at v4.8 657 lines 19 kB view raw
1#ifndef _LINUX_PAGEMAP_H 2#define _LINUX_PAGEMAP_H 3 4/* 5 * Copyright 1995 Linus Torvalds 6 */ 7#include <linux/mm.h> 8#include <linux/fs.h> 9#include <linux/list.h> 10#include <linux/highmem.h> 11#include <linux/compiler.h> 12#include <asm/uaccess.h> 13#include <linux/gfp.h> 14#include <linux/bitops.h> 15#include <linux/hardirq.h> /* for in_interrupt() */ 16#include <linux/hugetlb_inline.h> 17 18/* 19 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page 20 * allocation mode flags. 21 */ 22enum mapping_flags { 23 AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */ 24 AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */ 25 AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */ 26 AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */ 27 AS_EXITING = __GFP_BITS_SHIFT + 4, /* final truncate in progress */ 28}; 29 30static inline void mapping_set_error(struct address_space *mapping, int error) 31{ 32 if (unlikely(error)) { 33 if (error == -ENOSPC) 34 set_bit(AS_ENOSPC, &mapping->flags); 35 else 36 set_bit(AS_EIO, &mapping->flags); 37 } 38} 39 40static inline void mapping_set_unevictable(struct address_space *mapping) 41{ 42 set_bit(AS_UNEVICTABLE, &mapping->flags); 43} 44 45static inline void mapping_clear_unevictable(struct address_space *mapping) 46{ 47 clear_bit(AS_UNEVICTABLE, &mapping->flags); 48} 49 50static inline int mapping_unevictable(struct address_space *mapping) 51{ 52 if (mapping) 53 return test_bit(AS_UNEVICTABLE, &mapping->flags); 54 return !!mapping; 55} 56 57static inline void mapping_set_exiting(struct address_space *mapping) 58{ 59 set_bit(AS_EXITING, &mapping->flags); 60} 61 62static inline int mapping_exiting(struct address_space *mapping) 63{ 64 return test_bit(AS_EXITING, &mapping->flags); 65} 66 67static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 68{ 69 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK; 70} 71 72/* Restricts the given gfp_mask to what the mapping allows. */ 73static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 74 gfp_t gfp_mask) 75{ 76 return mapping_gfp_mask(mapping) & gfp_mask; 77} 78 79/* 80 * This is non-atomic. Only to be used before the mapping is activated. 81 * Probably needs a barrier... 82 */ 83static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 84{ 85 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) | 86 (__force unsigned long)mask; 87} 88 89void release_pages(struct page **pages, int nr, bool cold); 90 91/* 92 * speculatively take a reference to a page. 93 * If the page is free (_refcount == 0), then _refcount is untouched, and 0 94 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned. 95 * 96 * This function must be called inside the same rcu_read_lock() section as has 97 * been used to lookup the page in the pagecache radix-tree (or page table): 98 * this allows allocators to use a synchronize_rcu() to stabilize _refcount. 99 * 100 * Unless an RCU grace period has passed, the count of all pages coming out 101 * of the allocator must be considered unstable. page_count may return higher 102 * than expected, and put_page must be able to do the right thing when the 103 * page has been finished with, no matter what it is subsequently allocated 104 * for (because put_page is what is used here to drop an invalid speculative 105 * reference). 106 * 107 * This is the interesting part of the lockless pagecache (and lockless 108 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) 109 * has the following pattern: 110 * 1. find page in radix tree 111 * 2. conditionally increment refcount 112 * 3. check the page is still in pagecache (if no, goto 1) 113 * 114 * Remove-side that cares about stability of _refcount (eg. reclaim) has the 115 * following (with tree_lock held for write): 116 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) 117 * B. remove page from pagecache 118 * C. free the page 119 * 120 * There are 2 critical interleavings that matter: 121 * - 2 runs before A: in this case, A sees elevated refcount and bails out 122 * - A runs before 2: in this case, 2 sees zero refcount and retries; 123 * subsequently, B will complete and 1 will find no page, causing the 124 * lookup to return NULL. 125 * 126 * It is possible that between 1 and 2, the page is removed then the exact same 127 * page is inserted into the same position in pagecache. That's OK: the 128 * old find_get_page using tree_lock could equally have run before or after 129 * such a re-insertion, depending on order that locks are granted. 