at v4.8 20 kB view raw
1/* 2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 3 * 4 * (C) SGI 2006, Christoph Lameter 5 * Cleaned up and restructured to ease the addition of alternative 6 * implementations of SLAB allocators. 7 * (C) Linux Foundation 2008-2013 8 * Unified interface for all slab allocators 9 */ 10 11#ifndef _LINUX_SLAB_H 12#define _LINUX_SLAB_H 13 14#include <linux/gfp.h> 15#include <linux/types.h> 16#include <linux/workqueue.h> 17 18 19/* 20 * Flags to pass to kmem_cache_create(). 21 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set. 22 */ 23#define SLAB_CONSISTENCY_CHECKS 0x00000100UL /* DEBUG: Perform (expensive) checks on alloc/free */ 24#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */ 25#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */ 26#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */ 27#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */ 28#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */ 29#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */ 30/* 31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS! 32 * 33 * This delays freeing the SLAB page by a grace period, it does _NOT_ 34 * delay object freeing. This means that if you do kmem_cache_free() 35 * that memory location is free to be reused at any time. Thus it may 36 * be possible to see another object there in the same RCU grace period. 37 * 38 * This feature only ensures the memory location backing the object 39 * stays valid, the trick to using this is relying on an independent 40 * object validation pass. Something like: 41 * 42 * rcu_read_lock() 43 * again: 44 * obj = lockless_lookup(key); 45 * if (obj) { 46 * if (!try_get_ref(obj)) // might fail for free objects 47 * goto again; 48 * 49 * if (obj->key != key) { // not the object we expected 50 * put_ref(obj); 51 * goto again; 52 * } 53 * } 54 * rcu_read_unlock(); 55 * 56 * This is useful if we need to approach a kernel structure obliquely, 57 * from its address obtained without the usual locking. We can lock 58 * the structure to stabilize it and check it's still at the given address, 59 * only if we can be sure that the memory has not been meanwhile reused 60 * for some other kind of object (which our subsystem's lock might corrupt). 61 * 62 * rcu_read_lock before reading the address, then rcu_read_unlock after 63 * taking the spinlock within the structure expected at that address. 64 */ 65#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */ 66#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */ 67#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */ 68 69/* Flag to prevent checks on free */ 70#ifdef CONFIG_DEBUG_OBJECTS 71# define SLAB_DEBUG_OBJECTS 0x00400000UL 72#else 73# define SLAB_DEBUG_OBJECTS 0x00000000UL 74#endif 75 76#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */ 77 78/* Don't track use of uninitialized memory */ 79#ifdef CONFIG_KMEMCHECK 80# define SLAB_NOTRACK 0x01000000UL 81#else 82# define SLAB_NOTRACK 0x00000000UL 83#endif 84#ifdef CONFIG_FAILSLAB 85# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */ 86#else 87# define SLAB_FAILSLAB 0x00000000UL 88#endif 89#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) 90# define SLAB_ACCOUNT 0x04000000UL /* Account to memcg */ 91#else 92# define SLAB_ACCOUNT 0x00000000UL 93#endif 94 95#ifdef CONFIG_KASAN 96#define SLAB_KASAN 0x08000000UL 97#else 98#define SLAB_KASAN 0x00000000UL 99#endif 100 101/* The following flags affect the page allocator grouping pages by mobility */ 102#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */ 103#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 104/* 105 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 106 * 107 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 108 * 109 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 110 * Both make kfree a no-op. 111 */ 112#define ZERO_SIZE_PTR ((void *)16) 113 114#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 115 (unsigned long)ZERO_SIZE_PTR) 116 117#include <linux/kmemleak.h> 118#include <linux/kasan.h> 119 120struct mem_cgroup; 121/* 122 * struct kmem_cache related prototypes 123 */ 124void __init kmem_cache_init(void); 125bool slab_is_available(void); 126 127struct kmem_cache *kmem_cache_create(const char *, size_t, size_t, 128 unsigned long, 129 void (*)(void *)); 130void kmem_cache_destroy(struct kmem_cache *); 131int kmem_cache_shrink(struct kmem_cache *); 132 133void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *); 134void memcg_deactivate_kmem_caches(struct mem_cgroup *); 135void memcg_destroy_kmem_caches(struct mem_cgroup *); 136 137/* 138 * Please use this macro to create slab caches. Simply specify the 139 * name of the structure and maybe some flags that are listed above. 