table bucket, reference from a list,
1558 * running timer, skb in flight MUST hold a reference count.
1559 * * When reference count hits 0, it means it will never increase back.
1560 * * When reference count hits 0, it means that no references from
1561 * outside exist to this socket and current process on current CPU
1562 * is last user and may/should destroy this socket.
1563 * * sk_free is called from any context: process, BH, IRQ. When
1564 * it is called, socket has no references from outside -> sk_free
1565 * may release descendant resources allocated by the socket, but
1566 * to the time when it is called, socket is NOT referenced by any
1567 * hash tables, lists etc.
1568 * * Packets, delivered from outside (from network or from another process)
1569 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1570 * when they sit in queue. Otherwise, packets will leak to hole, when
1571 * socket is looked up by one cpu and unhasing is made by another CPU.
1572 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1573 * (leak to backlog). Packet socket does all the processing inside
1574 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1575 * use separate SMP lock, so that they are prone too.
1576 */
1577
1578/* Ungrab socket and destroy it, if it was the last reference. */
1579static inline void sock_put(struct sock *sk)
1580{
1581 if (atomic_dec_and_test(&sk->sk_refcnt))
1582 sk_free(sk);
1583}
1584/* Generic version of sock_put(), dealing with all sockets
1585 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1586 */
1587void sock_gen_put(struct sock *sk);
1588
1589int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1590 unsigned int trim_cap);
1591static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1592 const int nested)
1593{
1594 return __sk_receive_skb(sk, skb, nested, 1);
1595}
1596
1597static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1598{
1599 sk->sk_tx_queue_mapping = tx_queue;
1600}
1601
1602static inline void sk_tx_queue_clear(struct sock *sk)
1603{
1604 sk->sk_tx_queue_mapping = -1;
1605}
1606
1607static inline int sk_tx_queue_get(const struct sock *sk)
1608{
1609 return sk ? sk->sk_tx_queue_mapping : -1;
1610}
1611
1612static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1613{
1614 sk_tx_queue_clear(sk);
1615 sk->sk_socket = sock;
1616}
1617
1618static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1619{
1620 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1621 return &rcu_dereference_raw(sk->sk_wq)->wait;
1622}
1623/* Detach socket from process context.
1624 * Announce socket dead, detach it from wait queue and inode.
1625 * Note that parent inode held reference count on this struct sock,
1626 * we do not release it in this function, because protocol
1627 * probably wants some additional cleanups or even continuing
1628 * to work with this socket (TCP).
1629 */
1630static inline void sock_orphan(struct sock *sk)
1631{
1632 write_lock_bh(&sk->sk_callback_lock);
1633 sock_set_flag(sk, SOCK_DEAD);
1634 sk_set_socket(sk, NULL);
1635 sk->sk_wq = NULL;
1636 write_unlock_bh(&sk->sk_callback_lock);
1637}
1638
1639static inline void sock_graft(struct sock *sk, struct socket *parent)
1640{
1641 write_lock_bh(&sk->sk_callback_lock);
1642 sk->sk_wq = parent->wq;
1643 parent->sk = sk;
1644 sk_set_socket(sk, parent);
1645 security_sock_graft(sk, parent);
1646 write_unlock_bh(&sk->sk_callback_lock);
1647}
1648
1649kuid_t sock_i_uid(struct sock *sk);
1650unsigned long sock_i_ino(struct sock *sk);
1651
1652static inline u32 net_tx_rndhash(void)
1653{
1654 u32 v = prandom_u32();
1655
1656 return v ?: 1;
1657}
1658
1659static inline void sk_set_txhash(struct sock *sk)
1660{
1661 sk->sk_txhash = net_tx_rndhash();
1662}
1663
1664static inline void sk_rethink_txhash(struct sock *sk)
1665{
1666 if (sk->sk_txhash)
1667 sk_set_txhash(sk);
1668}
1669
1670static inline struct dst_entry *
1671__sk_dst_get(struct sock *sk)
1672{
1673 return rcu_dereference_check(sk->sk_dst_cache,
1674 lockdep_sock_is_held(sk));
1675}
1676
1677static inline struct dst_entry *
1678sk_dst_get(struct sock *sk)
1679{
1680 struct dst_entry *dst;
1681
1682 rcu_read_lock();
1683 dst = rcu_dereference(sk->sk_dst_cache);
1684 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1685 dst = NULL;
1686 rcu_read_unlock();
1687 return dst;
1688}
1689
1690static inline void dst_negative_advice(struct sock *sk)
1691{
1692 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1693
1694 sk_rethink_txhash(sk);
