at v4.8 112 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/bug.h> 22#include <linux/cache.h> 23#include <linux/rbtree.h> 24#include <linux/socket.h> 25 26#include <linux/atomic.h> 27#include <asm/types.h> 28#include <linux/spinlock.h> 29#include <linux/net.h> 30#include <linux/textsearch.h> 31#include <net/checksum.h> 32#include <linux/rcupdate.h> 33#include <linux/hrtimer.h> 34#include <linux/dma-mapping.h> 35#include <linux/netdev_features.h> 36#include <linux/sched.h> 37#include <net/flow_dissector.h> 38#include <linux/splice.h> 39#include <linux/in6.h> 40#include <linux/if_packet.h> 41#include <net/flow.h> 42 43/* The interface for checksum offload between the stack and networking drivers 44 * is as follows... 45 * 46 * A. IP checksum related features 47 * 48 * Drivers advertise checksum offload capabilities in the features of a device. 49 * From the stack's point of view these are capabilities offered by the driver, 50 * a driver typically only advertises features that it is capable of offloading 51 * to its device. 52 * 53 * The checksum related features are: 54 * 55 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 56 * IP (one's complement) checksum for any combination 57 * of protocols or protocol layering. The checksum is 58 * computed and set in a packet per the CHECKSUM_PARTIAL 59 * interface (see below). 60 * 61 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 62 * TCP or UDP packets over IPv4. These are specifically 63 * unencapsulated packets of the form IPv4|TCP or 64 * IPv4|UDP where the Protocol field in the IPv4 header 65 * is TCP or UDP. The IPv4 header may contain IP options 66 * This feature cannot be set in features for a device 67 * with NETIF_F_HW_CSUM also set. This feature is being 68 * DEPRECATED (see below). 69 * 70 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 71 * TCP or UDP packets over IPv6. These are specifically 72 * unencapsulated packets of the form IPv6|TCP or 73 * IPv4|UDP where the Next Header field in the IPv6 74 * header is either TCP or UDP. IPv6 extension headers 75 * are not supported with this feature. This feature 76 * cannot be set in features for a device with 77 * NETIF_F_HW_CSUM also set. This feature is being 78 * DEPRECATED (see below). 79 * 80 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 81 * This flag is used only used to disable the RX checksum 82 * feature for a device. The stack will accept receive 83 * checksum indication in packets received on a device 84 * regardless of whether NETIF_F_RXCSUM is set. 85 * 86 * B. Checksumming of received packets by device. Indication of checksum 87 * verification is in set skb->ip_summed. Possible values are: 88 * 89 * CHECKSUM_NONE: 90 * 91 * Device did not checksum this packet e.g. due to lack of capabilities. 92 * The packet contains full (though not verified) checksum in packet but 93 * not in skb->csum. Thus, skb->csum is undefined in this case. 94 * 95 * CHECKSUM_UNNECESSARY: 96 * 97 * The hardware you're dealing with doesn't calculate the full checksum 98 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 99 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 100 * if their checksums are okay. skb->csum is still undefined in this case 101 * though. A driver or device must never modify the checksum field in the 102 * packet even if checksum is verified. 103 * 104 * CHECKSUM_UNNECESSARY is applicable to following protocols: 105 * TCP: IPv6 and IPv4. 106 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 107 * zero UDP checksum for either IPv4 or IPv6, the networking stack 108 * may perform further validation in this case. 109 * GRE: only if the checksum is present in the header. 110 * SCTP: indicates the CRC in SCTP header has been validated. 111 * 112 * skb->csum_level indicates the number of consecutive checksums found in 113 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 114 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 115 * and a device is able to verify the checksums for UDP (possibly zero), 116 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 117 * two. If the device were only able to verify the UDP checksum and not 118 * GRE, either because it doesn't support GRE checksum of because GRE 119 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 120 * not considered in this case). 121 * 122 * CHECKSUM_COMPLETE: 123 * 124 * This is the most generic way. The device supplied checksum of the _whole_ 125 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 126 * hardware doesn't need to parse L3/L4 headers to implement this. 127 * 128 * Note: Even if device supports only some protocols, but is able to produce 129 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 130 * 131 * CHECKSUM_PARTIAL: 132 * 133 * A checksum is set up to be offloaded to a device as described in the 134 * output description for CHECKSUM_PARTIAL. This may occur on a packet 135 * received directly from another Linux OS, e.g., a virtualized Linux kernel 136 * on the same host, or it may be set in the input path in GRO or remote 137 * checksum offload. For the purposes of checksum verification, the checksum 138 * referred to by skb->csum_start + skb->csum_offset and any preceding 139 * checksums in the packet are considered verified. Any checksums in the 140 * packet that are after the checksum being offloaded are not considered to 141 * be verified. 142 * 143 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 144 * in the skb->ip_summed for a packet. Values are: 145 * 146 * CHECKSUM_PARTIAL: 147 * 148 * The driver is required to checksum the packet as seen by hard_start_xmit() 149 * from skb->csum_start up to the end, and to record/write the checksum at 150 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 151 * csum_start and csum_offset values are valid values given the length and 152 * offset of the packet, however they should not attempt to validate that the 153 * checksum refers to a legitimate transport layer checksum-- it is the 154 * purview of the stack to validate that csum_start and csum_offset are set 155 * correctly. 156 * 157 * When the stack requests checksum offload for a packet, the driver MUST 158 * ensure that the checksum is set correctly. A driver can either offload the 159 * checksum calculation to the device, or call skb_checksum_help (in the case 160 * that the device does not support offload for a particular checksum). 161 * 162 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 163 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 164 * checksum offload capability. If a device has limited checksum capabilities 165 * (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as 166 * described above) a helper function can be called to resolve 167 * CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper 168 * function takes a spec argument that describes the protocol layer that is 169 * supported for checksum offload and can be called for each packet. If a 170 * packet does not match the specification for offload, skb_checksum_help 171 * is called to resolve the checksum. 172 * 173 * CHECKSUM_NONE: 174 * 175 * The skb was already checksummed by the protocol, or a checksum is not 176 * required. 177 * 178 * CHECKSUM_UNNECESSARY: 179 * 180 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 181 * output. 182 * 183 * CHECKSUM_COMPLETE: 184 * Not used in checksum output. If a driver observes a packet with this value 185 * set in skbuff, if should treat as CHECKSUM_NONE being set. 186 * 187 * D. Non-IP checksum (CRC) offloads 188 * 189 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 190 * offloading the SCTP CRC in a packet. To perform this offload the stack 191 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 192 * accordingly. Note the there is no indication in the skbuff that the 193 * CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports 194 * both IP checksum offload and SCTP CRC offload must verify which offload 195 * is configured for a packet presumably by inspecting packet headers. 196 * 197 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 198 * offloading the FCOE CRC in a packet. To perform this offload the stack 199 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 200 * accordingly. Note the there is no indication in the skbuff that the 201 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 202 * both IP checksum offload and FCOE CRC offload must verify which offload 203 * is configured for a packet presumably by inspecting packet headers. 204 * 205 * E. Checksumming on output with GSO. 206 * 207 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 208 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 209 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 210 * part of the GSO operation is implied. If a checksum is being offloaded 211 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 212 * are set to refer to the outermost checksum being offload (two offloaded 213 * checksums are possible with UDP encapsulation). 214 */ 215 216/* Don't change this without changing skb_csum_unnecessary! */ 217#define CHECKSUM_NONE 0 218#define CHECKSUM_UNNECESSARY 1 219#define CHECKSUM_COMPLETE 2 220#define CHECKSUM_PARTIAL 3 221 222/* Maximum value in skb->csum_level */ 223#define SKB_MAX_CSUM_LEVEL 3 224 225#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 226#define SKB_WITH_OVERHEAD(X) \ 227 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 228#define SKB_MAX_ORDER(X, ORDER) \ 229 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 230#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 231#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 232 233/* return minimum truesize of one skb containing X bytes of data */ 234#define SKB_TRUESIZE(X) ((X) + \ 235 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 236 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 237 238struct net_device; 239struct scatterlist; 240struct pipe_inode_info; 241struct iov_iter; 242struct napi_struct; 243 244#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 245struct nf_conntrack { 246 atomic_t use; 247}; 248#endif 249 250#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 251struct nf_bridge_info { 252 atomic_t use; 253 enum { 254 BRNF_PROTO_UNCHANGED, 255 BRNF_PROTO_8021Q, 256 BRNF_PROTO_PPPOE 257 } orig_proto:8; 258 u8 pkt_otherhost:1; 259 u8 in_prerouting:1; 260 u8 bridged_dnat:1; 261 __u16 frag_max_size; 262 struct net_device *physindev; 263 264 /* always valid & non-NULL from FORWARD on, for physdev match */ 265 struct net_device *physoutdev; 266 union { 267 /* prerouting: detect dnat in orig/reply direction */ 268 __be32 ipv4_daddr; 269 struct in6_addr ipv6_daddr; 270 271 /* after prerouting + nat detected: store original source 272 * mac since neigh resolution overwrites it, only used while 273 * skb is out in neigh layer. 274 */ 275 char neigh_header[8]; 276 }; 277}; 278#endif 279 280struct sk_buff_head { 281 /* These two members must be first. */ 282 struct sk_buff *next; 283 struct sk_buff *prev; 284 285 __u32 qlen; 286 spinlock_t lock; 287}; 288 289struct sk_buff; 290 291/* To allow 64K frame to be packed as single skb without frag_list we 292 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 293 * buffers which do not start on a page boundary. 294 * 295 * Since GRO uses frags we allocate at least 16 regardless of page 296 * size. 297 */ 298#if (65536/PAGE_SIZE + 1) < 16 299#define MAX_SKB_FRAGS 16UL 300#else 301#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 302#endif 303extern int sysctl_max_skb_frags; 304 305/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 306 * segment using its current segmentation instead. 307 */ 308#define GSO_BY_FRAGS 0xFFFF 309 310typedef struct skb_frag_struct skb_frag_t; 311 312struct skb_frag_struct { 313 struct { 314 struct page *p; 315 } page; 316#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 317 __u32 page_offset; 318 __u32 size; 319#else 320 __u16 page_offset; 321 __u16 size; 322#endif 323}; 324 325static inline unsigned int skb_frag_size(const skb_frag_t *frag) 326{ 327 return frag->size; 328} 329 330static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 331{ 332 frag->size = size; 333} 334 335static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 336{ 337 frag->size += delta; 338} 339 340static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 341{ 342 frag->size -= delta; 343} 344 345#define HAVE_HW_TIME_STAMP 346 347/** 348 * struct skb_shared_hwtstamps - hardware time stamps 349 * @hwtstamp: hardware time stamp transformed into duration 350 * since arbitrary point in time 351 * 352 * Software time stamps generated by ktime_get_real() are stored in 353 * skb->tstamp. 354 * 355 * hwtstamps can only be compared against other hwtstamps from 356 * the same device. 357 * 358 * This structure is attached to packets as part of the 359 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 360 */ 361struct skb_shared_hwtstamps { 362 ktime_t hwtstamp; 363}; 364 365/* Definitions for tx_flags in struct skb_shared_info */ 366enum { 367 /* generate hardware time stamp */ 368 SKBTX_HW_TSTAMP = 1 << 0, 369 370 /* generate software time stamp when queueing packet to NIC */ 371 SKBTX_SW_TSTAMP = 1 << 1, 372 373 /* device driver is going to provide hardware time stamp */ 374 SKBTX_IN_PROGRESS = 1 << 2, 375 376 /* device driver supports TX zero-copy buffers */ 377 SKBTX_DEV_ZEROCOPY = 1 << 3, 378 379 /* generate wifi status information (where possible) */ 380 SKBTX_WIFI_STATUS = 1 << 4, 381 382 /* This indicates at least one fragment might be overwritten 383 * (as in vmsplice(), sendfile() ...) 384 * If we need to compute a TX checksum, we'll need to copy 385 * all frags to avoid possible bad checksum 386 */ 387 SKBTX_SHARED_FRAG = 1 << 5, 388 389 /* generate software time stamp when entering packet scheduling */ 390 SKBTX_SCHED_TSTAMP = 1 << 6, 391}; 392 393#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 394 SKBTX_SCHED_TSTAMP) 395#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 396 397/* 398 * The callback notifies userspace to release buffers when skb DMA is done in 399 * lower device, the skb last reference should be 0 when calling this. 400 * The zerocopy_success argument is true if zero copy transmit occurred, 401 * false on data copy or out of memory error caused by data copy attempt. 402 * The ctx field is used to track device context. 403 * The desc field is used to track userspace buffer index. 