140 * 141 * The alignment of the struct determines object alignment. If you 142 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 143 * then the objects will be properly aligned in SMP configurations. 144 */ 145#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 146 sizeof(struct __struct), __alignof__(struct __struct),\ 147 (__flags), NULL) 148 149/* 150 * Common kmalloc functions provided by all allocators 151 */ 152void * __must_check __krealloc(const void *, size_t, gfp_t); 153void * __must_check krealloc(const void *, size_t, gfp_t); 154void kfree(const void *); 155void kzfree(const void *); 156size_t ksize(const void *); 157 158#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR 159const char *__check_heap_object(const void *ptr, unsigned long n, 160 struct page *page); 161#else 162static inline const char *__check_heap_object(const void *ptr, 163 unsigned long n, 164 struct page *page) 165{ 166 return NULL; 167} 168#endif 169 170/* 171 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 172 * alignment larger than the alignment of a 64-bit integer. 173 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. 174 */ 175#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 176#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 177#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 178#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) 179#else 180#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 181#endif 182 183/* 184 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 185 * Intended for arches that get misalignment faults even for 64 bit integer 186 * aligned buffers. 187 */ 188#ifndef ARCH_SLAB_MINALIGN 189#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 190#endif 191 192/* 193 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned 194 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN 195 * aligned pointers. 196 */ 197#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) 198#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) 199#define __assume_page_alignment __assume_aligned(PAGE_SIZE) 200 201/* 202 * Kmalloc array related definitions 203 */ 204 205#ifdef CONFIG_SLAB 206/* 207 * The largest kmalloc size supported by the SLAB allocators is 208 * 32 megabyte (2^25) or the maximum allocatable page order if that is 209 * less than 32 MB. 210 * 211 * WARNING: Its not easy to increase this value since the allocators have 212 * to do various tricks to work around compiler limitations in order to 213 * ensure proper constant folding. 214 */ 215#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 216 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 217#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH 218#ifndef KMALLOC_SHIFT_LOW 219#define KMALLOC_SHIFT_LOW 5 220#endif 221#endif 222 223#ifdef CONFIG_SLUB 224/* 225 * SLUB directly allocates requests fitting in to an order-1 page 226 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 227 */ 228#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 229#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT) 230#ifndef KMALLOC_SHIFT_LOW 231#define KMALLOC_SHIFT_LOW 3 232#endif 233#endif 234 235#ifdef CONFIG_SLOB 236/* 237 * SLOB passes all requests larger than one page to the page allocator. 238 * No kmalloc array is necessary since objects of different sizes can 239 * be allocated from the same page. 240 */ 241#define KMALLOC_SHIFT_HIGH PAGE_SHIFT 242#define KMALLOC_SHIFT_MAX 30 243#ifndef KMALLOC_SHIFT_LOW 244#define KMALLOC_SHIFT_LOW 3 245#endif 246#endif 247 248/* Maximum allocatable size */ 249#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 250/* Maximum size for which we actually use a slab cache */ 251#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 252/* Maximum order allocatable via the slab allocagtor */ 253#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 254 255/* 256 * Kmalloc subsystem. 