130 * 131 * Lookups racing against pagecache insertion isn't a big problem: either 1 132 * will find the page or it will not. Likewise, the old find_get_page could run 133 * either before the insertion or afterwards, depending on timing. 134 */ 135static inline int page_cache_get_speculative(struct page *page) 136{ 137 VM_BUG_ON(in_interrupt()); 138 139#ifdef CONFIG_TINY_RCU 140# ifdef CONFIG_PREEMPT_COUNT 141 VM_BUG_ON(!in_atomic()); 142# endif 143 /* 144 * Preempt must be disabled here - we rely on rcu_read_lock doing 145 * this for us. 146 * 147 * Pagecache won't be truncated from interrupt context, so if we have 148 * found a page in the radix tree here, we have pinned its refcount by 149 * disabling preempt, and hence no need for the "speculative get" that 150 * SMP requires. 151 */ 152 VM_BUG_ON_PAGE(page_count(page) == 0, page); 153 page_ref_inc(page); 154 155#else 156 if (unlikely(!get_page_unless_zero(page))) { 157 /* 158 * Either the page has been freed, or will be freed. 159 * In either case, retry here and the caller should 160 * do the right thing (see comments above). 161 */ 162 return 0; 163 } 164#endif 165 VM_BUG_ON_PAGE(PageTail(page), page); 166 167 return 1; 168} 169 170/* 171 * Same as above, but add instead of inc (could just be merged) 172 */ 173static inline int page_cache_add_speculative(struct page *page, int count) 174{ 175 VM_BUG_ON(in_interrupt()); 176 177#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU) 178# ifdef CONFIG_PREEMPT_COUNT 179 VM_BUG_ON(!in_atomic()); 180# endif 181 VM_BUG_ON_PAGE(page_count(page) == 0, page); 182 page_ref_add(page, count); 183 184#else 185 if (unlikely(!page_ref_add_unless(page, count, 0))) 186 return 0; 187#endif 188 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page); 189 190 return 1; 191} 192 193#ifdef CONFIG_NUMA 194extern struct page *__page_cache_alloc(gfp_t gfp); 195#else 196static inline struct page *__page_cache_alloc(gfp_t gfp) 197{ 198 return alloc_pages(gfp, 0); 199} 200#endif 201 202static inline struct page *page_cache_alloc(struct address_space *x) 203{ 204 return __page_cache_alloc(mapping_gfp_mask(x)); 205} 206 207static inline struct page *page_cache_alloc_cold(struct address_space *x) 208{ 209 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD); 210} 211 212static inline gfp_t readahead_gfp_mask(struct address_space *x) 213{ 214 return mapping_gfp_mask(x) | 215 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN; 216} 217 218typedef int filler_t(void *, struct page *); 219 220pgoff_t page_cache_next_hole(struct address_space *mapping, 221 pgoff_t index, unsigned long max_scan); 222pgoff_t page_cache_prev_hole(struct address_space *mapping, 223 pgoff_t index, unsigned long max_scan); 224 225#define FGP_ACCESSED 0x00000001 226#define FGP_LOCK 0x00000002 227#define FGP_CREAT 0x00000004 228#define FGP_WRITE 0x00000008 229#define FGP_NOFS 0x00000010 230#define FGP_NOWAIT 0x00000020 231 232struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 233 int fgp_flags, gfp_t cache_gfp_mask); 234 235/** 236 * find_get_page - find and get a page reference 237 * @mapping: the address_space to search 238 * @offset: the page index 239 * 240 * Looks up the page cache slot at @mapping & @offset. If there is a 241 * page cache page, it is returned with an increased refcount. 242 * 243 * Otherwise, %NULL is returned. 