at v4.8 102 kB view raw
1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4#include <uapi/linux/sched.h> 5 6#include <linux/sched/prio.h> 7 8 9struct sched_param { 10 int sched_priority; 11}; 12 13#include <asm/param.h> /* for HZ */ 14 15#include <linux/capability.h> 16#include <linux/threads.h> 17#include <linux/kernel.h> 18#include <linux/types.h> 19#include <linux/timex.h> 20#include <linux/jiffies.h> 21#include <linux/plist.h> 22#include <linux/rbtree.h> 23#include <linux/thread_info.h> 24#include <linux/cpumask.h> 25#include <linux/errno.h> 26#include <linux/nodemask.h> 27#include <linux/mm_types.h> 28#include <linux/preempt.h> 29 30#include <asm/page.h> 31#include <asm/ptrace.h> 32#include <linux/cputime.h> 33 34#include <linux/smp.h> 35#include <linux/sem.h> 36#include <linux/shm.h> 37#include <linux/signal.h> 38#include <linux/compiler.h> 39#include <linux/completion.h> 40#include <linux/pid.h> 41#include <linux/percpu.h> 42#include <linux/topology.h> 43#include <linux/seccomp.h> 44#include <linux/rcupdate.h> 45#include <linux/rculist.h> 46#include <linux/rtmutex.h> 47 48#include <linux/time.h> 49#include <linux/param.h> 50#include <linux/resource.h> 51#include <linux/timer.h> 52#include <linux/hrtimer.h> 53#include <linux/kcov.h> 54#include <linux/task_io_accounting.h> 55#include <linux/latencytop.h> 56#include <linux/cred.h> 57#include <linux/llist.h> 58#include <linux/uidgid.h> 59#include <linux/gfp.h> 60#include <linux/magic.h> 61#include <linux/cgroup-defs.h> 62 63#include <asm/processor.h> 64 65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 66 67/* 68 * Extended scheduling parameters data structure. 69 * 70 * This is needed because the original struct sched_param can not be 71 * altered without introducing ABI issues with legacy applications 72 * (e.g., in sched_getparam()). 73 * 74 * However, the possibility of specifying more than just a priority for 75 * the tasks may be useful for a wide variety of application fields, e.g., 76 * multimedia, streaming, automation and control, and many others. 77 * 78 * This variant (sched_attr) is meant at describing a so-called 79 * sporadic time-constrained task. In such model a task is specified by: 80 * - the activation period or minimum instance inter-arrival time; 81 * - the maximum (or average, depending on the actual scheduling 82 * discipline) computation time of all instances, a.k.a. runtime; 83 * - the deadline (relative to the actual activation time) of each 84 * instance. 85 * Very briefly, a periodic (sporadic) task asks for the execution of 86 * some specific computation --which is typically called an instance-- 87 * (at most) every period. Moreover, each instance typically lasts no more 88 * than the runtime and must be completed by time instant t equal to 89 * the instance activation time + the deadline. 90 * 91 * This is reflected by the actual fields of the sched_attr structure: 92 * 93 * @size size of the structure, for fwd/bwd compat. 94 * 95 * @sched_policy task's scheduling policy 96 * @sched_flags for customizing the scheduler behaviour 97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 98 * @sched_priority task's static priority (SCHED_FIFO/RR) 99 * @sched_deadline representative of the task's deadline 100 * @sched_runtime representative of the task's runtime 101 * @sched_period representative of the task's period 102 * 103 * Given this task model, there are a multiplicity of scheduling algorithms 104 * and policies, that can be used to ensure all the tasks will make their 105 * timing constraints. 106 * 107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 108 * only user of this new interface. More information about the algorithm 109 * available in the scheduling class file or in Documentation/. 110 */ 111struct sched_attr { 112 u32 size; 113 114 u32 sched_policy; 115 u64 sched_flags; 116 117 /* SCHED_NORMAL, SCHED_BATCH */ 118 s32 sched_nice; 119 120 /* SCHED_FIFO, SCHED_RR */ 121 u32 sched_priority; 122 123 /* SCHED_DEADLINE */ 124 u64 sched_runtime; 125 u64 sched_deadline; 126 u64 sched_period; 127}; 128 129struct futex_pi_state; 130struct robust_list_head; 131struct bio_list; 132struct fs_struct; 133struct perf_event_context; 134struct blk_plug; 135struct filename; 136struct nameidata; 137 138#define VMACACHE_BITS 2 139#define VMACACHE_SIZE (1U << VMACACHE_BITS) 140#define VMACACHE_MASK (VMACACHE_SIZE - 1) 141 142/* 143 * These are the constant used to fake the fixed-point load-average 144 * counting. Some notes: 145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 146 * a load-average precision of 10 bits integer + 11 bits fractional 147 * - if you want to count load-averages more often, you need more 148 * precision, or rounding will get you. With 2-second counting freq, 149 * the EXP_n values would be 1981, 2034 and 2043 if still using only 150 * 11 bit fractions. 151 */ 152extern unsigned long avenrun[]; /* Load averages */ 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 154 155#define FSHIFT 11 /* nr of bits of precision */ 156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 159#define EXP_5 2014 /* 1/exp(5sec/5min) */ 160#define EXP_15 2037 /* 1/exp(5sec/15min) */ 161 162#define CALC_LOAD(load,exp,n) \ 163 load *= exp; \ 164 load += n*(FIXED_1-exp); \ 165 load >>= FSHIFT; 166 167extern unsigned long total_forks; 168extern int nr_threads; 169DECLARE_PER_CPU(unsigned long, process_counts); 170extern int nr_processes(void); 171extern unsigned long nr_running(void); 172extern bool single_task_running(void); 173extern unsigned long nr_iowait(void); 174extern unsigned long nr_iowait_cpu(int cpu); 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 176 177extern void calc_global_load(unsigned long ticks); 178 179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 180extern void cpu_load_update_nohz_start(void); 181extern void cpu_load_update_nohz_stop(void); 182#else 183static inline void cpu_load_update_nohz_start(void) { } 184static inline void cpu_load_update_nohz_stop(void) { } 185#endif 186 187extern void dump_cpu_task(int cpu); 188 189struct seq_file; 190struct cfs_rq; 191struct task_group; 192#ifdef CONFIG_SCHED_DEBUG 193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 194extern void proc_sched_set_task(struct task_struct *p); 195#endif 196 197/* 198 * Task state bitmask. NOTE! These bits are also 199 * encoded in fs/proc/array.c: get_task_state(). 200 * 201 * We have two separate sets of flags: task->state 202 * is about runnability, while task->exit_state are 203 * about the task exiting. Confusing, but this way 204 * modifying one set can't modify the other one by 205 * mistake. 206 */ 207#define TASK_RUNNING 0 208#define TASK_INTERRUPTIBLE 1 209#define TASK_UNINTERRUPTIBLE 2 210#define __TASK_STOPPED 4 211#define __TASK_TRACED 8 212/* in tsk->exit_state */ 213#define EXIT_DEAD 16 214#define EXIT_ZOMBIE 32 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 216/* in tsk->state again */ 217#define TASK_DEAD 64 218#define TASK_WAKEKILL 128 219#define TASK_WAKING 256 220#define TASK_PARKED 512 221#define TASK_NOLOAD 1024 222#define TASK_NEW 2048 223#define TASK_STATE_MAX 4096 224 225#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn" 226 227extern char ___assert_task_state[1 - 2*!!( 228 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 229 230/* Convenience macros for the sake of set_task_state */ 231#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 232#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 233#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 234 235#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 236 237/* Convenience macros for the sake of wake_up */ 238#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 239#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 240 241/* get_task_state() */ 242#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 243 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 244 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 245 246#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 247#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 248#define task_is_stopped_or_traced(task) \ 249 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 250#define task_contributes_to_load(task) \ 251 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 252 (task->flags & PF_FROZEN) == 0 && \ 253 (task->state & TASK_NOLOAD) == 0) 254 255#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 256 257#define __set_task_state(tsk, state_value) \ 258 do { \ 259 (tsk)->task_state_change = _THIS_IP_; \ 260 (tsk)->state = (state_value); \ 261 } while (0) 262#define set_task_state(tsk, state_value) \ 263 do { \ 264 (tsk)->task_state_change = _THIS_IP_; \ 265 smp_store_mb((tsk)->state, (state_value)); \ 266 } while (0) 267 268/* 269 * set_current_state() includes a barrier so that the write of current->state 270 * is correctly serialised wrt the caller's subsequent test of whether to 271 * actually sleep: 272 * 273 * set_current_state(TASK_UNINTERRUPTIBLE); 274 * if (do_i_need_to_sleep()) 275 * schedule(); 276 * 277 * If the caller does not need such serialisation then use __set_current_state() 278 */ 279#define __set_current_state(state_value) \ 280 do { \ 281 current->task_state_change = _THIS_IP_; \ 282 current->state = (state_value); \ 283 } while (0) 284#define set_current_state(state_value) \ 285 do { \ 286 current->task_state_change = _THIS_IP_; \ 287 smp_store_mb(current->state, (state_value)); \ 288 } while (0) 289 290#else 291 292#define __set_task_state(tsk, state_value) \ 293 do { (tsk)->state = (state_value); } while (0) 294#define set_task_state(tsk, state_value) \ 295 smp_store_mb((tsk)->state, (state_value)) 296 297/* 298 * set_current_state() includes a barrier so that the write of current->state 299 * is correctly serialised wrt the caller's subsequent test of whether to 300 * actually sleep: 301 * 302 * set_current_state(TASK_UNINTERRUPTIBLE); 303 * if (do_i_need_to_sleep()) 304 * schedule(); 305 * 306 * If the caller does not need such serialisation then use __set_current_state() 307 */ 308#define __set_current_state(state_value) \ 309 do { current->state = (state_value); } while (0) 310#define set_current_state(state_value) \ 311 smp_store_mb(current->state, (state_value)) 312 313#endif 314 315/* Task command name length */ 316#define TASK_COMM_LEN 16 317 318#include <linux/spinlock.h> 319 320/* 321 * This serializes "schedule()" and also protects 322 * the run-queue from deletions/modifications (but 323 * _adding_ to the beginning of the run-queue has 324 * a separate lock). 325 */ 326extern rwlock_t tasklist_lock; 327extern spinlock_t mmlist_lock; 328 329struct task_struct; 330 331#ifdef CONFIG_PROVE_RCU 332extern int lockdep_tasklist_lock_is_held(void); 333#endif /* #ifdef CONFIG_PROVE_RCU */ 334 335extern void sched_init(void); 336extern void sched_init_smp(void); 337extern asmlinkage void schedule_tail(struct task_struct *prev); 338extern void init_idle(struct task_struct *idle, int cpu); 339extern void init_idle_bootup_task(struct task_struct *idle); 340 341extern cpumask_var_t cpu_isolated_map; 342 343extern int runqueue_is_locked(int cpu); 344 345#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 346extern void nohz_balance_enter_idle(int cpu); 347extern void set_cpu_sd_state_idle(void); 348extern int get_nohz_timer_target(void); 349#else 350static inline void nohz_balance_enter_idle(int cpu) { } 351static inline void set_cpu_sd_state_idle(void) { } 352#endif 353 354/* 355 * Only dump TASK_* tasks. (0 for all tasks) 356 */ 357extern void show_state_filter(unsigned long state_filter); 358 359static inline void show_state(void) 360{ 361 show_state_filter(0); 362} 363 364extern void show_regs(struct pt_regs *); 365 366/* 367 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 368 * task), SP is the stack pointer of the first frame that should be shown in the back 369 * trace (or NULL if the entire call-chain of the task should be shown). 