404 */ 405struct ubuf_info { 406 void (*callback)(struct ubuf_info *, bool zerocopy_success); 407 void *ctx; 408 unsigned long desc; 409}; 410 411/* This data is invariant across clones and lives at 412 * the end of the header data, ie. at skb->end. 413 */ 414struct skb_shared_info { 415 unsigned char nr_frags; 416 __u8 tx_flags; 417 unsigned short gso_size; 418 /* Warning: this field is not always filled in (UFO)! */ 419 unsigned short gso_segs; 420 unsigned short gso_type; 421 struct sk_buff *frag_list; 422 struct skb_shared_hwtstamps hwtstamps; 423 u32 tskey; 424 __be32 ip6_frag_id; 425 426 /* 427 * Warning : all fields before dataref are cleared in __alloc_skb() 428 */ 429 atomic_t dataref; 430 431 /* Intermediate layers must ensure that destructor_arg 432 * remains valid until skb destructor */ 433 void * destructor_arg; 434 435 /* must be last field, see pskb_expand_head() */ 436 skb_frag_t frags[MAX_SKB_FRAGS]; 437}; 438 439/* We divide dataref into two halves. The higher 16 bits hold references 440 * to the payload part of skb->data. The lower 16 bits hold references to 441 * the entire skb->data. A clone of a headerless skb holds the length of 442 * the header in skb->hdr_len. 443 * 444 * All users must obey the rule that the skb->data reference count must be 445 * greater than or equal to the payload reference count. 446 * 447 * Holding a reference to the payload part means that the user does not 448 * care about modifications to the header part of skb->data. 449 */ 450#define SKB_DATAREF_SHIFT 16 451#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 452 453 454enum { 455 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 456 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 457 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 458}; 459 460enum { 461 SKB_GSO_TCPV4 = 1 << 0, 462 SKB_GSO_UDP = 1 << 1, 463 464 /* This indicates the skb is from an untrusted source. */ 465 SKB_GSO_DODGY = 1 << 2, 466 467 /* This indicates the tcp segment has CWR set. */ 468 SKB_GSO_TCP_ECN = 1 << 3, 469 470 SKB_GSO_TCP_FIXEDID = 1 << 4, 471 472 SKB_GSO_TCPV6 = 1 << 5, 473 474 SKB_GSO_FCOE = 1 << 6, 475 476 SKB_GSO_GRE = 1 << 7, 477 478 SKB_GSO_GRE_CSUM = 1 << 8, 479 480 SKB_GSO_IPXIP4 = 1 << 9, 481 482 SKB_GSO_IPXIP6 = 1 << 10, 483 484 SKB_GSO_UDP_TUNNEL = 1 << 11, 485 486 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12, 487 488 SKB_GSO_PARTIAL = 1 << 13, 489 490 SKB_GSO_TUNNEL_REMCSUM = 1 << 14, 491 492 SKB_GSO_SCTP = 1 << 15, 493}; 494 495#if BITS_PER_LONG > 32 496#define NET_SKBUFF_DATA_USES_OFFSET 1 497#endif 498 499#ifdef NET_SKBUFF_DATA_USES_OFFSET 500typedef unsigned int sk_buff_data_t; 501#else 502typedef unsigned char *sk_buff_data_t; 503#endif 504 505/** 506 * struct skb_mstamp - multi resolution time stamps 507 * @stamp_us: timestamp in us resolution 508 * @stamp_jiffies: timestamp in jiffies 509 */ 510struct skb_mstamp { 511 union { 512 u64 v64; 513 struct { 514 u32 stamp_us; 515 u32 stamp_jiffies; 516 }; 517 }; 518}; 519 520/** 521 * skb_mstamp_get - get current timestamp 522 * @cl: place to store timestamps 523 */ 524static inline void skb_mstamp_get(struct skb_mstamp *cl) 525{ 526 u64 val = local_clock(); 527 528 do_div(val, NSEC_PER_USEC); 529 cl->stamp_us = (u32)val; 530 cl->stamp_jiffies = (u32)jiffies; 531} 532 533/** 534 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp 535 * @t1: pointer to newest sample 536 * @t0: pointer to oldest sample 537 */ 538static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1, 539 const struct skb_mstamp *t0) 540{ 541 s32 delta_us = t1->stamp_us - t0->stamp_us; 542 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies; 543 544 /* If delta_us is negative, this might be because interval is too big, 545 * or local_clock() drift is too big : fallback using jiffies. 546 */ 547 if (delta_us <= 0 || 548 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ))) 549 550 delta_us = jiffies_to_usecs(delta_jiffies); 551 552 return delta_us; 553} 554 555static inline bool skb_mstamp_after(const struct skb_mstamp *t1, 556 const struct skb_mstamp *t0) 557{ 558 s32 diff = t1->stamp_jiffies - t0->stamp_jiffies; 559 560 if (!diff) 561 diff = t1->stamp_us - t0->stamp_us; 562 return diff > 0; 563} 564 565/** 566 * struct sk_buff - socket buffer 567 * @next: Next buffer in list 568 * @prev: Previous buffer in list 569 * @tstamp: Time we arrived/left 570 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 571 * @sk: Socket we are owned by 572 * @dev: Device we arrived on/are leaving by 573 * @cb: Control buffer. Free for use by every layer. Put private vars here 574 * @_skb_refdst: destination entry (with norefcount bit) 575 * @sp: the security path, used for xfrm 576 * @len: Length of actual data 577 * @data_len: Data length 578 * @mac_len: Length of link layer header 579 * @hdr_len: writable header length of cloned skb 580 * @csum: Checksum (must include start/offset pair) 581 * @csum_start: Offset from skb->head where checksumming should start 582 * @csum_offset: Offset from csum_start where checksum should be stored 583 * @priority: Packet queueing priority 584 * @ignore_df: allow local fragmentation 585 * @cloned: Head may be cloned (check refcnt to be sure) 586 * @ip_summed: Driver fed us an IP checksum 587 * @nohdr: Payload reference only, must not modify header 588 * @nfctinfo: Relationship of this skb to the connection 589 * @pkt_type: Packet class 590 * @fclone: skbuff clone status 591 * @ipvs_property: skbuff is owned by ipvs 592 * @peeked: this packet has been seen already, so stats have been 593 * done for it, don't do them again 594 * @nf_trace: netfilter packet trace flag 595 * @protocol: Packet protocol from driver 596 * @destructor: Destruct function 597 * @nfct: Associated connection, if any 598 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 599 * @skb_iif: ifindex of device we arrived on 600 * @tc_index: Traffic control index 601 * @tc_verd: traffic control verdict 602 * @hash: the packet hash 603 * @queue_mapping: Queue mapping for multiqueue devices 604 * @xmit_more: More SKBs are pending for this queue 605 * @ndisc_nodetype: router type (from link layer) 606 * @ooo_okay: allow the mapping of a socket to a queue to be changed 607 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 608 * ports. 609 * @sw_hash: indicates hash was computed in software stack 610 * @wifi_acked_valid: wifi_acked was set 611 * @wifi_acked: whether frame was acked on wifi or not 612 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 613 * @napi_id: id of the NAPI struct this skb came from 614 * @secmark: security marking 615 * @offload_fwd_mark: fwding offload mark 616 * @mark: Generic packet mark 617 * @vlan_proto: vlan encapsulation protocol 618 * @vlan_tci: vlan tag control information 619 * @inner_protocol: Protocol (encapsulation) 620 * @inner_transport_header: Inner transport layer header (encapsulation) 621 * @inner_network_header: Network layer header (encapsulation) 622 * @inner_mac_header: Link layer header (encapsulation) 623 * @transport_header: Transport layer header 624 * @network_header: Network layer header 625 * @mac_header: Link layer header 626 * @tail: Tail pointer 627 * @end: End pointer 628 * @head: Head of buffer 629 * @data: Data head pointer 630 * @truesize: Buffer size 631 * @users: User count - see {datagram,tcp}.c 632 */ 633 634struct sk_buff { 635 union { 636 struct { 637 /* These two members must be first. */ 638 struct sk_buff *next; 639 struct sk_buff *prev; 640 641 union { 642 ktime_t tstamp; 643 struct skb_mstamp skb_mstamp; 644 }; 645 }; 646 struct rb_node rbnode; /* used in netem & tcp stack */ 647 }; 648 struct sock *sk; 649 struct net_device *dev; 650 651 /* 652 * This is the control buffer. It is free to use for every 653 * layer. Please put your private variables there. If you 654 * want to keep them across layers you have to do a skb_clone() 655 * first. This is owned by whoever has the skb queued ATM. 656 */ 657 char cb[48] __aligned(8); 658 659 unsigned long _skb_refdst; 660 void (*destructor)(struct sk_buff *skb); 661#ifdef CONFIG_XFRM 662 struct sec_path *sp; 663#endif 664#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 665 struct nf_conntrack *nfct; 666#endif 667#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 668 struct nf_bridge_info *nf_bridge; 669#endif 670 unsigned int len, 671 data_len; 672 __u16 mac_len, 673 hdr_len; 674 675 /* Following fields are _not_ copied in __copy_skb_header() 676 * Note that queue_mapping is here mostly to fill a hole. 677 */ 678 kmemcheck_bitfield_begin(flags1); 679 __u16 queue_mapping; 680 __u8 cloned:1, 681 nohdr:1, 682 fclone:2, 683 peeked:1, 684 head_frag:1, 685 xmit_more:1; 686 /* one bit hole */ 687 kmemcheck_bitfield_end(flags1); 688 689 /* fields enclosed in headers_start/headers_end are copied 690 * using a single memcpy() in __copy_skb_header() 691 */ 692 /* private: */ 693 __u32 headers_start[0]; 694 /* public: */ 695 696/* if you move pkt_type around you also must adapt those constants */ 697#ifdef __BIG_ENDIAN_BITFIELD 698#define PKT_TYPE_MAX (7 << 5) 699#else 700#define PKT_TYPE_MAX 7 701#endif 702#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 703 704 __u8 __pkt_type_offset[0]; 705 __u8 pkt_type:3; 706 __u8 pfmemalloc:1; 707 __u8 ignore_df:1; 708 __u8 nfctinfo:3; 709 710 __u8 nf_trace:1; 711 __u8 ip_summed:2; 712 __u8 ooo_okay:1; 713 __u8 l4_hash:1; 714 __u8 sw_hash:1; 715 __u8 wifi_acked_valid:1; 716 __u8 wifi_acked:1; 717 718 __u8 no_fcs:1; 719 /* Indicates the inner headers are valid in the skbuff. */ 720 __u8 encapsulation:1; 721 __u8 encap_hdr_csum:1; 722 __u8 csum_valid:1; 723 __u8 csum_complete_sw:1; 724 __u8 csum_level:2; 725 __u8 csum_bad:1; 726 727#ifdef CONFIG_IPV6_NDISC_NODETYPE 728 __u8 ndisc_nodetype:2; 729#endif 730 __u8 ipvs_property:1; 731 __u8 inner_protocol_type:1; 732 __u8 remcsum_offload:1; 733 /* 3 or 5 bit hole */ 734 735#ifdef CONFIG_NET_SCHED 736 __u16 tc_index; /* traffic control index */ 737#ifdef CONFIG_NET_CLS_ACT 738 __u16 tc_verd; /* traffic control verdict */ 739#endif 740#endif 741 742 union { 743 __wsum csum; 744 struct { 745 __u16 csum_start; 746 __u16 csum_offset; 747 }; 748 }; 749 __u32 priority; 750 int skb_iif; 751 __u32 hash; 752 __be16 vlan_proto; 753 __u16 vlan_tci; 754#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 755 union { 756 unsigned int napi_id; 757 unsigned int sender_cpu; 758 }; 759#endif 760 union { 761#ifdef CONFIG_NETWORK_SECMARK 762 __u32 secmark; 763#endif 764#ifdef CONFIG_NET_SWITCHDEV 765 __u32 offload_fwd_mark; 766#endif 767 }; 768 769 union { 770 __u32 mark; 771 __u32 reserved_tailroom; 772 }; 773 774 union { 775 __be16 inner_protocol; 776 __u8 inner_ipproto; 777 }; 778 779 __u16 inner_transport_header; 780 __u16 inner_network_header; 781 __u16 inner_mac_header; 782 783 __be16 protocol; 784 __u16 transport_header; 785 __u16 network_header; 786 __u16 mac_header; 787 788 /* private: */ 789 __u32 headers_end[0]; 790 /* public: */ 791 792 /* These elements must be at the end, see alloc_skb() for details. */ 793 sk_buff_data_t tail; 794 sk_buff_data_t end; 795 unsigned char *head, 796 *data; 797 unsigned int truesize; 798 atomic_t users; 799}; 800 801#ifdef __KERNEL__ 802/* 803 * Handling routines are only of interest to the kernel 804 */ 805#include <linux/slab.h> 806 807 808#define SKB_ALLOC_FCLONE 0x01 809#define SKB_ALLOC_RX 0x02 810#define SKB_ALLOC_NAPI 0x04 811 812/* Returns true if the skb was allocated from PFMEMALLOC reserves */ 813static inline bool skb_pfmemalloc(const struct sk_buff *skb) 814{ 815 return unlikely(skb->pfmemalloc); 816} 817 818/* 819 * skb might have a dst pointer attached, refcounted or not. 820 * _skb_refdst low order bit is set if refcount was _not_ taken 821 */ 822#define SKB_DST_NOREF 1UL 823#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 824 825/** 826 * skb_dst - returns skb dst_entry 827 * @skb: buffer 828 * 829 * Returns skb dst_entry, regardless of reference taken or not. 830 */ 831static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 832{ 833 /* If refdst was not refcounted, check we still are in a 834 * rcu_read_lock section 835 */ 836 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 837 !rcu_read_lock_held() && 838 !rcu_read_lock_bh_held()); 839 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 840} 841 842/** 843 * skb_dst_set - sets skb dst 844 * @skb: buffer 845 * @dst: dst entry 846 * 847 * Sets skb dst, assuming a reference was taken on dst and should 848 * be released by skb_dst_drop() 849 */ 850static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 851{ 852 skb->_skb_refdst = (unsigned long)dst; 853} 854 855/** 856 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 857 * @skb: buffer 858 * @dst: dst entry 859 * 860 * Sets skb dst, assuming a reference was not taken on dst. 861 * If dst entry is cached, we do not take reference and dst_release 862 * will be avoided by refdst_drop. If dst entry is not cached, we take 863 * reference, so that last dst_release can destroy the dst immediately. 864 */ 865static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 866{ 867 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 868 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 869} 870 871/** 872 * skb_dst_is_noref - Test if skb dst isn't refcounted 873 * @skb: buffer 874 */ 875static inline bool skb_dst_is_noref(const struct sk_buff *skb) 876{ 877 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 878} 879 880static inline struct rtable *skb_rtable(const struct sk_buff *skb) 881{ 882 return (struct rtable *)skb_dst(skb); 883} 884 885/* For mangling skb->pkt_type from user space side from applications 886 * such as nft, tc, etc, we only allow a conservative subset of 887 * possible pkt_types to be set. 888*/ 889static inline bool skb_pkt_type_ok(u32 ptype) 890{ 891 return ptype <= PACKET_OTHERHOST; 892} 893 894void kfree_skb(struct sk_buff *skb); 895void kfree_skb_list(struct sk_buff *segs); 896void skb_tx_error(struct sk_buff *skb); 897void consume_skb(struct sk_buff *skb); 898void __kfree_skb(struct sk_buff *skb); 899extern struct kmem_cache *skbuff_head_cache; 900 901void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 902bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 903 bool *fragstolen, int *delta_truesize); 904 905struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 906 int node); 907struct sk_buff *__build_skb(void *data, unsigned int frag_size); 908struct sk_buff *build_skb(void *data, unsigned int frag_size); 909static inline struct sk_buff *alloc_skb(unsigned int size, 910 gfp_t priority) 911{ 912 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 913} 914 915struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 916 unsigned long data_len, 917 int max_page_order, 918 int *errcode, 919 gfp_t gfp_mask); 920 921/* Layout of fast clones : [skb1][skb2][fclone_ref] */ 922struct sk_buff_fclones { 923 struct sk_buff skb1; 924 925 struct sk_buff skb2; 926 927 atomic_t fclone_ref; 928}; 929 930/** 931 * skb_fclone_busy - check if fclone is busy 932 * @skb: buffer 933 * 934 * Returns true if skb is a fast clone, and its clone is not freed. 935 * Some drivers call skb_orphan() in their ndo_start_xmit(), 936 * so we also check that this didnt happen. 