244 */ 245static inline struct page *find_get_page(struct address_space *mapping, 246 pgoff_t offset) 247{ 248 return pagecache_get_page(mapping, offset, 0, 0); 249} 250 251static inline struct page *find_get_page_flags(struct address_space *mapping, 252 pgoff_t offset, int fgp_flags) 253{ 254 return pagecache_get_page(mapping, offset, fgp_flags, 0); 255} 256 257/** 258 * find_lock_page - locate, pin and lock a pagecache page 259 * pagecache_get_page - find and get a page reference 260 * @mapping: the address_space to search 261 * @offset: the page index 262 * 263 * Looks up the page cache slot at @mapping & @offset. If there is a 264 * page cache page, it is returned locked and with an increased 265 * refcount. 266 * 267 * Otherwise, %NULL is returned. 268 * 269 * find_lock_page() may sleep. 270 */ 271static inline struct page *find_lock_page(struct address_space *mapping, 272 pgoff_t offset) 273{ 274 return pagecache_get_page(mapping, offset, FGP_LOCK, 0); 275} 276 277/** 278 * find_or_create_page - locate or add a pagecache page 279 * @mapping: the page's address_space 280 * @index: the page's index into the mapping 281 * @gfp_mask: page allocation mode 282 * 283 * Looks up the page cache slot at @mapping & @offset. If there is a 284 * page cache page, it is returned locked and with an increased 285 * refcount. 286 * 287 * If the page is not present, a new page is allocated using @gfp_mask 288 * and added to the page cache and the VM's LRU list. The page is 289 * returned locked and with an increased refcount. 290 * 291 * On memory exhaustion, %NULL is returned. 292 * 293 * find_or_create_page() may sleep, even if @gfp_flags specifies an 294 * atomic allocation! 295 */ 296static inline struct page *find_or_create_page(struct address_space *mapping, 297 pgoff_t offset, gfp_t gfp_mask) 298{ 299 return pagecache_get_page(mapping, offset, 300 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 301 gfp_mask); 302} 303 304/** 305 * grab_cache_page_nowait - returns locked page at given index in given cache 306 * @mapping: target address_space 307 * @index: the page index 308 * 309 * Same as grab_cache_page(), but do not wait if the page is unavailable. 310 * This is intended for speculative data generators, where the data can 311 * be regenerated if the page couldn't be grabbed. This routine should 312 * be safe to call while holding the lock for another page. 313 * 314 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 315 * and deadlock against the caller's locked page. 316 */ 317static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 318 pgoff_t index) 319{ 320 return pagecache_get_page(mapping, index, 321 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 322 mapping_gfp_mask(mapping)); 323} 324 325struct page *find_get_entry(struct address_space *mapping, pgoff_t offset); 326struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset); 327unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 328 unsigned int nr_entries, struct page **entries, 329 pgoff_t *indices); 330unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 331 unsigned int nr_pages, struct page **pages); 332unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 333 unsigned int nr_pages, struct page **pages); 334unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 335 int tag, unsigned int nr_pages, struct page **pages); 336unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 337 int tag, unsigned int nr_entries, 338 struct page **entries, pgoff_t *indices); 339 340struct page *grab_cache_page_write_begin(struct address_space *mapping, 341 pgoff_t index, unsigned flags); 342 343/* 344 * Returns locked page at given index in given cache, creating it if needed. 345 */ 346static inline struct page *grab_cache_page(struct address_space *mapping, 347 pgoff_t index) 348{ 349 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 350} 351 352extern struct page * read_cache_page(struct address_space *mapping, 353 pgoff_t index, filler_t *filler, void *data); 354extern struct page * read_cache_page_gfp(struct address_space *mapping, 355 pgoff_t index, gfp_t gfp_mask); 356extern int read_cache_pages(struct address_space *mapping, 357 struct list_head *pages, filler_t *filler, void *data); 358 359static inline struct page *read_mapping_page(struct address_space *mapping, 360 pgoff_t index, void *data) 361{ 362 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 