370 */ 371extern void show_stack(struct task_struct *task, unsigned long *sp); 372 373extern void cpu_init (void); 374extern void trap_init(void); 375extern void update_process_times(int user); 376extern void scheduler_tick(void); 377extern int sched_cpu_starting(unsigned int cpu); 378extern int sched_cpu_activate(unsigned int cpu); 379extern int sched_cpu_deactivate(unsigned int cpu); 380 381#ifdef CONFIG_HOTPLUG_CPU 382extern int sched_cpu_dying(unsigned int cpu); 383#else 384# define sched_cpu_dying NULL 385#endif 386 387extern void sched_show_task(struct task_struct *p); 388 389#ifdef CONFIG_LOCKUP_DETECTOR 390extern void touch_softlockup_watchdog_sched(void); 391extern void touch_softlockup_watchdog(void); 392extern void touch_softlockup_watchdog_sync(void); 393extern void touch_all_softlockup_watchdogs(void); 394extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 395 void __user *buffer, 396 size_t *lenp, loff_t *ppos); 397extern unsigned int softlockup_panic; 398extern unsigned int hardlockup_panic; 399void lockup_detector_init(void); 400#else 401static inline void touch_softlockup_watchdog_sched(void) 402{ 403} 404static inline void touch_softlockup_watchdog(void) 405{ 406} 407static inline void touch_softlockup_watchdog_sync(void) 408{ 409} 410static inline void touch_all_softlockup_watchdogs(void) 411{ 412} 413static inline void lockup_detector_init(void) 414{ 415} 416#endif 417 418#ifdef CONFIG_DETECT_HUNG_TASK 419void reset_hung_task_detector(void); 420#else 421static inline void reset_hung_task_detector(void) 422{ 423} 424#endif 425 426/* Attach to any functions which should be ignored in wchan output. */ 427#define __sched __attribute__((__section__(".sched.text"))) 428 429/* Linker adds these: start and end of __sched functions */ 430extern char __sched_text_start[], __sched_text_end[]; 431 432/* Is this address in the __sched functions? */ 433extern int in_sched_functions(unsigned long addr); 434 435#define MAX_SCHEDULE_TIMEOUT LONG_MAX 436extern signed long schedule_timeout(signed long timeout); 437extern signed long schedule_timeout_interruptible(signed long timeout); 438extern signed long schedule_timeout_killable(signed long timeout); 439extern signed long schedule_timeout_uninterruptible(signed long timeout); 440extern signed long schedule_timeout_idle(signed long timeout); 441asmlinkage void schedule(void); 442extern void schedule_preempt_disabled(void); 443 444extern long io_schedule_timeout(long timeout); 445 446static inline void io_schedule(void) 447{ 448 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); 449} 450 451struct nsproxy; 452struct user_namespace; 453 454#ifdef CONFIG_MMU 455extern void arch_pick_mmap_layout(struct mm_struct *mm); 456extern unsigned long 457arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 458 unsigned long, unsigned long); 459extern unsigned long 460arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 461 unsigned long len, unsigned long pgoff, 462 unsigned long flags); 463#else 464static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 465#endif 466 467#define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 468#define SUID_DUMP_USER 1 /* Dump as user of process */ 469#define SUID_DUMP_ROOT 2 /* Dump as root */ 470 471/* mm flags */ 472 473/* for SUID_DUMP_* above */ 474#define MMF_DUMPABLE_BITS 2 475#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 476 477extern void set_dumpable(struct mm_struct *mm, int value); 478/* 479 * This returns the actual value of the suid_dumpable flag. For things 480 * that are using this for checking for privilege transitions, it must 481 * test against SUID_DUMP_USER rather than treating it as a boolean 482 * value. 483 */ 484static inline int __get_dumpable(unsigned long mm_flags) 485{ 486 return mm_flags & MMF_DUMPABLE_MASK; 487} 488 489static inline int get_dumpable(struct mm_struct *mm) 490{ 491 return __get_dumpable(mm->flags); 492} 493 494/* coredump filter bits */ 495#define MMF_DUMP_ANON_PRIVATE 2 496#define MMF_DUMP_ANON_SHARED 3 497#define MMF_DUMP_MAPPED_PRIVATE 4 498#define MMF_DUMP_MAPPED_SHARED 5 499#define MMF_DUMP_ELF_HEADERS 6 500#define MMF_DUMP_HUGETLB_PRIVATE 7 501#define MMF_DUMP_HUGETLB_SHARED 8 502#define MMF_DUMP_DAX_PRIVATE 9 503#define MMF_DUMP_DAX_SHARED 10 504 505#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 506#define MMF_DUMP_FILTER_BITS 9 507#define MMF_DUMP_FILTER_MASK \ 508 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 509#define MMF_DUMP_FILTER_DEFAULT \ 510 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 511 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 512 513#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 514# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 515#else 516# define MMF_DUMP_MASK_DEFAULT_ELF 0 517#endif 518 /* leave room for more dump flags */ 519#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 520#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 521#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 522 523#define MMF_HAS_UPROBES 19 /* has uprobes */ 524#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 525#define MMF_OOM_REAPED 21 /* mm has been already reaped */ 526#define MMF_OOM_NOT_REAPABLE 22 /* mm couldn't be reaped */ 527 528#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 529 530struct sighand_struct { 531 atomic_t count; 532 struct k_sigaction action[_NSIG]; 533 spinlock_t siglock; 534 wait_queue_head_t signalfd_wqh; 535}; 536 537struct pacct_struct { 538 int ac_flag; 539 long ac_exitcode; 540 unsigned long ac_mem; 541 cputime_t ac_utime, ac_stime; 542 unsigned long ac_minflt, ac_majflt; 543}; 544 545struct cpu_itimer { 546 cputime_t expires; 547 cputime_t incr; 548 u32 error; 549 u32 incr_error; 550}; 551 552/** 553 * struct prev_cputime - snaphsot of system and user cputime 554 * @utime: time spent in user mode 555 * @stime: time spent in system mode 556 * @lock: protects the above two fields 557 * 558 * Stores previous user/system time values such that we can guarantee 559 * monotonicity. 560 */ 561struct prev_cputime { 562#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 563 cputime_t utime; 564 cputime_t stime; 565 raw_spinlock_t lock; 566#endif 567}; 568 569static inline void prev_cputime_init(struct prev_cputime *prev) 570{ 571#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 572 prev->utime = prev->stime = 0; 573 raw_spin_lock_init(&prev->lock); 574#endif 575} 576 577/** 578 * struct task_cputime - collected CPU time counts 579 * @utime: time spent in user mode, in &cputime_t units 580 * @stime: time spent in kernel mode, in &cputime_t units 581 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 582 * 583 * This structure groups together three kinds of CPU time that are tracked for 584 * threads and thread groups. Most things considering CPU time want to group 585 * these counts together and treat all three of them in parallel. 586 */ 587struct task_cputime { 588 cputime_t utime; 589 cputime_t stime; 590 unsigned long long sum_exec_runtime; 591}; 592 593/* Alternate field names when used to cache expirations. */ 594#define virt_exp utime 595#define prof_exp stime 596#define sched_exp sum_exec_runtime 597 598#define INIT_CPUTIME \ 599 (struct task_cputime) { \ 600 .utime = 0, \ 601 .stime = 0, \ 602 .sum_exec_runtime = 0, \ 603 } 604 605/* 606 * This is the atomic variant of task_cputime, which can be used for 607 * storing and updating task_cputime statistics without locking. 608 */ 609struct task_cputime_atomic { 610 atomic64_t utime; 611 atomic64_t stime; 612 atomic64_t sum_exec_runtime; 613}; 614 615#define INIT_CPUTIME_ATOMIC \ 616 (struct task_cputime_atomic) { \ 617 .utime = ATOMIC64_INIT(0), \ 618 .stime = ATOMIC64_INIT(0), \ 619 .sum_exec_runtime = ATOMIC64_INIT(0), \ 620 } 621 622#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 623 624/* 625 * Disable preemption until the scheduler is running -- use an unconditional 626 * value so that it also works on !PREEMPT_COUNT kernels. 627 * 628 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). 629 */ 630#define INIT_PREEMPT_COUNT PREEMPT_OFFSET 631 632/* 633 * Initial preempt_count value; reflects the preempt_count schedule invariant 634 * which states that during context switches: 635 * 636 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET 637 * 638 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. 639 * Note: See finish_task_switch(). 640 */ 641#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 642 643/** 644 * struct thread_group_cputimer - thread group interval timer counts 645 * @cputime_atomic: atomic thread group interval timers. 646 * @running: true when there are timers running and 647 * @cputime_atomic receives updates. 648 * @checking_timer: true when a thread in the group is in the 649 * process of checking for thread group timers. 650 * 651 * This structure contains the version of task_cputime, above, that is 652 * used for thread group CPU timer calculations. 653 */ 654struct thread_group_cputimer { 655 struct task_cputime_atomic cputime_atomic; 656 bool running; 657 bool checking_timer; 658}; 659 660#include <linux/rwsem.h> 661struct autogroup; 662 663/* 664 * NOTE! "signal_struct" does not have its own 665 * locking, because a shared signal_struct always 666 * implies a shared sighand_struct, so locking 667 * sighand_struct is always a proper superset of 668 * the locking of signal_struct. 669 */ 670struct signal_struct { 671 atomic_t sigcnt; 672 atomic_t live; 673 int nr_threads; 674 atomic_t oom_victims; /* # of TIF_MEDIE threads in this thread group */ 675 struct list_head thread_head; 676 677 wait_queue_head_t wait_chldexit; /* for wait4() */ 678 679 /* current thread group signal load-balancing target: */ 680 struct task_struct *curr_target; 681 682 /* shared signal handling: */ 683 struct sigpending shared_pending; 684 685 /* thread group exit support */ 686 int group_exit_code; 687 /* overloaded: 688 * - notify group_exit_task when ->count is equal to notify_count 689 * - everyone except group_exit_task is stopped during signal delivery 690 * of fatal signals, group_exit_task processes the signal. 691 */ 692 int notify_count; 693 struct task_struct *group_exit_task; 694 695 /* thread group stop support, overloads group_exit_code too */ 696 int group_stop_count; 697 unsigned int flags; /* see SIGNAL_* flags below */ 698 699 /* 700 * PR_SET_CHILD_SUBREAPER marks a process, like a service 701 * manager, to re-parent orphan (double-forking) child processes 702 * to this process instead of 'init'. The service manager is 703 * able to receive SIGCHLD signals and is able to investigate 704 * the process until it calls wait(). All children of this 705 * process will inherit a flag if they should look for a 706 * child_subreaper process at exit. 707 */ 708 unsigned int is_child_subreaper:1; 709 unsigned int has_child_subreaper:1; 710 711 /* POSIX.1b Interval Timers */ 712 int posix_timer_id; 713 struct list_head posix_timers; 714 715 /* ITIMER_REAL timer for the process */ 716 struct hrtimer real_timer; 717 struct pid *leader_pid; 718 ktime_t it_real_incr; 719 720 /* 721 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 722 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 723 * values are defined to 0 and 1 respectively 724 */ 725 struct cpu_itimer it[2]; 726 727 /* 728 * Thread group totals for process CPU timers. 729 * See thread_group_cputimer(), et al, for details. 730 */ 731 struct thread_group_cputimer cputimer; 732 733 /* Earliest-expiration cache. */ 734 struct task_cputime cputime_expires; 735 736#ifdef CONFIG_NO_HZ_FULL 737 atomic_t tick_dep_mask; 738#endif 739 740 struct list_head cpu_timers[3]; 741 742 struct pid *tty_old_pgrp; 743 744 /* boolean value for session group leader */ 745 int leader; 746 747 struct tty_struct *tty; /* NULL if no tty */ 748 749#ifdef CONFIG_SCHED_AUTOGROUP 750 struct autogroup *autogroup; 751#endif 752 /* 753 * Cumulative resource counters for dead threads in the group, 754 * and for reaped dead child processes forked by this group. 755 * Live threads maintain their own counters and add to these 756 * in __exit_signal, except for the group leader. 757 */ 758 seqlock_t stats_lock; 759 cputime_t utime, stime, cutime, cstime; 760 cputime_t gtime; 761 cputime_t cgtime; 762 struct prev_cputime prev_cputime; 763 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 764 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 765 unsigned long inblock, oublock, cinblock, coublock; 766 unsigned long maxrss, cmaxrss; 767 struct task_io_accounting ioac; 768 769 /* 770 * Cumulative ns of schedule CPU time fo dead threads in the 771 * group, not including a zombie group leader, (This only differs 772 * from jiffies_to_ns(utime + stime) if sched_clock uses something 773 * other than jiffies.) 774 */ 775 unsigned long long sum_sched_runtime; 776 777 /* 778 * We don't bother to synchronize most readers of this at all, 779 * because there is no reader checking a limit that actually needs 780 * to get both rlim_cur and rlim_max atomically, and either one 781 * alone is a single word that can safely be read normally. 782 * getrlimit/setrlimit use task_lock(current->group_leader) to 783 * protect this instead of the siglock, because they really 784 * have no need to disable irqs. 785 */ 786 struct rlimit rlim[RLIM_NLIMITS]; 787 788#ifdef CONFIG_BSD_PROCESS_ACCT 789 struct pacct_struct pacct; /* per-process accounting information */ 790#endif 791#ifdef CONFIG_TASKSTATS 792 struct taskstats *stats; 793#endif 794#ifdef CONFIG_AUDIT 795 unsigned audit_tty; 796 struct tty_audit_buf *tty_audit_buf; 797#endif 798 799 /* 800 * Thread is the potential origin of an oom condition; kill first on 801 * oom 802 */ 803 bool oom_flag_origin; 804 short oom_score_adj; /* OOM kill score adjustment */ 805 short oom_score_adj_min; /* OOM kill score adjustment min value. 806 * Only settable by CAP_SYS_RESOURCE. */ 807 808 struct mutex cred_guard_mutex; /* guard against foreign influences on 809 * credential calculations 810 * (notably. ptrace) */ 811}; 812 813/* 814 * Bits in flags field of signal_struct. 815 */ 816#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 817#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 818#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 819#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 820/* 821 * Pending notifications to parent. 822 */ 823#define SIGNAL_CLD_STOPPED 0x00000010 824#define SIGNAL_CLD_CONTINUED 0x00000020 825#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 826 827#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 828 829/* If true, all threads except ->group_exit_task have pending SIGKILL */ 830static inline int signal_group_exit(const struct signal_struct *sig) 831{ 832 return (sig->flags & SIGNAL_GROUP_EXIT) || 833 (sig->group_exit_task != NULL); 834} 835 836/* 837 * Some day this will be a full-fledged user tracking system.. 