937 */ 938static inline bool skb_fclone_busy(const struct sock *sk, 939 const struct sk_buff *skb) 940{ 941 const struct sk_buff_fclones *fclones; 942 943 fclones = container_of(skb, struct sk_buff_fclones, skb1); 944 945 return skb->fclone == SKB_FCLONE_ORIG && 946 atomic_read(&fclones->fclone_ref) > 1 && 947 fclones->skb2.sk == sk; 948} 949 950static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 951 gfp_t priority) 952{ 953 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 954} 955 956struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 957static inline struct sk_buff *alloc_skb_head(gfp_t priority) 958{ 959 return __alloc_skb_head(priority, -1); 960} 961 962struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 963int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 964struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 965struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 966struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 967 gfp_t gfp_mask, bool fclone); 968static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 969 gfp_t gfp_mask) 970{ 971 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 972} 973 974int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 975struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 976 unsigned int headroom); 977struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 978 int newtailroom, gfp_t priority); 979int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 980 int offset, int len); 981int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, 982 int len); 983int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 984int skb_pad(struct sk_buff *skb, int pad); 985#define dev_kfree_skb(a) consume_skb(a) 986 987int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 988 int getfrag(void *from, char *to, int offset, 989 int len, int odd, struct sk_buff *skb), 990 void *from, int length); 991 992int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 993 int offset, size_t size); 994 995struct skb_seq_state { 996 __u32 lower_offset; 997 __u32 upper_offset; 998 __u32 frag_idx; 999 __u32 stepped_offset; 1000 struct sk_buff *root_skb; 1001 struct sk_buff *cur_skb; 1002 __u8 *frag_data; 1003}; 1004 1005void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1006 unsigned int to, struct skb_seq_state *st); 1007unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1008 struct skb_seq_state *st); 1009void skb_abort_seq_read(struct skb_seq_state *st); 1010 1011unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1012 unsigned int to, struct ts_config *config); 1013 1014/* 1015 * Packet hash types specify the type of hash in skb_set_hash. 1016 * 1017 * Hash types refer to the protocol layer addresses which are used to 1018 * construct a packet's hash. The hashes are used to differentiate or identify 1019 * flows of the protocol layer for the hash type. Hash types are either 1020 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1021 * 1022 * Properties of hashes: 1023 * 1024 * 1) Two packets in different flows have different hash values 1025 * 2) Two packets in the same flow should have the same hash value 1026 * 1027 * A hash at a higher layer is considered to be more specific. A driver should 1028 * set the most specific hash possible. 1029 * 1030 * A driver cannot indicate a more specific hash than the layer at which a hash 1031 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1032 * 1033 * A driver may indicate a hash level which is less specific than the 1034 * actual layer the hash was computed on. For instance, a hash computed 1035 * at L4 may be considered an L3 hash. This should only be done if the 1036 * driver can't unambiguously determine that the HW computed the hash at 1037 * the higher layer. Note that the "should" in the second property above 1038 * permits this. 1039 */ 1040enum pkt_hash_types { 1041 PKT_HASH_TYPE_NONE, /* Undefined type */ 1042 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1043 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1044 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1045}; 1046 1047static inline void skb_clear_hash(struct sk_buff *skb) 1048{ 1049 skb->hash = 0; 1050 skb->sw_hash = 0; 1051 skb->l4_hash = 0; 1052} 1053 1054static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1055{ 1056 if (!skb->l4_hash) 1057 skb_clear_hash(skb); 1058} 1059 1060static inline void 1061__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1062{ 1063 skb->l4_hash = is_l4; 1064 skb->sw_hash = is_sw; 1065 skb->hash = hash; 1066} 1067 1068static inline void 1069skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1070{ 1071 /* Used by drivers to set hash from HW */ 1072 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1073} 1074 1075static inline void 1076__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1077{ 1078 __skb_set_hash(skb, hash, true, is_l4); 1079} 1080 1081void __skb_get_hash(struct sk_buff *skb); 1082u32 __skb_get_hash_symmetric(struct sk_buff *skb); 1083u32 skb_get_poff(const struct sk_buff *skb); 1084u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1085 const struct flow_keys *keys, int hlen); 1086__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1087 void *data, int hlen_proto); 1088 1089static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1090 int thoff, u8 ip_proto) 1091{ 1092 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1093} 1094 1095void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1096 const struct flow_dissector_key *key, 1097 unsigned int key_count); 1098 1099bool __skb_flow_dissect(const struct sk_buff *skb, 1100 struct flow_dissector *flow_dissector, 1101 void *target_container, 1102 void *data, __be16 proto, int nhoff, int hlen, 1103 unsigned int flags); 1104 1105static inline bool skb_flow_dissect(const struct sk_buff *skb, 1106 struct flow_dissector *flow_dissector, 1107 void *target_container, unsigned int flags) 1108{ 1109 return __skb_flow_dissect(skb, flow_dissector, target_container, 1110 NULL, 0, 0, 0, flags); 1111} 1112 1113static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1114 struct flow_keys *flow, 1115 unsigned int flags) 1116{ 1117 memset(flow, 0, sizeof(*flow)); 1118 return __skb_flow_dissect(skb, &flow_keys_dissector, flow, 1119 NULL, 0, 0, 0, flags); 1120} 1121 1122static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow, 1123 void *data, __be16 proto, 1124 int nhoff, int hlen, 1125 unsigned int flags) 1126{ 1127 memset(flow, 0, sizeof(*flow)); 1128 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow, 1129 data, proto, nhoff, hlen, flags); 1130} 1131 1132static inline __u32 skb_get_hash(struct sk_buff *skb) 1133{ 1134 if (!skb->l4_hash && !skb->sw_hash) 1135 __skb_get_hash(skb); 1136 1137 return skb->hash; 1138} 1139 1140__u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6); 1141 1142static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1143{ 1144 if (!skb->l4_hash && !skb->sw_hash) { 1145 struct flow_keys keys; 1146 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1147 1148 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1149 } 1150 1151 return skb->hash; 1152} 1153 1154__u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl); 1155 1156static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4) 1157{ 1158 if (!skb->l4_hash && !skb->sw_hash) { 1159 struct flow_keys keys; 1160 __u32 hash = __get_hash_from_flowi4(fl4, &keys); 1161 1162 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1163 } 1164 1165 return skb->hash; 1166} 1167 1168__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 1169 1170static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1171{ 1172 return skb->hash; 1173} 1174 1175static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1176{ 1177 to->hash = from->hash; 1178 to->sw_hash = from->sw_hash; 1179 to->l4_hash = from->l4_hash; 1180}; 1181 1182#ifdef NET_SKBUFF_DATA_USES_OFFSET 1183static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1184{ 1185 return skb->head + skb->end; 1186} 1187 1188static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1189{ 1190 return skb->end; 1191} 1192#else 1193static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1194{ 1195 return skb->end; 1196} 1197 1198static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1199{ 1200 return skb->end - skb->head; 1201} 1202#endif 1203 1204/* Internal */ 1205#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1206 1207static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1208{ 1209 return &skb_shinfo(skb)->hwtstamps; 1210} 1211 1212/** 1213 * skb_queue_empty - check if a queue is empty 1214 * @list: queue head 1215 * 1216 * Returns true if the queue is empty, false otherwise. 1217 */ 1218static inline int skb_queue_empty(const struct sk_buff_head *list) 1219{ 1220 return list->next == (const struct sk_buff *) list; 1221} 1222 1223/** 1224 * skb_queue_is_last - check if skb is the last entry in the queue 1225 * @list: queue head 1226 * @skb: buffer 1227 * 1228 * Returns true if @skb is the last buffer on the list. 1229 */ 1230static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1231 const struct sk_buff *skb) 1232{ 1233 return skb->next == (const struct sk_buff *) list; 1234} 1235 1236/** 1237 * skb_queue_is_first - check if skb is the first entry in the queue 1238 * @list: queue head 1239 * @skb: buffer 1240 * 1241 * Returns true if @skb is the first buffer on the list. 1242 */ 1243static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1244 const struct sk_buff *skb) 1245{ 1246 return skb->prev == (const struct sk_buff *) list; 1247} 1248 1249/** 1250 * skb_queue_next - return the next packet in the queue 1251 * @list: queue head 1252 * @skb: current buffer 1253 * 1254 * Return the next packet in @list after @skb. It is only valid to 1255 * call this if skb_queue_is_last() evaluates to false. 1256 */ 1257static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1258 const struct sk_buff *skb) 1259{ 1260 /* This BUG_ON may seem severe, but if we just return then we 1261 * are going to dereference garbage. 1262 */ 1263 BUG_ON(skb_queue_is_last(list, skb)); 1264 return skb->next; 1265} 1266 1267/** 1268 * skb_queue_prev - return the prev packet in the queue 1269 * @list: queue head 1270 * @skb: current buffer 1271 * 1272 * Return the prev packet in @list before @skb. It is only valid to 1273 * call this if skb_queue_is_first() evaluates to false. 1274 */ 1275static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1276 const struct sk_buff *skb) 1277{ 1278 /* This BUG_ON may seem severe, but if we just return then we 1279 * are going to dereference garbage. 1280 */ 1281 BUG_ON(skb_queue_is_first(list, skb)); 1282 return skb->prev; 1283} 1284 1285/** 1286 * skb_get - reference buffer 1287 * @skb: buffer to reference 1288 * 1289 * Makes another reference to a socket buffer and returns a pointer 1290 * to the buffer. 1291 */ 1292static inline struct sk_buff *skb_get(struct sk_buff *skb) 1293{ 1294 atomic_inc(&skb->users); 1295 return skb; 1296} 1297 1298/* 1299 * If users == 1, we are the only owner and are can avoid redundant 1300 * atomic change. 1301 */ 1302 1303/** 1304 * skb_cloned - is the buffer a clone 1305 * @skb: buffer to check 1306 * 1307 * Returns true if the buffer was generated with skb_clone() and is 1308 * one of multiple shared copies of the buffer. Cloned buffers are 1309 * shared data so must not be written to under normal circumstances. 1310 */ 1311static inline int skb_cloned(const struct sk_buff *skb) 1312{ 1313 return skb->cloned && 1314 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1315} 1316 1317static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1318{ 1319 might_sleep_if(gfpflags_allow_blocking(pri)); 1320 1321 if (skb_cloned(skb)) 1322 return pskb_expand_head(skb, 0, 0, pri); 1323 1324 return 0; 1325} 1326 1327/** 1328 * skb_header_cloned - is the header a clone 1329 * @skb: buffer to check 1330 * 1331 * Returns true if modifying the header part of the buffer requires 1332 * the data to be copied. 1333 */ 1334static inline int skb_header_cloned(const struct sk_buff *skb) 1335{ 1336 int dataref; 1337 1338 if (!skb->cloned) 1339 return 0; 1340 1341 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1342 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1343 return dataref != 1; 1344} 1345 1346static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1347{ 1348 might_sleep_if(gfpflags_allow_blocking(pri)); 1349 1350 if (skb_header_cloned(skb)) 1351 return pskb_expand_head(skb, 0, 0, pri); 1352 1353 return 0; 1354} 1355 1356/** 1357 * skb_header_release - release reference to header 1358 * @skb: buffer to operate on 1359 * 1360 * Drop a reference to the header part of the buffer. This is done 1361 * by acquiring a payload reference. You must not read from the header 1362 * part of skb->data after this. 1363 * Note : Check if you can use __skb_header_release() instead. 1364 */ 1365static inline void skb_header_release(struct sk_buff *skb) 1366{ 1367 BUG_ON(skb->nohdr); 1368 skb->nohdr = 1; 1369 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 1370} 1371 1372/** 1373 * __skb_header_release - release reference to header 1374 * @skb: buffer to operate on 1375 * 1376 * Variant of skb_header_release() assuming skb is private to caller. 1377 * We can avoid one atomic operation. 1378 */ 1379static inline void __skb_header_release(struct sk_buff *skb) 1380{ 1381 skb->nohdr = 1; 1382 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1383} 1384 1385 1386/** 1387 * skb_shared - is the buffer shared 1388 * @skb: buffer to check 1389 * 1390 * Returns true if more than one person has a reference to this 1391 * buffer. 1392 */ 1393static inline int skb_shared(const struct sk_buff *skb) 1394{ 1395 return atomic_read(&skb->users) != 1; 1396} 1397 1398/** 1399 * skb_share_check - check if buffer is shared and if so clone it 1400 * @skb: buffer to check 1401 * @pri: priority for memory allocation 1402 * 1403 * If the buffer is shared the buffer is cloned and the old copy 1404 * drops a reference. A new clone with a single reference is returned. 1405 * If the buffer is not shared the original buffer is returned. When 1406 * being called from interrupt status or with spinlocks held pri must 1407 * be GFP_ATOMIC. 1408 * 1409 * NULL is returned on a memory allocation failure. 1410 */ 1411static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1412{ 1413 might_sleep_if(gfpflags_allow_blocking(pri)); 1414 if (skb_shared(skb)) { 1415 struct sk_buff *nskb = skb_clone(skb, pri); 1416 1417 if (likely(nskb)) 1418 consume_skb(skb); 1419 else 1420 kfree_skb(skb); 1421 skb = nskb; 1422 } 1423 return skb; 1424} 1425 1426/* 1427 * Copy shared buffers into a new sk_buff. We effectively do COW on 1428 * packets to handle cases where we have a local reader and forward 1429 * and a couple of other messy ones. The normal one is tcpdumping 1430 * a packet thats being forwarded. 