257 */ 258#ifndef KMALLOC_MIN_SIZE 259#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 260#endif 261 262/* 263 * This restriction comes from byte sized index implementation. 264 * Page size is normally 2^12 bytes and, in this case, if we want to use 265 * byte sized index which can represent 2^8 entries, the size of the object 266 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 267 * If minimum size of kmalloc is less than 16, we use it as minimum object 268 * size and give up to use byte sized index. 269 */ 270#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 271 (KMALLOC_MIN_SIZE) : 16) 272 273#ifndef CONFIG_SLOB 274extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; 275#ifdef CONFIG_ZONE_DMA 276extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; 277#endif 278 279/* 280 * Figure out which kmalloc slab an allocation of a certain size 281 * belongs to. 282 * 0 = zero alloc 283 * 1 = 65 .. 96 bytes 284 * 2 = 129 .. 192 bytes 285 * n = 2^(n-1)+1 .. 2^n 286 */ 287static __always_inline int kmalloc_index(size_t size) 288{ 289 if (!size) 290 return 0; 291 292 if (size <= KMALLOC_MIN_SIZE) 293 return KMALLOC_SHIFT_LOW; 294 295 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 296 return 1; 297 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 298 return 2; 299 if (size <= 8) return 3; 300 if (size <= 16) return 4; 301 if (size <= 32) return 5; 302 if (size <= 64) return 6; 303 if (size <= 128) return 7; 304 if (size <= 256) return 8; 305 if (size <= 512) return 9; 306 if (size <= 1024) return 10; 307 if (size <= 2 * 1024) return 11; 308 if (size <= 4 * 1024) return 12; 309 if (size <= 8 * 1024) return 13; 310 if (size <= 16 * 1024) return 14; 311 if (size <= 32 * 1024) return 15; 312 if (size <= 64 * 1024) return 16; 313 if (size <= 128 * 1024) return 17; 314 if (size <= 256 * 1024) return 18; 315 if (size <= 512 * 1024) return 19; 316 if (size <= 1024 * 1024) return 20; 317 if (size <= 2 * 1024 * 1024) return 21; 318 if (size <= 4 * 1024 * 1024) return 22; 319 if (size <= 8 * 1024 * 1024) return 23; 320 if (size <= 16 * 1024 * 1024) return 24; 321 if (size <= 32 * 1024 * 1024) return 25; 322 if (size <= 64 * 1024 * 1024) return 26; 323 BUG(); 324 325 /* Will never be reached. Needed because the compiler may complain */ 326 return -1; 327} 328#endif /* !CONFIG_SLOB */ 329 330void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc; 331void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc; 332void kmem_cache_free(struct kmem_cache *, void *); 333 334/* 335 * Bulk allocation and freeing operations. These are accelerated in an 336 * allocator specific way to avoid taking locks repeatedly or building 337 * metadata structures unnecessarily. 338 * 339 * Note that interrupts must be enabled when calling these functions. 340 */ 341void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); 342int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); 343 344/* 345 * Caller must not use kfree_bulk() on memory not originally allocated 346 * by kmalloc(), because the SLOB allocator cannot handle this. 347 */ 348static __always_inline void kfree_bulk(size_t size, void **p) 349{ 350 kmem_cache_free_bulk(NULL, size, p); 351} 352 353#ifdef CONFIG_NUMA 354void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc; 355void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc; 356#else 357static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) 358{ 359 return __kmalloc(size, flags); 360} 361 362static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) 363{ 364 return kmem_cache_alloc(s, flags); 365} 366#endif 367 368#ifdef CONFIG_TRACING 369extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc; 370 371#ifdef CONFIG_NUMA 372extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 373 gfp_t gfpflags, 374 int node, size_t size) __assume_slab_alignment __malloc; 375#else 376static __always_inline void * 