838 */ 839struct user_struct { 840 atomic_t __count; /* reference count */ 841 atomic_t processes; /* How many processes does this user have? */ 842 atomic_t sigpending; /* How many pending signals does this user have? */ 843#ifdef CONFIG_INOTIFY_USER 844 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 845 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 846#endif 847#ifdef CONFIG_FANOTIFY 848 atomic_t fanotify_listeners; 849#endif 850#ifdef CONFIG_EPOLL 851 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 852#endif 853#ifdef CONFIG_POSIX_MQUEUE 854 /* protected by mq_lock */ 855 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 856#endif 857 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 858 unsigned long unix_inflight; /* How many files in flight in unix sockets */ 859 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */ 860 861#ifdef CONFIG_KEYS 862 struct key *uid_keyring; /* UID specific keyring */ 863 struct key *session_keyring; /* UID's default session keyring */ 864#endif 865 866 /* Hash table maintenance information */ 867 struct hlist_node uidhash_node; 868 kuid_t uid; 869 870#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL) 871 atomic_long_t locked_vm; 872#endif 873}; 874 875extern int uids_sysfs_init(void); 876 877extern struct user_struct *find_user(kuid_t); 878 879extern struct user_struct root_user; 880#define INIT_USER (&root_user) 881 882 883struct backing_dev_info; 884struct reclaim_state; 885 886#ifdef CONFIG_SCHED_INFO 887struct sched_info { 888 /* cumulative counters */ 889 unsigned long pcount; /* # of times run on this cpu */ 890 unsigned long long run_delay; /* time spent waiting on a runqueue */ 891 892 /* timestamps */ 893 unsigned long long last_arrival,/* when we last ran on a cpu */ 894 last_queued; /* when we were last queued to run */ 895}; 896#endif /* CONFIG_SCHED_INFO */ 897 898#ifdef CONFIG_TASK_DELAY_ACCT 899struct task_delay_info { 900 spinlock_t lock; 901 unsigned int flags; /* Private per-task flags */ 902 903 /* For each stat XXX, add following, aligned appropriately 904 * 905 * struct timespec XXX_start, XXX_end; 906 * u64 XXX_delay; 907 * u32 XXX_count; 908 * 909 * Atomicity of updates to XXX_delay, XXX_count protected by 910 * single lock above (split into XXX_lock if contention is an issue). 911 */ 912 913 /* 914 * XXX_count is incremented on every XXX operation, the delay 915 * associated with the operation is added to XXX_delay. 916 * XXX_delay contains the accumulated delay time in nanoseconds. 917 */ 918 u64 blkio_start; /* Shared by blkio, swapin */ 919 u64 blkio_delay; /* wait for sync block io completion */ 920 u64 swapin_delay; /* wait for swapin block io completion */ 921 u32 blkio_count; /* total count of the number of sync block */ 922 /* io operations performed */ 923 u32 swapin_count; /* total count of the number of swapin block */ 924 /* io operations performed */ 925 926 u64 freepages_start; 927 u64 freepages_delay; /* wait for memory reclaim */ 928 u32 freepages_count; /* total count of memory reclaim */ 929}; 930#endif /* CONFIG_TASK_DELAY_ACCT */ 931 932static inline int sched_info_on(void) 933{ 934#ifdef CONFIG_SCHEDSTATS 935 return 1; 936#elif defined(CONFIG_TASK_DELAY_ACCT) 937 extern int delayacct_on; 938 return delayacct_on; 939#else 940 return 0; 941#endif 942} 943 944#ifdef CONFIG_SCHEDSTATS 945void force_schedstat_enabled(void); 946#endif 947 948enum cpu_idle_type { 949 CPU_IDLE, 950 CPU_NOT_IDLE, 951 CPU_NEWLY_IDLE, 952 CPU_MAX_IDLE_TYPES 953}; 954 955/* 956 * Integer metrics need fixed point arithmetic, e.g., sched/fair 957 * has a few: load, load_avg, util_avg, freq, and capacity. 958 * 959 * We define a basic fixed point arithmetic range, and then formalize 960 * all these metrics based on that basic range. 961 */ 962# define SCHED_FIXEDPOINT_SHIFT 10 963# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 964 965/* 966 * Increase resolution of cpu_capacity calculations 967 */ 968#define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 969#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 970 971/* 972 * Wake-queues are lists of tasks with a pending wakeup, whose 973 * callers have already marked the task as woken internally, 974 * and can thus carry on. A common use case is being able to 975 * do the wakeups once the corresponding user lock as been 976 * released. 977 * 978 * We hold reference to each task in the list across the wakeup, 979 * thus guaranteeing that the memory is still valid by the time 980 * the actual wakeups are performed in wake_up_q(). 981 * 982 * One per task suffices, because there's never a need for a task to be 983 * in two wake queues simultaneously; it is forbidden to abandon a task 984 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is 985 * already in a wake queue, the wakeup will happen soon and the second 986 * waker can just skip it. 987 * 988 * The WAKE_Q macro declares and initializes the list head. 989 * wake_up_q() does NOT reinitialize the list; it's expected to be 990 * called near the end of a function, where the fact that the queue is 991 * not used again will be easy to see by inspection. 992 * 993 * Note that this can cause spurious wakeups. schedule() callers 994 * must ensure the call is done inside a loop, confirming that the 995 * wakeup condition has in fact occurred. 996 */ 997struct wake_q_node { 998 struct wake_q_node *next; 999}; 1000 1001struct wake_q_head { 1002 struct wake_q_node *first; 1003 struct wake_q_node **lastp; 1004}; 1005 1006#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01) 1007 1008#define WAKE_Q(name) \ 1009 struct wake_q_head name = { WAKE_Q_TAIL, &name.first } 1010 1011extern void wake_q_add(struct wake_q_head *head, 1012 struct task_struct *task); 1013extern void wake_up_q(struct wake_q_head *head); 1014 1015/* 1016 * sched-domains (multiprocessor balancing) declarations: 1017 */ 1018#ifdef CONFIG_SMP 1019#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 1020#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 1021#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 1022#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 1023#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 1024#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 1025#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */ 1026#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 1027#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 1028#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 1029#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 1030#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 1031#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 1032#define SD_NUMA 0x4000 /* cross-node balancing */ 1033 1034#ifdef CONFIG_SCHED_SMT 1035static inline int cpu_smt_flags(void) 1036{ 1037 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 1038} 1039#endif 1040 1041#ifdef CONFIG_SCHED_MC 1042static inline int cpu_core_flags(void) 1043{ 1044 return SD_SHARE_PKG_RESOURCES; 1045} 1046#endif 1047 1048#ifdef CONFIG_NUMA 1049static inline int cpu_numa_flags(void) 1050{ 1051 return SD_NUMA; 1052} 1053#endif 1054 1055struct sched_domain_attr { 1056 int relax_domain_level; 1057}; 1058 1059#define SD_ATTR_INIT (struct sched_domain_attr) { \ 1060 .relax_domain_level = -1, \ 1061} 1062 1063extern int sched_domain_level_max; 1064 1065struct sched_group; 1066 1067struct sched_domain { 1068 /* These fields must be setup */ 1069 struct sched_domain *parent; /* top domain must be null terminated */ 1070 struct sched_domain *child; /* bottom domain must be null terminated */ 1071 struct sched_group *groups; /* the balancing groups of the domain */ 1072 unsigned long min_interval; /* Minimum balance interval ms */ 1073 unsigned long max_interval; /* Maximum balance interval ms */ 1074 unsigned int busy_factor; /* less balancing by factor if busy */ 1075 unsigned int imbalance_pct; /* No balance until over watermark */ 1076 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 1077 unsigned int busy_idx; 1078 unsigned int idle_idx; 1079 unsigned int newidle_idx; 1080 unsigned int wake_idx; 1081 unsigned int forkexec_idx; 1082 unsigned int smt_gain; 1083 1084 int nohz_idle; /* NOHZ IDLE status */ 1085 int flags; /* See SD_* */ 1086 int level; 1087 1088 /* Runtime fields. */ 1089 unsigned long last_balance; /* init to jiffies. units in jiffies */ 1090 unsigned int balance_interval; /* initialise to 1. units in ms. */ 1091 unsigned int nr_balance_failed; /* initialise to 0 */ 1092 1093 /* idle_balance() stats */ 1094 u64 max_newidle_lb_cost; 1095 unsigned long next_decay_max_lb_cost; 1096 1097#ifdef CONFIG_SCHEDSTATS 1098 /* load_balance() stats */ 1099 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 1100 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 1101 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 1102 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 1103 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 1104 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 1105 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 1106 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 1107 1108 /* Active load balancing */ 1109 unsigned int alb_count; 1110 unsigned int alb_failed; 1111 unsigned int alb_pushed; 1112 1113 /* SD_BALANCE_EXEC stats */ 1114 unsigned int sbe_count; 1115 unsigned int sbe_balanced; 1116 unsigned int sbe_pushed; 1117 1118 /* SD_BALANCE_FORK stats */ 1119 unsigned int sbf_count; 1120 unsigned int sbf_balanced; 1121 unsigned int sbf_pushed; 1122 1123 /* try_to_wake_up() stats */ 1124 unsigned int ttwu_wake_remote; 1125 unsigned int ttwu_move_affine; 1126 unsigned int ttwu_move_balance; 1127#endif 1128#ifdef CONFIG_SCHED_DEBUG 1129 char *name; 1130#endif 1131 union { 1132 void *private; /* used during construction */ 1133 struct rcu_head rcu; /* used during destruction */ 1134 }; 1135 1136 unsigned int span_weight; 1137 /* 1138 * Span of all CPUs in this domain. 1139 * 1140 * NOTE: this field is variable length. (Allocated dynamically 1141 * by attaching extra space to the end of the structure, 1142 * depending on how many CPUs the kernel has booted up with) 1143 */ 1144 unsigned long span[0]; 1145}; 1146 1147static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1148{ 1149 return to_cpumask(sd->span); 1150} 1151 1152extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1153 struct sched_domain_attr *dattr_new); 1154 1155/* Allocate an array of sched domains, for partition_sched_domains(). */ 1156cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1157void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1158 1159bool cpus_share_cache(int this_cpu, int that_cpu); 1160 1161typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1162typedef int (*sched_domain_flags_f)(void); 1163 1164#define SDTL_OVERLAP 0x01 1165 1166struct sd_data { 1167 struct sched_domain **__percpu sd; 1168 struct sched_group **__percpu sg; 1169 struct sched_group_capacity **__percpu sgc; 1170}; 1171 1172struct sched_domain_topology_level { 1173 sched_domain_mask_f mask; 1174 sched_domain_flags_f sd_flags; 1175 int flags; 1176 int numa_level; 1177 struct sd_data data; 1178#ifdef CONFIG_SCHED_DEBUG 1179 char *name; 1180#endif 1181}; 1182 1183extern void set_sched_topology(struct sched_domain_topology_level *tl); 1184extern void wake_up_if_idle(int cpu); 1185 1186#ifdef CONFIG_SCHED_DEBUG 1187# define SD_INIT_NAME(type) .name = #type 1188#else 1189# define SD_INIT_NAME(type) 1190#endif 1191 1192#else /* CONFIG_SMP */ 1193 1194struct sched_domain_attr; 1195 1196static inline void 1197partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1198 struct sched_domain_attr *dattr_new) 1199{ 1200} 1201 1202static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1203{ 1204 return true; 1205} 1206 1207#endif /* !CONFIG_SMP */ 1208 1209 1210struct io_context; /* See blkdev.h */ 1211 1212 1213#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1214extern void prefetch_stack(struct task_struct *t); 1215#else 1216static inline void prefetch_stack(struct task_struct *t) { } 1217#endif 1218 1219struct audit_context; /* See audit.c */ 1220struct mempolicy; 1221struct pipe_inode_info; 1222struct uts_namespace; 1223 1224struct load_weight { 1225 unsigned long weight; 1226 u32 inv_weight; 1227}; 1228 1229/* 1230 * The load_avg/util_avg accumulates an infinite geometric series 1231 * (see __update_load_avg() in kernel/sched/fair.c). 1232 * 1233 * [load_avg definition] 1234 * 1235 * load_avg = runnable% * scale_load_down(load) 1236 * 1237 * where runnable% is the time ratio that a sched_entity is runnable. 1238 * For cfs_rq, it is the aggregated load_avg of all runnable and 1239 * blocked sched_entities. 1240 * 1241 * load_avg may also take frequency scaling into account: 1242 * 1243 * load_avg = runnable% * scale_load_down(load) * freq% 1244 * 1245 * where freq% is the CPU frequency normalized to the highest frequency. 1246 * 1247 * [util_avg definition] 1248 * 1249 * util_avg = running% * SCHED_CAPACITY_SCALE 1250 * 1251 * where running% is the time ratio that a sched_entity is running on 1252 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable 1253 * and blocked sched_entities. 1254 * 1255 * util_avg may also factor frequency scaling and CPU capacity scaling: 1256 * 1257 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity% 1258 * 1259 * where freq% is the same as above, and capacity% is the CPU capacity 1260 * normalized to the greatest capacity (due to uarch differences, etc). 1261 * 1262 * N.B., the above ratios (runnable%, running%, freq%, and capacity%) 1263 * themselves are in the range of [0, 1]. To do fixed point arithmetics, 1264 * we therefore scale them to as large a range as necessary. This is for 1265 * example reflected by util_avg's SCHED_CAPACITY_SCALE. 1266 * 1267 * [Overflow issue] 1268 * 1269 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 1270 * with the highest load (=88761), always runnable on a single cfs_rq, 1271 * and should not overflow as the number already hits PID_MAX_LIMIT. 1272 * 1273 * For all other cases (including 32-bit kernels), struct load_weight's 1274 * weight will overflow first before we do, because: 1275 * 1276 * Max(load_avg) <= Max(load.weight) 1277 * 1278 * Then it is the load_weight's responsibility to consider overflow 1279 * issues. 