1431 */ 1432 1433/** 1434 * skb_unshare - make a copy of a shared buffer 1435 * @skb: buffer to check 1436 * @pri: priority for memory allocation 1437 * 1438 * If the socket buffer is a clone then this function creates a new 1439 * copy of the data, drops a reference count on the old copy and returns 1440 * the new copy with the reference count at 1. If the buffer is not a clone 1441 * the original buffer is returned. When called with a spinlock held or 1442 * from interrupt state @pri must be %GFP_ATOMIC 1443 * 1444 * %NULL is returned on a memory allocation failure. 1445 */ 1446static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1447 gfp_t pri) 1448{ 1449 might_sleep_if(gfpflags_allow_blocking(pri)); 1450 if (skb_cloned(skb)) { 1451 struct sk_buff *nskb = skb_copy(skb, pri); 1452 1453 /* Free our shared copy */ 1454 if (likely(nskb)) 1455 consume_skb(skb); 1456 else 1457 kfree_skb(skb); 1458 skb = nskb; 1459 } 1460 return skb; 1461} 1462 1463/** 1464 * skb_peek - peek at the head of an &sk_buff_head 1465 * @list_: list to peek at 1466 * 1467 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1468 * be careful with this one. A peek leaves the buffer on the 1469 * list and someone else may run off with it. You must hold 1470 * the appropriate locks or have a private queue to do this. 1471 * 1472 * Returns %NULL for an empty list or a pointer to the head element. 1473 * The reference count is not incremented and the reference is therefore 1474 * volatile. Use with caution. 1475 */ 1476static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1477{ 1478 struct sk_buff *skb = list_->next; 1479 1480 if (skb == (struct sk_buff *)list_) 1481 skb = NULL; 1482 return skb; 1483} 1484 1485/** 1486 * skb_peek_next - peek skb following the given one from a queue 1487 * @skb: skb to start from 1488 * @list_: list to peek at 1489 * 1490 * Returns %NULL when the end of the list is met or a pointer to the 1491 * next element. The reference count is not incremented and the 1492 * reference is therefore volatile. Use with caution. 1493 */ 1494static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1495 const struct sk_buff_head *list_) 1496{ 1497 struct sk_buff *next = skb->next; 1498 1499 if (next == (struct sk_buff *)list_) 1500 next = NULL; 1501 return next; 1502} 1503 1504/** 1505 * skb_peek_tail - peek at the tail of an &sk_buff_head 1506 * @list_: list to peek at 1507 * 1508 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1509 * be careful with this one. A peek leaves the buffer on the 1510 * list and someone else may run off with it. You must hold 1511 * the appropriate locks or have a private queue to do this. 1512 * 1513 * Returns %NULL for an empty list or a pointer to the tail element. 1514 * The reference count is not incremented and the reference is therefore 1515 * volatile. Use with caution. 1516 */ 1517static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1518{ 1519 struct sk_buff *skb = list_->prev; 1520 1521 if (skb == (struct sk_buff *)list_) 1522 skb = NULL; 1523 return skb; 1524 1525} 1526 1527/** 1528 * skb_queue_len - get queue length 1529 * @list_: list to measure 1530 * 1531 * Return the length of an &sk_buff queue. 1532 */ 1533static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1534{ 1535 return list_->qlen; 1536} 1537 1538/** 1539 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1540 * @list: queue to initialize 1541 * 1542 * This initializes only the list and queue length aspects of 1543 * an sk_buff_head object. This allows to initialize the list 1544 * aspects of an sk_buff_head without reinitializing things like 1545 * the spinlock. It can also be used for on-stack sk_buff_head 1546 * objects where the spinlock is known to not be used. 1547 */ 1548static inline void __skb_queue_head_init(struct sk_buff_head *list) 1549{ 1550 list->prev = list->next = (struct sk_buff *)list; 1551 list->qlen = 0; 1552} 1553 1554/* 1555 * This function creates a split out lock class for each invocation; 1556 * this is needed for now since a whole lot of users of the skb-queue 1557 * infrastructure in drivers have different locking usage (in hardirq) 1558 * than the networking core (in softirq only). In the long run either the 1559 * network layer or drivers should need annotation to consolidate the 1560 * main types of usage into 3 classes. 1561 */ 1562static inline void skb_queue_head_init(struct sk_buff_head *list) 1563{ 1564 spin_lock_init(&list->lock); 1565 __skb_queue_head_init(list); 1566} 1567 1568static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1569 struct lock_class_key *class) 1570{ 1571 skb_queue_head_init(list); 1572 lockdep_set_class(&list->lock, class); 1573} 1574 1575/* 1576 * Insert an sk_buff on a list. 1577 * 1578 * The "__skb_xxxx()" functions are the non-atomic ones that 1579 * can only be called with interrupts disabled. 1580 */ 1581void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1582 struct sk_buff_head *list); 1583static inline void __skb_insert(struct sk_buff *newsk, 1584 struct sk_buff *prev, struct sk_buff *next, 1585 struct sk_buff_head *list) 1586{ 1587 newsk->next = next; 1588 newsk->prev = prev; 1589 next->prev = prev->next = newsk; 1590 list->qlen++; 1591} 1592 1593static inline void __skb_queue_splice(const struct sk_buff_head *list, 1594 struct sk_buff *prev, 1595 struct sk_buff *next) 1596{ 1597 struct sk_buff *first = list->next; 1598 struct sk_buff *last = list->prev; 1599 1600 first->prev = prev; 1601 prev->next = first; 1602 1603 last->next = next; 1604 next->prev = last; 1605} 1606 1607/** 1608 * skb_queue_splice - join two skb lists, this is designed for stacks 1609 * @list: the new list to add 1610 * @head: the place to add it in the first list 1611 */ 1612static inline void skb_queue_splice(const struct sk_buff_head *list, 1613 struct sk_buff_head *head) 1614{ 1615 if (!skb_queue_empty(list)) { 1616 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1617 head->qlen += list->qlen; 1618 } 1619} 1620 1621/** 1622 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1623 * @list: the new list to add 1624 * @head: the place to add it in the first list 1625 * 1626 * The list at @list is reinitialised 1627 */ 1628static inline void skb_queue_splice_init(struct sk_buff_head *list, 1629 struct sk_buff_head *head) 1630{ 1631 if (!skb_queue_empty(list)) { 1632 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1633 head->qlen += list->qlen; 1634 __skb_queue_head_init(list); 1635 } 1636} 1637 1638/** 1639 * skb_queue_splice_tail - join two skb lists, each list being a queue 1640 * @list: the new list to add 1641 * @head: the place to add it in the first list 1642 */ 1643static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1644 struct sk_buff_head *head) 1645{ 1646 if (!skb_queue_empty(list)) { 1647 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1648 head->qlen += list->qlen; 1649 } 1650} 1651 1652/** 1653 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1654 * @list: the new list to add 1655 * @head: the place to add it in the first list 1656 * 1657 * Each of the lists is a queue. 1658 * The list at @list is reinitialised 1659 */ 1660static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1661 struct sk_buff_head *head) 1662{ 1663 if (!skb_queue_empty(list)) { 1664 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1665 head->qlen += list->qlen; 1666 __skb_queue_head_init(list); 1667 } 1668} 1669 1670/** 1671 * __skb_queue_after - queue a buffer at the list head 1672 * @list: list to use 1673 * @prev: place after this buffer 1674 * @newsk: buffer to queue 1675 * 1676 * Queue a buffer int the middle of a list. This function takes no locks 1677 * and you must therefore hold required locks before calling it. 1678 * 1679 * A buffer cannot be placed on two lists at the same time. 1680 */ 1681static inline void __skb_queue_after(struct sk_buff_head *list, 1682 struct sk_buff *prev, 1683 struct sk_buff *newsk) 1684{ 1685 __skb_insert(newsk, prev, prev->next, list); 1686} 1687 1688void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1689 struct sk_buff_head *list); 1690 1691static inline void __skb_queue_before(struct sk_buff_head *list, 1692 struct sk_buff *next, 1693 struct sk_buff *newsk) 1694{ 1695 __skb_insert(newsk, next->prev, next, list); 1696} 1697 1698/** 1699 * __skb_queue_head - queue a buffer at the list head 1700 * @list: list to use 1701 * @newsk: buffer to queue 1702 * 1703 * Queue a buffer at the start of a list. This function takes no locks 1704 * and you must therefore hold required locks before calling it. 1705 * 1706 * A buffer cannot be placed on two lists at the same time. 1707 */ 1708void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1709static inline void __skb_queue_head(struct sk_buff_head *list, 1710 struct sk_buff *newsk) 1711{ 1712 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1713} 1714 1715/** 1716 * __skb_queue_tail - queue a buffer at the list tail 1717 * @list: list to use 1718 * @newsk: buffer to queue 1719 * 1720 * Queue a buffer at the end of a list. This function takes no locks 1721 * and you must therefore hold required locks before calling it. 1722 * 1723 * A buffer cannot be placed on two lists at the same time. 1724 */ 1725void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1726static inline void __skb_queue_tail(struct sk_buff_head *list, 1727 struct sk_buff *newsk) 1728{ 1729 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1730} 1731 1732/* 1733 * remove sk_buff from list. _Must_ be called atomically, and with 1734 * the list known.. 1735 */ 1736void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1737static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1738{ 1739 struct sk_buff *next, *prev; 1740 1741 list->qlen--; 1742 next = skb->next; 1743 prev = skb->prev; 1744 skb->next = skb->prev = NULL; 1745 next->prev = prev; 1746 prev->next = next; 1747} 1748 1749/** 1750 * __skb_dequeue - remove from the head of the queue 1751 * @list: list to dequeue from 1752 * 1753 * Remove the head of the list. This function does not take any locks 1754 * so must be used with appropriate locks held only. The head item is 1755 * returned or %NULL if the list is empty. 1756 */ 1757struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1758static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1759{ 1760 struct sk_buff *skb = skb_peek(list); 1761 if (skb) 1762 __skb_unlink(skb, list); 1763 return skb; 1764} 1765 1766/** 1767 * __skb_dequeue_tail - remove from the tail of the queue 1768 * @list: list to dequeue from 1769 * 1770 * Remove the tail of the list. This function does not take any locks 1771 * so must be used with appropriate locks held only. The tail item is 1772 * returned or %NULL if the list is empty. 1773 */ 1774struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1775static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1776{ 1777 struct sk_buff *skb = skb_peek_tail(list); 1778 if (skb) 1779 __skb_unlink(skb, list); 1780 return skb; 1781} 1782 1783 1784static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1785{ 1786 return skb->data_len; 1787} 1788 1789static inline unsigned int skb_headlen(const struct sk_buff *skb) 1790{ 1791 return skb->len - skb->data_len; 1792} 1793 1794static inline int skb_pagelen(const struct sk_buff *skb) 1795{ 1796 int i, len = 0; 1797 1798 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1799 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1800 return len + skb_headlen(skb); 1801} 1802 1803/** 1804 * __skb_fill_page_desc - initialise a paged fragment in an skb 1805 * @skb: buffer containing fragment to be initialised 1806 * @i: paged fragment index to initialise 1807 * @page: the page to use for this fragment 1808 * @off: the offset to the data with @page 1809 * @size: the length of the data 1810 * 1811 * Initialises the @i'th fragment of @skb to point to &size bytes at 1812 * offset @off within @page. 1813 * 1814 * Does not take any additional reference on the fragment. 1815 */ 1816static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1817 struct page *page, int off, int size) 1818{ 1819 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1820 1821 /* 1822 * Propagate page pfmemalloc to the skb if we can. The problem is 1823 * that not all callers have unique ownership of the page but rely 1824 * on page_is_pfmemalloc doing the right thing(tm). 1825 */ 1826 frag->page.p = page; 1827 frag->page_offset = off; 1828 skb_frag_size_set(frag, size); 1829 1830 page = compound_head(page); 1831 if (page_is_pfmemalloc(page)) 1832 skb->pfmemalloc = true; 1833} 1834 1835/** 1836 * skb_fill_page_desc - initialise a paged fragment in an skb 1837 * @skb: buffer containing fragment to be initialised 1838 * @i: paged fragment index to initialise 1839 * @page: the page to use for this fragment 1840 * @off: the offset to the data with @page 1841 * @size: the length of the data 1842 * 1843 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1844 * @skb to point to @size bytes at offset @off within @page. In 1845 * addition updates @skb such that @i is the last fragment. 1846 * 1847 * Does not take any additional reference on the fragment. 