1695
1696 if (dst && dst->ops->negative_advice) {
1697 ndst = dst->ops->negative_advice(dst);
1698
1699 if (ndst != dst) {
1700 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1701 sk_tx_queue_clear(sk);
1702 }
1703 }
1704}
1705
1706static inline void
1707__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1708{
1709 struct dst_entry *old_dst;
1710
1711 sk_tx_queue_clear(sk);
1712 /*
1713 * This can be called while sk is owned by the caller only,
1714 * with no state that can be checked in a rcu_dereference_check() cond
1715 */
1716 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1717 rcu_assign_pointer(sk->sk_dst_cache, dst);
1718 dst_release(old_dst);
1719}
1720
1721static inline void
1722sk_dst_set(struct sock *sk, struct dst_entry *dst)
1723{
1724 struct dst_entry *old_dst;
1725
1726 sk_tx_queue_clear(sk);
1727 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1728 dst_release(old_dst);
1729}
1730
1731static inline void
1732__sk_dst_reset(struct sock *sk)
1733{
1734 __sk_dst_set(sk, NULL);
1735}
1736
1737static inline void
1738sk_dst_reset(struct sock *sk)
1739{
1740 sk_dst_set(sk, NULL);
1741}
1742
1743struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1744
1745struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1746
1747bool sk_mc_loop(struct sock *sk);
1748
1749static inline bool sk_can_gso(const struct sock *sk)
1750{
1751 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1752}
1753
1754void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1755
1756static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1757{
1758 sk->sk_route_nocaps |= flags;
1759 sk->sk_route_caps &= ~flags;
1760}
1761
1762static inline bool sk_check_csum_caps(struct sock *sk)
1763{
1764 return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1765 (sk->sk_family == PF_INET &&
1766 (sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1767 (sk->sk_family == PF_INET6 &&
1768 (sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1769}
1770
1771static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1772 struct iov_iter *from, char *to,
1773 int copy, int offset)
1774{
1775 if (skb->ip_summed == CHECKSUM_NONE) {
1776 __wsum csum = 0;
1777 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1778 return -EFAULT;
1779 skb->csum = csum_block_add(skb->csum, csum, offset);
1780 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1781 if (copy_from_iter_nocache(to, copy, from) != copy)
1782 return -EFAULT;
1783 } else if (copy_from_iter(to, copy, from) != copy)
1784 return -EFAULT;
1785
1786 return 0;
1787}
1788
1789static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1790 struct iov_iter *from, int copy)
1791{
1792 int err, offset = skb->len;
1793
1794 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1795 copy, offset);
1796 if (err)
1797 __skb_trim(skb, offset);
1798
1799 return err;
1800}
1801
1802static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1803 struct sk_buff *skb,
1804 struct page *page,
1805 int off, int copy)
1806{
1807 int err;
1808
1809 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1810 copy, skb->len);
1811 if (err)
1812 return err;
1813
1814 skb->len += copy;
1815 skb->data_len += copy;
1816 skb->truesize += copy;
1817 sk->sk_wmem_queued += copy;
1818 sk_mem_charge(sk, copy);
1819 return 0;
1820}
1821
1822/**
1823 * sk_wmem_alloc_get - returns write allocations
1824 * @sk: socket
1825 *
1826 * Returns sk_wmem_alloc minus initial offset of one
1827 */
1828static inline int sk_wmem_alloc_get(const struct sock *sk)
1829{
1830 return atomic_read(&sk->sk_wmem_alloc) - 1;
1831}
1832
1833/**
1834 * sk_rmem_alloc_get - returns read allocations
1835 * @sk: socket
1836 *
1837 * Returns sk_rmem_alloc
1838 */
1839static inline int sk_rmem_alloc_get(const struct sock *sk)
1840{
1841 return atomic_read(&sk->sk_rmem_alloc);
1842}
1843
1844/**
1845 * sk_has_allocations - check if allocations are outstanding
1846 * @sk: socket
1847 *
1848 * Returns true if socket has write or read allocations
1849 */
1850static inline bool sk_has_allocations(const struct sock *sk)
1851{
1852 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1853}
1854
1855/**
1856 * skwq_has_sleeper - check if there are any waiting processes
1857 * @wq: struct socket_wq
1858 *
1859 * Returns true if socket_wq has waiting processes
1860 *
1861 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1862 * barrier call. They were added due to the race found within the tcp code.