1280 */ 1281struct sched_avg { 1282 u64 last_update_time, load_sum; 1283 u32 util_sum, period_contrib; 1284 unsigned long load_avg, util_avg; 1285}; 1286 1287#ifdef CONFIG_SCHEDSTATS 1288struct sched_statistics { 1289 u64 wait_start; 1290 u64 wait_max; 1291 u64 wait_count; 1292 u64 wait_sum; 1293 u64 iowait_count; 1294 u64 iowait_sum; 1295 1296 u64 sleep_start; 1297 u64 sleep_max; 1298 s64 sum_sleep_runtime; 1299 1300 u64 block_start; 1301 u64 block_max; 1302 u64 exec_max; 1303 u64 slice_max; 1304 1305 u64 nr_migrations_cold; 1306 u64 nr_failed_migrations_affine; 1307 u64 nr_failed_migrations_running; 1308 u64 nr_failed_migrations_hot; 1309 u64 nr_forced_migrations; 1310 1311 u64 nr_wakeups; 1312 u64 nr_wakeups_sync; 1313 u64 nr_wakeups_migrate; 1314 u64 nr_wakeups_local; 1315 u64 nr_wakeups_remote; 1316 u64 nr_wakeups_affine; 1317 u64 nr_wakeups_affine_attempts; 1318 u64 nr_wakeups_passive; 1319 u64 nr_wakeups_idle; 1320}; 1321#endif 1322 1323struct sched_entity { 1324 struct load_weight load; /* for load-balancing */ 1325 struct rb_node run_node; 1326 struct list_head group_node; 1327 unsigned int on_rq; 1328 1329 u64 exec_start; 1330 u64 sum_exec_runtime; 1331 u64 vruntime; 1332 u64 prev_sum_exec_runtime; 1333 1334 u64 nr_migrations; 1335 1336#ifdef CONFIG_SCHEDSTATS 1337 struct sched_statistics statistics; 1338#endif 1339 1340#ifdef CONFIG_FAIR_GROUP_SCHED 1341 int depth; 1342 struct sched_entity *parent; 1343 /* rq on which this entity is (to be) queued: */ 1344 struct cfs_rq *cfs_rq; 1345 /* rq "owned" by this entity/group: */ 1346 struct cfs_rq *my_q; 1347#endif 1348 1349#ifdef CONFIG_SMP 1350 /* 1351 * Per entity load average tracking. 1352 * 1353 * Put into separate cache line so it does not 1354 * collide with read-mostly values above. 1355 */ 1356 struct sched_avg avg ____cacheline_aligned_in_smp; 1357#endif 1358}; 1359 1360struct sched_rt_entity { 1361 struct list_head run_list; 1362 unsigned long timeout; 1363 unsigned long watchdog_stamp; 1364 unsigned int time_slice; 1365 unsigned short on_rq; 1366 unsigned short on_list; 1367 1368 struct sched_rt_entity *back; 1369#ifdef CONFIG_RT_GROUP_SCHED 1370 struct sched_rt_entity *parent; 1371 /* rq on which this entity is (to be) queued: */ 1372 struct rt_rq *rt_rq; 1373 /* rq "owned" by this entity/group: */ 1374 struct rt_rq *my_q; 1375#endif 1376}; 1377 1378struct sched_dl_entity { 1379 struct rb_node rb_node; 1380 1381 /* 1382 * Original scheduling parameters. Copied here from sched_attr 1383 * during sched_setattr(), they will remain the same until 1384 * the next sched_setattr(). 1385 */ 1386 u64 dl_runtime; /* maximum runtime for each instance */ 1387 u64 dl_deadline; /* relative deadline of each instance */ 1388 u64 dl_period; /* separation of two instances (period) */ 1389 u64 dl_bw; /* dl_runtime / dl_deadline */ 1390 1391 /* 1392 * Actual scheduling parameters. Initialized with the values above, 1393 * they are continously updated during task execution. Note that 1394 * the remaining runtime could be < 0 in case we are in overrun. 1395 */ 1396 s64 runtime; /* remaining runtime for this instance */ 1397 u64 deadline; /* absolute deadline for this instance */ 1398 unsigned int flags; /* specifying the scheduler behaviour */ 1399 1400 /* 1401 * Some bool flags: 1402 * 1403 * @dl_throttled tells if we exhausted the runtime. If so, the 1404 * task has to wait for a replenishment to be performed at the 1405 * next firing of dl_timer. 1406 * 1407 * @dl_boosted tells if we are boosted due to DI. If so we are 1408 * outside bandwidth enforcement mechanism (but only until we 1409 * exit the critical section); 1410 * 1411 * @dl_yielded tells if task gave up the cpu before consuming 1412 * all its available runtime during the last job. 1413 */ 1414 int dl_throttled, dl_boosted, dl_yielded; 1415 1416 /* 1417 * Bandwidth enforcement timer. Each -deadline task has its 1418 * own bandwidth to be enforced, thus we need one timer per task. 1419 */ 1420 struct hrtimer dl_timer; 1421}; 1422 1423union rcu_special { 1424 struct { 1425 u8 blocked; 1426 u8 need_qs; 1427 u8 exp_need_qs; 1428 u8 pad; /* Otherwise the compiler can store garbage here. */ 1429 } b; /* Bits. */ 1430 u32 s; /* Set of bits. */ 1431}; 1432struct rcu_node; 1433 1434enum perf_event_task_context { 1435 perf_invalid_context = -1, 1436 perf_hw_context = 0, 1437 perf_sw_context, 1438 perf_nr_task_contexts, 1439}; 1440 1441/* Track pages that require TLB flushes */ 1442struct tlbflush_unmap_batch { 1443 /* 1444 * Each bit set is a CPU that potentially has a TLB entry for one of 1445 * the PFNs being flushed. See set_tlb_ubc_flush_pending(). 1446 */ 1447 struct cpumask cpumask; 1448 1449 /* True if any bit in cpumask is set */ 1450 bool flush_required; 1451 1452 /* 1453 * If true then the PTE was dirty when unmapped. The entry must be 1454 * flushed before IO is initiated or a stale TLB entry potentially 1455 * allows an update without redirtying the page. 1456 */ 1457 bool writable; 1458}; 1459 1460struct task_struct { 1461 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1462 void *stack; 1463 atomic_t usage; 1464 unsigned int flags; /* per process flags, defined below */ 1465 unsigned int ptrace; 1466 1467#ifdef CONFIG_SMP 1468 struct llist_node wake_entry; 1469 int on_cpu; 1470 unsigned int wakee_flips; 1471 unsigned long wakee_flip_decay_ts; 1472 struct task_struct *last_wakee; 1473 1474 int wake_cpu; 1475#endif 1476 int on_rq; 1477 1478 int prio, static_prio, normal_prio; 1479 unsigned int rt_priority; 1480 const struct sched_class *sched_class; 1481 struct sched_entity se; 1482 struct sched_rt_entity rt; 1483#ifdef CONFIG_CGROUP_SCHED 1484 struct task_group *sched_task_group; 1485#endif 1486 struct sched_dl_entity dl; 1487 1488#ifdef CONFIG_PREEMPT_NOTIFIERS 1489 /* list of struct preempt_notifier: */ 1490 struct hlist_head preempt_notifiers; 1491#endif 1492 1493#ifdef CONFIG_BLK_DEV_IO_TRACE 1494 unsigned int btrace_seq; 1495#endif 1496 1497 unsigned int policy; 1498 int nr_cpus_allowed; 1499 cpumask_t cpus_allowed; 1500 1501#ifdef CONFIG_PREEMPT_RCU 1502 int rcu_read_lock_nesting; 1503 union rcu_special rcu_read_unlock_special; 1504 struct list_head rcu_node_entry; 1505 struct rcu_node *rcu_blocked_node; 1506#endif /* #ifdef CONFIG_PREEMPT_RCU */ 1507#ifdef CONFIG_TASKS_RCU 1508 unsigned long rcu_tasks_nvcsw; 1509 bool rcu_tasks_holdout; 1510 struct list_head rcu_tasks_holdout_list; 1511 int rcu_tasks_idle_cpu; 1512#endif /* #ifdef CONFIG_TASKS_RCU */ 1513 1514#ifdef CONFIG_SCHED_INFO 1515 struct sched_info sched_info; 1516#endif 1517 1518 struct list_head tasks; 1519#ifdef CONFIG_SMP 1520 struct plist_node pushable_tasks; 1521 struct rb_node pushable_dl_tasks; 1522#endif 1523 1524 struct mm_struct *mm, *active_mm; 1525 /* per-thread vma caching */ 1526 u32 vmacache_seqnum; 1527 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1528#if defined(SPLIT_RSS_COUNTING) 1529 struct task_rss_stat rss_stat; 1530#endif 1531/* task state */ 1532 int exit_state; 1533 int exit_code, exit_signal; 1534 int pdeath_signal; /* The signal sent when the parent dies */ 1535 unsigned long jobctl; /* JOBCTL_*, siglock protected */ 1536 1537 /* Used for emulating ABI behavior of previous Linux versions */ 1538 unsigned int personality; 1539 1540 /* scheduler bits, serialized by scheduler locks */ 1541 unsigned sched_reset_on_fork:1; 1542 unsigned sched_contributes_to_load:1; 1543 unsigned sched_migrated:1; 1544 unsigned sched_remote_wakeup:1; 1545 unsigned :0; /* force alignment to the next boundary */ 1546 1547 /* unserialized, strictly 'current' */ 1548 unsigned in_execve:1; /* bit to tell LSMs we're in execve */ 1549 unsigned in_iowait:1; 1550#if !defined(TIF_RESTORE_SIGMASK) 1551 unsigned restore_sigmask:1; 1552#endif 1553#ifdef CONFIG_MEMCG 1554 unsigned memcg_may_oom:1; 1555#ifndef CONFIG_SLOB 1556 unsigned memcg_kmem_skip_account:1; 1557#endif 1558#endif 1559#ifdef CONFIG_COMPAT_BRK 1560 unsigned brk_randomized:1; 1561#endif 1562 1563 unsigned long atomic_flags; /* Flags needing atomic access. */ 1564 1565 struct restart_block restart_block; 1566 1567 pid_t pid; 1568 pid_t tgid; 1569 1570#ifdef CONFIG_CC_STACKPROTECTOR 1571 /* Canary value for the -fstack-protector gcc feature */ 1572 unsigned long stack_canary; 1573#endif 1574 /* 1575 * pointers to (original) parent process, youngest child, younger sibling, 1576 * older sibling, respectively. (p->father can be replaced with 1577 * p->real_parent->pid) 1578 */ 1579 struct task_struct __rcu *real_parent; /* real parent process */ 1580 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1581 /* 1582 * children/sibling forms the list of my natural children 1583 */ 1584 struct list_head children; /* list of my children */ 1585 struct list_head sibling; /* linkage in my parent's children list */ 1586 struct task_struct *group_leader; /* threadgroup leader */ 1587 1588 /* 1589 * ptraced is the list of tasks this task is using ptrace on. 1590 * This includes both natural children and PTRACE_ATTACH targets. 1591 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1592 */ 1593 struct list_head ptraced; 1594 struct list_head ptrace_entry; 1595 1596 /* PID/PID hash table linkage. */ 1597 struct pid_link pids[PIDTYPE_MAX]; 1598 struct list_head thread_group; 1599 struct list_head thread_node; 1600 1601 struct completion *vfork_done; /* for vfork() */ 1602 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1603 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1604 1605 cputime_t utime, stime, utimescaled, stimescaled; 1606 cputime_t gtime; 1607 struct prev_cputime prev_cputime; 1608#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1609 seqcount_t vtime_seqcount; 1610 unsigned long long vtime_snap; 1611 enum { 1612 /* Task is sleeping or running in a CPU with VTIME inactive */ 1613 VTIME_INACTIVE = 0, 1614 /* Task runs in userspace in a CPU with VTIME active */ 1615 VTIME_USER, 1616 /* Task runs in kernelspace in a CPU with VTIME active */ 1617 VTIME_SYS, 1618 } vtime_snap_whence; 1619#endif 1620 1621#ifdef CONFIG_NO_HZ_FULL 1622 atomic_t tick_dep_mask; 1623#endif 1624 unsigned long nvcsw, nivcsw; /* context switch counts */ 1625 u64 start_time; /* monotonic time in nsec */ 1626 u64 real_start_time; /* boot based time in nsec */ 1627/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1628 unsigned long min_flt, maj_flt; 1629 1630 struct task_cputime cputime_expires; 1631 struct list_head cpu_timers[3]; 1632 1633/* process credentials */ 1634 const struct cred __rcu *real_cred; /* objective and real subjective task 1635 * credentials (COW) */ 1636 const struct cred __rcu *cred; /* effective (overridable) subjective task 1637 * credentials (COW) */ 1638 char comm[TASK_COMM_LEN]; /* executable name excluding path 1639 - access with [gs]et_task_comm (which lock 1640 it with task_lock()) 1641 - initialized normally by setup_new_exec */ 1642/* file system info */ 1643 struct nameidata *nameidata; 1644#ifdef CONFIG_SYSVIPC 1645/* ipc stuff */ 1646 struct sysv_sem sysvsem; 1647 struct sysv_shm sysvshm; 1648#endif 1649#ifdef CONFIG_DETECT_HUNG_TASK 1650/* hung task detection */ 1651 unsigned long last_switch_count; 1652#endif 1653/* filesystem information */ 1654 struct fs_struct *fs; 1655/* open file information */ 1656 struct files_struct *files; 1657/* namespaces */ 1658 struct nsproxy *nsproxy; 1659/* signal handlers */ 1660 struct signal_struct *signal; 1661 struct sighand_struct *sighand; 1662 1663 sigset_t blocked, real_blocked; 1664 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1665 struct sigpending pending; 1666 1667 unsigned long sas_ss_sp; 1668 size_t sas_ss_size; 1669 unsigned sas_ss_flags; 1670 1671 struct callback_head *task_works; 1672 1673 struct audit_context *audit_context; 1674#ifdef CONFIG_AUDITSYSCALL 1675 kuid_t loginuid; 1676 unsigned int sessionid; 1677#endif 1678 struct seccomp seccomp; 1679 1680/* Thread group tracking */ 1681 u32 parent_exec_id; 1682 u32 self_exec_id; 1683/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1684 * mempolicy */ 1685 spinlock_t alloc_lock; 1686 1687 /* Protection of the PI data structures: */ 1688 raw_spinlock_t pi_lock; 1689 1690 struct wake_q_node wake_q; 1691 1692#ifdef CONFIG_RT_MUTEXES 1693 /* PI waiters blocked on a rt_mutex held by this task */ 1694 struct rb_root pi_waiters; 1695 struct rb_node *pi_waiters_leftmost; 1696 /* Deadlock detection and priority inheritance handling */ 1697 struct rt_mutex_waiter *pi_blocked_on; 1698#endif 1699 1700#ifdef CONFIG_DEBUG_MUTEXES 1701 /* mutex deadlock detection */ 1702 struct mutex_waiter *blocked_on; 1703#endif 1704#ifdef CONFIG_TRACE_IRQFLAGS 1705 unsigned int irq_events; 1706 unsigned long hardirq_enable_ip; 1707 unsigned long hardirq_disable_ip; 1708 unsigned int hardirq_enable_event; 1709 unsigned int hardirq_disable_event; 1710 int hardirqs_enabled; 1711 int hardirq_context; 1712 unsigned long softirq_disable_ip; 1713 unsigned long softirq_enable_ip; 1714 unsigned int softirq_disable_event; 1715 unsigned int softirq_enable_event; 1716 int softirqs_enabled; 1717 int softirq_context; 1718#endif 1719#ifdef CONFIG_LOCKDEP 1720# define MAX_LOCK_DEPTH 48UL 1721 u64 curr_chain_key; 1722 int lockdep_depth; 1723 unsigned int lockdep_recursion; 1724 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1725 gfp_t lockdep_reclaim_gfp; 1726#endif 1727#ifdef CONFIG_UBSAN 1728 unsigned int in_ubsan; 1729#endif 1730 1731/* journalling filesystem info */ 1732 void *journal_info; 1733 1734/* stacked block device info */ 1735 struct bio_list *bio_list; 1736 1737#ifdef CONFIG_BLOCK 1738/* stack plugging */ 1739 struct blk_plug *plug; 1740#endif 1741 1742/* VM state */ 1743 struct reclaim_state *reclaim_state; 1744 1745 struct backing_dev_info *backing_dev_info; 1746 1747 struct io_context *io_context; 1748 1749 unsigned long ptrace_message; 1750 siginfo_t *last_siginfo; /* For ptrace use. */ 1751 struct task_io_accounting ioac; 1752#if defined(CONFIG_TASK_XACCT) 1753 u64 acct_rss_mem1; /* accumulated rss usage */ 1754 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1755 cputime_t acct_timexpd; /* stime + utime since last update */ 1756#endif 1757#ifdef CONFIG_CPUSETS 1758 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1759 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1760 int cpuset_mem_spread_rotor; 1761 int cpuset_slab_spread_rotor; 1762#endif 1763#ifdef CONFIG_CGROUPS 1764 /* Control Group info protected by css_set_lock */ 1765 struct css_set __rcu *cgroups; 1766 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1767 struct list_head cg_list; 1768#endif 1769#ifdef CONFIG_FUTEX 1770 struct robust_list_head __user *robust_list; 1771#ifdef CONFIG_COMPAT 1772 struct compat_robust_list_head __user *compat_robust_list; 1773#endif 1774 struct list_head pi_state_list; 1775 struct futex_pi_state *pi_state_cache; 1776#endif 1777#ifdef CONFIG_PERF_EVENTS 1778 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1779 struct mutex perf_event_mutex; 1780 struct list_head perf_event_list; 1781#endif 1782#ifdef CONFIG_DEBUG_PREEMPT 1783 unsigned long preempt_disable_ip; 1784#endif 1785#ifdef CONFIG_NUMA 1786 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1787 short il_next; 1788 short pref_node_fork; 1789#endif 1790#ifdef CONFIG_NUMA_BALANCING 1791 int numa_scan_seq; 1792 unsigned int numa_scan_period; 1793 unsigned int numa_scan_period_max; 1794 int numa_preferred_nid; 1795 unsigned long numa_migrate_retry; 1796 u64 node_stamp; /* migration stamp */ 1797 u64 last_task_numa_placement; 1798 u64 last_sum_exec_runtime; 1799 struct callback_head numa_work; 1800 1801 struct list_head numa_entry; 1802 struct numa_group *numa_group; 1803 1804 /* 1805 * numa_faults is an array split into four regions: 1806 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1807 * in this precise order. 