1848 */ 1849static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1850 struct page *page, int off, int size) 1851{ 1852 __skb_fill_page_desc(skb, i, page, off, size); 1853 skb_shinfo(skb)->nr_frags = i + 1; 1854} 1855 1856void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1857 int size, unsigned int truesize); 1858 1859void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1860 unsigned int truesize); 1861 1862#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1863#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1864#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1865 1866#ifdef NET_SKBUFF_DATA_USES_OFFSET 1867static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1868{ 1869 return skb->head + skb->tail; 1870} 1871 1872static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1873{ 1874 skb->tail = skb->data - skb->head; 1875} 1876 1877static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1878{ 1879 skb_reset_tail_pointer(skb); 1880 skb->tail += offset; 1881} 1882 1883#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1884static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1885{ 1886 return skb->tail; 1887} 1888 1889static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1890{ 1891 skb->tail = skb->data; 1892} 1893 1894static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1895{ 1896 skb->tail = skb->data + offset; 1897} 1898 1899#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1900 1901/* 1902 * Add data to an sk_buff 1903 */ 1904unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1905unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1906static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1907{ 1908 unsigned char *tmp = skb_tail_pointer(skb); 1909 SKB_LINEAR_ASSERT(skb); 1910 skb->tail += len; 1911 skb->len += len; 1912 return tmp; 1913} 1914 1915unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1916static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1917{ 1918 skb->data -= len; 1919 skb->len += len; 1920 return skb->data; 1921} 1922 1923unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1924static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1925{ 1926 skb->len -= len; 1927 BUG_ON(skb->len < skb->data_len); 1928 return skb->data += len; 1929} 1930 1931static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1932{ 1933 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1934} 1935 1936unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1937 1938static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1939{ 1940 if (len > skb_headlen(skb) && 1941 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1942 return NULL; 1943 skb->len -= len; 1944 return skb->data += len; 1945} 1946 1947static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1948{ 1949 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1950} 1951 1952static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1953{ 1954 if (likely(len <= skb_headlen(skb))) 1955 return 1; 1956 if (unlikely(len > skb->len)) 1957 return 0; 1958 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1959} 1960 1961/** 1962 * skb_headroom - bytes at buffer head 1963 * @skb: buffer to check 1964 * 1965 * Return the number of bytes of free space at the head of an &sk_buff. 1966 */ 1967static inline unsigned int skb_headroom(const struct sk_buff *skb) 1968{ 1969 return skb->data - skb->head; 1970} 1971 1972/** 1973 * skb_tailroom - bytes at buffer end 1974 * @skb: buffer to check 1975 * 1976 * Return the number of bytes of free space at the tail of an sk_buff 1977 */ 1978static inline int skb_tailroom(const struct sk_buff *skb) 1979{ 1980 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1981} 1982 1983/** 1984 * skb_availroom - bytes at buffer end 1985 * @skb: buffer to check 1986 * 1987 * Return the number of bytes of free space at the tail of an sk_buff 1988 * allocated by sk_stream_alloc() 1989 */ 1990static inline int skb_availroom(const struct sk_buff *skb) 1991{ 1992 if (skb_is_nonlinear(skb)) 1993 return 0; 1994 1995 return skb->end - skb->tail - skb->reserved_tailroom; 1996} 1997 1998/** 1999 * skb_reserve - adjust headroom 2000 * @skb: buffer to alter 2001 * @len: bytes to move 2002 * 2003 * Increase the headroom of an empty &sk_buff by reducing the tail 2004 * room. This is only allowed for an empty buffer. 2005 */ 2006static inline void skb_reserve(struct sk_buff *skb, int len) 2007{ 2008 skb->data += len; 2009 skb->tail += len; 2010} 2011 2012/** 2013 * skb_tailroom_reserve - adjust reserved_tailroom 2014 * @skb: buffer to alter 2015 * @mtu: maximum amount of headlen permitted 2016 * @needed_tailroom: minimum amount of reserved_tailroom 2017 * 2018 * Set reserved_tailroom so that headlen can be as large as possible but 2019 * not larger than mtu and tailroom cannot be smaller than 2020 * needed_tailroom. 2021 * The required headroom should already have been reserved before using 2022 * this function. 2023 */ 2024static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2025 unsigned int needed_tailroom) 2026{ 2027 SKB_LINEAR_ASSERT(skb); 2028 if (mtu < skb_tailroom(skb) - needed_tailroom) 2029 /* use at most mtu */ 2030 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2031 else 2032 /* use up to all available space */ 2033 skb->reserved_tailroom = needed_tailroom; 2034} 2035 2036#define ENCAP_TYPE_ETHER 0 2037#define ENCAP_TYPE_IPPROTO 1 2038 2039static inline void skb_set_inner_protocol(struct sk_buff *skb, 2040 __be16 protocol) 2041{ 2042 skb->inner_protocol = protocol; 2043 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2044} 2045 2046static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2047 __u8 ipproto) 2048{ 2049 skb->inner_ipproto = ipproto; 2050 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2051} 2052 2053static inline void skb_reset_inner_headers(struct sk_buff *skb) 2054{ 2055 skb->inner_mac_header = skb->mac_header; 2056 skb->inner_network_header = skb->network_header; 2057 skb->inner_transport_header = skb->transport_header; 2058} 2059 2060static inline void skb_reset_mac_len(struct sk_buff *skb) 2061{ 2062 skb->mac_len = skb->network_header - skb->mac_header; 2063} 2064 2065static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2066 *skb) 2067{ 2068 return skb->head + skb->inner_transport_header; 2069} 2070 2071static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2072{ 2073 return skb_inner_transport_header(skb) - skb->data; 2074} 2075 2076static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2077{ 2078 skb->inner_transport_header = skb->data - skb->head; 2079} 2080 2081static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2082 const int offset) 2083{ 2084 skb_reset_inner_transport_header(skb); 2085 skb->inner_transport_header += offset; 2086} 2087 2088static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2089{ 2090 return skb->head + skb->inner_network_header; 2091} 2092 2093static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2094{ 2095 skb->inner_network_header = skb->data - skb->head; 2096} 2097 2098static inline void skb_set_inner_network_header(struct sk_buff *skb, 2099 const int offset) 2100{ 2101 skb_reset_inner_network_header(skb); 2102 skb->inner_network_header += offset; 2103} 2104 2105static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2106{ 2107 return skb->head + skb->inner_mac_header; 2108} 2109 2110static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2111{ 2112 skb->inner_mac_header = skb->data - skb->head; 2113} 2114 2115static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2116 const int offset) 2117{ 2118 skb_reset_inner_mac_header(skb); 2119 skb->inner_mac_header += offset; 2120} 2121static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2122{ 2123 return skb->transport_header != (typeof(skb->transport_header))~0U; 2124} 2125 2126static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2127{ 2128 return skb->head + skb->transport_header; 2129} 2130 2131static inline void skb_reset_transport_header(struct sk_buff *skb) 2132{ 2133 skb->transport_header = skb->data - skb->head; 2134} 2135 2136static inline void skb_set_transport_header(struct sk_buff *skb, 2137 const int offset) 2138{ 2139 skb_reset_transport_header(skb); 2140 skb->transport_header += offset; 2141} 2142 2143static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2144{ 2145 return skb->head + skb->network_header; 2146} 2147 2148static inline void skb_reset_network_header(struct sk_buff *skb) 2149{ 2150 skb->network_header = skb->data - skb->head; 2151} 2152 2153static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2154{ 2155 skb_reset_network_header(skb); 2156 skb->network_header += offset; 2157} 2158 2159static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2160{ 2161 return skb->head + skb->mac_header; 2162} 2163 2164static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2165{ 2166 return skb->mac_header != (typeof(skb->mac_header))~0U; 2167} 2168 2169static inline void skb_reset_mac_header(struct sk_buff *skb) 2170{ 2171 skb->mac_header = skb->data - skb->head; 2172} 2173 2174static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2175{ 2176 skb_reset_mac_header(skb); 2177 skb->mac_header += offset; 2178} 2179 2180static inline void skb_pop_mac_header(struct sk_buff *skb) 2181{ 2182 skb->mac_header = skb->network_header; 2183} 2184 2185static inline void skb_probe_transport_header(struct sk_buff *skb, 2186 const int offset_hint) 2187{ 2188 struct flow_keys keys; 2189 2190 if (skb_transport_header_was_set(skb)) 2191 return; 2192 else if (skb_flow_dissect_flow_keys(skb, &keys, 0)) 2193 skb_set_transport_header(skb, keys.control.thoff); 2194 else 2195 skb_set_transport_header(skb, offset_hint); 2196} 2197 2198static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2199{ 2200 if (skb_mac_header_was_set(skb)) { 2201 const unsigned char *old_mac = skb_mac_header(skb); 2202 2203 skb_set_mac_header(skb, -skb->mac_len); 2204 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2205 } 2206} 2207 2208static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2209{ 2210 return skb->csum_start - skb_headroom(skb); 2211} 2212 2213static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2214{ 2215 return skb->head + skb->csum_start; 2216} 2217 2218static inline int skb_transport_offset(const struct sk_buff *skb) 2219{ 2220 return skb_transport_header(skb) - skb->data; 2221} 2222 2223static inline u32 skb_network_header_len(const struct sk_buff *skb) 2224{ 2225 return skb->transport_header - skb->network_header; 2226} 2227 2228static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2229{ 2230 return skb->inner_transport_header - skb->inner_network_header; 2231} 2232 2233static inline int skb_network_offset(const struct sk_buff *skb) 2234{ 2235 return skb_network_header(skb) - skb->data; 2236} 2237 2238static inline int skb_inner_network_offset(const struct sk_buff *skb) 2239{ 2240 return skb_inner_network_header(skb) - skb->data; 2241} 2242 2243static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2244{ 2245 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2246} 2247 2248/* 2249 * CPUs often take a performance hit when accessing unaligned memory 2250 * locations. The actual performance hit varies, it can be small if the 2251 * hardware handles it or large if we have to take an exception and fix it 2252 * in software. 2253 * 2254 * Since an ethernet header is 14 bytes network drivers often end up with 2255 * the IP header at an unaligned offset. The IP header can be aligned by 2256 * shifting the start of the packet by 2 bytes. Drivers should do this 2257 * with: 2258 * 2259 * skb_reserve(skb, NET_IP_ALIGN); 2260 * 2261 * The downside to this alignment of the IP header is that the DMA is now 2262 * unaligned. On some architectures the cost of an unaligned DMA is high 2263 * and this cost outweighs the gains made by aligning the IP header. 2264 * 2265 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2266 * to be overridden. 2267 */ 2268#ifndef NET_IP_ALIGN 2269#define NET_IP_ALIGN 2 2270#endif 2271 2272/* 2273 * The networking layer reserves some headroom in skb data (via 2274 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2275 * the header has to grow. In the default case, if the header has to grow 2276 * 32 bytes or less we avoid the reallocation. 2277 * 2278 * Unfortunately this headroom changes the DMA alignment of the resulting 2279 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2280 * on some architectures. An architecture can override this value, 2281 * perhaps setting it to a cacheline in size (since that will maintain 2282 * cacheline alignment of the DMA). It must be a power of 2. 2283 * 2284 * Various parts of the networking layer expect at least 32 bytes of 2285 * headroom, you should not reduce this. 2286 * 2287 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2288 * to reduce average number of cache lines per packet. 2289 * get_rps_cpus() for example only access one 64 bytes aligned block : 2290 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2291 */ 2292#ifndef NET_SKB_PAD 2293#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2294#endif 2295 2296int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2297 2298static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2299{ 2300 if (unlikely(skb_is_nonlinear(skb))) { 2301 WARN_ON(1); 2302 return; 2303 } 2304 skb->len = len; 2305 skb_set_tail_pointer(skb, len); 2306} 2307 2308void skb_trim(struct sk_buff *skb, unsigned int len); 2309 2310static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2311{ 2312 if (skb->data_len) 2313 return ___pskb_trim(skb, len); 2314 __skb_trim(skb, len); 2315 return 0; 2316} 2317 2318static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2319{ 2320 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2321} 2322 2323/** 2324 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2325 * @skb: buffer to alter 2326 * @len: new length 2327 * 2328 * This is identical to pskb_trim except that the caller knows that 2329 * the skb is not cloned so we should never get an error due to out- 2330 * of-memory. 2331 */ 2332static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2333{ 2334 int err = pskb_trim(skb, len); 2335 BUG_ON(err); 2336} 2337 2338/** 2339 * skb_orphan - orphan a buffer 2340 * @skb: buffer to orphan 2341 * 2342 * If a buffer currently has an owner then we call the owner's 2343 * destructor function and make the @skb unowned. The buffer continues 2344 * to exist but is no longer charged to its former owner. 2345 */ 2346static inline void skb_orphan(struct sk_buff *skb) 2347{ 2348 if (skb->destructor) { 2349 skb->destructor(skb); 2350 skb->destructor = NULL; 2351 skb->sk = NULL; 2352 } else { 2353 BUG_ON(skb->sk); 2354 } 2355} 2356 2357/** 2358 * skb_orphan_frags - orphan the frags contained in a buffer 2359 * @skb: buffer to orphan frags from 2360 * @gfp_mask: allocation mask for replacement pages 2361 * 2362 * For each frag in the SKB which needs a destructor (i.e. has an 2363 * owner) create a copy of that frag and release the original 2364 * page by calling the destructor. 2365 */ 2366static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2367{ 2368 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 2369 return 0; 2370 return skb_copy_ubufs(skb, gfp_mask); 2371} 2372 2373/** 2374 * __skb_queue_purge - empty a list 2375 * @list: list to empty 2376 * 2377 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2378 * the list and one reference dropped. This function does not take the 2379 * list lock and the caller must hold the relevant locks to use it. 2380 */ 2381void skb_queue_purge(struct sk_buff_head *list); 2382static inline void __skb_queue_purge(struct sk_buff_head *list) 2383{ 2384 struct sk_buff *skb; 2385 while ((skb = __skb_dequeue(list)) != NULL) 2386 kfree_skb(skb); 2387} 2388 2389void *netdev_alloc_frag(unsigned int fragsz); 2390 2391struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2392 gfp_t gfp_mask); 2393 2394/** 2395 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2396 * @dev: network device to receive on 2397 * @length: length to allocate 2398 * 2399 * Allocate a new &sk_buff and assign it a usage count of one. The 2400 * buffer has unspecified headroom built in. Users should allocate 2401 * the headroom they think they need without accounting for the 2402 * built in space. The built in space is used for optimisations. 2403 * 2404 * %NULL is returned if there is no free memory. Although this function 2405 * allocates memory it can be called from an interrupt. 