1863 *
1864 * Consider following tcp code paths:
1865 *
1866 * CPU1 CPU2
1867 *
1868 * sys_select receive packet
1869 * ... ...
1870 * __add_wait_queue update tp->rcv_nxt
1871 * ... ...
1872 * tp->rcv_nxt check sock_def_readable
1873 * ... {
1874 * schedule rcu_read_lock();
1875 * wq = rcu_dereference(sk->sk_wq);
1876 * if (wq && waitqueue_active(&wq->wait))
1877 * wake_up_interruptible(&wq->wait)
1878 * ...
1879 * }
1880 *
1881 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1882 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1883 * could then endup calling schedule and sleep forever if there are no more
1884 * data on the socket.
1885 *
1886 */
1887static inline bool skwq_has_sleeper(struct socket_wq *wq)
1888{
1889 return wq && wq_has_sleeper(&wq->wait);
1890}
1891
1892/**
1893 * sock_poll_wait - place memory barrier behind the poll_wait call.
1894 * @filp: file
1895 * @wait_address: socket wait queue
1896 * @p: poll_table
1897 *
1898 * See the comments in the wq_has_sleeper function.
1899 */
1900static inline void sock_poll_wait(struct file *filp,
1901 wait_queue_head_t *wait_address, poll_table *p)
1902{
1903 if (!poll_does_not_wait(p) && wait_address) {
1904 poll_wait(filp, wait_address, p);
1905 /* We need to be sure we are in sync with the
1906 * socket flags modification.
1907 *
1908 * This memory barrier is paired in the wq_has_sleeper.
1909 */
1910 smp_mb();
1911 }
1912}
1913
1914static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1915{
1916 if (sk->sk_txhash) {
1917 skb->l4_hash = 1;
1918 skb->hash = sk->sk_txhash;
1919 }
1920}
1921
1922void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1923
1924/*
1925 * Queue a received datagram if it will fit. Stream and sequenced
1926 * protocols can't normally use this as they need to fit buffers in
1927 * and play with them.
1928 *
1929 * Inlined as it's very short and called for pretty much every
1930 * packet ever received.
1931 */
1932static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1933{
1934 skb_orphan(skb);
1935 skb->sk = sk;
1936 skb->destructor = sock_rfree;
1937 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1938 sk_mem_charge(sk, skb->truesize);
1939}
1940
1941void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1942 unsigned long expires);
1943
1944void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1945
1946int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1947int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1948
1949int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1950struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1951
1952/*
1953 * Recover an error report and clear atomically
1954 */
1955
1956static inline int sock_error(struct sock *sk)
1957{
1958 int err;
1959 if (likely(!sk->sk_err))
1960 return 0;
1961 err = xchg(&sk->sk_err, 0);
1962 return -err;
1963}
1964
1965static inline unsigned long sock_wspace(struct sock *sk)
1966{
1967 int amt = 0;
1968
1969 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1970 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1971 if (amt < 0)
1972 amt = 0;
1973 }
1974 return amt;
1975}
1976
1977/* Note:
1978 * We use sk->sk_wq_raw, from contexts knowing this
1979 * pointer is not NULL and cannot disappear/change.