1808 * 1809 * faults_memory: Exponential decaying average of faults on a per-node 1810 * basis. Scheduling placement decisions are made based on these 1811 * counts. The values remain static for the duration of a PTE scan. 1812 * faults_cpu: Track the nodes the process was running on when a NUMA 1813 * hinting fault was incurred. 1814 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1815 * during the current scan window. When the scan completes, the counts 1816 * in faults_memory and faults_cpu decay and these values are copied. 1817 */ 1818 unsigned long *numa_faults; 1819 unsigned long total_numa_faults; 1820 1821 /* 1822 * numa_faults_locality tracks if faults recorded during the last 1823 * scan window were remote/local or failed to migrate. The task scan 1824 * period is adapted based on the locality of the faults with different 1825 * weights depending on whether they were shared or private faults 1826 */ 1827 unsigned long numa_faults_locality[3]; 1828 1829 unsigned long numa_pages_migrated; 1830#endif /* CONFIG_NUMA_BALANCING */ 1831 1832#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1833 struct tlbflush_unmap_batch tlb_ubc; 1834#endif 1835 1836 struct rcu_head rcu; 1837 1838 /* 1839 * cache last used pipe for splice 1840 */ 1841 struct pipe_inode_info *splice_pipe; 1842 1843 struct page_frag task_frag; 1844 1845#ifdef CONFIG_TASK_DELAY_ACCT 1846 struct task_delay_info *delays; 1847#endif 1848#ifdef CONFIG_FAULT_INJECTION 1849 int make_it_fail; 1850#endif 1851 /* 1852 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1853 * balance_dirty_pages() for some dirty throttling pause 1854 */ 1855 int nr_dirtied; 1856 int nr_dirtied_pause; 1857 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1858 1859#ifdef CONFIG_LATENCYTOP 1860 int latency_record_count; 1861 struct latency_record latency_record[LT_SAVECOUNT]; 1862#endif 1863 /* 1864 * time slack values; these are used to round up poll() and 1865 * select() etc timeout values. These are in nanoseconds. 1866 */ 1867 u64 timer_slack_ns; 1868 u64 default_timer_slack_ns; 1869 1870#ifdef CONFIG_KASAN 1871 unsigned int kasan_depth; 1872#endif 1873#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1874 /* Index of current stored address in ret_stack */ 1875 int curr_ret_stack; 1876 /* Stack of return addresses for return function tracing */ 1877 struct ftrace_ret_stack *ret_stack; 1878 /* time stamp for last schedule */ 1879 unsigned long long ftrace_timestamp; 1880 /* 1881 * Number of functions that haven't been traced 1882 * because of depth overrun. 1883 */ 1884 atomic_t trace_overrun; 1885 /* Pause for the tracing */ 1886 atomic_t tracing_graph_pause; 1887#endif 1888#ifdef CONFIG_TRACING 1889 /* state flags for use by tracers */ 1890 unsigned long trace; 1891 /* bitmask and counter of trace recursion */ 1892 unsigned long trace_recursion; 1893#endif /* CONFIG_TRACING */ 1894#ifdef CONFIG_KCOV 1895 /* Coverage collection mode enabled for this task (0 if disabled). */ 1896 enum kcov_mode kcov_mode; 1897 /* Size of the kcov_area. */ 1898 unsigned kcov_size; 1899 /* Buffer for coverage collection. */ 1900 void *kcov_area; 1901 /* kcov desciptor wired with this task or NULL. */ 1902 struct kcov *kcov; 1903#endif 1904#ifdef CONFIG_MEMCG 1905 struct mem_cgroup *memcg_in_oom; 1906 gfp_t memcg_oom_gfp_mask; 1907 int memcg_oom_order; 1908 1909 /* number of pages to reclaim on returning to userland */ 1910 unsigned int memcg_nr_pages_over_high; 1911#endif 1912#ifdef CONFIG_UPROBES 1913 struct uprobe_task *utask; 1914#endif 1915#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1916 unsigned int sequential_io; 1917 unsigned int sequential_io_avg; 1918#endif 1919#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1920 unsigned long task_state_change; 1921#endif 1922 int pagefault_disabled; 1923#ifdef CONFIG_MMU 1924 struct task_struct *oom_reaper_list; 1925#endif 1926/* CPU-specific state of this task */ 1927 struct thread_struct thread; 1928/* 1929 * WARNING: on x86, 'thread_struct' contains a variable-sized 1930 * structure. It *MUST* be at the end of 'task_struct'. 1931 * 1932 * Do not put anything below here! 1933 */ 1934}; 1935 1936#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1937extern int arch_task_struct_size __read_mostly; 1938#else 1939# define arch_task_struct_size (sizeof(struct task_struct)) 1940#endif 1941 1942/* Future-safe accessor for struct task_struct's cpus_allowed. */ 1943#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1944 1945static inline int tsk_nr_cpus_allowed(struct task_struct *p) 1946{ 1947 return p->nr_cpus_allowed; 1948} 1949 1950#define TNF_MIGRATED 0x01 1951#define TNF_NO_GROUP 0x02 1952#define TNF_SHARED 0x04 1953#define TNF_FAULT_LOCAL 0x08 1954#define TNF_MIGRATE_FAIL 0x10 1955 1956static inline bool in_vfork(struct task_struct *tsk) 1957{ 1958 bool ret; 1959 1960 /* 1961 * need RCU to access ->real_parent if CLONE_VM was used along with 1962 * CLONE_PARENT. 1963 * 1964 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not 1965 * imply CLONE_VM 1966 * 1967 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus 1968 * ->real_parent is not necessarily the task doing vfork(), so in 1969 * theory we can't rely on task_lock() if we want to dereference it. 1970 * 1971 * And in this case we can't trust the real_parent->mm == tsk->mm 1972 * check, it can be false negative. But we do not care, if init or 1973 * another oom-unkillable task does this it should blame itself. 1974 */ 1975 rcu_read_lock(); 1976 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm; 1977 rcu_read_unlock(); 1978 1979 return ret; 1980} 1981 1982#ifdef CONFIG_NUMA_BALANCING 1983extern void task_numa_fault(int last_node, int node, int pages, int flags); 1984extern pid_t task_numa_group_id(struct task_struct *p); 1985extern void set_numabalancing_state(bool enabled); 1986extern void task_numa_free(struct task_struct *p); 1987extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 1988 int src_nid, int dst_cpu); 1989#else 1990static inline void task_numa_fault(int last_node, int node, int pages, 1991 int flags) 1992{ 1993} 1994static inline pid_t task_numa_group_id(struct task_struct *p) 1995{ 1996 return 0; 1997} 1998static inline void set_numabalancing_state(bool enabled) 1999{ 2000} 2001static inline void task_numa_free(struct task_struct *p) 2002{ 2003} 2004static inline bool should_numa_migrate_memory(struct task_struct *p, 2005 struct page *page, int src_nid, int dst_cpu) 2006{ 2007 return true; 2008} 2009#endif 2010 2011static inline struct pid *task_pid(struct task_struct *task) 2012{ 2013 return task->pids[PIDTYPE_PID].pid; 2014} 2015 2016static inline struct pid *task_tgid(struct task_struct *task) 2017{ 2018 return task->group_leader->pids[PIDTYPE_PID].pid; 2019} 2020 2021/* 2022 * Without tasklist or rcu lock it is not safe to dereference 2023 * the result of task_pgrp/task_session even if task == current, 2024 * we can race with another thread doing sys_setsid/sys_setpgid. 2025 */ 2026static inline struct pid *task_pgrp(struct task_struct *task) 2027{ 2028 return task->group_leader->pids[PIDTYPE_PGID].pid; 2029} 2030 2031static inline struct pid *task_session(struct task_struct *task) 2032{ 2033 return task->group_leader->pids[PIDTYPE_SID].pid; 2034} 2035 2036struct pid_namespace; 2037 2038/* 2039 * the helpers to get the task's different pids as they are seen 2040 * from various namespaces 2041 * 2042 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 2043 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 2044 * current. 2045 * task_xid_nr_ns() : id seen from the ns specified; 2046 * 2047 * set_task_vxid() : assigns a virtual id to a task; 2048 * 2049 * see also pid_nr() etc in include/linux/pid.h 2050 */ 2051pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 2052 struct pid_namespace *ns); 2053 2054static inline pid_t task_pid_nr(struct task_struct *tsk) 2055{ 2056 return tsk->pid; 2057} 2058 2059static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 2060 struct pid_namespace *ns) 2061{ 2062 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 2063} 2064 2065static inline pid_t task_pid_vnr(struct task_struct *tsk) 2066{ 2067 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 2068} 2069 2070 2071static inline pid_t task_tgid_nr(struct task_struct *tsk) 2072{ 2073 return tsk->tgid; 2074} 2075 2076pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 2077 2078static inline pid_t task_tgid_vnr(struct task_struct *tsk) 2079{ 2080 return pid_vnr(task_tgid(tsk)); 2081} 2082 2083 2084static inline int pid_alive(const struct task_struct *p); 2085static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 2086{ 2087 pid_t pid = 0; 2088 2089 rcu_read_lock(); 2090 if (pid_alive(tsk)) 2091 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 2092 rcu_read_unlock(); 2093 2094 return pid; 2095} 2096 2097static inline pid_t task_ppid_nr(const struct task_struct *tsk) 2098{ 2099 return task_ppid_nr_ns(tsk, &init_pid_ns); 2100} 2101 2102static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 2103 struct pid_namespace *ns) 2104{ 2105 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 2106} 2107 2108static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 2109{ 2110 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 2111} 2112 2113 2114static inline pid_t task_session_nr_ns(struct task_struct *tsk, 2115 struct pid_namespace *ns) 2116{ 2117 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 2118} 2119 2120static inline pid_t task_session_vnr(struct task_struct *tsk) 2121{ 2122 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 2123} 2124 2125/* obsolete, do not use */ 2126static inline pid_t task_pgrp_nr(struct task_struct *tsk) 2127{ 2128 return task_pgrp_nr_ns(tsk, &init_pid_ns); 2129} 2130 2131/** 2132 * pid_alive - check that a task structure is not stale 2133 * @p: Task structure to be checked. 2134 * 2135 * Test if a process is not yet dead (at most zombie state) 2136 * If pid_alive fails, then pointers within the task structure 2137 * can be stale and must not be dereferenced. 2138 * 2139 * Return: 1 if the process is alive. 0 otherwise. 2140 */ 2141static inline int pid_alive(const struct task_struct *p) 2142{ 2143 return p->pids[PIDTYPE_PID].pid != NULL; 2144} 2145 2146/** 2147 * is_global_init - check if a task structure is init. Since init 2148 * is free to have sub-threads we need to check tgid. 2149 * @tsk: Task structure to be checked. 2150 * 2151 * Check if a task structure is the first user space task the kernel created. 2152 * 2153 * Return: 1 if the task structure is init. 0 otherwise. 