363 return read_cache_page(mapping, index, filler, data); 364} 365 366/* 367 * Get the offset in PAGE_SIZE. 368 * (TODO: hugepage should have ->index in PAGE_SIZE) 369 */ 370static inline pgoff_t page_to_pgoff(struct page *page) 371{ 372 pgoff_t pgoff; 373 374 if (unlikely(PageHeadHuge(page))) 375 return page->index << compound_order(page); 376 377 if (likely(!PageTransTail(page))) 378 return page->index; 379 380 /* 381 * We don't initialize ->index for tail pages: calculate based on 382 * head page 383 */ 384 pgoff = compound_head(page)->index; 385 pgoff += page - compound_head(page); 386 return pgoff; 387} 388 389/* 390 * Return byte-offset into filesystem object for page. 391 */ 392static inline loff_t page_offset(struct page *page) 393{ 394 return ((loff_t)page->index) << PAGE_SHIFT; 395} 396 397static inline loff_t page_file_offset(struct page *page) 398{ 399 return ((loff_t)page_file_index(page)) << PAGE_SHIFT; 400} 401 402extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 403 unsigned long address); 404 405static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 406 unsigned long address) 407{ 408 pgoff_t pgoff; 409 if (unlikely(is_vm_hugetlb_page(vma))) 410 return linear_hugepage_index(vma, address); 411 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 412 pgoff += vma->vm_pgoff; 413 return pgoff; 414} 415 416extern void __lock_page(struct page *page); 417extern int __lock_page_killable(struct page *page); 418extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 419 unsigned int flags); 420extern void unlock_page(struct page *page); 421 422static inline int trylock_page(struct page *page) 423{ 424 page = compound_head(page); 425 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); 426} 427 428/* 429 * lock_page may only be called if we have the page's inode pinned. 430 */ 431static inline void lock_page(struct page *page) 432{ 433 might_sleep(); 434 if (!trylock_page(page)) 435 __lock_page(page); 436} 437 438/* 439 * lock_page_killable is like lock_page but can be interrupted by fatal 440 * signals. It returns 0 if it locked the page and -EINTR if it was 441 * killed while waiting. 442 */ 443static inline int lock_page_killable(struct page *page) 444{ 445 might_sleep(); 446 if (!trylock_page(page)) 447 return __lock_page_killable(page); 448 return 0; 449} 450 451/* 452 * lock_page_or_retry - Lock the page, unless this would block and the 453 * caller indicated that it can handle a retry. 454 * 455 * Return value and mmap_sem implications depend on flags; see 456 * __lock_page_or_retry(). 457 */ 458static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, 459 unsigned int flags) 460{ 461 might_sleep(); 462 return trylock_page(page) || __lock_page_or_retry(page, mm, flags); 463} 464 465/* 466 * This is exported only for wait_on_page_locked/wait_on_page_writeback, 467 * and for filesystems which need to wait on PG_private. 468 */ 469extern void wait_on_page_bit(struct page *page, int bit_nr); 470 471extern int wait_on_page_bit_killable(struct page *page, int bit_nr); 472extern int wait_on_page_bit_killable_timeout(struct page *page, 473 int bit_nr, unsigned long timeout); 474 475static inline int wait_on_page_locked_killable(struct page *page) 476{ 477 if (!PageLocked(page)) 478 return 0; 479 return wait_on_page_bit_killable(compound_head(page), PG_locked); 480} 481 482extern wait_queue_head_t *page_waitqueue(struct page *page); 483static inline void wake_up_page(struct page *page, int bit) 484{ 485 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 486} 487 488/* 489 * Wait for a page to be unlocked. 490 * 491 * This must be called with the caller "holding" the page, 492 * ie with increased "page->count" so that the page won't 493 * go away during the wait.. 494 */ 495static inline void wait_on_page_locked(struct page *page) 496{ 497 if (PageLocked(page)) 498 wait_on_page_bit(compound_head(page), PG_locked); 499} 500 501/* 502 * Wait for a page to complete writeback 503 */ 504static inline void wait_on_page_writeback(struct page *page) 505{ 506 if (PageWriteback(page)) 507 wait_on_page_bit(page, PG_writeback); 508} 509 510extern void end_page_writeback(struct page *page); 511void wait_for_stable_page(struct page *page); 512 513void page_endio(struct page *page, bool is_write, int err); 514 515/* 516 * Add an arbitrary waiter to a page's wait queue 517 */ 518extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter); 519 520/* 521 * Fault one or two userspace pages into pagetables. 