1980 */
1981static inline void sk_set_bit(int nr, struct sock *sk)
1982{
1983 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
1984 !sock_flag(sk, SOCK_FASYNC))
1985 return;
1986
1987 set_bit(nr, &sk->sk_wq_raw->flags);
1988}
1989
1990static inline void sk_clear_bit(int nr, struct sock *sk)
1991{
1992 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
1993 !sock_flag(sk, SOCK_FASYNC))
1994 return;
1995
1996 clear_bit(nr, &sk->sk_wq_raw->flags);
1997}
1998
1999static inline void sk_wake_async(const struct sock *sk, int how, int band)
2000{
2001 if (sock_flag(sk, SOCK_FASYNC)) {
2002 rcu_read_lock();
2003 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2004 rcu_read_unlock();
2005 }
2006}
2007
2008/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2009 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2010 * Note: for send buffers, TCP works better if we can build two skbs at
2011 * minimum.
2012 */
2013#define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2014
2015#define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2016#define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2017
2018static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2019{
2020 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2021 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2022 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2023 }
2024}
2025
2026struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2027 bool force_schedule);
2028
2029/**
2030 * sk_page_frag - return an appropriate page_frag
2031 * @sk: socket
2032 *
2033 * If socket allocation mode allows current thread to sleep, it means its
2034 * safe to use the per task page_frag instead of the per socket one.
2035 */
2036static inline struct page_frag *sk_page_frag(struct sock *sk)
2037{
2038 if (gfpflags_allow_blocking(sk->sk_allocation))
2039 return ¤t->task_frag;
2040
2041 return &sk->sk_frag;
2042}
2043
2044bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2045
2046/*
2047 * Default write policy as shown to user space via poll/select/SIGIO
2048 */
2049static inline bool sock_writeable(const struct sock *sk)
2050{
2051 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2052}
2053
2054static inline gfp_t gfp_any(void)
2055{
2056 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2057}
2058
2059static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2060{
2061 return noblock ? 0 : sk->sk_rcvtimeo;
2062}
2063
2064static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2065{
2066 return noblock ? 0 : sk->sk_sndtimeo;
2067}
2068
2069static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2070{
2071 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2072}
2073
2074/* Alas, with timeout socket operations are not restartable.
2075 * Compare this to poll().
2076 */
2077static inline int sock_intr_errno(long timeo)
2078{
2079 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2080}
2081
2082struct sock_skb_cb {
2083 u32 dropcount;
2084};
2085
2086/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2087 * using skb->cb[] would keep using it directly and utilize its
2088 * alignement guarantee.