2154 */ 2155static inline int is_global_init(struct task_struct *tsk) 2156{ 2157 return task_tgid_nr(tsk) == 1; 2158} 2159 2160extern struct pid *cad_pid; 2161 2162extern void free_task(struct task_struct *tsk); 2163#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 2164 2165extern void __put_task_struct(struct task_struct *t); 2166 2167static inline void put_task_struct(struct task_struct *t) 2168{ 2169 if (atomic_dec_and_test(&t->usage)) 2170 __put_task_struct(t); 2171} 2172 2173struct task_struct *task_rcu_dereference(struct task_struct **ptask); 2174struct task_struct *try_get_task_struct(struct task_struct **ptask); 2175 2176#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2177extern void task_cputime(struct task_struct *t, 2178 cputime_t *utime, cputime_t *stime); 2179extern void task_cputime_scaled(struct task_struct *t, 2180 cputime_t *utimescaled, cputime_t *stimescaled); 2181extern cputime_t task_gtime(struct task_struct *t); 2182#else 2183static inline void task_cputime(struct task_struct *t, 2184 cputime_t *utime, cputime_t *stime) 2185{ 2186 if (utime) 2187 *utime = t->utime; 2188 if (stime) 2189 *stime = t->stime; 2190} 2191 2192static inline void task_cputime_scaled(struct task_struct *t, 2193 cputime_t *utimescaled, 2194 cputime_t *stimescaled) 2195{ 2196 if (utimescaled) 2197 *utimescaled = t->utimescaled; 2198 if (stimescaled) 2199 *stimescaled = t->stimescaled; 2200} 2201 2202static inline cputime_t task_gtime(struct task_struct *t) 2203{ 2204 return t->gtime; 2205} 2206#endif 2207extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2208extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2209 2210/* 2211 * Per process flags 2212 */ 2213#define PF_EXITING 0x00000004 /* getting shut down */ 2214#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 2215#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 2216#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 2217#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 2218#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 2219#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 2220#define PF_DUMPCORE 0x00000200 /* dumped core */ 2221#define PF_SIGNALED 0x00000400 /* killed by a signal */ 2222#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 2223#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 2224#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 2225#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 2226#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 2227#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 2228#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 2229#define PF_KSWAPD 0x00040000 /* I am kswapd */ 2230#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 2231#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 2232#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 2233#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 2234#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 2235#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 2236#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 2237#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 2238#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 2239#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 2240 2241/* 2242 * Only the _current_ task can read/write to tsk->flags, but other 2243 * tasks can access tsk->flags in readonly mode for example 2244 * with tsk_used_math (like during threaded core dumping). 2245 * There is however an exception to this rule during ptrace 2246 * or during fork: the ptracer task is allowed to write to the 2247 * child->flags of its traced child (same goes for fork, the parent 2248 * can write to the child->flags), because we're guaranteed the 2249 * child is not running and in turn not changing child->flags 2250 * at the same time the parent does it. 2251 */ 2252#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 2253#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 2254#define clear_used_math() clear_stopped_child_used_math(current) 2255#define set_used_math() set_stopped_child_used_math(current) 2256#define conditional_stopped_child_used_math(condition, child) \ 2257 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 2258#define conditional_used_math(condition) \ 2259 conditional_stopped_child_used_math(condition, current) 2260#define copy_to_stopped_child_used_math(child) \ 2261 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 2262/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 2263#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 2264#define used_math() tsk_used_math(current) 2265 2266/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 2267 * __GFP_FS is also cleared as it implies __GFP_IO. 2268 */ 2269static inline gfp_t memalloc_noio_flags(gfp_t flags) 2270{ 2271 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2272 flags &= ~(__GFP_IO | __GFP_FS); 2273 return flags; 2274} 2275 2276static inline unsigned int memalloc_noio_save(void) 2277{ 2278 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2279 current->flags |= PF_MEMALLOC_NOIO; 2280 return flags; 2281} 2282 2283static inline void memalloc_noio_restore(unsigned int flags) 2284{ 2285 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2286} 2287 2288/* Per-process atomic flags. */ 2289#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2290#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2291#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2292#define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */ 2293 2294 2295#define TASK_PFA_TEST(name, func) \ 2296 static inline bool task_##func(struct task_struct *p) \ 2297 { return test_bit(PFA_##name, &p->atomic_flags); } 2298#define TASK_PFA_SET(name, func) \ 2299 static inline void task_set_##func(struct task_struct *p) \ 2300 { set_bit(PFA_##name, &p->atomic_flags); } 2301#define TASK_PFA_CLEAR(name, func) \ 2302 static inline void task_clear_##func(struct task_struct *p) \ 2303 { clear_bit(PFA_##name, &p->atomic_flags); } 2304 2305TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2306TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2307 2308TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2309TASK_PFA_SET(SPREAD_PAGE, spread_page) 2310TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2311 2312TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2313TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2314TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2315 2316TASK_PFA_TEST(LMK_WAITING, lmk_waiting) 2317TASK_PFA_SET(LMK_WAITING, lmk_waiting) 2318 2319/* 2320 * task->jobctl flags 2321 */ 2322#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2323 2324#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2325#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2326#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2327#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2328#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2329#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2330#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2331 2332#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT) 2333#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT) 2334#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT) 2335#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT) 2336#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT) 2337#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT) 2338#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT) 2339 2340#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2341#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2342 2343extern bool task_set_jobctl_pending(struct task_struct *task, 2344 unsigned long mask); 2345extern void task_clear_jobctl_trapping(struct task_struct *task); 2346extern void task_clear_jobctl_pending(struct task_struct *task, 2347 unsigned long mask); 2348 2349static inline void rcu_copy_process(struct task_struct *p) 2350{ 2351#ifdef CONFIG_PREEMPT_RCU 2352 p->rcu_read_lock_nesting = 0; 2353 p->rcu_read_unlock_special.s = 0; 2354 p->rcu_blocked_node = NULL; 2355 INIT_LIST_HEAD(&p->rcu_node_entry); 2356#endif /* #ifdef CONFIG_PREEMPT_RCU */ 2357#ifdef CONFIG_TASKS_RCU 2358 p->rcu_tasks_holdout = false; 2359 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2360 p->rcu_tasks_idle_cpu = -1; 2361#endif /* #ifdef CONFIG_TASKS_RCU */ 2362} 2363 2364static inline void tsk_restore_flags(struct task_struct *task, 2365 unsigned long orig_flags, unsigned long flags) 2366{ 2367 task->flags &= ~flags; 2368 task->flags |= orig_flags & flags; 2369} 2370 2371extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2372 const struct cpumask *trial); 2373extern int task_can_attach(struct task_struct *p, 2374 const struct cpumask *cs_cpus_allowed); 2375#ifdef CONFIG_SMP 2376extern void do_set_cpus_allowed(struct task_struct *p, 2377 const struct cpumask *new_mask); 2378 2379extern int set_cpus_allowed_ptr(struct task_struct *p, 2380 const struct cpumask *new_mask); 2381#else 2382static inline void do_set_cpus_allowed(struct task_struct *p, 2383 const struct cpumask *new_mask) 2384{ 2385} 2386static inline int set_cpus_allowed_ptr(struct task_struct *p, 2387 const struct cpumask *new_mask) 2388{ 2389 if (!cpumask_test_cpu(0, new_mask)) 2390 return -EINVAL; 2391 return 0; 2392} 2393#endif 2394 2395#ifdef CONFIG_NO_HZ_COMMON 2396void calc_load_enter_idle(void); 2397void calc_load_exit_idle(void); 2398#else 2399static inline void calc_load_enter_idle(void) { } 2400static inline void calc_load_exit_idle(void) { } 2401#endif /* CONFIG_NO_HZ_COMMON */ 2402 2403/* 2404 * Do not use outside of architecture code which knows its limitations. 2405 * 2406 * sched_clock() has no promise of monotonicity or bounded drift between 2407 * CPUs, use (which you should not) requires disabling IRQs. 2408 * 2409 * Please use one of the three interfaces below. 2410 */ 2411extern unsigned long long notrace sched_clock(void); 2412/* 2413 * See the comment in kernel/sched/clock.c 2414 */ 2415extern u64 running_clock(void); 2416extern u64 sched_clock_cpu(int cpu); 2417 2418 2419extern void sched_clock_init(void); 2420 2421#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2422static inline void sched_clock_tick(void) 2423{ 2424} 2425 2426static inline void sched_clock_idle_sleep_event(void) 2427{ 2428} 2429 2430static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2431{ 2432} 2433 2434static inline u64 cpu_clock(int cpu) 2435{ 2436 return sched_clock(); 2437} 2438 2439static inline u64 local_clock(void) 2440{ 2441 return sched_clock(); 2442} 2443#else 2444/* 2445 * Architectures can set this to 1 if they have specified 2446 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2447 * but then during bootup it turns out that sched_clock() 2448 * is reliable after all: 2449 */ 2450extern int sched_clock_stable(void); 2451extern void set_sched_clock_stable(void); 2452extern void clear_sched_clock_stable(void); 2453 2454extern void sched_clock_tick(void); 2455extern void sched_clock_idle_sleep_event(void); 2456extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2457 2458/* 2459 * As outlined in clock.c, provides a fast, high resolution, nanosecond 2460 * time source that is monotonic per cpu argument and has bounded drift 2461 * between cpus. 2462 * 2463 * ######################### BIG FAT WARNING ########################## 2464 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # 2465 * # go backwards !! # 2466 * #################################################################### 2467 */ 2468static inline u64 cpu_clock(int cpu) 2469{ 2470 return sched_clock_cpu(cpu); 2471} 2472 2473static inline u64 local_clock(void) 2474{ 2475 return sched_clock_cpu(raw_smp_processor_id()); 2476} 2477#endif 2478 2479#ifdef CONFIG_IRQ_TIME_ACCOUNTING 2480/* 2481 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2482 * The reason for this explicit opt-in is not to have perf penalty with 2483 * slow sched_clocks. 2484 */ 2485extern void enable_sched_clock_irqtime(void); 2486extern void disable_sched_clock_irqtime(void); 2487#else 2488static inline void enable_sched_clock_irqtime(void) {} 2489static inline void disable_sched_clock_irqtime(void) {} 2490#endif 2491 2492extern unsigned long long 2493task_sched_runtime(struct task_struct *task); 2494 2495/* sched_exec is called by processes performing an exec */ 2496#ifdef CONFIG_SMP 2497extern void sched_exec(void); 2498#else 2499#define sched_exec() {} 2500#endif 2501 2502extern void sched_clock_idle_sleep_event(void); 2503extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2504 2505#ifdef CONFIG_HOTPLUG_CPU 2506extern void idle_task_exit(void); 2507#else 2508static inline void idle_task_exit(void) {} 2509#endif 2510 2511#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2512extern void wake_up_nohz_cpu(int cpu); 2513#else 2514static inline void wake_up_nohz_cpu(int cpu) { } 2515#endif 2516 2517#ifdef CONFIG_NO_HZ_FULL 2518extern u64 scheduler_tick_max_deferment(void); 2519#endif 2520 2521#ifdef CONFIG_SCHED_AUTOGROUP 2522extern void sched_autogroup_create_attach(struct task_struct *p); 2523extern void sched_autogroup_detach(struct task_struct *p); 2524extern void sched_autogroup_fork(struct signal_struct *sig); 2525extern void sched_autogroup_exit(struct signal_struct *sig); 2526#ifdef CONFIG_PROC_FS 2527extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2528extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2529#endif 2530#else 2531static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2532static inline void sched_autogroup_detach(struct task_struct *p) { } 2533static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2534static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2535#endif 2536 2537extern int yield_to(struct task_struct *p, bool preempt); 2538extern void set_user_nice(struct task_struct *p, long nice); 2539extern int task_prio(const struct task_struct *p); 2540/** 2541 * task_nice - return the nice value of a given task. 2542 * @p: the task in question. 2543 * 2544 * Return: The nice value [ -20 ... 0 ... 19 ]. 2545 */ 2546static inline int task_nice(const struct task_struct *p) 2547{ 2548 return PRIO_TO_NICE((p)->static_prio); 2549} 2550extern int can_nice(const struct task_struct *p, const int nice); 2551extern int task_curr(const struct task_struct *p); 2552extern int idle_cpu(int cpu); 2553extern int sched_setscheduler(struct task_struct *, int, 2554 const struct sched_param *); 2555extern int sched_setscheduler_nocheck(struct task_struct *, int, 2556 const struct sched_param *); 2557extern int sched_setattr(struct task_struct *, 2558 const struct sched_attr *); 2559extern struct task_struct *idle_task(int cpu); 2560/** 2561 * is_idle_task - is the specified task an idle task? 2562 * @p: the task in question. 2563 * 2564 * Return: 1 if @p is an idle task. 0 otherwise. 