377kmem_cache_alloc_node_trace(struct kmem_cache *s, 378 gfp_t gfpflags, 379 int node, size_t size) 380{ 381 return kmem_cache_alloc_trace(s, gfpflags, size); 382} 383#endif /* CONFIG_NUMA */ 384 385#else /* CONFIG_TRACING */ 386static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, 387 gfp_t flags, size_t size) 388{ 389 void *ret = kmem_cache_alloc(s, flags); 390 391 kasan_kmalloc(s, ret, size, flags); 392 return ret; 393} 394 395static __always_inline void * 396kmem_cache_alloc_node_trace(struct kmem_cache *s, 397 gfp_t gfpflags, 398 int node, size_t size) 399{ 400 void *ret = kmem_cache_alloc_node(s, gfpflags, node); 401 402 kasan_kmalloc(s, ret, size, gfpflags); 403 return ret; 404} 405#endif /* CONFIG_TRACING */ 406 407extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; 408 409#ifdef CONFIG_TRACING 410extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; 411#else 412static __always_inline void * 413kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 414{ 415 return kmalloc_order(size, flags, order); 416} 417#endif 418 419static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 420{ 421 unsigned int order = get_order(size); 422 return kmalloc_order_trace(size, flags, order); 423} 424 425/** 426 * kmalloc - allocate memory 427 * @size: how many bytes of memory are required. 428 * @flags: the type of memory to allocate. 429 * 430 * kmalloc is the normal method of allocating memory 431 * for objects smaller than page size in the kernel. 432 * 433 * The @flags argument may be one of: 434 * 435 * %GFP_USER - Allocate memory on behalf of user. May sleep. 436 * 437 * %GFP_KERNEL - Allocate normal kernel ram. May sleep. 438 * 439 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools. 440 * For example, use this inside interrupt handlers. 441 * 442 * %GFP_HIGHUSER - Allocate pages from high memory. 443 * 444 * %GFP_NOIO - Do not do any I/O at all while trying to get memory. 445 * 446 * %GFP_NOFS - Do not make any fs calls while trying to get memory. 447 * 448 * %GFP_NOWAIT - Allocation will not sleep. 449 * 450 * %__GFP_THISNODE - Allocate node-local memory only. 451 * 452 * %GFP_DMA - Allocation suitable for DMA. 453 * Should only be used for kmalloc() caches. Otherwise, use a 454 * slab created with SLAB_DMA. 455 * 456 * Also it is possible to set different flags by OR'ing 457 * in one or more of the following additional @flags: 458 * 459 * %__GFP_COLD - Request cache-cold pages instead of 460 * trying to return cache-warm pages. 461 * 462 * %__GFP_HIGH - This allocation has high priority and may use emergency pools. 463 * 464 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail 465 * (think twice before using). 466 * 467 * %__GFP_NORETRY - If memory is not immediately available, 468 * then give up at once. 469 * 470 * %__GFP_NOWARN - If allocation fails, don't issue any warnings. 471 * 472 * %__GFP_REPEAT - If allocation fails initially, try once more before failing. 473 * 474 * There are other flags available as well, but these are not intended 475 * for general use, and so are not documented here. For a full list of 476 * potential flags, always refer to linux/gfp.h. 477 */ 478static __always_inline void *kmalloc(size_t size, gfp_t flags) 479{ 480 if (__builtin_constant_p(size)) { 481 if (size > KMALLOC_MAX_CACHE_SIZE) 482 return kmalloc_large(size, flags); 483#ifndef CONFIG_SLOB 484 if (!(flags & GFP_DMA)) { 485 int index = kmalloc_index(size); 486 487 if (!index) 488 return ZERO_SIZE_PTR; 489 490 return kmem_cache_alloc_trace(kmalloc_caches[index], 491 flags, size); 492 } 493#endif 494 } 495 return __kmalloc(size, flags); 496} 497 498/* 499 * Determine size used for the nth kmalloc cache. 500 * return size or 0 if a kmalloc cache for that 501 * size does not exist 502 */ 503static __always_inline int kmalloc_size(int n) 504{ 505#ifndef CONFIG_SLOB 506 if (n > 2) 507 return 1 << n; 508 509 if (n == 1 && KMALLOC_MIN_SIZE <= 32) 510 return 96; 511 512 if (n == 2 && KMALLOC_MIN_SIZE <= 64) 513 return 192; 514#endif 515 return 0; 516} 517 518static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 519{ 520#ifndef CONFIG_SLOB 521 if (__builtin_constant_p(size) && 522 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) { 523 int i = kmalloc_index(size); 524 525 if (!i) 526 return ZERO_SIZE_PTR; 527 528 return kmem_cache_alloc_node_trace(kmalloc_caches[i], 529 flags, node, size); 530 } 531#endif 532 return __kmalloc_node(size, flags, node); 533} 534 535struct memcg_cache_array { 536 struct rcu_head rcu; 537 struct kmem_cache *entries[0]; 538}; 539 540/* 541 * This is the main placeholder for memcg-related information in kmem caches. 