2089 */
2090#define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2091 sizeof(struct sock_skb_cb)))
2092
2093#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2094 SOCK_SKB_CB_OFFSET))
2095
2096#define sock_skb_cb_check_size(size) \
2097 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2098
2099static inline void
2100sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2101{
2102 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2103}
2104
2105static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2106{
2107 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2108
2109 atomic_add(segs, &sk->sk_drops);
2110}
2111
2112void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2113 struct sk_buff *skb);
2114void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2115 struct sk_buff *skb);
2116
2117static inline void
2118sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2119{
2120 ktime_t kt = skb->tstamp;
2121 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2122
2123 /*
2124 * generate control messages if
2125 * - receive time stamping in software requested
2126 * - software time stamp available and wanted
2127 * - hardware time stamps available and wanted
2128 */
2129 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2130 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2131 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2132 (hwtstamps->hwtstamp.tv64 &&
2133 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2134 __sock_recv_timestamp(msg, sk, skb);
2135 else
2136 sk->sk_stamp = kt;
2137
2138 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2139 __sock_recv_wifi_status(msg, sk, skb);
2140}
2141
2142void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2143 struct sk_buff *skb);
2144
2145static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2146 struct sk_buff *skb)
2147{
2148#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2149 (1UL << SOCK_RCVTSTAMP))
2150#define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2151 SOF_TIMESTAMPING_RAW_HARDWARE)
2152
2153 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2154 __sock_recv_ts_and_drops(msg, sk, skb);
2155 else
2156 sk->sk_stamp = skb->tstamp;
2157}
2158
2159void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2160
2161/**
2162 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2163 * @sk: socket sending this packet
2164 * @tsflags: timestamping flags to use
2165 * @tx_flags: completed with instructions for time stamping
2166 *
2167 * Note : callers should take care of initial *tx_flags value (usually 0)
2168 */
2169static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2170 __u8 *tx_flags)
2171{
2172 if (unlikely(tsflags))
2173 __sock_tx_timestamp(tsflags, tx_flags);
2174 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2175 *tx_flags |= SKBTX_WIFI_STATUS;
2176}
2177
2178/**
2179 * sk_eat_skb - Release a skb if it is no longer needed
2180 * @sk: socket to eat this skb from
2181 * @skb: socket buffer to eat
2182 *
2183 * This routine must be called with interrupts disabled or with the socket
2184 * locked so that the sk_buff queue operation is ok.
2185*/
2186static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2187{
2188 __skb_unlink(skb, &sk->sk_receive_queue);
2189 __kfree_skb(skb);
2190}
2191
2192static inline
2193struct net *sock_net(const struct sock *sk)
2194{
2195 return read_pnet(&sk->sk_net);
2196}
2197
2198static inline
2199void sock_net_set(struct sock *sk, struct net *net)
2200{
2201 write_pnet(&sk->sk_net, net);
2202}
2203
2204static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2205{
2206 if (skb->sk) {
2207 struct sock *sk = skb->sk;
2208
2209 skb->destructor = NULL;
2210 skb->sk = NULL;
2211 return sk;
2212 }
2213 return NULL;
2214}
2215
2216/* This helper checks if a socket is a full socket,
2217 * ie _not_ a timewait or request socket.
2218 */
2219static inline bool sk_fullsock(const struct sock *sk)
2220{
2221 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2222}
2223
2224/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2225 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2226 */
2227static inline bool sk_listener(const struct sock *sk)
2228{
2229 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2230}
2231
2232/**
2233 * sk_state_load - read sk->sk_state for lockless contexts
2234 * @sk: socket pointer
2235 *
2236 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2237 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2238 */
2239static inline int sk_state_load(const struct sock *sk)
2240{
2241 return smp_load_acquire(&sk->sk_state);
2242}
2243
2244/**
2245 * sk_state_store - update sk->sk_state
2246 * @sk: socket pointer
2247 * @newstate: new state
2248 *
2249 * Paired with sk_state_load(). Should be used in contexts where
2250 * state change might impact lockless readers.
2251 */
2252static inline void sk_state_store(struct sock *sk, int newstate)
2253{
2254 smp_store_release(&sk->sk_state, newstate);
2255}
2256
2257void sock_enable_timestamp(struct sock *sk, int flag);
2258int sock_get_timestamp(struct sock *, struct timeval __user *);
2259int sock_get_timestampns(struct sock *, struct timespec __user *);
2260int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2261 int type);
2262
2263bool sk_ns_capable(const struct sock *sk,
2264 struct user_namespace *user_ns, int cap);
2265bool sk_capable(const struct sock *sk, int cap);
2266bool sk_net_capable(const struct sock *sk, int cap);
2267
2268extern __u32 sysctl_wmem_max;
2269extern __u32 sysctl_rmem_max;
2270
2271extern int sysctl_tstamp_allow_data;
2272extern int sysctl_optmem_max;
2273
2274extern __u32 sysctl_wmem_default;
2275extern __u32 sysctl_rmem_default;
2276
2277#endif /* _SOCK_H */