2406 */ 2407static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2408 unsigned int length) 2409{ 2410 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2411} 2412 2413/* legacy helper around __netdev_alloc_skb() */ 2414static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2415 gfp_t gfp_mask) 2416{ 2417 return __netdev_alloc_skb(NULL, length, gfp_mask); 2418} 2419 2420/* legacy helper around netdev_alloc_skb() */ 2421static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2422{ 2423 return netdev_alloc_skb(NULL, length); 2424} 2425 2426 2427static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2428 unsigned int length, gfp_t gfp) 2429{ 2430 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2431 2432 if (NET_IP_ALIGN && skb) 2433 skb_reserve(skb, NET_IP_ALIGN); 2434 return skb; 2435} 2436 2437static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2438 unsigned int length) 2439{ 2440 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2441} 2442 2443static inline void skb_free_frag(void *addr) 2444{ 2445 __free_page_frag(addr); 2446} 2447 2448void *napi_alloc_frag(unsigned int fragsz); 2449struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2450 unsigned int length, gfp_t gfp_mask); 2451static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2452 unsigned int length) 2453{ 2454 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2455} 2456void napi_consume_skb(struct sk_buff *skb, int budget); 2457 2458void __kfree_skb_flush(void); 2459void __kfree_skb_defer(struct sk_buff *skb); 2460 2461/** 2462 * __dev_alloc_pages - allocate page for network Rx 2463 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2464 * @order: size of the allocation 2465 * 2466 * Allocate a new page. 2467 * 2468 * %NULL is returned if there is no free memory. 2469*/ 2470static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2471 unsigned int order) 2472{ 2473 /* This piece of code contains several assumptions. 2474 * 1. This is for device Rx, therefor a cold page is preferred. 2475 * 2. The expectation is the user wants a compound page. 2476 * 3. If requesting a order 0 page it will not be compound 2477 * due to the check to see if order has a value in prep_new_page 2478 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2479 * code in gfp_to_alloc_flags that should be enforcing this. 2480 */ 2481 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC; 2482 2483 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2484} 2485 2486static inline struct page *dev_alloc_pages(unsigned int order) 2487{ 2488 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2489} 2490 2491/** 2492 * __dev_alloc_page - allocate a page for network Rx 2493 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2494 * 2495 * Allocate a new page. 2496 * 2497 * %NULL is returned if there is no free memory. 2498 */ 2499static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2500{ 2501 return __dev_alloc_pages(gfp_mask, 0); 2502} 2503 2504static inline struct page *dev_alloc_page(void) 2505{ 2506 return dev_alloc_pages(0); 2507} 2508 2509/** 2510 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2511 * @page: The page that was allocated from skb_alloc_page 2512 * @skb: The skb that may need pfmemalloc set 2513 */ 2514static inline void skb_propagate_pfmemalloc(struct page *page, 2515 struct sk_buff *skb) 2516{ 2517 if (page_is_pfmemalloc(page)) 2518 skb->pfmemalloc = true; 2519} 2520 2521/** 2522 * skb_frag_page - retrieve the page referred to by a paged fragment 2523 * @frag: the paged fragment 2524 * 2525 * Returns the &struct page associated with @frag. 2526 */ 2527static inline struct page *skb_frag_page(const skb_frag_t *frag) 2528{ 2529 return frag->page.p; 2530} 2531 2532/** 2533 * __skb_frag_ref - take an addition reference on a paged fragment. 2534 * @frag: the paged fragment 2535 * 2536 * Takes an additional reference on the paged fragment @frag. 2537 */ 2538static inline void __skb_frag_ref(skb_frag_t *frag) 2539{ 2540 get_page(skb_frag_page(frag)); 2541} 2542 2543/** 2544 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2545 * @skb: the buffer 2546 * @f: the fragment offset. 2547 * 2548 * Takes an additional reference on the @f'th paged fragment of @skb. 2549 */ 2550static inline void skb_frag_ref(struct sk_buff *skb, int f) 2551{ 2552 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2553} 2554 2555/** 2556 * __skb_frag_unref - release a reference on a paged fragment. 2557 * @frag: the paged fragment 2558 * 2559 * Releases a reference on the paged fragment @frag. 2560 */ 2561static inline void __skb_frag_unref(skb_frag_t *frag) 2562{ 2563 put_page(skb_frag_page(frag)); 2564} 2565 2566/** 2567 * skb_frag_unref - release a reference on a paged fragment of an skb. 2568 * @skb: the buffer 2569 * @f: the fragment offset 2570 * 2571 * Releases a reference on the @f'th paged fragment of @skb. 2572 */ 2573static inline void skb_frag_unref(struct sk_buff *skb, int f) 2574{ 2575 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2576} 2577 2578/** 2579 * skb_frag_address - gets the address of the data contained in a paged fragment 2580 * @frag: the paged fragment buffer 2581 * 2582 * Returns the address of the data within @frag. The page must already 2583 * be mapped. 2584 */ 2585static inline void *skb_frag_address(const skb_frag_t *frag) 2586{ 2587 return page_address(skb_frag_page(frag)) + frag->page_offset; 2588} 2589 2590/** 2591 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2592 * @frag: the paged fragment buffer 2593 * 2594 * Returns the address of the data within @frag. Checks that the page 2595 * is mapped and returns %NULL otherwise. 2596 */ 2597static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2598{ 2599 void *ptr = page_address(skb_frag_page(frag)); 2600 if (unlikely(!ptr)) 2601 return NULL; 2602 2603 return ptr + frag->page_offset; 2604} 2605 2606/** 2607 * __skb_frag_set_page - sets the page contained in a paged fragment 2608 * @frag: the paged fragment 2609 * @page: the page to set 2610 * 2611 * Sets the fragment @frag to contain @page. 2612 */ 2613static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2614{ 2615 frag->page.p = page; 2616} 2617 2618/** 2619 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2620 * @skb: the buffer 2621 * @f: the fragment offset 2622 * @page: the page to set 2623 * 2624 * Sets the @f'th fragment of @skb to contain @page. 2625 */ 2626static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2627 struct page *page) 2628{ 2629 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2630} 2631 2632bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2633 2634/** 2635 * skb_frag_dma_map - maps a paged fragment via the DMA API 2636 * @dev: the device to map the fragment to 2637 * @frag: the paged fragment to map 2638 * @offset: the offset within the fragment (starting at the 2639 * fragment's own offset) 2640 * @size: the number of bytes to map 2641 * @dir: the direction of the mapping (%PCI_DMA_*) 2642 * 2643 * Maps the page associated with @frag to @device. 2644 */ 2645static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2646 const skb_frag_t *frag, 2647 size_t offset, size_t size, 2648 enum dma_data_direction dir) 2649{ 2650 return dma_map_page(dev, skb_frag_page(frag), 2651 frag->page_offset + offset, size, dir); 2652} 2653 2654static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2655 gfp_t gfp_mask) 2656{ 2657 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2658} 2659 2660 2661static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2662 gfp_t gfp_mask) 2663{ 2664 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2665} 2666 2667 2668/** 2669 * skb_clone_writable - is the header of a clone writable 2670 * @skb: buffer to check 2671 * @len: length up to which to write 2672 * 2673 * Returns true if modifying the header part of the cloned buffer 2674 * does not requires the data to be copied. 2675 */ 2676static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2677{ 2678 return !skb_header_cloned(skb) && 2679 skb_headroom(skb) + len <= skb->hdr_len; 2680} 2681 2682static inline int skb_try_make_writable(struct sk_buff *skb, 2683 unsigned int write_len) 2684{ 2685 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 2686 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2687} 2688 2689static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2690 int cloned) 2691{ 2692 int delta = 0; 2693 2694 if (headroom > skb_headroom(skb)) 2695 delta = headroom - skb_headroom(skb); 2696 2697 if (delta || cloned) 2698 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2699 GFP_ATOMIC); 2700 return 0; 2701} 2702 2703/** 2704 * skb_cow - copy header of skb when it is required 2705 * @skb: buffer to cow 2706 * @headroom: needed headroom 2707 * 2708 * If the skb passed lacks sufficient headroom or its data part 2709 * is shared, data is reallocated. If reallocation fails, an error 2710 * is returned and original skb is not changed. 2711 * 2712 * The result is skb with writable area skb->head...skb->tail 2713 * and at least @headroom of space at head. 2714 */ 2715static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2716{ 2717 return __skb_cow(skb, headroom, skb_cloned(skb)); 2718} 2719 2720/** 2721 * skb_cow_head - skb_cow but only making the head writable 2722 * @skb: buffer to cow 2723 * @headroom: needed headroom 2724 * 2725 * This function is identical to skb_cow except that we replace the 2726 * skb_cloned check by skb_header_cloned. It should be used when 2727 * you only need to push on some header and do not need to modify 2728 * the data. 2729 */ 2730static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2731{ 2732 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2733} 2734 2735/** 2736 * skb_padto - pad an skbuff up to a minimal size 2737 * @skb: buffer to pad 2738 * @len: minimal length 2739 * 2740 * Pads up a buffer to ensure the trailing bytes exist and are 2741 * blanked. If the buffer already contains sufficient data it 2742 * is untouched. Otherwise it is extended. Returns zero on 2743 * success. The skb is freed on error. 2744 */ 2745static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2746{ 2747 unsigned int size = skb->len; 2748 if (likely(size >= len)) 2749 return 0; 2750 return skb_pad(skb, len - size); 2751} 2752 2753/** 2754 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2755 * @skb: buffer to pad 2756 * @len: minimal length 2757 * 2758 * Pads up a buffer to ensure the trailing bytes exist and are 2759 * blanked. If the buffer already contains sufficient data it 2760 * is untouched. Otherwise it is extended. Returns zero on 2761 * success. The skb is freed on error. 2762 */ 2763static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 2764{ 2765 unsigned int size = skb->len; 2766 2767 if (unlikely(size < len)) { 2768 len -= size; 2769 if (skb_pad(skb, len)) 2770 return -ENOMEM; 2771 __skb_put(skb, len); 2772 } 2773 return 0; 2774} 2775 2776static inline int skb_add_data(struct sk_buff *skb, 2777 struct iov_iter *from, int copy) 2778{ 2779 const int off = skb->len; 2780 2781 if (skb->ip_summed == CHECKSUM_NONE) { 2782 __wsum csum = 0; 2783 if (csum_and_copy_from_iter(skb_put(skb, copy), copy, 2784 &csum, from) == copy) { 2785 skb->csum = csum_block_add(skb->csum, csum, off); 2786 return 0; 2787 } 2788 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy) 2789 return 0; 2790 2791 __skb_trim(skb, off); 2792 return -EFAULT; 2793} 2794 2795static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2796 const struct page *page, int off) 2797{ 2798 if (i) { 2799 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2800 2801 return page == skb_frag_page(frag) && 2802 off == frag->page_offset + skb_frag_size(frag); 2803 } 2804 return false; 2805} 2806 2807static inline int __skb_linearize(struct sk_buff *skb) 2808{ 2809 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2810} 2811 2812/** 2813 * skb_linearize - convert paged skb to linear one 2814 * @skb: buffer to linarize 2815 * 2816 * If there is no free memory -ENOMEM is returned, otherwise zero 2817 * is returned and the old skb data released. 2818 */ 2819static inline int skb_linearize(struct sk_buff *skb) 2820{ 2821 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2822} 2823 2824/** 2825 * skb_has_shared_frag - can any frag be overwritten 2826 * @skb: buffer to test 2827 * 2828 * Return true if the skb has at least one frag that might be modified 2829 * by an external entity (as in vmsplice()/sendfile()) 2830 */ 2831static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2832{ 2833 return skb_is_nonlinear(skb) && 2834 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2835} 2836 2837/** 2838 * skb_linearize_cow - make sure skb is linear and writable 2839 * @skb: buffer to process 2840 * 2841 * If there is no free memory -ENOMEM is returned, otherwise zero 2842 * is returned and the old skb data released. 2843 */ 2844static inline int skb_linearize_cow(struct sk_buff *skb) 2845{ 2846 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2847 __skb_linearize(skb) : 0; 2848} 2849 2850static __always_inline void 2851__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 2852 unsigned int off) 2853{ 2854 if (skb->ip_summed == CHECKSUM_COMPLETE) 2855 skb->csum = csum_block_sub(skb->csum, 2856 csum_partial(start, len, 0), off); 2857 else if (skb->ip_summed == CHECKSUM_PARTIAL && 2858 skb_checksum_start_offset(skb) < 0) 2859 skb->ip_summed = CHECKSUM_NONE; 2860} 2861 2862/** 2863 * skb_postpull_rcsum - update checksum for received skb after pull 2864 * @skb: buffer to update 2865 * @start: start of data before pull 2866 * @len: length of data pulled 2867 * 2868 * After doing a pull on a received packet, you need to call this to 2869 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2870 * CHECKSUM_NONE so that it can be recomputed from scratch. 2871 */ 2872static inline void skb_postpull_rcsum(struct sk_buff *skb, 2873 const void *start, unsigned int len) 2874{ 2875 __skb_postpull_rcsum(skb, start, len, 0); 2876} 2877 2878static __always_inline void 2879__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 2880 unsigned int off) 2881{ 2882 if (skb->ip_summed == CHECKSUM_COMPLETE) 2883 skb->csum = csum_block_add(skb->csum, 2884 csum_partial(start, len, 0), off); 2885} 2886 2887/** 2888 * skb_postpush_rcsum - update checksum for received skb after push 2889 * @skb: buffer to update 2890 * @start: start of data after push 2891 * @len: length of data pushed 2892 * 2893 * After doing a push on a received packet, you need to call this to 2894 * update the CHECKSUM_COMPLETE checksum. 