522 * Return -EINVAL if more than two pages would be needed. 523 * Return non-zero on a fault. 524 */ 525static inline int fault_in_pages_writeable(char __user *uaddr, int size) 526{ 527 int span, ret; 528 529 if (unlikely(size == 0)) 530 return 0; 531 532 span = offset_in_page(uaddr) + size; 533 if (span > 2 * PAGE_SIZE) 534 return -EINVAL; 535 /* 536 * Writing zeroes into userspace here is OK, because we know that if 537 * the zero gets there, we'll be overwriting it. 538 */ 539 ret = __put_user(0, uaddr); 540 if (ret == 0 && span > PAGE_SIZE) 541 ret = __put_user(0, uaddr + size - 1); 542 return ret; 543} 544 545static inline int fault_in_pages_readable(const char __user *uaddr, int size) 546{ 547 volatile char c; 548 int ret; 549 550 if (unlikely(size == 0)) 551 return 0; 552 553 ret = __get_user(c, uaddr); 554 if (ret == 0) { 555 const char __user *end = uaddr + size - 1; 556 557 if (((unsigned long)uaddr & PAGE_MASK) != 558 ((unsigned long)end & PAGE_MASK)) { 559 ret = __get_user(c, end); 560 (void)c; 561 } 562 } 563 return ret; 564} 565 566/* 567 * Multipage variants of the above prefault helpers, useful if more than 568 * PAGE_SIZE of data needs to be prefaulted. These are separate from the above 569 * functions (which only handle up to PAGE_SIZE) to avoid clobbering the 570 * filemap.c hotpaths. 571 */ 572static inline int fault_in_multipages_writeable(char __user *uaddr, int size) 573{ 574 char __user *end = uaddr + size - 1; 575 576 if (unlikely(size == 0)) 577 return 0; 578 579 if (unlikely(uaddr > end)) 580 return -EFAULT; 581 /* 582 * Writing zeroes into userspace here is OK, because we know that if 583 * the zero gets there, we'll be overwriting it. 584 */ 585 do { 586 if (unlikely(__put_user(0, uaddr) != 0)) 587 return -EFAULT; 588 uaddr += PAGE_SIZE; 589 } while (uaddr <= end); 590 591 /* Check whether the range spilled into the next page. */ 592 if (((unsigned long)uaddr & PAGE_MASK) == 593 ((unsigned long)end & PAGE_MASK)) 594 return __put_user(0, end); 595 596 return 0; 597} 598 599static inline int fault_in_multipages_readable(const char __user *uaddr, 600 int size) 601{ 602 volatile char c; 603 const char __user *end = uaddr + size - 1; 604 605 if (unlikely(size == 0)) 606 return 0; 607 608 if (unlikely(uaddr > end)) 609 return -EFAULT; 610 611 do { 612 if (unlikely(__get_user(c, uaddr) != 0)) 613 return -EFAULT; 614 uaddr += PAGE_SIZE; 615 } while (uaddr <= end); 616 617 /* Check whether the range spilled into the next page. */ 618 if (((unsigned long)uaddr & PAGE_MASK) == 619 ((unsigned long)end & PAGE_MASK)) { 620 return __get_user(c, end); 621 } 622 623 (void)c; 624 return 0; 625} 626 627int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 628 pgoff_t index, gfp_t gfp_mask); 629int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 630 pgoff_t index, gfp_t gfp_mask); 631extern void delete_from_page_cache(struct page *page); 632extern void __delete_from_page_cache(struct page *page, void *shadow); 633int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); 634 635/* 636 * Like add_to_page_cache_locked, but used to add newly allocated pages: 637 * the page is new, so we can just run __SetPageLocked() against it. 638 */ 639static inline int add_to_page_cache(struct page *page, 640 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 641{ 642 int error; 643 644 __SetPageLocked(page); 645 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 646 if (unlikely(error)) 647 __ClearPageLocked(page); 648 return error; 649} 650 651static inline unsigned long dir_pages(struct inode *inode) 652{ 653 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 654 PAGE_SHIFT; 655} 656 657#endif /* _LINUX_PAGEMAP_H */