2565 */ 2566static inline bool is_idle_task(const struct task_struct *p) 2567{ 2568 return p->pid == 0; 2569} 2570extern struct task_struct *curr_task(int cpu); 2571extern void set_curr_task(int cpu, struct task_struct *p); 2572 2573void yield(void); 2574 2575union thread_union { 2576 struct thread_info thread_info; 2577 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2578}; 2579 2580#ifndef __HAVE_ARCH_KSTACK_END 2581static inline int kstack_end(void *addr) 2582{ 2583 /* Reliable end of stack detection: 2584 * Some APM bios versions misalign the stack 2585 */ 2586 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2587} 2588#endif 2589 2590extern union thread_union init_thread_union; 2591extern struct task_struct init_task; 2592 2593extern struct mm_struct init_mm; 2594 2595extern struct pid_namespace init_pid_ns; 2596 2597/* 2598 * find a task by one of its numerical ids 2599 * 2600 * find_task_by_pid_ns(): 2601 * finds a task by its pid in the specified namespace 2602 * find_task_by_vpid(): 2603 * finds a task by its virtual pid 2604 * 2605 * see also find_vpid() etc in include/linux/pid.h 2606 */ 2607 2608extern struct task_struct *find_task_by_vpid(pid_t nr); 2609extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2610 struct pid_namespace *ns); 2611 2612/* per-UID process charging. */ 2613extern struct user_struct * alloc_uid(kuid_t); 2614static inline struct user_struct *get_uid(struct user_struct *u) 2615{ 2616 atomic_inc(&u->__count); 2617 return u; 2618} 2619extern void free_uid(struct user_struct *); 2620 2621#include <asm/current.h> 2622 2623extern void xtime_update(unsigned long ticks); 2624 2625extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2626extern int wake_up_process(struct task_struct *tsk); 2627extern void wake_up_new_task(struct task_struct *tsk); 2628#ifdef CONFIG_SMP 2629 extern void kick_process(struct task_struct *tsk); 2630#else 2631 static inline void kick_process(struct task_struct *tsk) { } 2632#endif 2633extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2634extern void sched_dead(struct task_struct *p); 2635 2636extern void proc_caches_init(void); 2637extern void flush_signals(struct task_struct *); 2638extern void ignore_signals(struct task_struct *); 2639extern void flush_signal_handlers(struct task_struct *, int force_default); 2640extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2641 2642static inline int kernel_dequeue_signal(siginfo_t *info) 2643{ 2644 struct task_struct *tsk = current; 2645 siginfo_t __info; 2646 int ret; 2647 2648 spin_lock_irq(&tsk->sighand->siglock); 2649 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info); 2650 spin_unlock_irq(&tsk->sighand->siglock); 2651 2652 return ret; 2653} 2654 2655static inline void kernel_signal_stop(void) 2656{ 2657 spin_lock_irq(&current->sighand->siglock); 2658 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 2659 __set_current_state(TASK_STOPPED); 2660 spin_unlock_irq(&current->sighand->siglock); 2661 2662 schedule(); 2663} 2664 2665extern void release_task(struct task_struct * p); 2666extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2667extern int force_sigsegv(int, struct task_struct *); 2668extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2669extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2670extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2671extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2672 const struct cred *, u32); 2673extern int kill_pgrp(struct pid *pid, int sig, int priv); 2674extern int kill_pid(struct pid *pid, int sig, int priv); 2675extern int kill_proc_info(int, struct siginfo *, pid_t); 2676extern __must_check bool do_notify_parent(struct task_struct *, int); 2677extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2678extern void force_sig(int, struct task_struct *); 2679extern int send_sig(int, struct task_struct *, int); 2680extern int zap_other_threads(struct task_struct *p); 2681extern struct sigqueue *sigqueue_alloc(void); 2682extern void sigqueue_free(struct sigqueue *); 2683extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2684extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2685 2686#ifdef TIF_RESTORE_SIGMASK 2687/* 2688 * Legacy restore_sigmask accessors. These are inefficient on 2689 * SMP architectures because they require atomic operations. 2690 */ 2691 2692/** 2693 * set_restore_sigmask() - make sure saved_sigmask processing gets done 2694 * 2695 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code 2696 * will run before returning to user mode, to process the flag. For 2697 * all callers, TIF_SIGPENDING is already set or it's no harm to set 2698 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the 2699 * arch code will notice on return to user mode, in case those bits 2700 * are scarce. We set TIF_SIGPENDING here to ensure that the arch 2701 * signal code always gets run when TIF_RESTORE_SIGMASK is set. 2702 */ 2703static inline void set_restore_sigmask(void) 2704{ 2705 set_thread_flag(TIF_RESTORE_SIGMASK); 2706 WARN_ON(!test_thread_flag(TIF_SIGPENDING)); 2707} 2708static inline void clear_restore_sigmask(void) 2709{ 2710 clear_thread_flag(TIF_RESTORE_SIGMASK); 2711} 2712static inline bool test_restore_sigmask(void) 2713{ 2714 return test_thread_flag(TIF_RESTORE_SIGMASK); 2715} 2716static inline bool test_and_clear_restore_sigmask(void) 2717{ 2718 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); 2719} 2720 2721#else /* TIF_RESTORE_SIGMASK */ 2722 2723/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ 2724static inline void set_restore_sigmask(void) 2725{ 2726 current->restore_sigmask = true; 2727 WARN_ON(!test_thread_flag(TIF_SIGPENDING)); 2728} 2729static inline void clear_restore_sigmask(void) 2730{ 2731 current->restore_sigmask = false; 2732} 2733static inline bool test_restore_sigmask(void) 2734{ 2735 return current->restore_sigmask; 2736} 2737static inline bool test_and_clear_restore_sigmask(void) 2738{ 2739 if (!current->restore_sigmask) 2740 return false; 2741 current->restore_sigmask = false; 2742 return true; 2743} 2744#endif 2745 2746static inline void restore_saved_sigmask(void) 2747{ 2748 if (test_and_clear_restore_sigmask()) 2749 __set_current_blocked(&current->saved_sigmask); 2750} 2751 2752static inline sigset_t *sigmask_to_save(void) 2753{ 2754 sigset_t *res = &current->blocked; 2755 if (unlikely(test_restore_sigmask())) 2756 res = &current->saved_sigmask; 2757 return res; 2758} 2759 2760static inline int kill_cad_pid(int sig, int priv) 2761{ 2762 return kill_pid(cad_pid, sig, priv); 2763} 2764 2765/* These can be the second arg to send_sig_info/send_group_sig_info. */ 2766#define SEND_SIG_NOINFO ((struct siginfo *) 0) 2767#define SEND_SIG_PRIV ((struct siginfo *) 1) 2768#define SEND_SIG_FORCED ((struct siginfo *) 2) 2769 2770/* 2771 * True if we are on the alternate signal stack. 2772 */ 2773static inline int on_sig_stack(unsigned long sp) 2774{ 2775 /* 2776 * If the signal stack is SS_AUTODISARM then, by construction, we 2777 * can't be on the signal stack unless user code deliberately set 2778 * SS_AUTODISARM when we were already on it. 2779 * 2780 * This improves reliability: if user state gets corrupted such that 2781 * the stack pointer points very close to the end of the signal stack, 2782 * then this check will enable the signal to be handled anyway. 2783 */ 2784 if (current->sas_ss_flags & SS_AUTODISARM) 2785 return 0; 2786 2787#ifdef CONFIG_STACK_GROWSUP 2788 return sp >= current->sas_ss_sp && 2789 sp - current->sas_ss_sp < current->sas_ss_size; 2790#else 2791 return sp > current->sas_ss_sp && 2792 sp - current->sas_ss_sp <= current->sas_ss_size; 2793#endif 2794} 2795 2796static inline int sas_ss_flags(unsigned long sp) 2797{ 2798 if (!current->sas_ss_size) 2799 return SS_DISABLE; 2800 2801 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2802} 2803 2804static inline void sas_ss_reset(struct task_struct *p) 2805{ 2806 p->sas_ss_sp = 0; 2807 p->sas_ss_size = 0; 2808 p->sas_ss_flags = SS_DISABLE; 2809} 2810 2811static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2812{ 2813 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2814#ifdef CONFIG_STACK_GROWSUP 2815 return current->sas_ss_sp; 2816#else 2817 return current->sas_ss_sp + current->sas_ss_size; 2818#endif 2819 return sp; 2820} 2821 2822/* 2823 * Routines for handling mm_structs 2824 */ 2825extern struct mm_struct * mm_alloc(void); 2826 2827/* mmdrop drops the mm and the page tables */ 2828extern void __mmdrop(struct mm_struct *); 2829static inline void mmdrop(struct mm_struct *mm) 2830{ 2831 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2832 __mmdrop(mm); 2833} 2834 2835static inline bool mmget_not_zero(struct mm_struct *mm) 2836{ 2837 return atomic_inc_not_zero(&mm->mm_users); 2838} 2839 2840/* mmput gets rid of the mappings and all user-space */ 2841extern void mmput(struct mm_struct *); 2842#ifdef CONFIG_MMU 2843/* same as above but performs the slow path from the async context. Can 2844 * be called from the atomic context as well 2845 */ 2846extern void mmput_async(struct mm_struct *); 2847#endif 2848 2849/* Grab a reference to a task's mm, if it is not already going away */ 2850extern struct mm_struct *get_task_mm(struct task_struct *task); 2851/* 2852 * Grab a reference to a task's mm, if it is not already going away 2853 * and ptrace_may_access with the mode parameter passed to it 2854 * succeeds. 2855 */ 2856extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2857/* Remove the current tasks stale references to the old mm_struct */ 2858extern void mm_release(struct task_struct *, struct mm_struct *); 2859 2860#ifdef CONFIG_HAVE_COPY_THREAD_TLS 2861extern int copy_thread_tls(unsigned long, unsigned long, unsigned long, 2862 struct task_struct *, unsigned long); 2863#else 2864extern int copy_thread(unsigned long, unsigned long, unsigned long, 2865 struct task_struct *); 2866 2867/* Architectures that haven't opted into copy_thread_tls get the tls argument 2868 * via pt_regs, so ignore the tls argument passed via C. */ 2869static inline int copy_thread_tls( 2870 unsigned long clone_flags, unsigned long sp, unsigned long arg, 2871 struct task_struct *p, unsigned long tls) 2872{ 2873 return copy_thread(clone_flags, sp, arg, p); 2874} 2875#endif 2876extern void flush_thread(void); 2877 2878#ifdef CONFIG_HAVE_EXIT_THREAD 2879extern void exit_thread(struct task_struct *tsk); 2880#else 2881static inline void exit_thread(struct task_struct *tsk) 2882{ 2883} 2884#endif 2885 2886extern void exit_files(struct task_struct *); 2887extern void __cleanup_sighand(struct sighand_struct *); 2888 2889extern void exit_itimers(struct signal_struct *); 2890extern void flush_itimer_signals(void); 2891 2892extern void do_group_exit(int); 2893 2894extern int do_execve(struct filename *, 2895 const char __user * const __user *, 2896 const char __user * const __user *); 2897extern int do_execveat(int, struct filename *, 2898 const char __user * const __user *, 2899 const char __user * const __user *, 2900 int); 2901extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long); 2902extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2903struct task_struct *fork_idle(int); 2904extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2905 2906extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 2907static inline void set_task_comm(struct task_struct *tsk, const char *from) 2908{ 2909 __set_task_comm(tsk, from, false); 2910} 2911extern char *get_task_comm(char *to, struct task_struct *tsk); 2912 2913#ifdef CONFIG_SMP 2914void scheduler_ipi(void); 2915extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2916#else 2917static inline void scheduler_ipi(void) { } 2918static inline unsigned long wait_task_inactive(struct task_struct *p, 2919 long match_state) 2920{ 2921 return 1; 2922} 2923#endif 2924 2925#define tasklist_empty() \ 2926 list_empty(&init_task.tasks) 2927 2928#define next_task(p) \ 2929 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2930 2931#define for_each_process(p) \ 2932 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2933 2934extern bool current_is_single_threaded(void); 2935 2936/* 2937 * Careful: do_each_thread/while_each_thread is a double loop so 2938 * 'break' will not work as expected - use goto instead. 2939 */ 2940#define do_each_thread(g, t) \ 2941 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2942 2943#define while_each_thread(g, t) \ 2944 while ((t = next_thread(t)) != g) 2945 2946#define __for_each_thread(signal, t) \ 2947 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2948 2949#define for_each_thread(p, t) \ 2950 __for_each_thread((p)->signal, t) 2951 2952/* Careful: this is a double loop, 'break' won't work as expected. */ 2953#define for_each_process_thread(p, t) \ 2954 for_each_process(p) for_each_thread(p, t) 2955 2956static inline int get_nr_threads(struct task_struct *tsk) 2957{ 2958 return tsk->signal->nr_threads; 2959} 2960 2961static inline bool thread_group_leader(struct task_struct *p) 2962{ 2963 return p->exit_signal >= 0; 2964} 2965 2966/* Do to the insanities of de_thread it is possible for a process 2967 * to have the pid of the thread group leader without actually being 2968 * the thread group leader. For iteration through the pids in proc 2969 * all we care about is that we have a task with the appropriate 2970 * pid, we don't actually care if we have the right task. 2971 */ 2972static inline bool has_group_leader_pid(struct task_struct *p) 2973{ 2974 return task_pid(p) == p->signal->leader_pid; 2975} 2976 2977static inline 2978bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2979{ 2980 return p1->signal == p2->signal; 2981} 2982 2983static inline struct task_struct *next_thread(const struct task_struct *p) 2984{ 2985 return list_entry_rcu(p->thread_group.next, 2986 struct task_struct, thread_group); 2987} 2988 2989static inline int thread_group_empty(struct task_struct *p) 2990{ 2991 return list_empty(&p->thread_group); 2992} 2993 2994#define delay_group_leader(p) \ 2995 (thread_group_leader(p) && !thread_group_empty(p)) 2996 2997/* 2998 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2999 * subscriptions and synchronises with wait4(). Also used in procfs. Also 3000 * pins the final release of task.io_context. Also protects ->cpuset and 3001 * ->cgroup.subsys[]. And ->vfork_done. 3002 * 3003 * Nests both inside and outside of read_lock(&tasklist_lock). 