2895 */ 2896static inline void skb_postpush_rcsum(struct sk_buff *skb, 2897 const void *start, unsigned int len) 2898{ 2899 __skb_postpush_rcsum(skb, start, len, 0); 2900} 2901 2902unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2903 2904/** 2905 * skb_push_rcsum - push skb and update receive checksum 2906 * @skb: buffer to update 2907 * @len: length of data pulled 2908 * 2909 * This function performs an skb_push on the packet and updates 2910 * the CHECKSUM_COMPLETE checksum. It should be used on 2911 * receive path processing instead of skb_push unless you know 2912 * that the checksum difference is zero (e.g., a valid IP header) 2913 * or you are setting ip_summed to CHECKSUM_NONE. 2914 */ 2915static inline unsigned char *skb_push_rcsum(struct sk_buff *skb, 2916 unsigned int len) 2917{ 2918 skb_push(skb, len); 2919 skb_postpush_rcsum(skb, skb->data, len); 2920 return skb->data; 2921} 2922 2923/** 2924 * pskb_trim_rcsum - trim received skb and update checksum 2925 * @skb: buffer to trim 2926 * @len: new length 2927 * 2928 * This is exactly the same as pskb_trim except that it ensures the 2929 * checksum of received packets are still valid after the operation. 2930 */ 2931 2932static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2933{ 2934 if (likely(len >= skb->len)) 2935 return 0; 2936 if (skb->ip_summed == CHECKSUM_COMPLETE) 2937 skb->ip_summed = CHECKSUM_NONE; 2938 return __pskb_trim(skb, len); 2939} 2940 2941#define skb_queue_walk(queue, skb) \ 2942 for (skb = (queue)->next; \ 2943 skb != (struct sk_buff *)(queue); \ 2944 skb = skb->next) 2945 2946#define skb_queue_walk_safe(queue, skb, tmp) \ 2947 for (skb = (queue)->next, tmp = skb->next; \ 2948 skb != (struct sk_buff *)(queue); \ 2949 skb = tmp, tmp = skb->next) 2950 2951#define skb_queue_walk_from(queue, skb) \ 2952 for (; skb != (struct sk_buff *)(queue); \ 2953 skb = skb->next) 2954 2955#define skb_queue_walk_from_safe(queue, skb, tmp) \ 2956 for (tmp = skb->next; \ 2957 skb != (struct sk_buff *)(queue); \ 2958 skb = tmp, tmp = skb->next) 2959 2960#define skb_queue_reverse_walk(queue, skb) \ 2961 for (skb = (queue)->prev; \ 2962 skb != (struct sk_buff *)(queue); \ 2963 skb = skb->prev) 2964 2965#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2966 for (skb = (queue)->prev, tmp = skb->prev; \ 2967 skb != (struct sk_buff *)(queue); \ 2968 skb = tmp, tmp = skb->prev) 2969 2970#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2971 for (tmp = skb->prev; \ 2972 skb != (struct sk_buff *)(queue); \ 2973 skb = tmp, tmp = skb->prev) 2974 2975static inline bool skb_has_frag_list(const struct sk_buff *skb) 2976{ 2977 return skb_shinfo(skb)->frag_list != NULL; 2978} 2979 2980static inline void skb_frag_list_init(struct sk_buff *skb) 2981{ 2982 skb_shinfo(skb)->frag_list = NULL; 2983} 2984 2985#define skb_walk_frags(skb, iter) \ 2986 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2987 2988 2989int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p, 2990 const struct sk_buff *skb); 2991struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags, 2992 int *peeked, int *off, int *err, 2993 struct sk_buff **last); 2994struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2995 int *peeked, int *off, int *err); 2996struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 2997 int *err); 2998unsigned int datagram_poll(struct file *file, struct socket *sock, 2999 struct poll_table_struct *wait); 3000int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3001 struct iov_iter *to, int size); 3002static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3003 struct msghdr *msg, int size) 3004{ 3005 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3006} 3007int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3008 struct msghdr *msg); 3009int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3010 struct iov_iter *from, int len); 3011int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3012void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3013void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3014static inline void skb_free_datagram_locked(struct sock *sk, 3015 struct sk_buff *skb) 3016{ 3017 __skb_free_datagram_locked(sk, skb, 0); 3018} 3019int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3020int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3021int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3022__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3023 int len, __wsum csum); 3024ssize_t skb_socket_splice(struct sock *sk, 3025 struct pipe_inode_info *pipe, 3026 struct splice_pipe_desc *spd); 3027int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3028 struct pipe_inode_info *pipe, unsigned int len, 3029 unsigned int flags, 3030 ssize_t (*splice_cb)(struct sock *, 3031 struct pipe_inode_info *, 3032 struct splice_pipe_desc *)); 3033void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3034unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3035int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3036 int len, int hlen); 3037void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3038int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3039void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3040unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); 3041bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu); 3042struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3043struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3044int skb_ensure_writable(struct sk_buff *skb, int write_len); 3045int skb_vlan_pop(struct sk_buff *skb); 3046int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3047struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3048 gfp_t gfp); 3049 3050static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3051{ 3052 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3053} 3054 3055static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3056{ 3057 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3058} 3059 3060struct skb_checksum_ops { 3061 __wsum (*update)(const void *mem, int len, __wsum wsum); 3062 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3063}; 3064 3065__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3066 __wsum csum, const struct skb_checksum_ops *ops); 3067__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3068 __wsum csum); 3069 3070static inline void * __must_check 3071__skb_header_pointer(const struct sk_buff *skb, int offset, 3072 int len, void *data, int hlen, void *buffer) 3073{ 3074 if (hlen - offset >= len) 3075 return data + offset; 3076 3077 if (!skb || 3078 skb_copy_bits(skb, offset, buffer, len) < 0) 3079 return NULL; 3080 3081 return buffer; 3082} 3083 3084static inline void * __must_check 3085skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3086{ 3087 return __skb_header_pointer(skb, offset, len, skb->data, 3088 skb_headlen(skb), buffer); 3089} 3090 3091/** 3092 * skb_needs_linearize - check if we need to linearize a given skb 3093 * depending on the given device features. 3094 * @skb: socket buffer to check 3095 * @features: net device features 3096 * 3097 * Returns true if either: 3098 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3099 * 2. skb is fragmented and the device does not support SG. 3100 */ 3101static inline bool skb_needs_linearize(struct sk_buff *skb, 3102 netdev_features_t features) 3103{ 3104 return skb_is_nonlinear(skb) && 3105 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3106 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3107} 3108 3109static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3110 void *to, 3111 const unsigned int len) 3112{ 3113 memcpy(to, skb->data, len); 3114} 3115 3116static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3117 const int offset, void *to, 3118 const unsigned int len) 3119{ 3120 memcpy(to, skb->data + offset, len); 3121} 3122 3123static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3124 const void *from, 3125 const unsigned int len) 3126{ 3127 memcpy(skb->data, from, len); 3128} 3129 3130static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3131 const int offset, 3132 const void *from, 3133 const unsigned int len) 3134{ 3135 memcpy(skb->data + offset, from, len); 3136} 3137 3138void skb_init(void); 3139 3140static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3141{ 3142 return skb->tstamp; 3143} 3144 3145/** 3146 * skb_get_timestamp - get timestamp from a skb 3147 * @skb: skb to get stamp from 3148 * @stamp: pointer to struct timeval to store stamp in 3149 * 3150 * Timestamps are stored in the skb as offsets to a base timestamp. 3151 * This function converts the offset back to a struct timeval and stores 3152 * it in stamp. 3153 */ 3154static inline void skb_get_timestamp(const struct sk_buff *skb, 3155 struct timeval *stamp) 3156{ 3157 *stamp = ktime_to_timeval(skb->tstamp); 3158} 3159 3160static inline void skb_get_timestampns(const struct sk_buff *skb, 3161 struct timespec *stamp) 3162{ 3163 *stamp = ktime_to_timespec(skb->tstamp); 3164} 3165 3166static inline void __net_timestamp(struct sk_buff *skb) 3167{ 3168 skb->tstamp = ktime_get_real(); 3169} 3170 3171static inline ktime_t net_timedelta(ktime_t t) 3172{ 3173 return ktime_sub(ktime_get_real(), t); 3174} 3175 3176static inline ktime_t net_invalid_timestamp(void) 3177{ 3178 return ktime_set(0, 0); 3179} 3180 3181struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3182 3183#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3184 3185void skb_clone_tx_timestamp(struct sk_buff *skb); 3186bool skb_defer_rx_timestamp(struct sk_buff *skb); 3187 3188#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3189 3190static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3191{ 3192} 3193 3194static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3195{ 3196 return false; 3197} 3198 3199#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3200 3201/** 3202 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3203 * 3204 * PHY drivers may accept clones of transmitted packets for 3205 * timestamping via their phy_driver.txtstamp method. These drivers 3206 * must call this function to return the skb back to the stack with a 3207 * timestamp. 3208 * 3209 * @skb: clone of the the original outgoing packet 3210 * @hwtstamps: hardware time stamps 3211 * 3212 */ 3213void skb_complete_tx_timestamp(struct sk_buff *skb, 3214 struct skb_shared_hwtstamps *hwtstamps); 3215 3216void __skb_tstamp_tx(struct sk_buff *orig_skb, 3217 struct skb_shared_hwtstamps *hwtstamps, 3218 struct sock *sk, int tstype); 3219 3220/** 3221 * skb_tstamp_tx - queue clone of skb with send time stamps 3222 * @orig_skb: the original outgoing packet 3223 * @hwtstamps: hardware time stamps, may be NULL if not available 3224 * 3225 * If the skb has a socket associated, then this function clones the 3226 * skb (thus sharing the actual data and optional structures), stores 3227 * the optional hardware time stamping information (if non NULL) or 3228 * generates a software time stamp (otherwise), then queues the clone 3229 * to the error queue of the socket. Errors are silently ignored. 3230 */ 3231void skb_tstamp_tx(struct sk_buff *orig_skb, 3232 struct skb_shared_hwtstamps *hwtstamps); 3233 3234static inline void sw_tx_timestamp(struct sk_buff *skb) 3235{ 3236 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 3237 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 3238 skb_tstamp_tx(skb, NULL); 3239} 3240 3241/** 3242 * skb_tx_timestamp() - Driver hook for transmit timestamping 3243 * 3244 * Ethernet MAC Drivers should call this function in their hard_xmit() 3245 * function immediately before giving the sk_buff to the MAC hardware. 3246 * 3247 * Specifically, one should make absolutely sure that this function is 3248 * called before TX completion of this packet can trigger. Otherwise 3249 * the packet could potentially already be freed. 3250 * 3251 * @skb: A socket buffer. 3252 */ 3253static inline void skb_tx_timestamp(struct sk_buff *skb) 3254{ 3255 skb_clone_tx_timestamp(skb); 3256 sw_tx_timestamp(skb); 3257} 3258 3259/** 3260 * skb_complete_wifi_ack - deliver skb with wifi status 3261 * 3262 * @skb: the original outgoing packet 3263 * @acked: ack status 3264 * 3265 */ 3266void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3267 3268__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3269__sum16 __skb_checksum_complete(struct sk_buff *skb); 3270 3271static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3272{ 3273 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3274 skb->csum_valid || 3275 (skb->ip_summed == CHECKSUM_PARTIAL && 3276 skb_checksum_start_offset(skb) >= 0)); 3277} 3278 3279/** 3280 * skb_checksum_complete - Calculate checksum of an entire packet 3281 * @skb: packet to process 3282 * 3283 * This function calculates the checksum over the entire packet plus 3284 * the value of skb->csum. The latter can be used to supply the 3285 * checksum of a pseudo header as used by TCP/UDP. It returns the 3286 * checksum. 3287 * 3288 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3289 * this function can be used to verify that checksum on received 3290 * packets. In that case the function should return zero if the 3291 * checksum is correct. In particular, this function will return zero 3292 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3293 * hardware has already verified the correctness of the checksum. 3294 */ 3295static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3296{ 3297 return skb_csum_unnecessary(skb) ? 3298 0 : __skb_checksum_complete(skb); 3299} 3300 3301static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3302{ 3303 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3304 if (skb->csum_level == 0) 3305 skb->ip_summed = CHECKSUM_NONE; 3306 else 3307 skb->csum_level--; 3308 } 3309} 3310 3311static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3312{ 3313 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3314 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3315 skb->csum_level++; 3316 } else if (skb->ip_summed == CHECKSUM_NONE) { 3317 skb->ip_summed = CHECKSUM_UNNECESSARY; 3318 skb->csum_level = 0; 3319 } 3320} 3321 3322static inline void __skb_mark_checksum_bad(struct sk_buff *skb) 3323{ 3324 /* Mark current checksum as bad (typically called from GRO 3325 * path). In the case that ip_summed is CHECKSUM_NONE 3326 * this must be the first checksum encountered in the packet. 3327 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first 3328 * checksum after the last one validated. For UDP, a zero 3329 * checksum can not be marked as bad. 3330 */ 3331 3332 if (skb->ip_summed == CHECKSUM_NONE || 3333 skb->ip_summed == CHECKSUM_UNNECESSARY) 3334 skb->csum_bad = 1; 3335} 3336 3337/* Check if we need to perform checksum complete validation. 3338 * 3339 * Returns true if checksum complete is needed, false otherwise 3340 * (either checksum is unnecessary or zero checksum is allowed). 