542 * Both the root cache and the child caches will have it. For the root cache, 543 * this will hold a dynamically allocated array large enough to hold 544 * information about the currently limited memcgs in the system. To allow the 545 * array to be accessed without taking any locks, on relocation we free the old 546 * version only after a grace period. 547 * 548 * Child caches will hold extra metadata needed for its operation. Fields are: 549 * 550 * @memcg: pointer to the memcg this cache belongs to 551 * @root_cache: pointer to the global, root cache, this cache was derived from 552 * 553 * Both root and child caches of the same kind are linked into a list chained 554 * through @list. 555 */ 556struct memcg_cache_params { 557 bool is_root_cache; 558 struct list_head list; 559 union { 560 struct memcg_cache_array __rcu *memcg_caches; 561 struct { 562 struct mem_cgroup *memcg; 563 struct kmem_cache *root_cache; 564 }; 565 }; 566}; 567 568int memcg_update_all_caches(int num_memcgs); 569 570/** 571 * kmalloc_array - allocate memory for an array. 572 * @n: number of elements. 573 * @size: element size. 574 * @flags: the type of memory to allocate (see kmalloc). 575 */ 576static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) 577{ 578 if (size != 0 && n > SIZE_MAX / size) 579 return NULL; 580 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 581 return kmalloc(n * size, flags); 582 return __kmalloc(n * size, flags); 583} 584 585/** 586 * kcalloc - allocate memory for an array. The memory is set to zero. 587 * @n: number of elements. 588 * @size: element size. 589 * @flags: the type of memory to allocate (see kmalloc). 590 */ 591static inline void *kcalloc(size_t n, size_t size, gfp_t flags) 592{ 593 return kmalloc_array(n, size, flags | __GFP_ZERO); 594} 595 596/* 597 * kmalloc_track_caller is a special version of kmalloc that records the 598 * calling function of the routine calling it for slab leak tracking instead 599 * of just the calling function (confusing, eh?). 600 * It's useful when the call to kmalloc comes from a widely-used standard 601 * allocator where we care about the real place the memory allocation 602 * request comes from. 603 */ 604extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); 605#define kmalloc_track_caller(size, flags) \ 606 __kmalloc_track_caller(size, flags, _RET_IP_) 607 608#ifdef CONFIG_NUMA 609extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); 610#define kmalloc_node_track_caller(size, flags, node) \ 611 __kmalloc_node_track_caller(size, flags, node, \ 612 _RET_IP_) 613 614#else /* CONFIG_NUMA */ 615 616#define kmalloc_node_track_caller(size, flags, node) \ 617 kmalloc_track_caller(size, flags) 618 619#endif /* CONFIG_NUMA */ 620 621/* 622 * Shortcuts 623 */ 624static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 625{ 626 return kmem_cache_alloc(k, flags | __GFP_ZERO); 627} 628 629/** 630 * kzalloc - allocate memory. The memory is set to zero. 631 * @size: how many bytes of memory are required. 632 * @flags: the type of memory to allocate (see kmalloc). 633 */ 634static inline void *kzalloc(size_t size, gfp_t flags) 635{ 636 return kmalloc(size, flags | __GFP_ZERO); 637} 638 639/** 640 * kzalloc_node - allocate zeroed memory from a particular memory node. 641 * @size: how many bytes of memory are required. 642 * @flags: the type of memory to allocate (see kmalloc). 643 * @node: memory node from which to allocate 644 */ 645static inline void *kzalloc_node(size_t size, gfp_t flags, int node) 646{ 647 return kmalloc_node(size, flags | __GFP_ZERO, node); 648} 649 650unsigned int kmem_cache_size(struct kmem_cache *s); 651void __init kmem_cache_init_late(void); 652 653#endif /* _LINUX_SLAB_H */