3004 * It must not be nested with write_lock_irq(&tasklist_lock), 3005 * neither inside nor outside. 3006 */ 3007static inline void task_lock(struct task_struct *p) 3008{ 3009 spin_lock(&p->alloc_lock); 3010} 3011 3012static inline void task_unlock(struct task_struct *p) 3013{ 3014 spin_unlock(&p->alloc_lock); 3015} 3016 3017extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 3018 unsigned long *flags); 3019 3020static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 3021 unsigned long *flags) 3022{ 3023 struct sighand_struct *ret; 3024 3025 ret = __lock_task_sighand(tsk, flags); 3026 (void)__cond_lock(&tsk->sighand->siglock, ret); 3027 return ret; 3028} 3029 3030static inline void unlock_task_sighand(struct task_struct *tsk, 3031 unsigned long *flags) 3032{ 3033 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 3034} 3035 3036/** 3037 * threadgroup_change_begin - mark the beginning of changes to a threadgroup 3038 * @tsk: task causing the changes 3039 * 3040 * All operations which modify a threadgroup - a new thread joining the 3041 * group, death of a member thread (the assertion of PF_EXITING) and 3042 * exec(2) dethreading the process and replacing the leader - are wrapped 3043 * by threadgroup_change_{begin|end}(). This is to provide a place which 3044 * subsystems needing threadgroup stability can hook into for 3045 * synchronization. 3046 */ 3047static inline void threadgroup_change_begin(struct task_struct *tsk) 3048{ 3049 might_sleep(); 3050 cgroup_threadgroup_change_begin(tsk); 3051} 3052 3053/** 3054 * threadgroup_change_end - mark the end of changes to a threadgroup 3055 * @tsk: task causing the changes 3056 * 3057 * See threadgroup_change_begin(). 3058 */ 3059static inline void threadgroup_change_end(struct task_struct *tsk) 3060{ 3061 cgroup_threadgroup_change_end(tsk); 3062} 3063 3064#ifndef __HAVE_THREAD_FUNCTIONS 3065 3066#define task_thread_info(task) ((struct thread_info *)(task)->stack) 3067#define task_stack_page(task) ((task)->stack) 3068 3069static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 3070{ 3071 *task_thread_info(p) = *task_thread_info(org); 3072 task_thread_info(p)->task = p; 3073} 3074 3075/* 3076 * Return the address of the last usable long on the stack. 3077 * 3078 * When the stack grows down, this is just above the thread 3079 * info struct. Going any lower will corrupt the threadinfo. 3080 * 3081 * When the stack grows up, this is the highest address. 3082 * Beyond that position, we corrupt data on the next page. 3083 */ 3084static inline unsigned long *end_of_stack(struct task_struct *p) 3085{ 3086#ifdef CONFIG_STACK_GROWSUP 3087 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 3088#else 3089 return (unsigned long *)(task_thread_info(p) + 1); 3090#endif 3091} 3092 3093#endif 3094#define task_stack_end_corrupted(task) \ 3095 (*(end_of_stack(task)) != STACK_END_MAGIC) 3096 3097static inline int object_is_on_stack(void *obj) 3098{ 3099 void *stack = task_stack_page(current); 3100 3101 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 3102} 3103 3104extern void thread_stack_cache_init(void); 3105 3106#ifdef CONFIG_DEBUG_STACK_USAGE 3107static inline unsigned long stack_not_used(struct task_struct *p) 3108{ 3109 unsigned long *n = end_of_stack(p); 3110 3111 do { /* Skip over canary */ 3112# ifdef CONFIG_STACK_GROWSUP 3113 n--; 3114# else 3115 n++; 3116# endif 3117 } while (!*n); 3118 3119# ifdef CONFIG_STACK_GROWSUP 3120 return (unsigned long)end_of_stack(p) - (unsigned long)n; 3121# else 3122 return (unsigned long)n - (unsigned long)end_of_stack(p); 3123# endif 3124} 3125#endif 3126extern void set_task_stack_end_magic(struct task_struct *tsk); 3127 3128/* set thread flags in other task's structures 3129 * - see asm/thread_info.h for TIF_xxxx flags available 3130 */ 3131static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 3132{ 3133 set_ti_thread_flag(task_thread_info(tsk), flag); 3134} 3135 3136static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 3137{ 3138 clear_ti_thread_flag(task_thread_info(tsk), flag); 3139} 3140 3141static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 3142{ 3143 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 3144} 3145 3146static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 3147{ 3148 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 3149} 3150 3151static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 3152{ 3153 return test_ti_thread_flag(task_thread_info(tsk), flag); 3154} 3155 3156static inline void set_tsk_need_resched(struct task_struct *tsk) 3157{ 3158 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 3159} 3160 3161static inline void clear_tsk_need_resched(struct task_struct *tsk) 3162{ 3163 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 3164} 3165 3166static inline int test_tsk_need_resched(struct task_struct *tsk) 3167{ 3168 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 3169} 3170 3171static inline int restart_syscall(void) 3172{ 3173 set_tsk_thread_flag(current, TIF_SIGPENDING); 3174 return -ERESTARTNOINTR; 3175} 3176 3177static inline int signal_pending(struct task_struct *p) 3178{ 3179 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 3180} 3181 3182static inline int __fatal_signal_pending(struct task_struct *p) 3183{ 3184 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 3185} 3186 3187static inline int fatal_signal_pending(struct task_struct *p) 3188{ 3189 return signal_pending(p) && __fatal_signal_pending(p); 3190} 3191 3192static inline int signal_pending_state(long state, struct task_struct *p) 3193{ 3194 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 3195 return 0; 3196 if (!signal_pending(p)) 3197 return 0; 3198 3199 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 3200} 3201 3202/* 3203 * cond_resched() and cond_resched_lock(): latency reduction via 3204 * explicit rescheduling in places that are safe. The return 3205 * value indicates whether a reschedule was done in fact. 3206 * cond_resched_lock() will drop the spinlock before scheduling, 3207 * cond_resched_softirq() will enable bhs before scheduling. 3208 */ 3209extern int _cond_resched(void); 3210 3211#define cond_resched() ({ \ 3212 ___might_sleep(__FILE__, __LINE__, 0); \ 3213 _cond_resched(); \ 3214}) 3215 3216extern int __cond_resched_lock(spinlock_t *lock); 3217 3218#define cond_resched_lock(lock) ({ \ 3219 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 3220 __cond_resched_lock(lock); \ 3221}) 3222 3223extern int __cond_resched_softirq(void); 3224 3225#define cond_resched_softirq() ({ \ 3226 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 3227 __cond_resched_softirq(); \ 3228}) 3229 3230static inline void cond_resched_rcu(void) 3231{ 3232#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 3233 rcu_read_unlock(); 3234 cond_resched(); 3235 rcu_read_lock(); 3236#endif 3237} 3238 3239/* 3240 * Does a critical section need to be broken due to another 3241 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 3242 * but a general need for low latency) 3243 */ 3244static inline int spin_needbreak(spinlock_t *lock) 3245{ 3246#ifdef CONFIG_PREEMPT 3247 return spin_is_contended(lock); 3248#else 3249 return 0; 3250#endif 3251} 3252 3253/* 3254 * Idle thread specific functions to determine the need_resched 3255 * polling state. 3256 */ 3257#ifdef TIF_POLLING_NRFLAG 3258static inline int tsk_is_polling(struct task_struct *p) 3259{ 3260 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 3261} 3262 3263static inline void __current_set_polling(void) 3264{ 3265 set_thread_flag(TIF_POLLING_NRFLAG); 3266} 3267 3268static inline bool __must_check current_set_polling_and_test(void) 3269{ 3270 __current_set_polling(); 3271 3272 /* 3273 * Polling state must be visible before we test NEED_RESCHED, 3274 * paired by resched_curr() 3275 */ 3276 smp_mb__after_atomic(); 3277 3278 return unlikely(tif_need_resched()); 3279} 3280 3281static inline void __current_clr_polling(void) 3282{ 3283 clear_thread_flag(TIF_POLLING_NRFLAG); 3284} 3285 3286static inline bool __must_check current_clr_polling_and_test(void) 3287{ 3288 __current_clr_polling(); 3289 3290 /* 3291 * Polling state must be visible before we test NEED_RESCHED, 3292 * paired by resched_curr() 3293 */ 3294 smp_mb__after_atomic(); 3295 3296 return unlikely(tif_need_resched()); 3297} 3298 3299#else 3300static inline int tsk_is_polling(struct task_struct *p) { return 0; } 3301static inline void __current_set_polling(void) { } 3302static inline void __current_clr_polling(void) { } 3303 3304static inline bool __must_check current_set_polling_and_test(void) 3305{ 3306 return unlikely(tif_need_resched()); 3307} 3308static inline bool __must_check current_clr_polling_and_test(void) 3309{ 3310 return unlikely(tif_need_resched()); 3311} 3312#endif 3313 3314static inline void current_clr_polling(void) 3315{ 3316 __current_clr_polling(); 3317 3318 /* 3319 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 3320 * Once the bit is cleared, we'll get IPIs with every new 3321 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 3322 * fold. 3323 */ 3324 smp_mb(); /* paired with resched_curr() */ 3325 3326 preempt_fold_need_resched(); 3327} 3328 3329static __always_inline bool need_resched(void) 3330{ 3331 return unlikely(tif_need_resched()); 3332} 3333 3334/* 3335 * Thread group CPU time accounting. 3336 */ 3337void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 3338void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 3339 3340/* 3341 * Reevaluate whether the task has signals pending delivery. 3342 * Wake the task if so. 3343 * This is required every time the blocked sigset_t changes. 3344 * callers must hold sighand->siglock. 3345 */ 3346extern void recalc_sigpending_and_wake(struct task_struct *t); 3347extern void recalc_sigpending(void); 3348 3349extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 3350 3351static inline void signal_wake_up(struct task_struct *t, bool resume) 3352{ 3353 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 3354} 3355static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 3356{ 3357 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 3358} 3359 3360/* 3361 * Wrappers for p->thread_info->cpu access. No-op on UP. 3362 */ 3363#ifdef CONFIG_SMP 3364 3365static inline unsigned int task_cpu(const struct task_struct *p) 3366{ 3367 return task_thread_info(p)->cpu; 3368} 3369 3370static inline int task_node(const struct task_struct *p) 3371{ 3372 return cpu_to_node(task_cpu(p)); 3373} 3374 3375extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 3376 3377#else 3378 3379static inline unsigned int task_cpu(const struct task_struct *p) 3380{ 3381 return 0; 3382} 3383 3384static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 3385{ 3386} 3387 3388#endif /* CONFIG_SMP */ 3389 3390extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3391extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3392 3393#ifdef CONFIG_CGROUP_SCHED 3394extern struct task_group root_task_group; 3395#endif /* CONFIG_CGROUP_SCHED */ 3396 3397extern int task_can_switch_user(struct user_struct *up, 3398 struct task_struct *tsk); 3399 3400#ifdef CONFIG_TASK_XACCT 3401static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3402{ 3403 tsk->ioac.rchar += amt; 3404} 3405 3406static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3407{ 3408 tsk->ioac.wchar += amt; 3409} 3410 3411static inline void inc_syscr(struct task_struct *tsk) 3412{ 3413 tsk->ioac.syscr++; 3414} 3415 3416static inline void inc_syscw(struct task_struct *tsk) 3417{ 3418 tsk->ioac.syscw++; 3419} 3420#else 3421static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3422{ 3423} 3424 3425static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3426{ 3427} 3428 3429static inline void inc_syscr(struct task_struct *tsk) 3430{ 3431} 3432 3433static inline void inc_syscw(struct task_struct *tsk) 3434{ 3435} 3436#endif 3437 3438#ifndef TASK_SIZE_OF 3439#define TASK_SIZE_OF(tsk) TASK_SIZE 3440#endif 3441 3442#ifdef CONFIG_MEMCG 3443extern void mm_update_next_owner(struct mm_struct *mm); 3444#else 3445static inline void mm_update_next_owner(struct mm_struct *mm) 3446{ 3447} 3448#endif /* CONFIG_MEMCG */ 3449 3450static inline unsigned long task_rlimit(const struct task_struct *tsk, 3451 unsigned int limit) 3452{ 3453 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur); 3454} 3455 3456static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3457 unsigned int limit) 3458{ 3459 return READ_ONCE(tsk->signal->rlim[limit].rlim_max); 3460} 3461 3462static inline unsigned long rlimit(unsigned int limit) 3463{ 3464 return task_rlimit(current, limit); 3465} 3466 3467static inline unsigned long rlimit_max(unsigned int limit) 3468{ 3469 return task_rlimit_max(current, limit); 3470} 3471 3472#ifdef CONFIG_CPU_FREQ 3473struct update_util_data { 3474 void (*func)(struct update_util_data *data, 3475 u64 time, unsigned long util, unsigned long max); 3476}; 3477 3478void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data, 3479 void (*func)(struct update_util_data *data, u64 time, 3480 unsigned long util, unsigned long max)); 3481void cpufreq_remove_update_util_hook(int cpu); 3482#endif /* CONFIG_CPU_FREQ */ 3483 3484#endif