3341 */ 3342static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3343 bool zero_okay, 3344 __sum16 check) 3345{ 3346 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3347 skb->csum_valid = 1; 3348 __skb_decr_checksum_unnecessary(skb); 3349 return false; 3350 } 3351 3352 return true; 3353} 3354 3355/* For small packets <= CHECKSUM_BREAK peform checksum complete directly 3356 * in checksum_init. 3357 */ 3358#define CHECKSUM_BREAK 76 3359 3360/* Unset checksum-complete 3361 * 3362 * Unset checksum complete can be done when packet is being modified 3363 * (uncompressed for instance) and checksum-complete value is 3364 * invalidated. 3365 */ 3366static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3367{ 3368 if (skb->ip_summed == CHECKSUM_COMPLETE) 3369 skb->ip_summed = CHECKSUM_NONE; 3370} 3371 3372/* Validate (init) checksum based on checksum complete. 3373 * 3374 * Return values: 3375 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3376 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3377 * checksum is stored in skb->csum for use in __skb_checksum_complete 3378 * non-zero: value of invalid checksum 3379 * 3380 */ 3381static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3382 bool complete, 3383 __wsum psum) 3384{ 3385 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3386 if (!csum_fold(csum_add(psum, skb->csum))) { 3387 skb->csum_valid = 1; 3388 return 0; 3389 } 3390 } else if (skb->csum_bad) { 3391 /* ip_summed == CHECKSUM_NONE in this case */ 3392 return (__force __sum16)1; 3393 } 3394 3395 skb->csum = psum; 3396 3397 if (complete || skb->len <= CHECKSUM_BREAK) { 3398 __sum16 csum; 3399 3400 csum = __skb_checksum_complete(skb); 3401 skb->csum_valid = !csum; 3402 return csum; 3403 } 3404 3405 return 0; 3406} 3407 3408static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3409{ 3410 return 0; 3411} 3412 3413/* Perform checksum validate (init). Note that this is a macro since we only 3414 * want to calculate the pseudo header which is an input function if necessary. 3415 * First we try to validate without any computation (checksum unnecessary) and 3416 * then calculate based on checksum complete calling the function to compute 3417 * pseudo header. 3418 * 3419 * Return values: 3420 * 0: checksum is validated or try to in skb_checksum_complete 3421 * non-zero: value of invalid checksum 3422 */ 3423#define __skb_checksum_validate(skb, proto, complete, \ 3424 zero_okay, check, compute_pseudo) \ 3425({ \ 3426 __sum16 __ret = 0; \ 3427 skb->csum_valid = 0; \ 3428 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3429 __ret = __skb_checksum_validate_complete(skb, \ 3430 complete, compute_pseudo(skb, proto)); \ 3431 __ret; \ 3432}) 3433 3434#define skb_checksum_init(skb, proto, compute_pseudo) \ 3435 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3436 3437#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3438 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3439 3440#define skb_checksum_validate(skb, proto, compute_pseudo) \ 3441 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3442 3443#define skb_checksum_validate_zero_check(skb, proto, check, \ 3444 compute_pseudo) \ 3445 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3446 3447#define skb_checksum_simple_validate(skb) \ 3448 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3449 3450static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3451{ 3452 return (skb->ip_summed == CHECKSUM_NONE && 3453 skb->csum_valid && !skb->csum_bad); 3454} 3455 3456static inline void __skb_checksum_convert(struct sk_buff *skb, 3457 __sum16 check, __wsum pseudo) 3458{ 3459 skb->csum = ~pseudo; 3460 skb->ip_summed = CHECKSUM_COMPLETE; 3461} 3462 3463#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3464do { \ 3465 if (__skb_checksum_convert_check(skb)) \ 3466 __skb_checksum_convert(skb, check, \ 3467 compute_pseudo(skb, proto)); \ 3468} while (0) 3469 3470static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3471 u16 start, u16 offset) 3472{ 3473 skb->ip_summed = CHECKSUM_PARTIAL; 3474 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3475 skb->csum_offset = offset - start; 3476} 3477 3478/* Update skbuf and packet to reflect the remote checksum offload operation. 3479 * When called, ptr indicates the starting point for skb->csum when 3480 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3481 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3482 */ 3483static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3484 int start, int offset, bool nopartial) 3485{ 3486 __wsum delta; 3487 3488 if (!nopartial) { 3489 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3490 return; 3491 } 3492 3493 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3494 __skb_checksum_complete(skb); 3495 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3496 } 3497 3498 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3499 3500 /* Adjust skb->csum since we changed the packet */ 3501 skb->csum = csum_add(skb->csum, delta); 3502} 3503 3504#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3505void nf_conntrack_destroy(struct nf_conntrack *nfct); 3506static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3507{ 3508 if (nfct && atomic_dec_and_test(&nfct->use)) 3509 nf_conntrack_destroy(nfct); 3510} 3511static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3512{ 3513 if (nfct) 3514 atomic_inc(&nfct->use); 3515} 3516#endif 3517#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3518static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3519{ 3520 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 3521 kfree(nf_bridge); 3522} 3523static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3524{ 3525 if (nf_bridge) 3526 atomic_inc(&nf_bridge->use); 3527} 3528#endif /* CONFIG_BRIDGE_NETFILTER */ 3529static inline void nf_reset(struct sk_buff *skb) 3530{ 3531#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3532 nf_conntrack_put(skb->nfct); 3533 skb->nfct = NULL; 3534#endif 3535#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3536 nf_bridge_put(skb->nf_bridge); 3537 skb->nf_bridge = NULL; 3538#endif 3539} 3540 3541static inline void nf_reset_trace(struct sk_buff *skb) 3542{ 3543#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3544 skb->nf_trace = 0; 3545#endif 3546} 3547 3548/* Note: This doesn't put any conntrack and bridge info in dst. */ 3549static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3550 bool copy) 3551{ 3552#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3553 dst->nfct = src->nfct; 3554 nf_conntrack_get(src->nfct); 3555 if (copy) 3556 dst->nfctinfo = src->nfctinfo; 3557#endif 3558#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3559 dst->nf_bridge = src->nf_bridge; 3560 nf_bridge_get(src->nf_bridge); 3561#endif 3562#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3563 if (copy) 3564 dst->nf_trace = src->nf_trace; 3565#endif 3566} 3567 3568static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3569{ 3570#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3571 nf_conntrack_put(dst->nfct); 3572#endif 3573#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3574 nf_bridge_put(dst->nf_bridge); 3575#endif 3576 __nf_copy(dst, src, true); 3577} 3578 3579#ifdef CONFIG_NETWORK_SECMARK 3580static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3581{ 3582 to->secmark = from->secmark; 3583} 3584 3585static inline void skb_init_secmark(struct sk_buff *skb) 3586{ 3587 skb->secmark = 0; 3588} 3589#else 3590static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3591{ } 3592 3593static inline void skb_init_secmark(struct sk_buff *skb) 3594{ } 3595#endif 3596 3597static inline bool skb_irq_freeable(const struct sk_buff *skb) 3598{ 3599 return !skb->destructor && 3600#if IS_ENABLED(CONFIG_XFRM) 3601 !skb->sp && 3602#endif 3603#if IS_ENABLED(CONFIG_NF_CONNTRACK) 3604 !skb->nfct && 3605#endif 3606 !skb->_skb_refdst && 3607 !skb_has_frag_list(skb); 3608} 3609 3610static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3611{ 3612 skb->queue_mapping = queue_mapping; 3613} 3614 3615static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3616{ 3617 return skb->queue_mapping; 3618} 3619 3620static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3621{ 3622 to->queue_mapping = from->queue_mapping; 3623} 3624 3625static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3626{ 3627 skb->queue_mapping = rx_queue + 1; 3628} 3629 3630static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3631{ 3632 return skb->queue_mapping - 1; 3633} 3634 3635static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3636{ 3637 return skb->queue_mapping != 0; 3638} 3639 3640static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3641{ 3642#ifdef CONFIG_XFRM 3643 return skb->sp; 3644#else 3645 return NULL; 3646#endif 3647} 3648 3649/* Keeps track of mac header offset relative to skb->head. 3650 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3651 * For non-tunnel skb it points to skb_mac_header() and for 3652 * tunnel skb it points to outer mac header. 3653 * Keeps track of level of encapsulation of network headers. 3654 */ 3655struct skb_gso_cb { 3656 union { 3657 int mac_offset; 3658 int data_offset; 3659 }; 3660 int encap_level; 3661 __wsum csum; 3662 __u16 csum_start; 3663}; 3664#define SKB_SGO_CB_OFFSET 32 3665#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 3666 3667static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3668{ 3669 return (skb_mac_header(inner_skb) - inner_skb->head) - 3670 SKB_GSO_CB(inner_skb)->mac_offset; 3671} 3672 3673static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3674{ 3675 int new_headroom, headroom; 3676 int ret; 3677 3678 headroom = skb_headroom(skb); 3679 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 3680 if (ret) 3681 return ret; 3682 3683 new_headroom = skb_headroom(skb); 3684 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 3685 return 0; 3686} 3687 3688static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 3689{ 3690 /* Do not update partial checksums if remote checksum is enabled. */ 3691 if (skb->remcsum_offload) 3692 return; 3693 3694 SKB_GSO_CB(skb)->csum = res; 3695 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 3696} 3697 3698/* Compute the checksum for a gso segment. First compute the checksum value 3699 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 3700 * then add in skb->csum (checksum from csum_start to end of packet). 3701 * skb->csum and csum_start are then updated to reflect the checksum of the 3702 * resultant packet starting from the transport header-- the resultant checksum 3703 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 3704 * header. 3705 */ 3706static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 3707{ 3708 unsigned char *csum_start = skb_transport_header(skb); 3709 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 3710 __wsum partial = SKB_GSO_CB(skb)->csum; 3711 3712 SKB_GSO_CB(skb)->csum = res; 3713 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 3714 3715 return csum_fold(csum_partial(csum_start, plen, partial)); 3716} 3717 3718static inline bool skb_is_gso(const struct sk_buff *skb) 3719{ 3720 return skb_shinfo(skb)->gso_size; 3721} 3722 3723/* Note: Should be called only if skb_is_gso(skb) is true */ 3724static inline bool skb_is_gso_v6(const struct sk_buff *skb) 3725{ 3726 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 3727} 3728 3729void __skb_warn_lro_forwarding(const struct sk_buff *skb); 3730 3731static inline bool skb_warn_if_lro(const struct sk_buff *skb) 3732{ 3733 /* LRO sets gso_size but not gso_type, whereas if GSO is really 3734 * wanted then gso_type will be set. */ 3735 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3736 3737 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 3738 unlikely(shinfo->gso_type == 0)) { 3739 __skb_warn_lro_forwarding(skb); 3740 return true; 3741 } 3742 return false; 3743} 3744 3745static inline void skb_forward_csum(struct sk_buff *skb) 3746{ 3747 /* Unfortunately we don't support this one. Any brave souls? */ 3748 if (skb->ip_summed == CHECKSUM_COMPLETE) 3749 skb->ip_summed = CHECKSUM_NONE; 3750} 3751 3752/** 3753 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 3754 * @skb: skb to check 3755 * 3756 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 3757 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 3758 * use this helper, to document places where we make this assertion. 3759 */ 3760static inline void skb_checksum_none_assert(const struct sk_buff *skb) 3761{ 3762#ifdef DEBUG 3763 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 3764#endif 3765} 3766 3767bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 3768 3769int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 3770struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 3771 unsigned int transport_len, 3772 __sum16(*skb_chkf)(struct sk_buff *skb)); 3773 3774/** 3775 * skb_head_is_locked - Determine if the skb->head is locked down 3776 * @skb: skb to check 3777 * 3778 * The head on skbs build around a head frag can be removed if they are 3779 * not cloned. This function returns true if the skb head is locked down 3780 * due to either being allocated via kmalloc, or by being a clone with 3781 * multiple references to the head. 3782 */ 3783static inline bool skb_head_is_locked(const struct sk_buff *skb) 3784{ 3785 return !skb->head_frag || skb_cloned(skb); 3786} 3787 3788/** 3789 * skb_gso_network_seglen - Return length of individual segments of a gso packet 3790 * 3791 * @skb: GSO skb 3792 * 3793 * skb_gso_network_seglen is used to determine the real size of the 3794 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 3795 * 3796 * The MAC/L2 header is not accounted for. 3797 */ 3798static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 3799{ 3800 unsigned int hdr_len = skb_transport_header(skb) - 3801 skb_network_header(skb); 3802 return hdr_len + skb_gso_transport_seglen(skb); 3803} 3804 3805/* Local Checksum Offload. 3806 * Compute outer checksum based on the assumption that the 3807 * inner checksum will be offloaded later. 3808 * See Documentation/networking/checksum-offloads.txt for 3809 * explanation of how this works. 3810 * Fill in outer checksum adjustment (e.g. with sum of outer 3811 * pseudo-header) before calling. 3812 * Also ensure that inner checksum is in linear data area. 3813 */ 3814static inline __wsum lco_csum(struct sk_buff *skb) 3815{ 3816 unsigned char *csum_start = skb_checksum_start(skb); 3817 unsigned char *l4_hdr = skb_transport_header(skb); 3818 __wsum partial; 3819 3820 /* Start with complement of inner checksum adjustment */ 3821 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 3822 skb->csum_offset)); 3823 3824 /* Add in checksum of our headers (incl. outer checksum 3825 * adjustment filled in by caller) and return result. 3826 */ 3827 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 3828} 3829 3830#endif /* __KERNEL__ */ 3831#endif /* _LINUX_SKBUFF_H */